1
|
Elnar AG, Eum B, Kim GB. Genomic characterization and probiotic assessment of Bifidobacterium breve JKL2022 with strain-specific CLA-converting properties. Sci Rep 2025; 15:15419. [PMID: 40316692 PMCID: PMC12048573 DOI: 10.1038/s41598-025-98770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
Bifidobacterium breve is a well-recognized probiotic species. B. breve JKL2022, a strain isolated from the feces of healthy infants that exhibits superior conjugated linoleic acid (CLA)-converting activity, was functionally characterized for probiotic safety and applicability through genomic and in vitro analyses. The JKL2022 genome comprises a 2,313,948 bp sequence assembled into a single contig, encoding a total of 1,998 genes. In silico predictive analyses confirmed the absence of virulence factors and acquired resistance genes while verifying its intrinsic antimicrobial resistance profile. Several CAZymes were identified, consistent with the strain's fermentation profile. Additionally, the gene encoding the key enzyme for CLA conversion was identified as a 993-bp lai gene, underscoring the species-level differences in microbial CLA metabolism. The functionality, stress tolerance, and safety of JKL2022 were further confirmed through experimental assessments. JKL2022 exhibited tolerance to acid and bile salts, auto-aggregation, and cell surface hydrophobicity, indicating its potential to survive gastrointestinal transit. Furthermore, JKL2022 exhibited α-glucosidase inhibitory activity and tested negative for starch hydrolysis, hemolysis, and gelatinase activity. The inherent probiotic properties of Bifidobacterium, combined with the strain-specific CLA conversion using growing cells and postbiotic preparations, contribute to the potential health benefits of B. breve JKL2022, as verified in this study.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Byeonggwan Eum
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
2
|
Dec M, Herman-Ostrzyżek K, Zomer A, Urban-Chmiel R. Susceptibility of Lactobacillaceae Strains to Aminoglycoside Antibiotics in the Light of EFSA Guidelines. Life (Basel) 2025; 15:732. [PMID: 40430158 DOI: 10.3390/life15050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Lactobacillaceae is a large family of bacteria from which probiotic strains often originate. Microorganisms used as feed additives in the EU must meet a number of formal criteria, some of which concern antimicrobial susceptibility. In this study, we determined the susceptibility of 19 reference strains and 121 wild-type strains of Lactobacillaceae to aminoglycoside antibiotics using the broth microdilution method based on the ISO 10932:2010/IDF 223:2010 standard. Strains were categorized as resistant or susceptible according to European Food Safety Authority (EFSA) guidelines. Resistance genes were detected by whole genome sequence (WGS) analysis or by PCR. The MICs read after 48 h of incubation showed that 36.8% of reference strains were resistant to kanamycin, 26.3% to streptomycin, and 5.3% to gentamicin, with no aminoglycoside resistance genes detected in any genome. As many as 93.2% of field isolates of Ligilactobacillus salivarius, 85% of Ligilactobacillus agilis, and 58.8% of Lactiplantibacillus plantarum were classified as resistant to kanamycin, with the aac(6)-Ie-aph(2)-Ia gene detected only in two isolates. In six of 12 streptomycin-resistant strains, the ant(6)-Ia gene was identified, which usually coexisted with the spw gene. Three isolates with high neomycin MICs harbored the ant(4')-Ia gene. In Lactobacillus gallinarum strain LMG 9435, characterized by streptomycin MIC value > 1024 µg/mL, a potential resistance-causing mutation in the rpsL gene (Lys56 → Arg) was detected. The results of the study indicate that some genera of Lactobacillaceae, in particular L. salivarius and L. agilis, exhibit natural resistance to aminoglycoside antibiotics, mainly kanamycin. Therefore, there is a need to update the EFSA guidelines on antimicrobial susceptibility testing of Lactobacillaceae, so that strains lacking resistance genes and/or chromosomal mutations are not considered to be resistant.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Klaudia Herman-Ostrzyżek
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Aldert Zomer
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, 3584 CL Utrecht, The Netherlands
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
3
|
Li D, Tan F, Sun Y, Gao C, Liu Y. Occurrence and Abundance of Antibiotic Resistance Genes in Chinese Traditional Pickles. Foodborne Pathog Dis 2025. [PMID: 40230011 DOI: 10.1089/fpd.2024.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
With the widespread application and even misuse of antibiotics, antibiotic resistance genes (ARGs) are extensively present in various environments, from natural environment to fermented foods, posing emerging threat to public and environmental health. The real-time fluorescence quantitative PCR (qPCR) technique is commonly used to detect ARGs of environmental samples such as soil or water. In this study, eight types of pickles were collected from four regions of China and the existence of 13 resistance genes was assessed by qPCR. The results showed that a total of 11 resistance genes were detected in pickles, the blaTEM gene was detected in all samples, and the neo and cat genes were absent. The abundance of resistance genes varied, aada1 (1.09 × 105 to 5.94 × 106 copies/g), blaTEM (1.48 × 105 to 2.2 × 106 copies/g), ermc (1.01 × 105 to 5.35 × 105 copies/g), hyg (1.35 × 105 to 1.93 × 106 copies/g), aadd (4.46 × 105 to 1.60 × 106 copies/g), nat1 (1.04 × 105 to 5.04 × 105 copies/g), nptII (2.17 × 104 to 1.69 × 105 copies/g), sul1 (2.01 × 105 to 4.60 × 105 copies/g), tetl (1.23 × 105 to 6.18 × 105 copies/g), shble (1.68 × 104 copies/g), and stra (4.8 × 104 to 1.9 × 105copies/g). We also discussed the specificity and sensitivity assessment of qPCR applied to ARGs analysis in pickles, verifying the feasibility and validity of the method. Bacteria were isolated and purified from pickles as well and their antimicrobial resistance was studied. This study is of great significance for the risk assessment of resistance genes in pickles. Effective and preventive solutions were proposed to reduce the spread of resistance genes and protect public dietary health.
Collapse
Affiliation(s)
- Delong Li
- School of Chemical Science and Technology, Linyi University, Linyi, China
| | - Fumin Tan
- School of Life Science, Linyi University, Linyi, China
| | - YiXin Sun
- School of Life Science, Linyi University, Linyi, China
| | - Cuijuan Gao
- School of Life Science, Linyi University, Linyi, China
| | - Yunguo Liu
- School of Life Science, Linyi University, Linyi, China
| |
Collapse
|
4
|
Diniz DCDC, Ribeiro MG, Dias GS, Viana GDB, Okamoto AS, Machado LHDA. Antimicrobial activity of Lactobacillus casei on Staphylococcus pseudintermedius isolates. Vet Dermatol 2025. [PMID: 39868610 DOI: 10.1111/vde.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Antimicrobial resistance is increasing each year. For example, in 2019 it was directly responsible for an estimated >1 million deaths. Additionally, the development of new drugs is much slower, generating enormous concerns about responses to infection in the future health scenario. Therefore, probiotics have emerged as an alternative to antibiotics. OBJECTIVES This study aimed to isolate and identify a Lactobacillus casei from healthy canine skin and investigate its antimicrobial effect on isolates of Staphylococcus pseudintermedius originating from dogs with pyoderma. MATERIALS AND METHODS L. casei was isolated from skin samples collected with a sterile cotton swab from the inner pinnae of healthy dogs. It was then cultured, identified using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry, and tested against 30 different clinical isolates and one American Type Culture Collection strain of S. pseudintermedius using the spot-on-the-lawn technique. Its safety was assessed through a modified Kirby-Bauer disc diffusion susceptibility test. RESULTS L. casei inhibited the growth of all isolates of S. pseudintermedius. The mean value of the inhibition halo of all isolates was 11.3 mm. A significant positive correlation (Pearson's linear correlation = 0.444; p = 0.014) was noted between the inhibitory halos formed by L. casei on the S. pseudintermedius isolates and the halos produced by the tested antimicrobial discs on the same isolates. The L. casei strain demonstrated sensitivity to all tested antimicrobials. CONCLUSIONS AND CLINICAL RELEVANCE The study indicates that using commensal bacteria from canine skin, specifically L. casei, to control bacterial infections caused by S. pseudintermedius can be a promising complementary or alternative therapy to antibiotics relevant to animal and human health.
