1
|
Maciá Valero A, Tabatabaeifar F, Billerbeck S. Screening a 681-membered yeast collection for the secretion of proteins with antifungal activity. N Biotechnol 2025; 86:55-72. [PMID: 39875071 DOI: 10.1016/j.nbt.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required. Environmental yeasts provide a functionally diverse, yet underexploited potential for fungal control based on their natural competition via the secretion of proteins and other small molecules such as iron chelators, volatile organic compounds or biosurfactants. However, there is a lack of standardized workflows to systematically access application-relevant yeast-based compounds and understand their molecular functioning. Towards this goal, we developed a workflow to identify and characterize yeast isolates that are active against spoilage yeasts and relevant human and plant pathogens, herein focusing on discovering yeasts that secrete antifungal proteins. The workflow includes the classification of the secreted molecules and cross-comparison of their antifungal capacity using an independent synthetic calibrant. Our workflow delivered a collection of 681 yeasts of which 212 isolates (31 %) displayed antagonism against at least one target strain. While 57.5 % of the active yeasts showed iron-depended antagonism, likely due to pulcherrimin-like iron chelators, 31.7 % secreted antifungal proteins. Those yeast candidates clustered within twelve OTUs, showed narrow and broad target spectra, and several showed a broad pH and temperature activity profile. Given the tools for yeast biotechnology and protein engineering available, our collection can serve as a rich starting point for genetic and molecular characterization of the various antifungal phenotypes, their mode of action and their future exploitation.
Collapse
Affiliation(s)
- Alicia Maciá Valero
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Fatemehalsadat Tabatabaeifar
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Sonja Billerbeck
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Cappelli A, Damiani C, Capone A, Bozic J, Mensah P, Clementi E, Spaccapelo R, Favia G, Ricci I. Tripartite interactions comprising yeast-endobacteria systems in the gut of vector mosquitoes. Front Microbiol 2023; 14:1157299. [PMID: 37396392 PMCID: PMC10311912 DOI: 10.3389/fmicb.2023.1157299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Aida Capone
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Jovana Bozic
- Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Department of Entomology, Penn State University, University Park, PA, United States
| | - Priscilla Mensah
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Emanuela Clementi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, CIRM Italian Malaria Network, Functional Genomic Center (C.U.R.Ge.F), Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| |
Collapse
|
3
|
Zhang X, Dong S, Huang Y, Shi H, Chen X, Wang Y, Li Y, Cao D, Wang L. A scFv phage targeting the C. albicans cell wall screened from a bacteriophage-based library of induced immune protection in mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105303. [PMID: 35577227 DOI: 10.1016/j.meegid.2022.105303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
C. albicans is the most prevalent opportunistic fungal and can cause life-threatening systemic infections under certain circumstances. The inefficiency and resistance of traditional therapy make the development of novel techniques indispensable. The main components, proteins and glycoproteins, of the C. albicans cell wall are highly immunogenic and very different from those of the host, making it an ideal source of targets for antifungal drug development. This study aimed to screen and identify specific peptides that bind to the C. albicans cell wall using a phage-display peptide library, and to develop a peptide-based therapy targeted to C. albicans. After four rounds of screening, JC-1 ScFv was found to bind to the C. albicans cell wall specifically, inhibit C. albicans growth and viability in vitro, and protect mice from C. albicans infection in vivo. Further study showed that JC-1 could provoke an immune response in C. albicans-infected mice. These results indicated that JC-1 ScFv screened from a phage-display peptide library had the potential to be developed as a vector for targeting C. albicans.
Collapse
Affiliation(s)
- Xintong Zhang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China.; The Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Shuai Dong
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China.; Department of obstetrics and gynecology, The First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Yuanyuan Huang
- Department of pediatric outpatient, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Hongxi Shi
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Xi Chen
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Yicun Wang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Yan Li
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Donghui Cao
- Division of Clinical Research, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China..
| | - Li Wang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China..
| |
Collapse
|
4
|
Cappelli A, Amantini C, Maggi F, Favia G, Ricci I. Formulation and Safety Tests of a Wickerhamomyces anomalus-Based Product: Potential Use of Killer Toxins of a Mosquito Symbiotic Yeast to Limit Malaria Transmission. Toxins (Basel) 2021; 13:676. [PMID: 34678969 PMCID: PMC8538654 DOI: 10.3390/toxins13100676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 01/16/2023] Open
Abstract
Wickerhamomyces anomalus strain WaF17.12 is a yeast with an antiplasmodial property based on the production of a killer toxin. For its symbiotic association with Anopheles mosquitoes, it has been proposed for the control of malaria. In an applied view, we evaluated the yeast formulation by freeze-drying WaF17.12. The study was carried out by comparing yeast preparations stored at room temperature for different periods, demonstrating that lyophilization is a useful method to obtain a stable product in terms of cell growth reactivation and maintenance of the killer toxin antimicrobial activity. Moreover, cytotoxic assays on human cells were performed, showing no effects on the cell viability and the proinflammatory response. The post-formulation effectiveness of the killer toxin and the safety tests indicate that WaF17.12 is a promising bioreagent able to impair the malaria parasite in vector mosquitoes.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.C.); (C.A.); (G.F.)
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.C.); (C.A.); (G.F.)
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy;
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.C.); (C.A.); (G.F.)
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.C.); (C.A.); (G.F.)
| |
Collapse
|
5
|
Boniche C, Rossi SA, Kischkel B, Vieira Barbalho F, Nogueira D’Aurea Moura Á, Nosanchuk JD, Travassos LR, Pelleschi Taborda C. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. J Fungi (Basel) 2020; 6:jof6010031. [PMID: 32121415 PMCID: PMC7151209 DOI: 10.3390/jof6010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence in systemic fungal infections in humans has increased focus for the development of fungal vaccines and use of monoclonal antibodies. Invasive mycoses are generally difficult to treat, as most occur in vulnerable individuals, with compromised innate and adaptive immune responses. Mortality rates in the setting of our current antifungal drugs remain excessively high. Moreover, systemic mycoses require prolonged durations of antifungal treatment and side effects frequently occur, particularly drug-induced liver and/or kidney injury. The use of monoclonal antibodies with or without concomitant administration of antifungal drugs emerges as a potentially efficient treatment modality to improve outcomes and reduce chemotherapy toxicities. In this review, we focus on the use of monoclonal antibodies with experimental evidence on the reduction of fungal burden and prolongation of survival in in vivo disease models. Presently, there are no licensed monoclonal antibodies for use in the treatment of systemic mycoses, although the potential of such a vaccine is very high as indicated by the substantial promising results from several experimental models.