Collapse
Affiliation(s)
| | - Marcio Garcia Ribeiro
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriele Silva Dias
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Guilherme de Brito Viana
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Adriano Sakari Okamoto
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Luiz Henrique de Araújo Machado
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
5
|
Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of Lacticaseibacillus paracasei EG005: a promising probiotic with enhanced antioxidant activity. Front Microbiol 2024; 15:1477152. [PMID: 39469458 PMCID: PMC11513463 DOI: 10.3389/fmicb.2024.1477152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Probiotics, such as Lacticaseibacillus paracasei EG005, are gaining attention for their health benefits, particularly in reducing oxidative stress. The goal of this study was to reinforce the antioxidant capacity of EG005, along with comprehensive genomic analysis, with a focus on assessing superoxide dismutase (SOD) activity, acid resistance and bile tolerance, and safety. Methods EG005 was screened for SOD activity and change of SOD activity was tested under various pH conditions. Its survival rates were assessed in acidic (pH 2.5) and bile salt (0.3%) conditions and the antibiotic MIC test and hemolysis test were performed to evaluate safety. Genetic analyses including functional identification and phylogenetic tree construction were performed. The SOD overexpression system was constructed using Ptuf, Pldh1, Plhd2, and Pldh3 strong promoters. Results EG005 demonstrated higher SOD activity compared to Lacticaseibacillus rhamnosus GG, with optimal activity at pH 7.0. It showed significant acid and bile tolerance, with survival rates recovering to 100% after 3 h in acidic conditions. Phylogenetic analysis confirmed that EG005 is closely related to other L. paracasei strains with ANI values above 98%. Overexpression of SOD using the Ptuf promoter resulted in a two-fold increase in activity compared to the controls. Additionally, EG005 exhibited no hemolytic activity and showed antibiotic susceptibility within safe limits. Discussion Our findings highlight EG005's potential as a probiotic with robust antioxidant activity and high tolerance to gastrointestinal conditions. Its unique genetic profile and enhanced SOD activity through strong promoter support its application in probiotic therapies and functional foods. Further research should be investigated to find the in vivo effects of EG005 on gut health and oxidative stress reduction. In addition, attB and attP-based recombination, combined with CRISPR-Cas9 technologies, could offer a more stable alternative for long-term sodA gene expression in commercial and medical applications.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome Inc., Seoul, Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Arellano K, Lim J, Bucheli JEV, Park H, Todorov SD, Holzapfel WH. Identification of safe putative probiotics from various food products. Folia Microbiol (Praha) 2024; 69:1053-1068. [PMID: 38376735 DOI: 10.1007/s12223-024-01142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The objective of this study was to isolate, identify, and assess the safety and functionality in vitro of putative probiotic bacterial strains. Isolation procedures were based on standard methods using elective and selective media. The isolates were identified by comparative 16S rRNA sequencing analysis while their safety was determined according to the safety tests recommended by the FAO/WHO such as antibiotic resistance, hemolysin, and biogenic amine production. Most of the isolates did not pass the in vitro safety tests; therefore, only Lactiplantibacillus plantarum (from ant intestine and cheese), Lacticaseibacillus paracasei (from goat milk and kimchi), Enterococcus faecium (from chili doenjang and vegetables with kimchi ingredients), Limosilactobacillus fermentum (from saliva), and Companilactobacillus alimentarius (from kimchi) were identified and selected for further studies. The isolates were further differentiated by rep-PCR and identified to the strain level by genotypic (16S rRNA) and phenotypic (Gen III) approaches. Subsequently, the strain tolerance to acid and bile was evaluated resulting in good viability after simulated gastrointestinal tract passage. Adhesion to mucin in vitro and the presence of mub, mapA, and ef-tu genes confirmed the adhesive potential of the strains and the results of features associated with adhesion such as hydrophobicity and zeta potential extended the insights. This study reflects the importance of fermented and non-fermented food products as a promising source of lactic acid bacteria with potential probiotic properties. Additionally, it aims to highlight the challenges associated with the selection of safe strains, which often fail in the in vitro tests, thus hindering the possibilities of "uncovering" novel and safe probiotic strains.
Collapse
Affiliation(s)
- Karina Arellano
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein, Schwanenweg 20, 24105 Kiel, Germany
| | - Juwhan Lim
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Jorge Enrique Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Haryung Park
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Food Research Center (FoRC), Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal.
| | - Wilhelm Heinrich Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea.
| |
Collapse
|
7
|
Zhong Y, Guo J, Zheng Y, Lin H, Su Y. Metabolomics analysis of the lactobacillus plantarum ATCC 14917 response to antibiotic stress. BMC Microbiol 2024; 24:229. [PMID: 38943061 PMCID: PMC11212188 DOI: 10.1186/s12866-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Huale Lin
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Rúa J, Sanz-Gómez J, Maestro S, Caro I, García-Armesto MR. Antimicrobial Effect of Lippia citriodora Extract in Combination with Gallic Acid or Octyl Gallate on Bacteria from Meat. Foods 2024; 13:1643. [PMID: 38890871 PMCID: PMC11172128 DOI: 10.3390/foods13111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Chicken meat and its derivatives are easily alterable. They are a nutritionally healthy food, and their consumption has seen a remarkable increase worldwide in recent years. At the same time, consumer demand for the use of natural products to control microbial growth is increasing. In this context, the antimicrobial capacity of a commercial extract of the lemon verbena (Lippia citriodora) plant, (LCE) was tested in binary combination with gallic acid or octyl gallate against two strains of lactic acid bacteria (LAB) of meat origin: Carnobacterium divergens ATCC 35677 and Leuconostoc carnosum ATCC 49367. First, the antimicrobial potential was evaluated by the checkerboard microdilution method at the optimal growth temperature of each and at 4 °C, pH 5.7 and 6.7, in culture medium. Octyl gallate was the most effective antimicrobial against the two bacteria under all study conditions. At 4 °C, the combination of LCE with octyl gallate had a similar antimicrobial effect on the two LAB, being bactericidal at pH 6.7. In chicken breast, this effective combination was tested in normal or modified atmosphere and refrigerated (4-8 °C) for 9 days. LCE + OG in modified atmosphere reduced the different microbial groups studied, including the lactic acid bacteria as the main microorganisms responsible for the spoilage of fresh meat. Further research could pave the way for the development of novel strategies contributing to the technological stability, security, and functional properties of chicken meat.
Collapse
Affiliation(s)
- Javier Rúa
- Department of Molecular Biology, University of León, 24007 León, Spain; (J.R.)
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain;
- ALINS—Food Nutrition and Safety Investigation Group, University of León, 24007 León, Spain
| | - Javier Sanz-Gómez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain;
- ALINS—Food Nutrition and Safety Investigation Group, University of León, 24007 León, Spain
| | - Sheila Maestro
- Department of Molecular Biology, University of León, 24007 León, Spain; (J.R.)
| | - Irma Caro
- Area of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - María Rosario García-Armesto
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain;
- ALINS—Food Nutrition and Safety Investigation Group, University of León, 24007 León, Spain
- Department of Food Hygiene and Technology, University of León, 24007 León, Spain
| |
Collapse
|
9
|
Contente D, Díaz-Formoso L, Feito J, Gómez-Sala B, Costas D, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Antimicrobial Activity, Genetic Relatedness, and Safety Assessment of Potential Probiotic Lactic Acid Bacteria Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis) Used as Live Feed in Fish Larviculture. Animals (Basel) 2024; 14:1415. [PMID: 38791633 PMCID: PMC11117289 DOI: 10.3390/ani14101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Aquaculture is a rapidly expanding agri-food industry that faces substantial economic losses due to infectious disease outbreaks, such as bacterial infections. These outbreaks cause disruptions and high mortalities at various stages of the rearing process, especially in the larval stages. Probiotic bacteria are emerging as promising and sustainable alternative or complementary strategies to vaccination and the use of antibiotics in aquaculture. In this study, potential probiotic candidates for larviculture were isolated from a rotifer-rearing tank used as the first live feed for turbot larvae. Two Lacticaseibacillus paracasei and two Lactiplantibacillus plantarum isolates were selected for further characterization due to their wide and strong antimicrobial activity against several ichthyopathogens, both Gram-positive and Gram-negative. An extensive in vitro safety assessment of these four isolates revealed the absence of harmful traits, such as acquired antimicrobial resistance and other virulence factors (i.e., hemolytic and gelatinase activities, bile salt deconjugation, and mucin degradation, as well as PCR detection of biogenic amine production). Moreover, Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) analyses unveiled their genetic relatedness, revealing two divergent clusters within each species. To our knowledge, this work reports for the first time the isolation and characterization of Lactic Acid Bacteria (LAB) with potential use as probiotics in aquaculture from rotifer-rearing tanks, which have the potential to optimize turbot larviculture and to introduce novel microbial management approaches for a sustainable aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, R93 XE12 Cork, Ireland
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, Centro de Investigación Mariña (ECIMAT), 36331 Vigo, Spain;
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| |
Collapse
|
10
|
Tran HM, Prathan R, Hein ST, Chuanchuen R. Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics (Basel) 2024; 13:148. [PMID: 38391534 PMCID: PMC10885956 DOI: 10.3390/antibiotics13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.
Collapse
Affiliation(s)
- Hoang My Tran
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Si Thu Hein
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Muhammad I, Pan S, Elken EM, Zhang H, Wang Y, Xu Y, Wang Y, Kong L, Ma H. Antibiotic resistance of probiotics isolated from Chinese corn stover silage. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2023.2165088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Inam Muhammad
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
- Department of Zoology, Shaheed Benazir Bhutto University, Shrengal, Pakistan
| | - Siyu Pan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Emad Mohammed Elken
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City Cairo, Egypt
| | - Haipeng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yu Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yuxuan Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yiming Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Lingcong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
- College of Life Science, Jilin Agricultural University, Changchun, People’s Republic of China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Sevillano E, Lafuente I, Peña N, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Evaluation of Safety and Probiotic Traits from a Comprehensive Genome-Based In Silico Analysis of Ligilactobacillus salivarius P1CEA3, Isolated from Pigs and Producer of Nisin S. Foods 2023; 13:107. [PMID: 38201135 PMCID: PMC10778751 DOI: 10.3390/foods13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut microbiota. L. salivarius P1CEA3, a porcine isolated strain, was first selected and identified by its antimicrobial activity against a broad range of pathogenic bacteria due to the production of the novel bacteriocin nisin S. The assembled L. salivarius P1CEA3 genome includes a circular chromosome, a megaplasmid (pMP1CEA3) encoding the nisin S gene cluster, and two small plasmids. A comprehensive genome-based in silico analysis of the L. salivarius P1CEA3 genome reveals the presence of genes related to probiotic features such as bacteriocin synthesis, regulation and production, adhesion and aggregation, the production of lactic acid, amino acids metabolism, vitamin biosynthesis, and tolerance to temperature, acid, bile salts and osmotic and oxidative stress. Furthermore, the strain is absent of risk-related genes for acquired antibiotic resistance traits, virulence factors, toxic metabolites and detrimental metabolic or enzymatic activities. Resistance to common antibiotics and gelatinase and hemolytic activities have been discarded by in vitro experiments. This study identifies several probiotic and safety traits of L. salivarius P1CEA3 and suggests its potential as a promising probiotic in swine production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain; (E.S.); (I.L.); (N.P.); (L.M.C.); (E.M.-A.); (P.E.H.)
| |
Collapse
|
13
|
Tamés H, Sabater C, Margolles A, Ruiz L, Ruas-Madiedo P. Production of GABA in milk fermented by Bifidobacterium adolescentis strains selected on the bases of their technological and gastrointestinal performance. Food Res Int 2023; 171:113009. [PMID: 37330847 DOI: 10.1016/j.foodres.2023.113009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
There is an increasing interest in producing foods enriched in gamma-aminobutyric acid (GABA), due to their purported health promoting attributes. GABA is the main inhibitor neurotransmitter of the central nervous system, and several microbial species are capable to produce it through decarboxylation of glutamate. Among them, several lactic acid bacteria species have been previously investigated as an appealing alternative to produce GABA enriched foods via microbial fermentation. In this work we report for the first time an investigation into the possibility of utilizing high GABA-producing Bifidobacterium adolescentis strains as a mean to produce fermented probiotic milks naturally enriched in GABA. To this end, in silico and in vitro analyses were conducted in a collection of GABA-producing B. adolescentis strains, with the main goal to scrutinize their metabolic and safety traits, including antibiotic resistance patterns, as well as their technological robustness and performance to survive a simulated gastrointestinal passage. One of the strains, IPLA60004, exhibited better survival to lyophilization and cold storage (for up to 4 weeks at 4 °C), as well as survival to gastrointestinal passage, as compared to the other strains under investigation. Besides, the elaboration of milk drinks fermented with this strain, yielded products with the highest GABA concentration and viable bifidobacterial cell counts, achieving conversion rates of the precursor, monosodium glutamate (GMS), up to 70 %. To our knowledge, this is the first report on the elaboration of GABA enriched milks through fermentation with B. adolescentis.