Collapse
Affiliation(s)
- Camila Boniche
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Suélen Andreia Rossi
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Brenda Kischkel
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Filipe Vieira Barbalho
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Ágata Nogueira D’Aurea Moura
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Luiz R. Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Sao Paulo 04021-001, Brazil;
| | - Carlos Pelleschi Taborda
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
- Correspondence:
| |
Collapse
|
6
|
Cappelli A, Valzano M, Cecarini V, Bozic J, Rossi P, Mensah P, Amantini C, Favia G, Ricci I. Killer yeasts exert anti-plasmodial activities against the malaria parasite Plasmodium berghei in the vector mosquito Anopheles stephensi and in mice. Parasit Vectors 2019; 12:329. [PMID: 31266522 PMCID: PMC6604151 DOI: 10.1186/s13071-019-3587-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Wickerhamomyces anomalus is a yeast associated with different insects including mosquitoes, where it is proposed to be involved in symbiotic relationships with hosts. Different symbiotic strains of W. anomalus display a killer phenotype mediated by protein toxins with broad-spectrum antimicrobial activities. In particular, a killer toxin purified from a W. anomalus strain (WaF17.12), previously isolated from the malaria vector mosquito Anopheles stephensi, has shown strong in vitro anti-plasmodial activity against early sporogonic stages of the murine malaria parasite Plasmodium berghei. RESULTS Here, we provide evidence that WaF17.12 cultures, properly stimulated to induce the expression of the killer toxin, can directly affect in vitro P. berghei early sporogonic stages, causing membrane damage and parasite death. Moreover, we demonstrated by in vivo studies that mosquito dietary supplementation with activated WaF17.12 cells interfere with ookinete development in the midgut of An. stephensi. Besides the anti-sporogonic action of WaF17.12, an inhibitory effect of purified WaF17.12-killer toxin was observed on erythrocytic stages of P. berghei, with a consequent reduction of parasitaemia in mice. The preliminary safety tests on murine cell lines showed no side effects. CONCLUSIONS Our findings demonstrate the anti-plasmodial activity of WaF17.12 against different developmental stages of P. berghei. New studies on P. falciparum are needed to evaluate the use of killer yeasts as innovative tools in the symbiotic control of malaria.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Matteo Valzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | - Paolo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Priscilla Mensah
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
| |
Collapse
|
7
|
van de Sande WWJ, Vonk AG. Mycovirus therapy for invasive pulmonary aspergillosis? Med Mycol 2019; 57:S179-S188. [PMID: 30816971 DOI: 10.1093/mmy/myy073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
With the current revived interest in the use of bacteriophages for the treatment of bacterial infections, the study of mycoviruses as novel therapeutic solutions for invasive aspergillosis is the logical next step. Although ssRNA, dsRNA, and ssDNA mycoviruses have been identified, the majority of characterised mycoviruses have dsRNA genomes. Prevalence of dsRNA mycoviruses in Aspergillus spp. varies, and mycoviruses can have different effects on their fungal hosts: hypovirulence, hypervirulence, or a killer phenotype. Therapeutically, extracellular transmission of the mycovirus is essential. DsRNA mycoviruses lack an extracellular phase; however, a single ssDNA mycovirus with homologues in Aspergillus genomes has been described with an extracellular mode of transmission. Mycoviruses can induce hypovirulence or a killer phenotype, and both can be exploited therapeutically. Mycoviruses inducing hypovirulence have been used to control chestnut blight, however for aspergillosis no such mycovirus has been identified yet. Mycovirus encoded killer toxins or anti-idiotypic antibodies and killer peptides derived from these have been demonstrated to control fungal infections including aspergillosis in animals. This indicates that mycoviruses inducing both phenotypes could be exploited therapeutically as long as the right mycovirus has been identified.
Collapse
Affiliation(s)
- Wendy W J van de Sande
- ErasmusMC, Department of Medical Microbiology and Infectious Diseases, Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| | - Alieke G Vonk
- ErasmusMC, Department of Medical Microbiology and Infectious Diseases, Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
8
|
Giovati L, Santinoli C, Ferrari E, Ciociola T, Martin E, Bandi C, Ricci I, Epis S, Conti S. Candidacidal Activity of a Novel Killer Toxin from Wickerhamomyces anomalus against Fluconazole-Susceptible and -Resistant Strains. Toxins (Basel) 2018; 10:E68. [PMID: 29401638 PMCID: PMC5848169 DOI: 10.3390/toxins10020068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
The isolation and characterization from the sand fly Phlebotomus perniciosus of a Wickerhamomyces anomalus yeast strain (Wa1F1) displaying the killer phenotype was recently reported. In the present work, the killer toxin (KT) produced by Wa1F1 was purified and characterized, and its antimicrobial activity in vitro was investigated against fluconazole- susceptible and -resistant clinical isolates and laboratory strains of Candida albicans and C. glabrata displaying known mutations. Wa1F1-KT showed a differential killing ability against different mutant strains of the same species. The results may be useful for the design of therapeutic molecules based on Wa1F1-KT and the study of yeast resistance mechanisms.
Collapse
Affiliation(s)
- Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Claudia Santinoli
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Elena Martin
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
| | - Claudio Bandi
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Ospedale "Luigi Sacco", 20157 Milan, Italy.
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Sara Epis
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Ospedale "Luigi Sacco", 20157 Milan, Italy.
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| |
Collapse
|
9
|
A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLoS One 2017; 12:e0182533. [PMID: 28771577 PMCID: PMC5542616 DOI: 10.1371/journal.pone.0182533] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
Feed security, feed quality and issues surrounding the safety of raw materials are always of interest to all livestock farmers, feed manufacturers and competent authorities. These concerns are even more important when alternative feed ingredients, new product developments and innovative feeding trends, like insect-meals, are considered. The black soldier fly (Hermetia illucens) is considered a good candidate to be used as feed ingredient for aquaculture and other farm animals, mainly as an alternative protein source. Data on transfer of contaminants from different substrates to the insects, as well as the possible occurrence of toxin-producing fungi in the gut of non-processed insects are very limited. Accordingly, we investigated the impact of the substrate/diet on the intestinal mycobiota of H. illucens larvae using culture-dependent approaches (microbiological analyses, molecular identification through the typing of isolates and the sequencing of the 26S rRNA D1/D2 domain) and amplicon-based next-generation sequencing (454 pyrosequencing). We fed five groups of H. illucens larvae at the third growing stage on two substrates: chicken feed and/or vegetable waste, provided at different timings. The obtained results indicated that Pichia was the most abundant genus associated with the larvae fed on vegetable waste, whereas Trichosporon, Rhodotorula and Geotrichum were the most abundant genera in the larvae fed on chicken feed only. Differences in the fungal communities were highlighted, suggesting that the type of substrate selects diverse yeast and mold genera, in particular vegetable waste is associated with a greater diversity of fungal species compared to chicken feed only. A further confirmation of the significant influence of diet on the mycobiota is the fact that no operational taxonomic unit common to all groups of larvae was detected. Finally, the killer phenotype of isolated yeasts was tested, showing the inhibitory activity of just one species against sensitive strains, out of the 11 tested species.
Collapse
|
10
|
Idiotypic Antifungal Vaccination: Immunoprotection by Antiidiotypic Antibiotic Antibodies. Methods Mol Biol 2017. [PMID: 28584986 DOI: 10.1007/978-1-4939-7104-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
As implied by the idiotypic network theory, the interaction between the functional epitope of a microbicidal molecule (X) and its specific cell-wall receptor (RX) on sensitive microorganisms may be imaged by the bond between the idiotype (Id) of a neutralizing monoclonal antibody (anti-X Ab) and its anti-idiotype (anti-Id) X-like Ab (anti-anti-X Ab). Consequently, anti-X Ab Id may mimic RX acting as a vaccine (idiotypic vaccination) for the elicitation of protective anti-Id Abs with antibiotic activity (antibiobodies).
Collapse
|
11
|
Abstract
Fungal organisms are ubiquitous in the environment. Pathogenic fungi, although relatively few in the whole gamut of microbial pathogens, are able to cause disease with varying degrees of severity in individuals with normal or impaired immunity. The disease state is an outcome of the fungal pathogen's interactions with the host immunity, and therefore, it stands to reason that deep/invasive fungal diseases be amenable to immunotherapy. Therefore, antifungal immunotherapy continues to be attractive as an adjunct to the currently available antifungal chemotherapy options for a number of reasons, including the fact that existing antifungal drugs, albeit largely effective, are not without limitations, and that morbidity and mortality associated with invasive mycoses are still unacceptably high. For several decades, intense basic research efforts have been directed at development of fungal immunotherapies. Nevertheless, this approach suffers from a severe bench-bedside disconnect owing to several reasons: the chemical and biological peculiarities of the fungal antigens, the complexities of host-pathogen interactions, an under-appreciation of the fungal disease landscape, the requirement of considerable financial investment to bring these therapies to clinical use, as well as practical problems associated with immunizations. In this general, non-exhaustive review, we summarize the features of ongoing research efforts directed towards devising safe and effective immunotherapeutic options for mycotic diseases, encompassing work on antifungal vaccines, adoptive cell transfers, cytokines, antimicrobial peptides (AMPs), monoclonal antibodies (mAbs), and other agents.
Collapse
Affiliation(s)
- Kausik Datta
- a Division of Infectious Diseases , Johns Hopkins University School of Medicine , Baltimore , MD , USA , and
| | - Mawieh Hamad
- b Department of Medical Laboratory Sciences and the Sharjah Institute for Medical Research , University of Sharjah , Sharjah , UAE
| |
Collapse
|
12
|
Martin E, Bongiorno G, Giovati L, Montagna M, Crotti E, Damiani C, Gradoni L, Polonelli L, Ricci I, Favia G, Epis S. Isolation of a Wickerhamomyces anomalus yeast strain from the sandfly Phlebotomus perniciosus, displaying the killer phenotype. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:101-106. [PMID: 26542209 DOI: 10.1111/mve.12149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
The yeast Wickerhamomyces anomalus has been studied for its wide biotechnological potential, mainly for applications in the food industry. Different strains of W. anomalus have been isolated from diverse habitats and recently from insects, including mosquitoes of medical importance. This paper reports the isolation and phylogenetic characterization of W. anomalus from laboratory-reared adults and larvae of Phlebotomus perniciosus (Diptera: Psychodidae), a main phlebotomine vector of human and canine leishmaniasis. Of 65 yeast strains isolated from P. perniciosus, 15 strains were identified as W. anomalus; one of these was tested for the killer phenotype and demonstrated inhibitory activity against four yeast sensitive strains, as reported for mosquito-isolated strains. The association between P. perniciosus and W. anomalus deserves further investigation in order to explore the possibility that this yeast may exert inhibitory/killing activity against Leishmania spp.
Collapse
Affiliation(s)
- E Martin
- Department of Veterinary Science and Public Health, University of Milan, Milan, Italy
| | - G Bongiorno
- Unit of Vector-Borne Diseases and International Health, MIPI Department, Istituto Superiore di Sanità, Rome, Italy
| | - L Giovati
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - M Montagna
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - E Crotti
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - C Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - L Gradoni
- Unit of Vector-Borne Diseases and International Health, MIPI Department, Istituto Superiore di Sanità, Rome, Italy
| | - L Polonelli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - I Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - G Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - S Epis
- Department of Veterinary Science and Public Health, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Valzano M, Cecarini V, Cappelli A, Capone A, Bozic J, Cuccioloni M, Epis S, Petrelli D, Angeletti M, Eleuteri AM, Favia G, Ricci I. A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar J 2016; 15:21. [PMID: 26754943 PMCID: PMC4709964 DOI: 10.1186/s12936-015-1059-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background Malaria control strategies are focusing on new approaches, such as the symbiotic control, which consists in the use of microbial symbionts to prevent parasite development in the mosquito gut and to block the transmission of the infection to humans. Several microbes, bacteria and fungi, have been proposed for malaria or other mosquito-borne diseases control strategies. Among these, the yeast Wickerhamomyces anomalus has been recently isolated from the gut of Anopheles mosquitoes, where it releases a natural antimicrobial toxin. Interestingly, many environmental strains of W. anomalus exert a wide anti-bacterial/fungal activity and some of these ‘killer’ yeasts are already used in industrial applications as food and feed bio-preservation agents. Since a few studies showed that W. anomalus killer strains have antimicrobial effects also against protozoan parasites, the possible anti-plasmodial activity of the yeast was investigated. Methods A yeast killer toxin (KT), purified through combined chromatographic techniques from a W. anomalus strain isolated from the malaria vector Anopheles stephensi, was tested as an effector molecule to target the sporogonic stages of the rodent malaria parasite Plasmodium berghei, in vitro. Giemsa staining was used to detect morphological damages in zygotes/ookinetes after treatment with the KT. Furthermore, the possible mechanism of action of the KT was investigated pre-incubating the protein with castanospermine, an inhibitor of β-glucanase activity. Results A strong anti-plasmodial effect was observed when the P. berghei sporogonic stages were treated with KT, obtaining an inhibition percentage up to around 90 %. Microscopy analysis revealed several ookinete alterations at morphological and structural level, suggesting the direct implication of the KT-enzymatic activity. Moreover, evidences of the reduction of KT activity upon treatment with castanospermine propose a β-glucanase-mediated activity. Conclusion The results showed the in vitro killing efficacy of a protein produced by a mosquito strain of W. anomalus against malaria parasites. Further studies are required to test the KT activity against the sporogonic stages in vivo, nevertheless this work opens new perspectives for the possible use of killer strains in innovative strategies to impede the development of the malaria parasite in mosquito vectors by the means of microbial symbionts. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1059-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matteo Valzano
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Aida Capone
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Jovana Bozic
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Sara Epis
- Department of Veterinary Sciences and Public Health, University of Milan, 20133, Milan, Italy.
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
14
|
Abstract
Whereas active immunity refers to the process of exposing the individual to an antigen to generate an adaptive immune response, passive immunity refers to the transfer of antibodies from one individual to another. Passive immunity provides immediate but short-lived protection, lasting several weeks up to 3 or 4 months. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta or from breast milk to the gut of the infant. It can also be produced artificially, when antibody preparations derived from sera or secretions of immunized donors or, more recently, different antibody producing platforms are transferred via systemic or mucosal route to nonimmune individuals. Passive immunization has recently become an attractive approach because of the emergence of new and drug-resistant microorganisms, diseases that are unresponsive to drug therapy and individuals with an impaired immune system who are unable to respond to conventional vaccines. This chapter addresses the contributions of natural and artificial acquired passive immunity in understanding the concept of passive immunization. We will mainly focus on administration of antibodies for protection against various infectious agents entering through mucosal surfaces.
Collapse
|
15
|
Polonelli L, Beninati C, Teti G, Felici F, Ciociola T, Giovati L, Sperindè M, Passo CL, Pernice I, Domina M, Arigò M, Papasergi S, Mancuso G, Conti S, Magliani W. Yeast killer toxin-like candidacidal Ab6 antibodies elicited through the manipulation of the idiotypic cascade. PLoS One 2014; 9:e105727. [PMID: 25162681 PMCID: PMC4146504 DOI: 10.1371/journal.pone.0105727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
A mouse anti-anti-anti-idiotypic (Id) IgM monoclonal antibody (mAb K20, Ab4), functionally mimicking a Wyckerhamomyces anomalus (Pichia anomala) killer toxin (KT) characterized by fungicidal activity against yeasts presenting specific cell wall receptors (KTR) mainly constituted by β-1,3-glucan, was produced from animals presenting anti-KT Abs (Ab3) following immunization with a rat IgM anti-Id KT-like mAb (mAb K10, Ab2). MAb K10 was produced by immunization with a KT-neutralizing mAb (mAb KT4, Ab1) bearing the internal image of KTR. MAb K20, likewise mAb K10, proved to be fungicidal in vitro against KT-sensitive Candida albicans cells, an activity neutralized by mAb KT4, and was capable of binding to β-1,3-glucan. MAb K20 and mAb K10 competed with each other and with KT for binding to C. albicans KTR. MAb K20 was used to identify peptide mimics of KTR by the selection of phage clones from random peptide phage display libraries. Using this strategy, four peptides (TK 1-4) were selected and used as immunogen in mice in the form of either keyhole limpet hemocyanin (KLH) conjugates or peptide-encoding minigenes. Peptide and DNA immunization could induce serum Abs characterized by candidacidal activity, which was inhibited by laminarin, a soluble β-1,3-glucan, but not by pustulan, a β-1,6-glucan. These findings show that the idiotypic cascade can not only overcome the barrier of animal species but also the nature of immunogens and the type of technology adopted.