Collapse
Affiliation(s)
- Héctor Tamés
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| |
Collapse
|
14
|
Kammara R, Nellikka A. Acquiring bifidobacteria species from formula-fed and breast-fed newborns: identifying, quantifying and creating an antibiogram. Access Microbiol 2023; 5:acmi000590.v3. [PMID: 37691835 PMCID: PMC10484311 DOI: 10.1099/acmi.0.000590.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023] Open
Abstract
After examining the Bifidobacterium spp. population in faeces samples from breast-fed and formula-fed infants, an antibiogram was created. The prevalence of Bifidobacterium spp. in faeces was determined using common bacterial growth media, including Man Rogos Sharpe (MRS), Brain Heart Infusion (BHI), Luria Bertani (LB) broth and Bifidobacteria agar. According to the findings, formula-fed babies had a low population of Bifidobacterium spp. in their stools while breast-fed babies had a high population. By using phylogenetic analysis of the 16S rRNA and xfp (xylose/fructose 6-phosphate phosphoketolase) genes, and RFLP mapping of Bifidobacterium isolates, it was possible to identify a new and unique Bifidobacterium species. The intensity of the reddish brown colour produced during the F6PPK (fructose 6-phosphate phosphoketolase) assay is an accurate indicator of the proportion of various bifidobacteria present. Bifidobacteria agar media produced the greatest amounts of bifidobacteria diversity and recovery. Small (SCV) and Big colony variations (BCV) were formed during growth on different media. The various antibiotic MIC values changed depending on the use of different media, growth circumstances, bile salt treatment and low pH. The findings of this study demonstrate that test conditions also impact the diversity of microbiological conditions that distinguish between resistant and susceptible bacteria.
Collapse
Affiliation(s)
- Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| |
Collapse
|
15
|
Nøhr-Meldgaard K, Struve C, Ingmer H, Koza A, Al-Nakeeb K, Agersø Y. Antimicrobial susceptibility testing and tentative epidemiological cut-off values for Lactobacillaceae family species intended for ingestion. FRONTIERS IN ANTIBIOTICS 2023; 2:1162636. [PMID: 39816654 PMCID: PMC11732008 DOI: 10.3389/frabi.2023.1162636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 01/18/2025]
Abstract
Introduction In this work, 170 strains covering 13 species from the Lactobacillaceae family were analyzed to determine minimal inhibitory concentration (MIC) distributions to nine antimicrobial agents, and genes potentially conferring resistance. This allows a proposal of tentative Epidemiological Cut-Offs (ECOFFs) that follows the phylogeny for interpretation of resistance in the 13 species. Methods The 170 strains originated from different sources, geographical areas, and time periods. MICs for nine antibiotics were determined according to the ISO 10932 standard for lactobacillia and by a modified CLSI-method for Leuconostoc and Pediococcus which ensured sufficient growth. The strains were whole genome sequenced, subtyped by core genome analysis, and assessed for the presence of antibiotic resistance genes using the ResFinder and NCBI AMRFinder databases. Results and discussion The data provide evidence that antimicrobial susceptibility follows phylogeny instead of fermentation pattern and accordingly, tentative ECOFFs were defined. For some species the tentative ECOFFs for specific antibiotics are above the cut-off values set by the European Food Safety Authority (EFSA) which are primarily defined according to fermentation pattern or at genus level. The increased tolerance for specific antibiotics observed for some species was evaluated to be innate, as only for one strain phenotypic resistance was found to be related to an acquired resistance gene. In general, more data are needed to define ECOFFs and since the number of isolates available for industrial relevant bacterial species are often limited compared to clinically relevant species, it is important; 1) that strains are unambiguously defined at species level and subtyped through core genome analysis, 2) MIC determination are performed by use of a standardized method to define species-specific MIC distributions and 3) that known antimicrobial resistance genes are determined in whole genome sequences to support the MIC determinations.
Collapse
Affiliation(s)
- Katrine Nøhr-Meldgaard
- Research & Development, Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Carsten Struve
- Research & Development, Chr. Hansen A/S, Hørsholm, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anna Koza
- Research & Development, Chr. Hansen A/S, Hørsholm, Denmark
| | | | - Yvonne Agersø
- Research & Development, Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
16
|
Sendelius M, Axelsson J, Liu P, Roos S. Genomic, phenotypic, and clinical safety of Limosilactobacillus reuteri ATCC PTA 4659. J Ind Microbiol Biotechnol 2023; 50:kuad041. [PMID: 37974056 PMCID: PMC10689046 DOI: 10.1093/jimb/kuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Evaluating the safety of probiotic microorganisms is an important part of the development of probiotic products. In this study, we have performed a systematic safety assessment of Limosilactobacillus reuteri American Type Culture Collection (ATCC) PTA 4659 based on genome analysis, antibiotic susceptibility testing, phenotypic characterization, and a human clinical safety study. Genome sequence analysis showed that the strain is free from virulence and antibiotic resistance genes. Connected to this, phenotypic characterization showed that the strain is susceptible to the main classes of antibiotics. Limosilactobacillus reuteri ATCC PTA 4659 was shown to produce histamine, which has previously been described as an anti-inflammatory mediator produced by certain L. reuteri strains. However, the amount of histamine, a biogenic amine, poses no safety concern of a potential product. The strain was investigated in a human clinical safety study and was shown to survive passage through the gastrointestinal tract, both when administered at high [1 × 1011 colony-forming units (CFU)/day] and low doses (1 × 109 CFU/day). The clinical safety evaluation showed that the doses administered are safe for human consumption. Furthermore, carbohydrate utilization, mucus adhesion, and tolerance to acid and bile were studied. It was shown that L. reuteri ATCC PTA 4659 has a very high adhesion to mucus and tolerance to both gastric pH and bile, all potentially important properties for a probiotic strain. Altogether, this study has demonstrated that Limosilactobacillus reuteri ATCC PTA 4659 is safe for human consumption and along with its phenotypic characteristics and previously described anti-inflammatory effects, makes it a promising strain for future probiotic development. NCT01033539.
Collapse
Affiliation(s)
| | | | - Peidi Liu
- MetaboGen, SE- 411 26, Gothenburg, Sweden
| | - Stefan Roos
- BioGaia AB, SE- 103 64, Stockholm, Sweden
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE- 750 07, Uppsala, Sweden
| |
Collapse
|
17
|
Alonso García E, Benomar N, Lavilla Lerma L, de la Fuente Ordoñez JJ, Knapp CW, Abriouel H. Changes in resistome profile of potential probiotic Lactiplantibacillus pentosus in response to edible oil adaptation. Food Microbiol 2023; 109:104148. [DOI: 10.1016/j.fm.2022.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
18
|
Martín I, Barbosa J, Pereira SI, Rodríguez A, Córdoba JJ, Teixeira P. Study of lactic acid bacteria isolated from traditional ripened foods and partial characterization of their bacteriocins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Filardi R, Gargari G, Mora D, Arioli S. Characterization of antibiotic-resistance traits in Akkermansia muciniphila strains of human origin. Sci Rep 2022; 12:19426. [PMID: 36371559 PMCID: PMC9653403 DOI: 10.1038/s41598-022-23980-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Akkermansia muciniphila, a commensal bacterium commonly found in healthy gut microbiota, is widely considered a next-generation beneficial bacterium candidate to improve metabolic and inflammatory disorders. Recently the EFSA's Panel on Nutrition, Novel food, and Food Allergens has declared that pasteurized A. muciniphila DSM 22959T (also MucT, ATCC BAA-835) can be considered safe as a novel food, opening the door to its commercialization as a food supplement. Despite its recognized health benefits, there is still little information regarding the antimicrobial susceptibility of this species and reference cut-off values to distinguish strains with intrinsic or acquired resistance from susceptible strains. In this study, we combined a genomic approach with the evaluation of the antibiotic susceptibility in five human A. muciniphila isolates. Genomic mining for antimicrobial resistance genes and MICs determinations revealed that only one strain harboring tetW gene showed resistance to tetracycline, whereas all A. muciniphila strains showed low sensitivity to ciprofloxacin and aminoglycosides with no genotypic correlation. Although all strains harbor the gene adeF, encoding for a subunit of the resistance-nodulation-cell division efflux pump system, potentially involved in ciprofloxacin resistance, the susceptibility towards ciprofloxacin determined in presence of efflux pump inhibitors was not affected. Overall, our outcomes revealed the importance to extend the antibiotic susceptibility test to a larger number of new isolates of A. muciniphila to better assess the safety aspects of this species.
Collapse
Affiliation(s)
- Rossella Filardi
- grid.4708.b0000 0004 1757 2822Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Giorgio Gargari
- grid.4708.b0000 0004 1757 2822Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Diego Mora
- grid.4708.b0000 0004 1757 2822Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Arioli
- grid.4708.b0000 0004 1757 2822Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
20
|
Evaluation of Safety and Probiotic Potential of Enterococcus faecalis MG5206 and Enterococcus faecium MG5232 Isolated from Kimchi, a Korean Fermented Cabbage. Microorganisms 2022; 10:microorganisms10102070. [PMID: 36296346 PMCID: PMC9607435 DOI: 10.3390/microorganisms10102070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to evaluate the genotypic and phenotypic toxicity of Enterococcus faecalis MG5206 and Enterococcus faecium MG5232 isolated from kimchi (fermented vegetable cabbage). In this study, the genotypic toxicity of the strains MG5206 and MG5232 was identified through whole-genome sequencing analysis, and phenotypic virulence, such as susceptibility to antibiotics, hemolytic activity, and gelatinase and hyaluronidase activities, was also evaluated. In addition, the in vivo toxicity of both strains was evaluated using an acute oral administration test in Sprague–Dawley rats. In all the tests, both the strains were determined to be safety by confirming that they did not show antibiotic resistance or virulence factors. In addition, these strains exhibited a low level of autoaggregation ability (37.2–66.3%) and hydrophobicity, as well as a high survival rate in gastrointestinal condition in vitro. Therefore, the safety and high gastrointestinal viability of E. faecalis MG5206 and E. faecium MG5232 suggests that both the strains could be utilized in food as potential probiotics in the future.