Collapse
Affiliation(s)
- Luciano Polonelli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Concetta Beninati
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Giuseppe Teti
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Franco Felici
- Dipartimento di Bioscienze e Territorio (DiBT), Università degli Studi del Molise, Contrada Fonte Lappone, Pesche (IS), Italy
| | - Tecla Ciociola
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Laura Giovati
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Martina Sperindè
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Carla Lo Passo
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - Ida Pernice
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - Maria Domina
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Milena Arigò
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Salvatore Papasergi
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Stefania Conti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Walter Magliani
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
16
|
Johal HS, Garg T, Rath G, Goyal AK. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv 2014; 23:550-63. [DOI: 10.3109/10717544.2014.928760] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
17
|
Cappelli A, Ulissi U, Valzano M, Damiani C, Epis S, Gabrielli MG, Conti S, Polonelli L, Bandi C, Favia G, Ricci I. A Wickerhamomyces anomalus killer strain in the malaria vector Anopheles stephensi. PLoS One 2014; 9:e95988. [PMID: 24788884 PMCID: PMC4006841 DOI: 10.1371/journal.pone.0095988] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
The yeast Wickerhamomyces anomalus has been investigated for several years for its wide biotechnological potential, especially for applications in the food industry. Specifically, the antimicrobial activity of this yeast, associated with the production of Killer Toxins (KTs), has attracted a great deal of attention. The strains of W. anomalus able to produce KTs, called “killer” yeasts, have been shown to be highly competitive in the environment. Different W. anomalus strains have been isolated from diverse habitats and recently even from insects. In the malaria mosquito vector Anopheles stephensi these yeasts have been detected in the midgut and gonads. Here we show that the strain of W. anomalus isolated from An. stephensi, namely WaF17.12, is a killer yeast able to produce a KT in a cell-free medium (in vitro) as well as in the mosquito body (in vivo). We showed a constant production of WaF17.12-KT over time, after stimulation of toxin secretion in yeast cultures and reintroduction of the activated cells into the mosquito through the diet. Furthermore, the antimicrobial activity of WaF17.12-KT has been demonstrated in vitro against sensitive microbes, showing that strain WaF17.12 releases a functional toxin. The mosquito-associated yeast WaF17.12 thus possesses an antimicrobial activity, which makes this yeast worthy of further investigations, in view of its potential as an agent for the symbiotic control of malaria.
Collapse
Affiliation(s)
- Alessia Cappelli
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Ulisse Ulissi
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Matteo Valzano
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Claudia Damiani
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Sara Epis
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Conti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma, Italy
| | - Luciano Polonelli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma, Italy
| | - Claudio Bandi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Guido Favia
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
| | - Irene Ricci
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Camerino, Italy
- * E-mail:
| |
Collapse
|
18
|
Magliani W, Conti S, Giovati L, Zanello PP, Sperindè M, Ciociola T, Polonelli L. Antibody Peptide based antifungal immunotherapy. Front Microbiol 2012; 3:190. [PMID: 22675322 PMCID: PMC3365853 DOI: 10.3389/fmicb.2012.00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/10/2012] [Indexed: 12/13/2022] Open
Abstract
Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast killer phenomenon to the production of Ab-derived peptides characterized by in vitro and in vivo fungicidal activity will be focused. In particular, Abs that mimic the antimicrobial activity of a killer toxin (“antibiobodies”) and antifungal peptides derived from antibiobodies (killer peptide) and other unrelated Abs [complementarity determining regions (CDR)-based and constant region (Fc)-based synthetic peptides] are described. Mycological implications in terms of reevaluation of the yeast killer phenomenon, roles of antibiobodies in antifungal immunity, of β-glucans as antifungal targets and vaccines, and of Abs as sources of an unlimited number of sequences potentially active as new immunotherapeutic tools against fungal agents and related mycoses, are discussed.
Collapse
Affiliation(s)
- Walter Magliani
- Section of Microbiology, Department of Pathology and Laboratory Medicine, University of Parma Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Cabezas J, Albaina O, Montañez D, Sevilla MJ, Moragues MD, Pontón J. Potential of anti-Candida antibodies in immunoprophylaxis. Immunotherapy 2010; 2:171-83. [PMID: 20635926 DOI: 10.2217/imt.09.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The need for new options for the treatment of invasive candidiasis has fuelled the use of antibodies in combination with conventional antifungal therapy. After a long period of time in which antibodies were considered irrelevant in the resistance against invasive candidiasis, it was demonstrated that a number of antibodies or their engineered derivatives directed against Candida albicans cell-wall polysaccharides and glycopeptides, as well as against some protein epitopes, confer protection against invasive candidiasis. This has confirmed this approach as a new strategy for the prophylaxis of invasive candidiasis. Of particular interest is Mycograb, a human recombinant monoclonal antibody that inhibits heat shock protein 90, and has been administrated in combination with lipid-associated amphotericin B to patients with invasive candidiasis, and the fungicidal anti-beta-glucan antibodies induced by the glycoconjugate vaccine composed of a beta-glucan polysaccharide conjugated with the diphtheria toxoid CRM 197. However, despite the promising data obtained in vitro and in animal models, at present there is very little clinical experience on the use of antibodies in Candida immunoprophylaxis.
Collapse
Affiliation(s)
- Jonathan Cabezas
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Vizcaya, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Krishnaswamy S, Kabir ME, Miyamoto M, Furuichi Y, Komiyama T. Different buffer effects in selecting HM-1 killer toxin single-chain fragment variable anti-idiotypic antibodies. J Biochem 2010; 147:723-33. [DOI: 10.1093/jb/mvq006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Cloning antifungal single chain fragment variable antibodies by phage display and competitive panning elution. Anal Biochem 2009; 395:16-24. [DOI: 10.1016/j.ab.2009.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/08/2009] [Accepted: 08/02/2009] [Indexed: 11/19/2022]
|
22
|
Colja Venturini A, Bresjanac M, Vranac T, Koren S, Narat M, Popović M, Curin Serbec V. Anti-idiotypic antibodies: a new approach in prion research. BMC Immunol 2009; 10:16. [PMID: 19298674 PMCID: PMC2666643 DOI: 10.1186/1471-2172-10-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 03/19/2009] [Indexed: 12/03/2022] Open
Abstract
Background In certain cases, anti-idiotypic antibodies that recognize an antigen-combining site of an antibody can mimic the structure and/or function of certain nominal antigens. This feature makes them particularly useful if conventional experimental approaches fail to fulfil expectations, especially when the molecule of interest is infectious, toxic or difficult to isolate and purify. We suggest the application of an anti-idiotype concept to the field of prion biology, with the aim of evoking a humoral immune response against the pathological isoform of the prion protein (PrPSc). Different ways to induce anti-idiotypic responses were studied in mice and chickens using various forms of V5B2, a PrPSc-specific monoclonal antibody we have described previously. Results The preparation of anti-idiotypic monoclonal antibodies was achieved with well-defined strategies of immunization, selection and subsequent characterization. Our results demonstrate that it is possible to induce a strong anti-idiotypic immune response against the V5B2 monoclonal antibody in both xenogeneic and syngeneic experimental systems. From the competition seen between polyclonal and monoclonal anti-idiotypic antibodies and the original immunogen, the P1 peptide, and even more importantly, the ultimate target antigen, PrPSc, we conclude that selected antibodies bind to the antigen-combining site of the V5B2 monoclonal antibody and might even resemble the PrPSc-specific epitope. The involvement of both antigen-combining sites in the interaction between V5B2 and the most promising monoclonal anti-idiotypic antibody was further supported by molecular docking. Conclusion The results of the present study not only provide an example of the successful production of Ab2 monoclonal antibodies based on a well planned strategy for selection, but should also provide a new experimental approach that is applicable to the field of prion diseases.
Collapse
Affiliation(s)
- Anja Colja Venturini
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Magliani W, Conti S, Travassos LR, Polonelli L. From yeast killer toxins to antibiobodies and beyond. FEMS Microbiol Lett 2008; 288:1-8. [DOI: 10.1111/j.1574-6968.2008.01340.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Hamad M. Antifungal Immunotherapy and Immunomodulation: A Double-hitter Approach to Deal with Invasive Fungal Infections. Scand J Immunol 2008; 67:533-43. [DOI: 10.1111/j.1365-3083.2008.02101.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Casadevall A, Pirofski LA. Antibody-mediated protection through cross-reactivity introduces a fungal heresy into immunological dogma. Infect Immun 2007; 75:5074-8. [PMID: 17709417 PMCID: PMC2168287 DOI: 10.1128/iai.01001-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | | |
Collapse
|
26
|
Selvakumar D, Miyamoto M, Furuichi Y, Komiyama T. Inhibition of fungal beta-1,3-glucan synthase and cell growth by HM-1 killer toxin single-chain anti-idiotypic antibodies. Antimicrob Agents Chemother 2006; 50:3090-7. [PMID: 16940106 PMCID: PMC1563539 DOI: 10.1128/aac.01435-05] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-chain variable-fragment (scFv) anti-idiotypic antibodies of an HM-1 killer toxin (HM-1) from the yeast Williopsis saturnus var. mrakii IFO 0895 have been produced by recombinant DNA technology from the splenic lymphocytes of mice immunized by idiotypic vaccination with a neutralizing monoclonal antibody (nMAb-KT). The fungicidal activity of scFv anti-idiotypic antibodies against the isolates of four Candida species was assessed by MIC analysis. scFv antibodies were fungicidal at concentrations of 1.56 to 12.5 microg/ml in vitro against four Candida species. The scFv antibodies exerted a strong candidacidal activity in vitro, with 50% inhibitory concentration (IC(50)) values ranging from 7.3 x 10(-8) to 16.0 x 10(-8) M, and were neutralized by adsorption with nMAb-KT. Furthermore, all scFv antibodies effectively inhibited fungal beta-1,3-glucan synthase activity in vitro, with IC(50) values ranging from 2.0 x 10(-8) to 22.7 x 10(-8) M, values which almost coincide with the values that are inhibitory to the growth of fungal cells. Binding assays showed that the scFv antibodies specifically bind to nMAb-KT, and this binding pattern was confirmed by surface plasmon resonance analysis. The binding ability was further demonstrated by the competition observed between scFv antibodies and HM-1 to bind nMAb-KT. To the best of our knowledge, this is the first study to show that an antifungal anti-idiotypic antibody, in the form of recombinant scFv, potentially inhibits beta-1,3-glucan synthase activity.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata 956-8603, Japan
| | | | | | | |
Collapse
|
27
|
|
28
|
Casoli C, Pilotti E, Perno CF, Balestra E, Polverini E, Cassone A, Conti S, Magliani W, Polonelli L. A killer mimotope with therapeutic activity against AIDS-related opportunistic micro-organisms inhibits ex-vivo HIV-1 replication. AIDS 2006; 20:975-80. [PMID: 16603848 DOI: 10.1097/01.aids.0000222068.14878.0d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To verify whether a synthetic therapeutic killer decapeptide (KP), a functional mimotope of a yeast killer toxin with wide-spectrum microbicidal activity, inclusive of AIDS-related opportunistic micro-organisms, through interaction with beta-glucan receptors, which has been found to possess sequence homology with critical segments in gp160 V1/V2 and V3 loops, may also be inhibiting HIV-1 replication. METHODS Primary peripheral blood mononuclear cells (PBMCs) cultures established from HIV-1-infected patients were treated with KP in comparison with zidovudine and supernatants and cells were harvested for analysis of HIV RNA and proviral contents, respectively. Virus production in exogenous in-vitro PBMCs infection with lymphocytotropic and monocytotropic HIV-1 strains was also assessed in presence of KP by enzyme-linked immunosorbent assay HIV p24 gag antigen detection. The binding affinity of KP to CD4, CCR5 and CXCR4 was evaluated on CD4-CCR5 or CD4-CXCR4 transfected astroglioma cell lines. RESULTS KP was shown to be devoid of cytotoxicity on PBMCs and to inhibit HIV-1 replication in PBMCs of a patient in the acute phase of infection. The antiretroviral activity of KP, which proved to be more potent than zidovudine at micromolar concentrations, is abolished by beta 1,3-glucan but not by beta 1,6-glucan. Down-regulation of CCR5 co-receptor, and/or physical block of the gp120-receptor interaction are possible mechanisms of KP activity. CONCLUSION KP appears to be the first antibody-derived short peptide displaying an inhibitory activity against HIV-1 and related opportunistic micro-organisms by different mechanisms of action.
Collapse
Affiliation(s)
- Claudio Casoli
- Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Viale Antonio Gramsci 14, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fiori PL, Mattana A, Dessì D, Conti S, Magliani W, Polonelli L. In vitro acanthamoebicidal activity of a killer monoclonal antibody and a synthetic peptide. J Antimicrob Chemother 2006; 57:891-8. [PMID: 16507561 DOI: 10.1093/jac/dkl051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate the in vitro microbicidal activity against Acanthamoeba castellanii of a murine monoclonal anti-idiotypic antibody (KTmAb) and a synthetic killer mimotope (KP), which mimic a yeast killer toxin (KT) characterized by a wide spectrum of antimicrobial activity through interaction with specific cell wall receptors, mainly constituted by beta-glucans. METHODS Amoebicidal activity was investigated after incubation of trophozoites under different experimental conditions with laminarinase, KTmAb, KP and a scrambled decapeptide (SP). To confirm the specific interaction of KP with beta-glucans, the experiments were also carried out in the presence of laminarin (beta1-3-glucan) or pustulan (beta1-6-glucan); both glucan molecules were co-incubated with KP or SP. RESULTS KTmAb and KP exhibited a time-dependent killing activity, in comparison with SP or heat-inactivated KTmAb; this activity was completely abolished by pre-incubation with laminarin, but not by pustulan. Notably, in vitro amoebicidal activity was observed in the presence of laminarinase, an enzyme that specifically hydrolyses beta-glucans. Furthermore, KP specifically inhibited the growth of Acanthamoeba on infected contact lenses and the remaining adherent KP-treated trophozoites appeared strongly damaged. CONCLUSIONS The results indicate that the expression of beta1-3-glucan receptors in the cell membrane is probably modulated during cell growth of A. castellanii and is critical for the killing activity of KT-like molecules. Our data confirm the broad antimicrobial spectra of KTmAb and KP, emphasize the crucial role of beta1-3-glucan in microbial physiology and suggest the potential use of KTmAb and KP in the prevention and therapy of Acanthamoeba infections or in preventing Acanthamoeba contamination during storage of contact lenses.
Collapse
Affiliation(s)
- Pier Luigi Fiori
- Department of Biomedical Sciences, Division of Experimental and Clinical Microbiology, University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Savoia D, Scutera S, Raimondo S, Conti S, Magliani W, Polonelli L. Activity of an engineered synthetic killer peptide on Leishmania major and Leishmania infantum promastigotes. Exp Parasitol 2006; 113:186-92. [PMID: 16487518 DOI: 10.1016/j.exppara.2006.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 12/11/2022]
Abstract
This study was undertaken to analyze the effect of an engineered, killer decapeptide (KP) on Leishmania major and Leishmania infantum promastigotes. The KP was synthesized on the basis of the sequence of a recombinant, single-chain anti-idiotypic antibody acting as a functional internal image of a yeast killer toxin. The evaluation of in vitro inhibitory activity of KP on L. major and L. infantum, release of intracellular green fluorescent protein (GFP) molecules by L. major, DNA fragmentation, and ultrastructural analysis (TEM) of L. infantum upon KP treatment were performed. KP presented antiproliferative and leishmanicidal activity with LC(50)/1 day of 58 and 72 microM for L. major and L. infantum, respectively. A dose-dependent decrease in proliferation and increase of killing of promastigotes was seen after KP treatment. No DNA fragmentation in L. infantum promastigotes or release of intracellular GFP molecules on peptide treatment of a GFP expressing L. major clone was demonstrated. Moreover the plasma-membrane was not disrupted, but, by TEM analysis, intracellular damage was observed.
Collapse
Affiliation(s)
- Dianella Savoia
- Department of Clinical and Biological Sciences, University of Torino, at S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10143 Orbassano (To), Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Invasive aspergillosis is a disease of immunocompromised hosts and the pathogenesis of this disorder is heavily dependent upon the defect within a given host. Consequently, vaccine development is limited by our understanding of effective host responses and by limitations in our knowledge of fungal molecules that elicit protective immunity. Nonetheless, the past few years have witnessed advances in our understanding both of the immune response to this organism and in the relationship between antigenicity and the ability to confer protection. Manipulations that promote the development of T(H)1-associated responses correlate with increased resistance to disease, at least partly because of consequent enhancement of innate cellular effector function. Two areas of investigation most actively being pursued include the search for adjuvants that will allow products of Aspergillus fumigatus to become effective vaccine candidates, regardless of the form of immunity they ordinarily induce, and the identification of the specific antigens that will most effectively elicit beneficial responses. Strategies using antigen-exposed dendritic cells as adjuvants appear to be particularly promising. Though we currently are far away from a candidate that is applicable for human trials, recent progress is encouraging.