Collapse
|
21
|
Rodríguez J, Vázquez L, Flórez AB, Mayo B. Phenotype testing, genome analysis, and metabolic interactions of three lactic acid bacteria strains existing as a consortium in a naturally fermented milk. Front Microbiol 2022; 13:1000683. [PMID: 36212860 PMCID: PMC9539746 DOI: 10.3389/fmicb.2022.1000683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
This work reports the characterization of three lactic acid bacteria (LAB) strains -Lactococcus lactis LA1, Lactococcus cremoris LA10, and Lactiplantibacillus plantarum LA30- existing as a stable consortium in a backslopping-inoculated, naturally fermented milk (NFM). This study aimed at uncovering the biochemical and genetic basis of the stability of the consortium and the cooperativity among the strains during milk fermentation. All three strains were subjected to phenotyping, covering the utilization of carbohydrates, enzyme activity, and antibiotic resistance. The strains were grown in milk individually, as well as in all possible combinations, and the resulting fermented product was analyzed for sugars, organic acids, and volatile compounds. Finally, the genomes of the three strains were sequenced and analyzed for genes associated with technological and safety properties. As expected, wide phenotypic diversity was seen between the strains. Lactococcus cremoris LA10 was the only strain to reach high cell densities and coagulate milk alone after incubation at 22°C for 24 h; congruently, it possessed a gene coding for a PrtP type II caseinolytic protease. Compared to any other fermentation, acetaldehyde concentrations were greater by a factor of six when all three strains grew together in milk, suggesting that its production might be the result of an interaction between them. Lactococcus lactis LA1, which carried a plasmid-encoded citQRP operon, was able to utilize milk citrate producing diacetyl and acetoin. No genes encoding virulence traits or pathogenicity factors were identified in any of the strains, and none produced biogenic amines from amino acid precursors, suggesting them to be safe. Lactiplantibacillus plantarum LA30 was susceptible to tetracycline, although it harbors a disrupted antibiotic resistance gene belonging to the tetM/tetW/tetO/tetS family. All three strains contained large numbers of pseudogenes, suggesting that they are well adapted ("domesticated") to the milk environment. The consortium as a whole or its individual strains might have a use as a starter or as starter components for dairy fermentations. The study of simple consortia, such as that existing in this NFM, can help reveal how microorganisms interact with one another, and what influence they may have on the sensorial properties of fermented products.
Collapse
Affiliation(s)
- Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
22
|
Comparison of probiotic Lactobacillus strains isolated from dairy and Iranian traditional food products with those from human source on intestinal microbiota using BALB/C mice model. Braz J Microbiol 2022; 53:1577-1591. [PMID: 35781865 DOI: 10.1007/s42770-022-00790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022] Open
Abstract
This study compares the probiotic Lactobacillus strains isolated from dairy and Iranian traditional food products with those from human sources on intestinal microbiota using BALB/C mice model. First, Lactiplantibacillus plantarum (M11), Limosilactobacillus fermentum (19SH), Lactobacillus acidophilus (AC2), and Lactobacillus gasseri (52b) strains, isolated from either Iranian traditionally fermented products or human (healthy woman vaginal secretions), identified with molecular methods and selected based on the surface hydrophobicity, auto- and co-aggregation, were investigated for their probiotic properties and compared with their standard probiotic strains in vitro. The native strains and their mixtures (MIX) were then orally fed to five groups of female inbred BALB/C mice over the course of 38 days by gavage at 0.5 and 4 McFarland, respectively, equal to 1.5 × 108 and 1 × 109 cfu/ml. Feeding paused for 6 days to test the bacteria's adhesion in vivo. According to the findings, the probiotic Lactobacillus strain isolated from human source (52b) exhibited the best in vitro and in vivo adhesion ability. Probiotic Lactobacillus strains isolated from Iranian traditional food products (19SH and AC2) had the most co-aggregation with Listeria monocytogenes (ATTC 7644), Salmonella enterica subsp. enterica (ATCC 13,076), and Escherichia coli (NCTC 12,900 O157:H7) in vitro. These strains produced the most profound decreasing effect on the mice intestinal microbiota and pathogens in vivo. The difference in the strains and their probiotic potential is related to the sources from which they are isolated as well as their cell walls. The results suggest that (19SH and 52b strains) are the best candidates to investigate the cell wall and its effect on the host immune system.
Collapse
|
23
|
Feito J, Araújo C, Gómez-Sala B, Contente D, Campanero C, Arbulu S, Saralegui C, Peña N, Muñoz-Atienza E, Borrero J, del Campo R, Hernández PE, Cintas LM. Antimicrobial activity, molecular typing and in vitro safety assessment of Lactococcus garvieae isolates from healthy cultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Food Microbiol 2022; 103:103934. [DOI: 10.1016/j.fm.2021.103934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
|
25
|
Evaluation of inhibitory and probiotic properties of lactic acid bacteria isolated from vaginal microflora. Folia Microbiol (Praha) 2022; 67:427-445. [PMID: 35083726 DOI: 10.1007/s12223-021-00942-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023]
Abstract
Lactic acid bacteria (LABs) are known to secrete species-specific secondary metabolites that could be utilized as novel therapeutics against multi-drug resistant pathogens. This study aimed to investigate the antagonistic and probiotic properties of LABs isolated from the vaginal ecosystem of healthy women and to assess the stability of their antagonistic metabolites. Among 43 strains isolated from healthy women, eight LAB strains exhibited detectable BLISs (bacteriocin-like substances) producing ability against E. faecalis (JH-86), S. aureus (JH-68), Streptococcus sp. (JH-80), and E. coli (JH-101), with zone of inhibition (ZI) ranging from 9.00 to 20.33 mm and minimum inhibitory concentrations (MICs) from 62.5 to 500 μL/mL, respectively. The partially purified compounds extracted from cell free supernatant (CFS) displayed an increase in antagonistic activity based on ZI, 9.67-30.17 mm and MICs, 3.91-15.63 mg/mL, respectively. In a time-kill study, both crude and partially purified compounds of Limosilactobacillus reuteri (MT180537), Pediococcus pentosaceus (MT176555), Limosilactobacillus pontis (MW362838), and Levilactobacillus brevis (MW362790) exhibited significant bactericidal action against E. faecalis (MW051601), the most frequent etiological agent of aerobic vaginitis (AV). The active secondary metabolites from L. reuteri (MT180537), P. pentosaceus (MT176555), and L. pontis (MW362838) were protein in nature and remained stable under different physicochemical conditions. Regarding probiotic properties, the strains presented probiotic characteristics, i.e., good acid, bile salt tolerance, aggregation properties, and biofilm formation. The strains were susceptible to most of the commonly used antibiotics and had no hemolytic activity. In conclusion, antagonistic compounds or BLIS produced by L. reuteri (MT180537) could be investigated further for preparation of ointments to treat AV.
Collapse
|
26
|
Jung JI, Kim YG, Kang CH, Imm JY. Effects of Lactobacillus curvatus MG5246 on inflammatory markers in Porphyromonas gingivalis lipopolysaccharide-sensitized human gingival fibroblasts and periodontitis rat model. Food Sci Biotechnol 2022; 31:111-120. [PMID: 35059235 PMCID: PMC8733125 DOI: 10.1007/s10068-021-01009-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
This study investigated the effects of Lactobacillus curvatus MG5246 on periodontitis inflammation. Cell-free supernatants (CFS) prepared from L. curvatus MG5246 decreased prostaglandin E2 production and cyclooxygenase-2 gene expression by 60% and 78% in Porphyromonas gingivalis-lipopolysaccharide stimulated human gingival fibroblasts at 400 μg/mL. Gene expressions of tumor necrosis factor-α, interleukin-6, matrix metalloproteinases, and chemokines were significantly downregulated by CFS treatment (p < 0.05). L. curvatus MG5246 (2 × 108 CFU/day, 8 weeks) administration significantly improved alveolar bone loss in the ligature-induced periodontitis rat model. Elevated mRNA expression of the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio in the gingival tissue was significantly decreased by L. curvatus MG5246 administration (p < 0.05). Moreover, L. curvatus MG5246 showed sufficient tolerance in simulated gastrointestinal conditions (gastric tolerance: 89.48%, intestinal tolerance: 98.62%) and did not show antibiotic resistance and hemolytic activity. Therefore, L. curvatus MG5246 has the potential as novel oral probiotics.
Collapse
Affiliation(s)
- Jae-In Jung
- Kookmin University, Seoul, Republic of Korea
| | - Yong Gyeong Kim
- Kookmin University, Seoul, Republic of Korea
- Mediogen, Co., Ltd., Jecheon, 27159 Korea
| | - Chang-Ho Kang
- Kookmin University, Seoul, Republic of Korea
- Mediogen, Co., Ltd., Jecheon, 27159 Korea
| | | |
Collapse
|
27
|
Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. Arch Microbiol 2021; 204:61. [PMID: 34940898 PMCID: PMC8702511 DOI: 10.1007/s00203-021-02700-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022]
Abstract
Animal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been observed. In this study, lactic acid bacteria (LAB) were isolated from suckling and weaned pigs feces (376) and characterized to determine their functional properties and usability as pigs additives. Selection of the most promising LAB was made after each stage of research. Isolates were tested for their antimicrobial activity (376) and susceptibility to antibiotics (71). Selected LAB isolates (41) were tested for the production of organic acids, enzymatic activity, cell surface hydrophobicity and survival in gastrointestinal tract. Isolates selected for feed additive (5) were identified by MALDI-TOF mass spectrometry and partial sequence analysis of 16S rRNA gene, represented by Lentilactobacillus, Lacticaseibacillus (both previously classified as Lactobacillus) and Pediococcus genus. Feed additive prototype demonstrated high viability after lyophilization and during storage at 4 °C and − 20 °C for 30 days. Finally, feed additive was tested for survival in simulated alimentary tract of pigs, showing viability at the sufficient level to colonize the host. Studies are focused on obtaining beneficial strains of LAB with probiotic properties for pigs feed additive.