Collapse
Affiliation(s)
- Marta Feldmesser
- Division of Infectious Diseases, Department of Medicine, Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
32
|
Chaturvedi AK, Kavishwar A, Shiva Keshava GB, Shukla PK. Monoclonal immunoglobulin G1 directed against Aspergillus fumigatus cell wall glycoprotein protects against experimental murine aspergillosis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1063-8. [PMID: 16148172 PMCID: PMC1235786 DOI: 10.1128/cdli.12.9.1063-1068.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most of the biological functions related to pathogenicity and virulence reside in the fungal cell wall, which, being the outermost part of the cell, mediates the host-fungus interplay. For these reasons much effort has focused on the discovery of useful inhibitors of cell wall glucan, chitin, and mannoprotein biosynthesis. In the absence of a wide-spectrum, safe, and potent antifungal agent, a new strategy for antifungal therapy is directed towards the development of monoclonal antibodies (MAbs). In the present study the MAb A9 (immunoglobulin G1 [IgG1]) was identified from hybridomas raised in BALB/c mice immunized with cell wall antigen of Aspergillus fumigatus. The immunoreactive epitopes for this IgG1 MAb appeared to be associated with a peptide moiety, and indirect immunofluorescence microscopy revealed its binding to the cell wall surface of hyphae as well as with swollen conidia. MAb A9 inhibited hyphal development as observed by MTT [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (25.76%), reduced the duration of spore germination, and exerted an in vitro cidal effect against Aspergillus fumigatus. The in vivo protective efficacy of MAb A9 was also evaluated in a murine model of invasive aspergillosis, where a reduction in CFU (>4 log(10) units) was observed in kidney tissue of BALB/c mice challenged with A. fumigatus (2 x 10(5) CFU/ml) and where enhanced mean survival times (19.5 days) compared to the control (7.1 days) and an irrelevant MAb (6.1 days) were also observed.
Collapse
Affiliation(s)
- Ashok K Chaturvedi
- Division of Fermentation Technology, Medical Mycology Lab, Central Drug Research Institute, Lucknow 226 001, India
| | | | | | | |
Collapse
|
33
|
Cenci E, Pericolini E, Mencacci A, Conti S, Magliani W, Bistoni F, Polonelli L, Vecchiarelli A. Modulation of phenotype and function of dendritic cells by a therapeutic synthetic killer peptide. J Leukoc Biol 2005; 79:40-5. [PMID: 16244115 DOI: 10.1189/jlb.0205113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The strong microbicidal effects of an engineered synthetic killer peptide (KP), which functionally mimics a fungal killer toxin, have been demonstrated extensively. Beta-glucan has been identified as a receptor for KP on fungal cell walls. Although the direct microbicidal and related therapeutic effects have been studied in depth, no information currently exists about the interaction of KP with immune cells. In this study, we exploited the possibility of KP binding to different murine immune cell populations. The results demonstrate that KP binds selectively to dendritic cells (DC) and to a lesser extent, to macrophages but not to lymphocytes and neutrophils; KP binding possibly occurs through major histocompatibility complex (MHC) class II, CD16/32, and cellular molecules recognized by anti-specific intercellular adhesion molecule-grabbing nonintegrin R1 antibodies; and KP modulates the expression of costimulatory and MHC molecules on DC and improves their capacity to induce lymphocyte proliferation. These findings provide evidence that this synthetic KP interacts selectively with DC and modulating their multiple functions, might also serve to improve the immune antimicrobial response.
Collapse
Affiliation(s)
- Elio Cenci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Magliani W, Conti S, Salati A, Vaccari S, Ravanetti L, Maffei DL, Polonelli L. Therapeutic potential of yeast killer toxin-like antibodies and mimotopes. FEMS Yeast Res 2005; 5:11-8. [PMID: 15381118 DOI: 10.1016/j.femsyr.2004.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 06/03/2004] [Accepted: 06/07/2004] [Indexed: 11/28/2022] Open
Abstract
This review focuses on the potential of yeast killer toxin (KT)-like antibodies (KTAbs), that mimic a wide-spectrum KT through interaction with specific cell wall receptors (KTR) and their molecular derivatives (killer mimotopes), as putative new tools for transdisease anti-infective therapy. KTAbs are produced during the course of experimental and natural infections caused by KTR-bearing micro-organisms. They have been produced by idiotypic vaccination with a KT-neutralizing mAb, also in their monoclonal and recombinant formats. KTAbs and KTAbs-derived mimotopes may exert a strong therapeutic activity against mucosal and systemic infections caused by eukaryotic and prokaryotic pathogenic agents, thus representing new potential wide-spectrum antibiotics.
Collapse
Affiliation(s)
- Walter Magliani
- Sezione di Microbiologia, Dipartimento di Patologia e Medicina di Laboratorio, Università degli Studi di Parma, Viale Antonio Gramsci 14, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Manfredi M, McCullough MJ, Conti S, Polonelli L, Vescovi P, Al-Karaawi ZM, Porter SR. In vitro activity of a monoclonal killer anti-idiotypic antibody and a synthetic killer peptide against oral isolates of Candida spp. differently susceptible to conventional antifungals. ACTA ACUST UNITED AC 2005; 20:226-32. [PMID: 15943767 DOI: 10.1111/j.1399-302x.2005.00217.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS A monoclonal killer anti-idiotypic antibody (mAbK10) and a synthetic killer peptide, acting as internal images of a microbicidal, wide-spectrum yeast killer toxin (KT) have been recently shown to express candidacidal in vitro and an in vivo therapeutic activity against experimental mucosal and systemic candidosis models caused by a reference strain of Candida albicans (10S). MATERIAL AND METHODS The in vitro candidacidal activity of mAbK10 and synthetic killer peptide was compared using a colony forming unit assay against a large number of isolates of different Candida spp., obtained from oral saliva of adult diabetic (type 1 and 2) and nondiabetic subjects from Parma (Italy) and London (UK). RESULTS Both the KT-mimics exerted a strong dose-dependent candidacidal activity, probably mediated by the interaction with beta-glucan KT receptors on target yeast cells, against all the tested strains, regardless of their species and pattern of resistance to conventional antifungal agents. CONCLUSIONS These observations open new perspectives in the design and production of candidacidal compounds whose mechanism reflects that exerted in nature by killer yeasts.
Collapse
Affiliation(s)
- M Manfredi
- Oral Medicine, Division of Infection and Immunity, Eastman Dental Institute, UCL, University of London, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Cenci E, Bistoni F, Mencacci A, Perito S, Magliani W, Conti S, Polonelli L, Vecchiarelli A. A synthetic peptide as a novel anticryptococcal agent. Cell Microbiol 2004; 6:953-61. [PMID: 15339270 DOI: 10.1111/j.1462-5822.2004.00413.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An engineered, killer decapeptide (KP) has been synthesized based on the sequence of a recombinant, single-chain anti-idiotypic antibody (KT-scFv) acting as a functional internal image of a yeast killer toxin. Killer decapeptide exerted a strong fungicidal activity against Candida albicans, which was attributed to peptide interaction with beta-glucan. As this polysaccharide is also a critical component of the cryptococcal cell wall, we wondered whether KP was also active against Cryptococcus neoformans, a human pathogen of increasing medical importance. We found that KP was able to kill both capsular and acapsular C. neoformans cells in vitro. Furthermore, KP impaired the production of specific C. neoformans virulence factors including protease and urease activity and capsule formation, rendering the fungus more susceptible to natural effector cells. In vivo treatment with KP significantly reduced fungal burden in mice with cryptococcosis and, importantly, protected the majority of immunosuppressed animals from an otherwise lethal infection. Given the relevance of cryptococcosis in immunocompromised individuals and the inability of conventional drugs to completely resolve the infection, the results of the present study indicate KP as an ideal candidate for further studies on novel anticryptococcal agents.