Collapse
|
28
|
Shani N, Oberhaensli S, Berthoud H, Schmidt RS, Bachmann HP. Antimicrobial Susceptibility of Lactobacillus delbrueckii subsp. lactis from Milk Products and Other Habitats. Foods 2021; 10:foods10123145. [PMID: 34945696 PMCID: PMC8701367 DOI: 10.3390/foods10123145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
As components of many cheese starter cultures, strains of Lactobacillus delbrueckii subsp. lactis (LDL) must be tested for their antimicrobial susceptibility to avoid the potential horizontal transfer of antibiotic resistance (ABR) determinants in the human body or in the environment. To this end, a phenotypic test, as well as a screening for antibiotic resistance genes (ARGs) in genome sequences, is commonly performed. Historically, microbiological cutoffs (MCs), which are used to classify strains as either 'sensitive' or 'resistant' based on the minimal inhibitory concentrations (MICs) of a range of clinically-relevant antibiotics, have been defined for the whole group of the obligate homofermentative lactobacilli, which includes LDL among many other species. This often leads to inaccuracies in the appreciation of the ABR status of tested LDL strains and to false positive results. To define more accurate MCs for LDL, we analyzed the MIC profiles of strains originating from various habitats by using the broth microdilution method. These strains' genomes were sequenced and used to complement our analysis involving a search for ARGs, as well as to assess the phylogenetic proximity between strains. Of LDL strains, 52.1% displayed MICs that were higher than the defined MCs for kanamycin, 9.9% for chloramphenicol, and 5.6% for tetracycline, but no ARG was conclusively detected. On the other hand, all strains displayed MICs below the defined MCs for ampicillin, gentamycin, erythromycin, and clindamycin. Considering our results, we propose the adaptation of the MCs for six of the tested clinically-relevant antibiotics to improve the accuracy of phenotypic antibiotic testing.
Collapse
Affiliation(s)
- Noam Shani
- Competence Division Methods Development and Analytics, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland;
- Correspondence:
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland;
| | - Hélène Berthoud
- Competence Division Methods Development and Analytics, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland;
| | - Remo S. Schmidt
- Research Division Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; (R.S.S.); (H.-P.B.)
| | - Hans-Peter Bachmann
- Research Division Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; (R.S.S.); (H.-P.B.)
| |
Collapse
|
29
|
Omidbakhsh Amiri E, Farmani J, Raftani Amiri Z, Dehestani A, Mohseni M. Antimicrobial activity, environmental sensitivity, mechanism of action, and food application of αs165-181 peptide. Int J Food Microbiol 2021; 358:109403. [PMID: 34543802 DOI: 10.1016/j.ijfoodmicro.2021.109403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 01/30/2023]
Abstract
αs165-181 is a peptide derived from αs2-casein of ovine milk. Herein, we report the antimicrobial activity and mechanism, and food application of the peptide. αs165-181 showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Bacillus cereus, and Salmonella enterica serovar Enteritidis in a dose-dependent manner. The minimum inhibitory concentration of the peptide was 3.9 mg/ml for E. coli and 7.8 mg/ml for the other bacteria. The peptide did not show antimicrobial activity against Lactobacillus plantarum up to 3.9 mg/ml concentration. The minimum bactericidal concentration of αs165-181 peptide was 7.8 mg/ml for E. coli, S. aureus, L. monocytogenes, and B. cereus. The peptide was sensitive to monovalent and divalent cations, pH, and high temperatures. Transmission electron microscopy, cytoplasmic β-galactosidase leakage, and DNA electrophoresis analyses showed that αs165-181 peptide affects bacteria by damaging cell membrane and binding to the genomic DNA. When αs165-181 peptide was applied to minced beef or UHT cream, the antimicrobial activity (7.8 mg/g) was almost the same as or even better than nisin (0.5 mg/g). This study helps understand the antimicrobial mode of action of αs165-181 peptide and develop strategies for application in food products.
Collapse
Affiliation(s)
- Elahe Omidbakhsh Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, PO box 578, Iran
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, PO box 578, Iran.
| | - Zeynab Raftani Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, PO box 578, Iran
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, PO box 578, Iran
| | - Mojtaba Mohseni
- Department of Microbiology, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
30
|
Chung The H, Nguyen Ngoc Minh C, Tran Thi Hong C, Nguyen Thi Nguyen T, Pike LJ, Zellmer C, Pham Duc T, Tran TA, Ha Thanh T, Van MP, Thwaites GE, Rabaa MA, Hall LJ, Baker S. Exploring the Genomic Diversity and Antimicrobial Susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese Population. Microbiol Spectr 2021; 9:e0052621. [PMID: 34523984 PMCID: PMC8557894 DOI: 10.1128/spectrum.00526-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023] Open
Abstract
Bifidobacterium pseudocatenulatum is a member of the human gut microbiota, and specific variants of B. pseudocatenulatum have been associated with health benefits such as improving gut integrity and reducing inflammatory responses. Here, we aimed to assess the genomic diversity and predicted metabolic profiles of B. pseudocatenulatum cells found colonizing the gut of healthy Vietnamese adults and children. We found that the population of B. pseudocatenulatum from each individual was distinct and highly diverse, with intraclonal variation attributed largely to a gain or loss of carbohydrate-utilizing enzymes. The B. pseudocatenulatum genomes were enriched with glycosyl hydrolases predicted to target plant-based nondigestible carbohydrates (GH13, GH43) but not host-derived glycans. Notably, the exopolysaccharide biosynthesis region from organisms isolated from healthy children showed extensive genetic diversity and was subject to a high degree of genetic modification. Antimicrobial susceptibility profiling revealed that the Vietnamese B. pseudocatenulatum cells were uniformly susceptible to beta-lactams but exhibited variable resistance to azithromycin, tetracycline, ciprofloxacin, and metronidazole. The genomic presence of ermX and tet variants conferred resistance against azithromycin and tetracycline, respectively; ciprofloxacin resistance was associated with a mutation(s) in the quinolone resistance-determining region (GyrA, S115, and/or D119). Our work provides the first detailed genomic and antimicrobial resistance characterization of B. pseudocatenulatum found in the Vietnamese population, which can be exploited for the rational design of probiotics. IMPORTANCE Bifidobacterium pseudocatenulatum is a beneficial member of the human gut microbiota. The organism can modulate inflammation and has probiotic potential, but its characteristics are largely strain dependent and associated with distinct genomic and biochemical features. Population-specific beneficial microbes represent a promising avenue for the development of potential probiotics, as they may exhibit a more suitable profile in the target population. This study investigates the underexplored diversity of B. pseudocatenulatum in Vietnam and provides more understanding of its genomic diversity, metabolic potential, and antimicrobial susceptibility. Such data from indigenous populations are essential for selecting probiotic candidates that can be accelerated into further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Lindsay J. Pike
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Caroline Zellmer
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trung Pham Duc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuan-Anh Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Minh Pham Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Lindsay J. Hall
- Quadram Institute Biosciences, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stephen Baker
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
31
|
Arellano K, Vazquez J, Park H, Lim J, Ji Y, Kang HJ, Cho D, Jeong HW, Holzapfel WH. Safety Evaluation and Whole-Genome Annotation of Lactobacillus plantarum Strains from Different Sources with Special Focus on Isolates from Green Tea. Probiotics Antimicrob Proteins 2021; 12:1057-1070. [PMID: 31786735 DOI: 10.1007/s12602-019-09620-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lactobacillus plantarum shows high intraspecies diversity species, and has one of the largest genome sizes among the lactobacilli. It is adapted to diverse environments and provides a promising potential for various applications. The aim of the study was to investigate the safety and probiotic properties of 18 L. plantarum strains isolated from fermented food products, green tea, and insects. For preliminary safety evaluation the L. plantarum strains were tested for their ability to produce hemolysin and biogenic amines and for their antibiotic resistance. Based on preliminary safety screening, four strains isolated from green tea showed antibiotic resistance below the cut-off MIC values suggested by EFSA, and were selected out of the 18 strains for more detailed studies. Initial selection of strains with putative probiotic potential was determined by their capacity to survive in the human GIT using an in vitro simulation model, and for their adhesion to human Caco-2/TC-7 cell line. Under simulated GIT conditions, all four L. plantarum strains isolated from green tea showed higher survival rates than the control (L. plantarum subsp. plantarum ATCC 14917). All studied strains were genetically identified by 16S rRNA gene sequencing and confirmed to be L. plantarum. In addition, whole-genome sequence analysis of L. plantarum strains APsulloc 331261 and APsulloc 331263 from green tea was performed, and the outcome was compared with the genome of L. plantarum strain WCFS1. The genome was also annotated, and genes related to virulence factors were searched for. The results suggest that L. plantarum strains APsulloc 331261 and APsulloc 331263 can be considered as potential beneficial strains for human and animal applications.
Collapse
Affiliation(s)
- Karina Arellano
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Jorge Vazquez
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Haryung Park
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Juhwan Lim
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Yosep Ji
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
- Holzapfel Effective Microbes Inc, Iui-dong 1286, Suwon-si, Gyeonggi-do, 31286, South Korea
| | - Hye-Ji Kang
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Donghyun Cho
- Vital Beautie Research Division, Amorepacific R&D Center, Yonggin-si, Gyeonggi-do, 17074, South Korea
| | - Hyun Woo Jeong
- Vital Beautie Research Division, Amorepacific R&D Center, Yonggin-si, Gyeonggi-do, 17074, South Korea
| | - Wilhelm Heinrich Holzapfel
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea.