Collapse
Affiliation(s)
- Elio Cenci
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Acidophilic structure and killing mechanism of the Pichia farinosa killer toxin SMKT. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b101843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
38
|
López-Ribot JL, Casanova M, Murgui A, Martínez JP. Antibody response toCandida albicanscell wall antigens. ACTA ACUST UNITED AC 2004; 41:187-96. [PMID: 15196567 DOI: 10.1016/j.femsim.2004.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/25/2004] [Accepted: 03/25/2004] [Indexed: 11/22/2022]
Abstract
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.
Collapse
Affiliation(s)
- José L López-Ribot
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Sciences Center, San Antonio, USA
| | | | | | | |
Collapse
|
39
|
Nimrichter L, Barreto-Bergter E, Mendonça-Filho RR, Kneipp LF, Mazzi MT, Salve P, Farias SE, Wait R, Alviano CS, Rodrigues ML. A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Microbes Infect 2004; 6:657-65. [PMID: 15158773 DOI: 10.1016/j.micinf.2004.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
Fungal glucosylceramides (GlcCer) are conserved lipid components in a large variety of pathogenic and non-pathogenic fungal species, but their biological functions are still unclear. Recent studies demonstrate that GlcCer are immunologically active components inducing the production of antifungal antibodies. In this work, a major GlcCer was purified and characterized from mycelial forms of Fonsecaea pedrosoi, the most frequent causative agent of chromoblastomycosis. As determined by fast atom bombardment mass spectrometry (FAB-MS) analysis, the purified molecule was identified as the conserved structure N-2'-hydroxyhexadecanoyl-1-beta-D-glucopyranosyl-9-methyl-4,8-sphingadienine. A monoclonal antibody (Mab) against this structure was used in indirect immunofluorescence with the different morphological stages of F. pedrosoi. Only the surface of young dividing cells was recognized by the antibody. Treatment of F. pedrosoi conidia with the Mab against GlcCer resulted in a clear reduction in fungal growth. In addition, the Mab also enhanced phagocytosis and killing of F. pedrosoi by murine cells. These results suggest that, in F. pedrosoi, GlcCer seem to be cell wall components targeted by antifungal antibodies that directly inhibit fungal development and also enhance macrophage function, supporting the use of monoclonal antibodies to GlcCer as potential tools in antifungal immunotherapy.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, CCS, Bloco I, Ilha do Fundão, 21941-590, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Viudes A, Lazzell A, Perea S, Kirkpatrick WR, Peman J, Patterson TF, Martinez JP, López-Ribot JL. The C-terminal antibody binding domain ofCandida albicansmp58 represents a protective epitope during candidiasis. FEMS Microbiol Lett 2004; 232:133-8. [PMID: 15033231 DOI: 10.1016/s0378-1097(04)00042-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 01/13/2004] [Accepted: 01/14/2004] [Indexed: 10/26/2022] Open
Abstract
The 58-kDa surface mannoprotein of Candida albicans (mp58) elicits strong antibody responses during infection. Epitope mapping with sera from patients with candidiasis and control individuals indicated the presence of multiple IgG-reactive continuous epitopes on the protein, expanding both the amino- and carboxy-terminal domains and several internal regions. These immunoreactive regions were similar to the ones previously identified using sera from immunized animals. Two of the epitopic regions (including the C-terminal domain) showed increased reactivity with antibodies present in sera from patients with candidiasis as compared to control individuals. Patients who survived the infection displayed increased antibody reactivity towards the C-terminal epitope as compared to those succumbing to candidiasis. A monoclonal antibody directed towards this epitopic region conferred protection in serum therapy experiments in a murine model of hematogenously disseminated candidiasis. Together, these observations indicate the carboxy-terminal antibody binding domain of C. albicans mp58 represents a protective epitope during candidiasis.
Collapse
Affiliation(s)
- Angel Viudes
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, South Texas Centers for Biology in Medicine, Texas Research Park, 15355 Lambda Dr., San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Alviano DS, Franzen AJ, Travassos LR, Holandino C, Rozental S, Ejzemberg R, Alviano CS, Rodrigues ML. Melanin from Fonsecaea pedrosoi induces production of human antifungal antibodies and enhances the antimicrobial efficacy of phagocytes. Infect Immun 2004; 72:229-37. [PMID: 14688100 PMCID: PMC344007 DOI: 10.1128/iai.72.1.229-237.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fonsecaea pedrosoi is a fungal pathogen that produces melanin. The functions of melanin and its possible influence in the protective immunological response during infection by F. pedrosoi are not known. In this work, treatment of F. pedrosoi mycelia with proteases and glycosidases followed by a denaturing agent and hot concentrated acid left a black residue. Scanning electron microscopy demonstrated that this processed melanized residue resembled very closely the intact mycelium in shape and size. Melanin particles were also isolated from culture fluids of conidia or sclerotic forms of F. pedrosoi. Secreted melanins were reactive with sera from infected human patients, suggesting that F. pedrosoi synthesizes melanin in vivo. The antibodies against melanin were purified from patients' sera and analyzed by indirect immunofluorescence. They reacted with sclerotic cells from patients' lesions as well as with sclerotic bodies cultivated in vitro, conidia, mycelia, and digested residues. Treatment of F. pedrosoi with purified antibodies against melanin inhibited fungal growth in vitro. The interaction of F. pedrosoi with phagocytes in the presence of melanin resulted in higher levels of fungal internalization and destruction by host cells, which was accompanied by greater degrees of oxidative burst. Taken together, these results indicate that melanin from F. pedrosoi is an immunologically active fungal structure that activates humoral and cellular responses that could help the control of chromoblastomycosis by host defenses.
Collapse
Affiliation(s)
- Daniela S Alviano
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Polonelli L, Magliani W, Conti S, Bracci L, Lozzi L, Neri P, Adriani D, De Bernardis F, Cassone A. Therapeutic activity of an engineered synthetic killer antiidiotypic antibody fragment against experimental mucosal and systemic candidiasis. Infect Immun 2003; 71:6205-12. [PMID: 14573638 PMCID: PMC219587 DOI: 10.1128/iai.71.11.6205-6212.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptides derived from the sequence of a single-chain, recombinant, antiidiotypic antibody (IdAb; KT-scFv) acting as a functional internal image of a microbicidal, wide-spectrum yeast killer toxin (KT) were synthesized and studied for their antimicrobial activity by using the KT-susceptible Candida albicans as model organism. A decapeptide containing the first three amino acids (SAS) of the light chain CDR1 was selected and optimized by alanine replacement of a single residue. This peptide exerted a strong candidacidal activity in vitro, with a 50% inhibitory concentration of 0.056 microM, and was therefore designated killer peptide (KP). Its activity was neutralized by laminarin, a beta1-3 glucan molecule, but not by pustulan, a beta1-6 glucan molecule. KP also competed with the binding of a KT-like monoclonal IdAb to germinating cells of the fungus. In a rat model of vaginal candidiasis, local, postchallenge administration of KP was efficacious in rapidly abating infections caused by fluconazole-susceptible or -resistant C. albicans strains. In systemic infection of BALB/c or SCID mice preinfected intravenously with a lethal fungal load, KP caused a highly significant prolongation of the median survival time, with >80% of the animals still surviving after >60 days, whereas >90% of control mice died within 3 to 5 days. KP is therefore the first engineered peptide derived from a recombinant IdAb retaining KT microbicidal activity, probably through the interaction with the beta-glucan KT receptor on target microbial cells.
Collapse
Affiliation(s)
- Luciano Polonelli
- Sezione di Microbiologia, Dipartimento di Patologia e Medicina di Laboratorio, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Moragues MD, Omaetxebarria MJ, Elguezabal N, Sevilla MJ, Conti S, Polonelli L, Pontón J. A monoclonal antibody directed against a Candida albicans cell wall mannoprotein exerts three anti-C. albicans activities. Infect Immun 2003; 71:5273-9. [PMID: 12933874 PMCID: PMC187351 DOI: 10.1128/iai.71.9.5273-5279.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies are believed to play a role in the protection against Candida albicans infections by a number of mechanisms, including the inhibition of adhesion or germ tube formation, opsonization, neutralization of virulence-related enzymes, and direct candidacidal activity. Although some of these biological activities have been demonstrated individually in monoclonal antibodies (MAbs), it is not clear if all these anti-C. albicans activities can be displayed by a single antibody. In this report, we characterized a monoclonal antibody raised against the main target of salivary secretory immunoglobulin A in the cell wall of C. albicans, which exerts three anti-C. albicans activities: (i) inhibition of adherence to HEp-2 cells, (ii) inhibition of germination, and (iii) direct candidacidal activity. MAb C7 reacted with a proteinic epitope from a mannoprotein with a molecular mass of >200 kDa predominantly expressed on the C. albicans germ tube cell wall surface as well as with a number of antigens from Candida lusitaniae, Cryptococcus neoformans, Aspergillus fumigatus, and Scedosporium prolificans. MAb C7 caused a 31.1% inhibition in the adhesion of C. albicans to HEp-2 monolayers and a 55.3% inhibition in the adhesion of C. albicans to buccal epithelial cells, produced a 38.5% decrease in the filamentation of C. albicans, and exhibited a potent fungicidal effect against C. albicans, C. lusitaniae, Cryptococcus neoformans, A. fumigatus, and S. prolificans, showing reductions in fungal growth ranging from 34.2 to 88.7%. The fungicidal activity showed by MAb C7 seems to be related to that reported by antibodies mimicking the activity of a killer toxin produced by the yeast Pichia anomala, since one of these MAbs also reacted with the C. albicans mannoprotein with a molecular mass of >200 kDa. Results presented in this study support the concept of a family of microbicidal antibodies that could be useful in the treatment of a wide range of microbial infections when used alone or in combination with current antimicrobial agents.
Collapse
Affiliation(s)
- María D Moragues
- Departamento de Enfermería I, Universidad del País Vasco, E-48080 Bilbao, Vizcaya, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Magliani W, Conti S, Frazzi R, Pozzi G, Oggioni M, Polonelli L. Engineered commensal bacteria as delivery systems of anti-infective mucosal protectants. Biotechnol Genet Eng Rev 2003; 19:139-56. [PMID: 12520876 DOI: 10.1080/02648725.2002.10648027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Walter Magliani
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Viale Gramsci 14, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Guyard C, Dehecq E, Tissier JP, Polonelli L, Dei-Cas E, Cailliez JC, Menozzi FD. Involvement of β-Glucans in the Wide-Spectrum Antimicrobial Activity of Williopsis saturnus var. mrakii MUCL 41968 Killer Toxin. Mol Med 2002. [DOI: 10.1007/bf03402032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Savoia D, Avanzini C, Conti S, Magliani V, Frazzi R, Polonelli L. In vitro leishmanicidal activity of a monoclonal antibody mimicking a yeast killer toxin. J Eukaryot Microbiol 2002; 49:319-23. [PMID: 12188222 DOI: 10.1111/j.1550-7408.2002.tb00377.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The microbicidal effect of a monoclonal antiidiotypic antibody, mimicking the activity of a yeast killer toxin, characterized by a wide antimicrobial spectrum, has been evaluated in vitro against two relevant species of protozoan parasites, Leishmania major and Leishmania infantum. The antiidiotypic antibody exerted a significant and dose-dependent antileishmanial activity against parasite promastigotes in comparison to an irrelevant isotype-matched monoclonal antibody. This is the first demonstration that an antibody, which had been already shown to be fungicidal and bactericidal, may also exert a direct microbicidal activity against protozoa.
Collapse
Affiliation(s)
- Dianella Savoia
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Hospital, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Conti S, Magliani W, Arseni S, Frazzi R, Salati A, Ravanetti L, Polonelli L. Inhibition by Yeast Killer Toxin-like Antibodies of Oral Streptococci Adhesion to Tooth Surfaces in an Ex Vivo Model. Mol Med 2002. [DOI: 10.1007/bf03402157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Oggioni MR, Beninati C, Boccanera M, Medaglini D, Spinosa MR, Maggi T, Conti S, Magliani W, De Bernardis F, Teti G, Cassone A, Pozzi G, Polonelli L. Recombinant Streptococcus gordonii for mucosal delivery of a scFv microbicidal antibody. Int Rev Immunol 2002; 20:275-87. [PMID: 11878770 DOI: 10.3109/08830180109043039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The gram-positive bacterium Streptococcus gordonii was engineered to express the microbicidal molecule H6, which is an antiidiotypic single chain antibody mimicking a yeast killer toxin. S. gordonii is a human commensal which we developed as a model system for mucosal delivery of heterologous proteins. The in vivo candidacidal activity of both H6-secreting and H6-surface-displaying streptococcal strains were assayed in a well-established rat model of vaginal candidiasis. At day 21 full clearance of Candida albicans infection was observed in 75% of animals treated with the H6-secreting strain, and in 37.5% of animals treated with the strain expressing H6 on the surface, while all animals treated with the control strain were still infected. The observed candidacidal effect was comparable with that observed with the antimycotic drug fluconazole. These data confirm the potential of H6 as a candidacidal agent and show how promising is the approach of using recombinant bacteria for mucosal delivery of biologically active molecules.
Collapse
Affiliation(s)
- M R Oggioni
- Dipartimento di Biologia Molecolare/Microbiologia, Università degli Studi di Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cenci E, Mencacci A, Spreca A, Montagnoli C, Bacci A, Perruccio K, Velardi A, Magliani W, Conti S, Polonelli L, Romani L. Protection of killer antiidiotypic antibodies against early invasive aspergillosis in a murine model of allogeneic T-cell-depleted bone marrow transplantation. Infect Immun 2002; 70:2375-82. [PMID: 11953373 PMCID: PMC127930 DOI: 10.1128/iai.70.5.2375-2382.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antiidiotypic monoclonal antibodies (MAbs) representing the internal image of a yeast killer toxin (KT) have therapeutic potential against several fungal infections. The efficacy of KT MAbs against Aspergillus fumigatus was investigated in a mouse model of T-cell-depleted allogeneic bone marrow transplantation (BMT) with invasive pulmonary aspergillosis. Mice were highly susceptible to infection at 3 days post-BMT, when profound neutropenia was observed both in the periphery and in the lungs. Treatment with KT MAbs protected the mice from infection, as judged by the long-term survival and decreased pathology associated with inhibition of fungal growth and hyphal development in the lungs. In vitro, similar to polymorphonuclear neutrophils, KT MAbs significantly inhibited the hyphal development and metabolic activity of germinated Aspergillus conidia. These results indicate that mimicking the action of neutrophils could be a strategy through which KT MAbs exert therapeutic efficacy in A. fumigatus infections.
Collapse
Affiliation(s)
- Elio Cenci
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Magliani W, Conti S, Cassone A, De Bernardis F, Polonelli L. New immunotherapeutic strategies to control vaginal candidiasis. Trends Mol Med 2002; 8:121-6. [PMID: 11879772 DOI: 10.1016/s1471-4914(01)02268-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The widespread occurrence of mucosal infections caused by Candida, in particular recurrent vulvovaginal candidiasis among fertile-age women, together with the paucity of safe candidacidal antimycotics, have prompted a great number of investigations into the immunotherapy of candidal vaginitis. This article will discuss three different experimental approaches demonstrated to be potentially transferable to human disease: (1) the use of antibodies against well-defined cell-surface adhesins or enzymes; (2) the generation of yeast killer-toxin-like candidacidal anti-idiotypic antibodies and their engineered molecular derivatives (e.g. single chains, peptides); and (3) the generation of therapeutic vaccines and immunomodulators.
Collapse
Affiliation(s)
- Walter Magliani
- Microbiology Section, Dept of Pathology and Laboratory Medicine, University of Parma, Viale Gramsci 14, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|