- Holzapfel Effective Microbes Inc, Iui-dong 1286, Suwon-si, Gyeonggi-do, 31286, South Korea.
| |
Collapse
|
32
|
Shani N, Oberhaensli S, Arias-Roth E. Antibiotic Susceptibility Profiles of Pediococcus pentosaceus from Various Origins and Their Implications for the Safety Assessment of Strains with Food-Technology Applications. J Food Prot 2021; 84:1160-1168. [PMID: 33320937 DOI: 10.4315/jfp-20-363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/11/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT In the fight against the spread of antibiotic resistance, authorities usually require that strains "intentionally added into the food chain" be tested for their antibiotic susceptibility. This applies to strains used in starter or adjunct cultures for the production of fermented foods, such as many strains of Pediococcus pentosaceus. The European Food Safety Authority recommends testing strains for their antibiotic susceptibility based on both genomic and phenotypic approaches. Furthermore, it proposes a set of antibiotics to assess as well as a list of microbiological cutoffs (MCs), allowing classification of lactic acid bacteria as susceptible or resistant. Accurate MCs are essential not only to avoid false-negative strains, which may carry antibiotic resistance genes and remain unnoticed, but also to avoid false-positive strains, which may be discarded while screening potential candidates for food-technology applications. Because of relatively scarce data, MCs have been defined for the whole Pediococcus genus, although differences between species should be expected. In this study, we investigated the antibiotic susceptibility of 35 strains of P. pentosaceus isolated from various matrices in the past 70 yr. MICs were determined using a standard protocol, and MIC distributions were established. Phenotypic analyses were complemented with genome sequencing and by seeking known antibiotic resistance genes. The genomes of all the strains were free of known antibiotic resistance genes, but most displayed MICs above the currently defined MCs for chloramphenicol, and all showed excessive MICs for tetracycline. Based on the distributions, we calculated and proposed new MCs for chloramphenicol (16 instead of 4 mg/L) and tetracycline (256 instead of 8 mg/L). HIGHLIGHTS
Collapse
Affiliation(s)
- Noam Shani
- Competence Division Method Development and Analytics, University of Bern, 3012 Bern, Switzerland.,(ORCID: https://orcid.org/0000-0002-3570-9947 [N.S.])
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | | |
Collapse
|
33
|
Stefańska I, Kwiecień E, Jóźwiak-Piasecka K, Garbowska M, Binek M, Rzewuska M. Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. Front Vet Sci 2021; 8:687071. [PMID: 34277757 PMCID: PMC8281277 DOI: 10.3389/fvets.2021.687071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/04/2021] [Indexed: 01/12/2023] Open
Abstract
The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.
Collapse
Affiliation(s)
- Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Jóźwiak-Piasecka
- Department of Fermentation Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Monika Garbowska
- Division of Milk Biotechnology, Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marian Binek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
34
|
Noohi N, Papizadeh M, Rohani M, Talebi M, Pourshafie MR. Screening for probiotic characters in lactobacilli isolated from chickens revealed the intra-species diversity of Lactobacillus brevis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:119-126. [PMID: 33997339 PMCID: PMC8110883 DOI: 10.1016/j.aninu.2020.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/21/2020] [Accepted: 07/12/2020] [Indexed: 11/24/2022]
Abstract
Considering the importance of the poultry industry and the increasing interest in alternative growth promoters, probiotics are considered as a potential candidate for use in the poultry industry. In this study, Lactobacillus species were isolated from 21 rectal swabs of 11 healthy 6-day-old and 10 healthy 21-day-old chickens and their fecal and feed samples. The isolates were characterized and their probiotic characteristics, including resistance to gastric acid and bile salts, biofilm formation and adherence to epithelium or mucus, amylase and protease activity and production of inhibitory compounds, were assessed. From 31 acid and bile resistant lactobacilli, only 2 Lactobacillus brevis and 1 Lactobacillus reuteri strains showed significant probiotic properties. These isolates indicated detectable attachment to Caco-2 cells and significant antibacterial activities against Gram-positive and Gram-negative pathogens. Additionally, phenotypic and genotypic diversity of lactobacilli isolates were studied by Phene Plate (PhP) system (PhP-LB) and random amplified polymorphic DNA (RAPD)-PCR, respectively. PhP-LB results of 24 L. brevis isolates showed a high phenotypic variation among the isolates. In comparison, results of RAPD-PCR highlighted a low diversity. Therefore, it seems that combination of the 2 techniques (PhP and RAPD-PCR) could result in a significant discriminatory power than each of them used alone.
Collapse
Affiliation(s)
- Nasrin Noohi
- Research Center for Conservation of Cultural Relics, Research Center of Iranian Cultural Heritage and Tourism Organization, Tehran, Iran
| | - Moslem Papizadeh
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
35
|
Salvetti E, Campedelli I, Larini I, Conedera G, Torriani S. Exploring Antibiotic Resistance Diversity in Leuconostoc spp. by a Genome-Based Approach: Focus on the lsaA Gene. Microorganisms 2021; 9:microorganisms9030491. [PMID: 33652718 PMCID: PMC7996808 DOI: 10.3390/microorganisms9030491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/29/2023] Open
Abstract
Leuconostoc spp. are environmental microorganisms commonly associated with fermented foods. Absence of antibiotic resistance (AR) in bacteria is a critical issue for global food safety. Herein, we updated the occurrence of AR genes in the Leuconostoc genus through in silico analyses of the genomes of 17 type strains. A total of 131 putative AR traits associated with the main clinically relevant antibiotics were detected. We found, for the first time, the lsaA gene in L. fallax ATCC 700006T and L. pseudomesenteroides NCDO 768T. Their amino acid sequences displayed high similarities (59.07% and 52.21%) with LsaA of Enterococcusfaecalis V583, involved in clindamycin (CLI) and quinupristin-dalfopristin (QUD) resistance. This trait has different distribution patterns in Leuconostoc nontype strains-i.e., L. pseudomesenteroides, L. lactis and L. falkenbergense isolates from fermented vegetables, cheeses, and starters. To better explore the role of lsaA, MIC for CLI and QUD were assessed in ATCC 700006T and NCDO 768T; both strains were resistant towards CLI, potentially linking lsaA to their resistant phenotype. Contrarily, NCDO 768T was sensitive towards QUD; however, expression of lsaA increased in presence of this antibiotic, indicating an active involvement of this trait and thus suggesting a revision of the QUD thresholds for this species.
Collapse
Affiliation(s)
- Elisa Salvetti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | | | - Ilaria Larini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | - Giada Conedera
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.S.); (I.L.); (G.C.)
- Correspondence:
| |
Collapse
|
36
|
Antimicrobial Resistance of Lactobacillus johnsonii and Lactobacillus zeae in Raw Milk. Processes (Basel) 2020. [DOI: 10.3390/pr8121627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus johnsonii and Lactobacillus zeae are among the lactobacilli with probiotic properties, which occur in sour milk products, cheeses, and to a lesser extent in raw milk. Recently, resistant strains have been detected in various species of lactobacilli. The aim of the study was to determine the incidence of resistant Lactobacillus johnsonii and Lactobacillus zeae strains in various types of raw milk. A total of 245 isolates were identified by matrix-assisted laser desorption/ionization mass spectrometry and polymerase chain reaction methods as Lactobacillus sp., of which 23 isolates of Lactobacillus johnsonii and 18 isolates of Lactobacillus zeae were confirmed. Determination of susceptibility to selected antibiotics was performed using the E-test and broth dilution method, where 7.3% of lactobacilli strains were evaluated as ampicillin-resistant, 14.7% of isolates as erythromycin-resistant, and 4.9% of isolates as clindamycin-resistant. The genus Lactobacillus johnsonii had the highest resistance to erythromycin (34.8%), similar to Lactobacillus zeae (33.3%). Of the 41 isolates, the presence of the gene was confirmed in five Lactobacillus johnsonii strains and in two strains of Lactobacillus zeae. The presence of resistant strains of Lactobacillus johnsonii and Lactobacillus zeae is a potential risk in terms of spreading antimicrobial resistance through the food chain.
Collapse
|
37
|
Huang E, Kim S, Park H, Park S, Ji Y, Todorov SD, Lim SD, Holzapfel WH. Modulation of the Gut Microbiome and Obesity Biomarkers by Lactobacillus Plantarum KC28 in a Diet-Induced Obesity Murine Model. Probiotics Antimicrob Proteins 2020; 13:677-697. [PMID: 33188637 DOI: 10.1007/s12602-020-09720-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
Lactobacillus plantarum KC28 showed a beneficial (anti-obesity) effect in a diet-induced obese (DIO) C57BL/6 murine model receiving an intermediate high-fat diet (IF). This diet was selected for probiotic studies by prior comparisons of different combinations of basic (carbohydrate, protein and fat) components for optimized induction of dietary obesity in a murine model. Prior selection of Lact. plantarum strain KC28 was based on different physiological tests for safety and functionality including cell line adhesion and anti-adipogenic activity. The strain was administered at 5.0 × 109 CFU/mouse/day to the DIO mice (control mice received a normal diet). The anti-obesity effect of KC28 and the well-known probiotic strains Lact. rhamnosus GG (LGG) and Lact. plantarum 299v was assessed over 12 weeks. Xenical served as anti-obesity control. The high-fat diet groups receiving strains KC28 and LGG and the control Xenical group showed significant weight loss and notable changes in some obesity-related biomarkers in the liver (significant up-regulation of PGC1-α and CPT1-α only by KC28; p < 0.05) and mesenteric adipose tissue (significant down-regulation of ACOX-1, PPAR-γ, and FAS; KC28 p < 0.001 for PPAR-γ and FAS), compared with the IF control. Favourable changes in the studied biomarkers suggest a similar beneficial influence of Lact. plantarum KC28 on the alleviation of obesity comparable with that of the two well-studied probiotic strains, LGG and 299v. This probably resulted from a modulation in the cecal microbiota of the IF group by either probiotic strain, yet in a different manner, showing a highly significant increase in the families Desulfovibrionaceae and Lactobacillaceae only in the group receiving Lact. plantarum KC28.
Collapse
Affiliation(s)
- Eunchong Huang
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea
| | - Seulki Kim
- Korea Food Research Institute, Wanju, 55365, South Korea
| | - Haryung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Soyoung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Yosep Ji
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea.,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea
| | - Svetoslav Dimitrov Todorov
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea
| | - Sang-Dong Lim
- Korea Food Research Institute, Wanju, 55365, South Korea
| | - Wilhelm Heinrich Holzapfel
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyeongbuk, 37554, South Korea. .,Techno-Business Center, HEM Inc, Pohang, 37673, South Korea.
| |
Collapse
|
38
|
Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. Arch Microbiol 2020; 203:597-607. [PMID: 32995979 DOI: 10.1007/s00203-020-02053-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 01/18/2023]
Abstract
In the present study, lactic acid bacteria were isolated from table olive in Morocco. Random Amplified Polymorphic DNA fingerprinting with (GTG)'(5) primer revealed a remarquable variability within isolates. According to the molecular identification, Enterococcus faecium was the most dominant species isolated with 32 strains (84.21%), followed by 4 strains of Weissella paramesenteroides (10.52%), 1 strain of Leuconostoc mesenteroides (2.63%) and Lactobacillus plantarum (2.63%). All of the strains that were identified showed occurrence of more than one bacteriocin-encoding gene. Based on the results obtained, L. plantarum 11 showed a mosaic of loci coding for nine bacteriocins (pln A, pln D, pln K, pln G, pln B, pln C, pln N, pln J, ent P). A phenotypic and genotypic antibiotic resistance was also examined. L. plantarum 11, L. mesenteroides 62, W. paramesenteroides 9 and W. paramesenteroides 36 as well as all the strains of E. faecium were susceptible to ampicillin, clindamycin and teicoplanin; however, isolates showed a resistance profile against tetracycline and erythromycin. Except E. faecium 114, E. faecium 130 and L. plantarum 11, no antibiotic resistance genes were detected in all of the strains, which might be due to resistances resulting from non-transferable or non-acquired resistance determinants (intrinsic mechanism).
Collapse
|
39
|
Dioso CM, Vital P, Arellano K, Park H, Todorov SD, Ji Y, Holzapfel W. Do Your Kids Get What You Paid for? Evaluation of Commercially Available Probiotic Products Intended for Children in the Republic of the Philippines and the Republic of Korea. Foods 2020; 9:E1229. [PMID: 32899215 PMCID: PMC7555838 DOI: 10.3390/foods9091229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
A wide range of probiotic products is available on the market and can be easily purchased over the counter and unlike pharmaceutical drugs, their commercial distribution is not strictly regulated. In this study, ten probiotic preparations commercially available for children's consumption in the Republic of the Philippines (PH) and the Republic of Korea (SK) have been investigated. The analyses included determination of viable counts and taxonomic identification of the bacterial species present in each formulation. The status of each product was assessed by comparing the results with information and claims provided on the label. In addition to their molecular identification, safety assessment of the isolated strains was conducted by testing for hemolysis, biogenic amine production and antibiotic resistance. One out of the ten products contained lower viable numbers of recovered microorganisms than claimed on the label. Enterococcus strains, although not mentioned on the label, were isolated from four products. Some of these isolates produced biogenic amines and were resistant to one or several antibiotics. Metagenomic analyses of two products revealed that one product did not contain most of the microorganisms declared in its specification. The study demonstrated that some commercial probiotic products for children did not match their label claims. Infants and young children belong to the most vulnerable members of society, and food supplements including probiotics destined for this consumer group require careful checking and strict regulation before commercial distribution.
Collapse
Affiliation(s)
- Clarizza May Dioso
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines;
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
| | - Pierangeli Vital
- Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101, Philippines;
| | - Karina Arellano
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
| | - Haryung Park
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
- HEM Inc., Business Incubator, Handong Global University, Pohang, Gyungbuk 37554, Korea;
| | - Svetoslav Dimitrov Todorov
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
| | - Yosep Ji
- HEM Inc., Business Incubator, Handong Global University, Pohang, Gyungbuk 37554, Korea;
| | - Wilhelm Holzapfel
- Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; (K.A.); (H.P.); (S.D.T.)
- HEM Inc., Business Incubator, Handong Global University, Pohang, Gyungbuk 37554, Korea;
| |
Collapse
|
40
|
Dec M, Stępień-Pyśniak D, Nowaczek A, Puchalski A, Urban-Chmiel R. Phenotypic and genotypic antimicrobial resistance profiles of fecal lactobacilli from domesticated pigeons in Poland. Anaerobe 2020; 65:102251. [PMID: 32781109 DOI: 10.1016/j.anaerobe.2020.102251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Lactobacillus species play an important role in the host and although they are non-pathogenic, they could act as reservoirs for antibiotic resistance genes, with the potential risk of transfer to other bacteria inhabiting the gastrointestinal tract. The aim of this study was to identify Lactobacillus species derived from feces of domesticated pigeons and to characterize their phenotypic and genotypic antimicrobial resistance (AMR) profiles. A total of 57 Lactobacillus isolates were classified into six species using the MALDI-TOF technique and 16S rDNA restriction analysis. Strains of L. ingluviei (31%), L. salivarius (28%) and L. agilis (23%) were the dominant species isolated. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to kanamycin (89%), tetracycline (84%), streptomycin (63%), and enrofloxacin (37%). Less than 30% of the isolates were resistant to erythromycin, lincosamides, gentamycin, chloramphenicol and vancomycin. Over half (51%) of the lactobacilli were classified as multidrug resistant. Tet genes were detected in 79% of isolates; the lnuA, cat, ermB, ermC, ant(6)-Ia, ant(4')-Ia, and int-Tn genes were found at a lower frequency. Sequence analysis of the quinolone resistance-determining region (QRDR)of the gyrA gene showed that fluoroquinolone resistance in lactobacilli was the result of a mutation that lead to a change in the amino acid sequence (Ser83→Tyr/Leu/Phe). Domesticated pigeons could be a reservoir for AMR Lactobacillus strains and AMR genes.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| | - Anna Nowaczek
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| | - Andrzej Puchalski
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| |
Collapse
|
41
|
Zhang CY, Li MH, Guo MQ. A phase conversion headspace technique for the determination of anti-anaerobic activity of drug candidate based on the metabolic acidity change in culture medium. J Chromatogr A 2020; 1621:461024. [PMID: 32178862 DOI: 10.1016/j.chroma.2020.461024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/29/2022]
Abstract
Screening for anti-anaerobic drug candidates is still challenging although the anaerobic bacteria are important sources for human infections, because the method for anti-anaerobic activity testing is not readily available with low-cost and -expertise. We report a novel method for the determination of the anti-anaerobic activity of drug candidates by automated headspace-gas chromatography (HS-GC). Anaerobic bacteria were inoculated in an anaerobic atmosphere or rapidly using sterile syringe in an air-tight manner, and incubated with and without drugs for 48 h. The metabolic acidities of the cultured media were used as an indicator of cell activities and measured as end-products in place by HS-GC after being completely converted to CO2 with sodium bicarbonate. The present method is precise (relative standard deviation is below 5%) and validated by excellent agreements with a reference method on the determinations of the inhibition rates (root-mean-square error = 10%, n = 48) and half maximal inhibitory concentrations (R2 = 0.996, n = 8) of both pure drug compounds and plant extracts. Advantageously, the present method is sensitive in response to cell activity, safe with regard to cross contamination, and suitable for routine screening of diversified drug candidates for anti-anaerobic activity.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meng-Hui Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Quan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
42
|
Yeo S, Park H, Seo E, Kim J, Kim BK, Choi IS, Huh CS. Anti-Inflammatory and Gut Microbiota Modulatory Effect of Lactobacillus rhamnosus Strain LDTM 7511 in a Dextran Sulfate Sodium-Induced Colitis Murine Model. Microorganisms 2020; 8:E845. [PMID: 32512895 PMCID: PMC7356973 DOI: 10.3390/microorganisms8060845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of conditions involving chronic relapsing-remitting inflammation of the gastrointestinal tract with an unknown etiology. Although the cause-effect relationship between gut microbiota and IBD has not been clearly established, emerging evidence from experimental models supports the idea that gut microbes play a fundamental role in the pathogenesis of IBD. As microbiome-based therapeutics for IBD, the beneficial effects of probiotics have been found in animal colitis models and IBD patients. In this study, based on the dextran sulfate sodium (DSS)-induced colitis mouse model, we investigated Lactobacillus rhamnosus strain LDTM 7511 originating from Korean infant feces as a putative probiotic strain for IBD. The strain LDTM 7511 not only alleviated the release of inflammatory mediators, but also induced the transition of gut microbiota from dysbiotic conditions, exhibiting the opposite pattern in the abundance of DSS colitis-associated bacterial taxa to the DSS group. Our findings suggest that the strain LDTM 7511 has the potential to be used as a probiotic treatment for IBD patients in comparison to L. rhamnosus GG (ATCC 53103), which has been frequently used for IBD studies.
Collapse
Affiliation(s)
- Soyoung Yeo
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
| | - Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
| | - Eunsol Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
| | - Jihee Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - In Suk Choi
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
43
|
Sharma B, Shukla G. Isolation, Identification, and Characterization of Phytase Producing Probiotic Lactic Acid Bacteria from Neonatal Fecal Samples Having Dephytinization Activity. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1746332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bhawna Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
44
|
Sirichoat A, Flórez AB, Vázquez L, Buppasiri P, Panya M, Lulitanond V, Mayo B. Antibiotic Susceptibility Profiles of Lactic Acid Bacteria from the Human Vagina and Genetic Basis of Acquired Resistances. Int J Mol Sci 2020; 21:E2594. [PMID: 32276519 PMCID: PMC7178285 DOI: 10.3390/ijms21072594] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Lactic acid bacteria can act as reservoirs of antibiotic resistance genes that can be ultimately transferred to pathogens. The present work reports on the minimum inhibitory concentration (MIC) of 16 antibiotics to 25 LAB isolates of five Lactobacillus and one Bifidobacterium species from the human vagina. Acquired resistances were detected to kanamycin, streptomycin, chloramphenicol, gentamicin, and ampicillin. A PCR analysis of lactobacilli failed to identify genetic determinants involved in any of these resistances. Surprisingly, a tet(W) gene was detected by PCR in two Bifidobacterium bifidum strains, although they proved to be tetracycline-susceptible. In agreement with the PCR results, no acquired genes were identified in the genome of any of the Lactobacillus spp. strains sequenced. A genome analysis of B. bifidum VA07-1AN showed an insertion of two guanines in the middle of tet(W) interrupting the open reading frame. By growing the strain in the presence of tetracycline, stable tetracycline-resistant variants were obtained. An amino acid substitution in the ribosomal protein S12 (K43R) was further identified as the most likely cause of VA07-1AN being streptomycin resistance. The results of this work expand our knowledge of the resistance profiles of vaginal LAB and provide evidence for the genetic basis of some acquired resistances.
Collapse
Affiliation(s)
- Auttawit Sirichoat
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Pranom Buppasiri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Marutpong Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Viraphong Lulitanond
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| |
Collapse
|
45
|
Piyadeatsoontorn S, Taharnklaew R, Upathanpreecha T, Sornplang P. Encapsulating Viability of Multi-strain Lactobacilli as Potential Probiotic in Pigs. Probiotics Antimicrob Proteins 2020; 11:438-446. [PMID: 29667009 DOI: 10.1007/s12602-018-9418-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Important aspects of the selection of probiotics to be used for mixing in animal feed include host species specificity and probiotic cell survival during production and storage of their products. The research was to screen and investigate some probiotic properties of lactic acid bacteria (LAB) isolated from pig fecal samples. One hundred and thirty-eight representative LAB isolates, which were isolated from 51 pig fecal samples, were tested for acid and bile tolerance, antimicrobial susceptibility, antibacterial activity, potential adhesion to the cell surface, and survival rates when stored in varied microencapsulation forms: freeze-dried, spray-dried, and micro-beads. The antibacterial activity results of the ten LAB isolates, which were acid- (pH 2, 3 h) and bile- (50% (v/v) fresh pig bile, 8 h) tolerant and suitable for resisting the five antibiotics commonly used for treating pig infections with pathogenic indicator strains, showed that three isolates (L21, L80, L103) had strong inhibition to Escherichia coli, Salmonella group B, and Salmonella group D using co-culturing and agar spot assays. The three isolates had high hydrophobicity (65-73%) and did not show antagonistic growth against each other. All three selected isolates had greater than 80% survival in freeze-dried and micro-bead forms at 25-30 °C after 2 days of storage (80.4-86.75%, 7.31-7.89 log CFU/ml). Sequence analysis of the 16S rRNA genes demonstrated that the three isolates belong to Lactobacillus plantarum (strain L21 and strain L80) and L. paraplantarum (strain L103). The single and multiple strains of these bacteria may have potential use as probiotics in pig diets.
Collapse
Affiliation(s)
- Sudthidol Piyadeatsoontorn
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rutjawate Taharnklaew
- Betagro Science Center CO., Ltd, 136 Moo 9, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Tewa Upathanpreecha
- Betagro Science Center CO., Ltd, 136 Moo 9, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pairat Sornplang
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
46
|
Exploring Probiotic Activity of Lactobacillus sp. Isolated from Indigenous Breeds of Cattle Milk and Fecal Samples in Bhatan Village, MH., IN. Curr Microbiol 2020; 77:1184-1190. [PMID: 32078007 DOI: 10.1007/s00284-020-01910-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
Probiotics are defined as live organisms that are able to confer health benefits to the host by improving their intestinal microbial balance. In the last decade, there has been an increasing interest to reveal health benefits associated with them. The objective of this study was to isolate indigenous probiotic organisms and assess their probiotic activity and therapeutic characteristics. The isolates were identified as Lactobacillus fermentum (isolates 2, 4, 6, 7, 8, and 9), Lactobacillus salivarius (isolate 13), and Lactobacillus plantarum (isolates 32 and 36). Five isolates showed growth at pH 2.5, while all isolates could grow at pH 8.5. All isolates showed good growth upto 5% NaCl concentration while two isolates showed growth in 7% NaCl concentration. All the isolates were susceptible to most of the broad-spectrum antibiotics. Cell-free suspensions from the isolates showed antimicrobial activity against the tested strains of Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus. Two of the isolates 32 and 36 showed good revival after long-term storage, without any change in the morphology. Hence among all the other isolates these two isolates could have a good marketable potential. These strains can further be formulated into a probiotic drink that can be used as a health supplement.
Collapse
|
47
|
Cozzolino A, Vergalito F, Tremonte P, Iorizzo M, Lombardi SJ, Sorrentino E, Luongo D, Coppola R, Di Marco R, Succi M. Preliminary Evaluation of the Safety and Probiotic Potential of Akkermansia muciniphila DSM 22959 in Comparison with Lactobacillus rhamnosus GG. Microorganisms 2020; 8:E189. [PMID: 32019075 PMCID: PMC7074805 DOI: 10.3390/microorganisms8020189] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, for the first time, we examined some of the physico-chemical properties of the cell surface of Akkermansiamuciniphila DSM 22959, comparing it with those of Lactobacillusrhamnosus GG-one of the most extensively studied probiotic microorganisms. In particular, hydrophobicity, auto-aggregation, co-aggregation, and biofilm formation were investigated. In addition, antibiotic susceptibility, co-culture, and antimicrobial activity of the two strains were compared. Hydrophobicity was evaluated using xylene and toluene, showing that A. muciniphila DSM 22959 possessed moderate hydrophobicity. A. muciniphila showed a faster and higher auto-aggregation ability than Lb. rhamnosus GG, but a lower aptitude in biofilm formation. In the co-aggregation test, the best performance was obtained by Lb. rhamnosus GG. Regarding the susceptibility to antibiotics, the differences between the two strains were remarkable, with A. muciniphila DSM 22959 showing resistance to half of the antibiotic tested. Interesting results were also obtained with regard to the stimulating effect of Lb. rhamnosus GG on the growth of A. muciniphila when co-cultured.
Collapse
Affiliation(s)
- Autilia Cozzolino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Silvia J. Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Delia Luongo
- Institute of Biostructure and Bioimaging of the National Research Council (IBB-CNR), Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| |
Collapse
|
48
|
Adaptation of Lactobacillus plantarum to Ampicillin Involves Mechanisms That Maintain Protein Homeostasis. mSystems 2020; 5:5/1/e00853-19. [PMID: 31992633 PMCID: PMC6989132 DOI: 10.1128/msystems.00853-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widespread use of antibiotics has caused great concern in the biosafety of probiotics. In this study, we conducted a 12-month adaptive laboratory evolution (ALE) experiment to select for antibiotics-adapted Lactobacillus plantarum P-8, a dairy-originated probiotic bacterium. During the ALE process, the ampicillin MIC for the parental L. plantarum P-8 strain increased gradually and reached the maximum level of bacterial fitness. To elucidate the molecular mechanisms underlying the ampicillin-resistant phenotype, we comparatively analyzed the genomes and proteomes of the parental strain (L. plantarum P-8) and two adapted lines (L. plantarum 400g and L. plantarum 1600g). The adapted lines showed alterations in their carbon, amino acid, and cell surface-associated metabolic pathways. Then, gene disruption mutants were created to determine the role of six highly expressed genes in contributing to the enhanced ampicillin resistance. Inactivation of an ATP-dependent Clp protease/the ATP-binding subunit ClpL, a small heat shock protein, or a hypothetical protein resulted in partial but significant phenotypic reversion, confirming their necessary roles in the bacterial adaptation to ampicillin. Genomic analysis confirmed that none of the ampicillin-specific differential expressed genes were flanked by any mobile genetic elements; thus, even though long-term exposure to ampicillin upregulated their expression, there is low risk of spread of these genes and adapted drug resistance to other bacteria via horizontal gene transfer. Our study has provided evidence of the biosafety of probiotics even when used in the presence of antibiotics.IMPORTANCE Antibiotic resistance acquired by adaptation to certain antibiotics has led to growing public concerns. Here, a long-term evolution experiment was used together with proteomic analysis to identify genes/proteins responsible for the adaptive phenotype. This work has provided novel insights into the biosafety of new probiotics with high tolerance to antibiotics.
Collapse
|
49
|
Rúa J, López‐Rodríguez I, Sanz J, del Valle Fernández P, Garcia MDC, Garcia Armesto MR. Antimicrobial efficacy of Lippia citriodora natural extract against Escherichia coli and Enterococcus faecalis in "Piel de Sapo" melon juice. Food Sci Nutr 2019; 7:3986-3992. [PMID: 31890177 PMCID: PMC6924337 DOI: 10.1002/fsn3.1260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The minimal inhibitory concentration (MIC) of an aqueous extract of Lippia citriodora with reported functional properties (PLX®) was determined on two strains of Escherichia coli (E. coli) belonging to serogroups commonly associated with foodborne illnesses (E. coli O157:H7 ATCC 700728 and E. coli O111 isolate 172) in vegetable products and two control strains for antimicrobial tests assays (E. coli ATCC 25922 and Enterococcus-En. faecalis ATCC 29212). RESULTS Mean MIC values at standard pH (7.4) in broth for the E. coli strains tested ranged from 4,444 µg/ml (35ºC) to 1,250 µg/ml (10ºC) and to 182 µg/ml (4ºC). At pH 5.5, conditions resembling those of melon juice, MIC was about 2 times higher at 35 and 10ºC compared with 4ºC. The MIC of En. faecalis was similar or slightly lower than those of E. coli at the conditions tested. In melon juice fortified with PLX® (2,500 µg/ml, maximum sensorial acceptable limit), the three strains of E. coli maintained their viability although none showed growth potential after 4 days at 4ºC. CONCLUSIONS PLX® could be added to melon juice to control E. coli O157:H7 and E. coli O111 during refrigerated storage, reducing the risk of microbiological contamination in this food.
Collapse
Affiliation(s)
- Javier Rúa
- Department of Molecular BiologyUniversity of LeónLeónSpain
| | - Iván López‐Rodríguez
- Food Science and Food Technology InstituteLeónSpain
- Present address:
mAbxienceParque Tecnológico de LeónLeónSpain
| | - Javier Sanz
- Food Science and Food Technology InstituteLeónSpain
| | | | | | | |
Collapse
|
50
|
In vitro evaluation by PCA and AHP of potential antidiabetic properties of lactic acid bacteria isolated from traditional fermented food. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|