1
|
Ansari Z, Chaurasia A, Neha, Kalani A, Bachheti RK, Gupta PC. Comprehensive insights into leishmaniasis: From etiopathogenesis to a novel therapeutic approach. Microb Pathog 2025; 204:107535. [PMID: 40185168 DOI: 10.1016/j.micpath.2025.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/13/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania and is transmitted through the bites of infected sandflies. The disease is characterized by a variety of clinical manifestations, from small skin blemishes to large deformable ulcers, classified as cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL) and disseminated cutaneous leishmaniasis (DCL), as well as severe systemic infections (Kala-Azar or visceral leishmaniasis [VL]), affecting the spleen and liver, along with atypical forms such as lupoid leishmaniasis. As one of the world's most neglected tropical diseases, leishmaniasis threatens more than 1 billion people globally, with 12 million currently affected and <1.3 million new cases reported annually. This review provides comprehensive insights into the etiopathogenesis of leishmaniasis and explores the complex life cycle of parasites and their interactions with host immune responses. A systematic literature search was conducted across databases such as PubMed, Google Scholar, and Scopus via keywords such as "Leishmaniasis," "etiopathogenesis," "cutaneous leishmaniasis," "visceral leishmaniasis," and "Novel therapeutic approaches." Relevant studies published after 2015 were critically analyzed to present the current understanding of the disease mechanisms involved. It also highlights the current treatment landscape, emphasizing the emergence of drug resistance and the need for novel therapeutic approaches. Recent advancements in drug delivery systems, such as nanoparticle formulations, have shown promise for enhancing treatment efficacy and reducing toxicity. Additionally, integrated control measures, such as vector management and public education, are crucial for mitigating disease spread. This overview underscores the urgent need for continued research and innovation to combat this neglected tropical disease effectively.
Collapse
Affiliation(s)
- Zeeshan Ansari
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Ayush Chaurasia
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Neha
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Anuradha Kalani
- Disease Biology Lab, School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Rakesh Kumar Bachheti
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prakash Chandra Gupta
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India.
| |
Collapse
|
2
|
Chen Z, Gao Y, Zhang C, Mao J. Hemophagocytic lymphohistiocytosis secondary to visceral leishmaniasis in children: case report and systematic review. Front Pediatr 2025; 13:1561600. [PMID: 40292113 PMCID: PMC12021907 DOI: 10.3389/fped.2025.1561600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background Visceral leishmaniasis (VL) can lead to complications such as hemophagocytic lymphohistiocytosis (HLH) in children. The clinical features of VL overlap with that of HLH, and thus the diagnosis of VL-induced HLH can be challenging for clinicians. Methods We describe two pediatric cases and systematically review all reported cases of pediatric VL-related HLH in literatures until May 2024. Results The demographic characteristics, clinical manifestations, treatment and prognosis of our reported cases are presented. The systematic review included 29 articles with a total of 135 cases. More than half of the children (89/125, 71.2%) were under 3 years old, and 8.9% (n = 12/135) had specific epidemiological histories. The main clinical presentations were hypertriglyceridemia (34/45, 75.6%), hypofibrinogenemia (24/36, 66.7%), and hyperferritinemia (95/132, 72.0%). Bone marrow aspiration (BMA) analysis indicated positive evidence of leishmania infection in 84.7% (83/98) of cases, while 37.8% (14/37) of patients tested negative for leishmania on the first BMA smear. All patients were treated against leishmania with amphotericin B (76/135, 56.3%) or antimony (77/135, 57.0%), and 13.3% (n = 18/135) of patients received both medications, in which amphotericin B was used as rescue treatment. The prognosis was favorable, with the exception of two deaths. Conclusions Vigilance towards screening for leishmania infection induced HLH is imperative, particularly when there is a suspicious epidemiological history, ineffective chemotherapy, or prior to bone marrow transplantation. Early recognition, accurate diagnosis, and prompt treatment initiation can significantly alter the course of the disease and favor the prognosis in childhood with HLH secondary to VL.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Gao
- Department of Pediatrics, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Chaoyong Zhang
- Department of Pediatrics, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Junwen Mao
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Ochol D, Haile K, Onduma N, Yohanes T, Kamara K. Elimination of visceral leishmaniasis in Ethiopia: cross-sector collaboration and cost sharing to promote sustainability. Int J Infect Dis 2025; 152:107800. [PMID: 39864498 DOI: 10.1016/j.ijid.2025.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025] Open
Abstract
OBJECTIVES Sustainable elimination of visceral leishmaniasis as a public health problem requires the contribution of various stakeholders led by the governments. An estimation of the contribution of different stakeholders was conducted, focusing on the cost of diagnosis, treatment, and management of visceral leishmaniasis in a hospital setting. The study aimed to estimate the cost of diagnosis, treatment, and management of visceral leishmaniasis in a public hospital in Ethiopia, including the contributions of the government and other stakeholders. METHODS A cross-sectional survey using discharged patients' data and interviews of health workers responsible for managing visceral leishmaniasis patients was used to estimate the cost of diagnosis and management of visceral leishmaniasis and the proportion of government contribution. RESULTS Data were collected from 189 patient records and 32 hospital staff. The patients' mean age was 16.3 years (95% confidence interval: 14.7-17.9). The total cost of diagnosis and treatment of a patient on first-line regimen was US $104.7 and on second-line regimen was US $331.9. The World Health Organization contributions through the provision of diagnostic kits and medicines were US $26.9 and $241.1 per patient on first- and second-line treatments, respectively. The hospital contribution were US $77.8 and US $90.8 per patient on first- and second-line treatments, respectively. The pro-rated monthly medical staff payments ranged from US $93.5 to US $163. The monthly government contributions for diagnosis, treatment, and management were 76% and 29% for patients on first- and second-line treatments, respectively. CONCLUSIONS The contribution by the Ethiopian government of 76% of the cost of diagnosis, treatment, and management of visceral leishmaniasis cases on first-line treatment is significant for the sustainable elimination of visceral leishmaniasis. Further research should be done to investigate the cost effectiveness of integrating visceral leishmaniasis services into the existing health services.
Collapse
Affiliation(s)
- Duncan Ochol
- The END Fund, 2 Park Ave 28th Floor, New York, NY 10016, USA.
| | - Kebron Haile
- The END Fund, 2 Park Ave 28th Floor, New York, NY 10016, USA
| | - Nathan Onduma
- The END Fund, 2 Park Ave 28th Floor, New York, NY 10016, USA
| | | | - Kimberly Kamara
- The END Fund, 2 Park Ave 28th Floor, New York, NY 10016, USA
| |
Collapse
|
4
|
Parente Rocha SI, Fernandes VB, Barbosa da Silva WM, Frota LS, Garcia AR, Schulze Spíndola FF, Alexandre Roberto CH, Rodrigues de Souza VM, Antonio da Franca Rodrigues K, de Almeida Rodrigues I, Marinho ES, Marinho MM, Vila-Nova NS, Maia de Morais S. Antileishmanial activity of hesperetin on Leishmania donovani, in vitro and in silico inhibition of acetylcholinesterase and investigation of the targets sterol C-24 reductase and N-myristoyltransferase. Exp Parasitol 2025; 270:108903. [PMID: 39837406 DOI: 10.1016/j.exppara.2025.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
The current treatment of leishmaniasis is confronted with significant challenges, including limited efficacy, adverse effects, and parasite resistance to drugs. The search for alternative therapeutic options, including the utilisation of natural products, has demonstrated considerable promise. In this study, the antileishmanial activity of the flavonoid hesperetin against Leishmania donovani, the causative agent of visceral leishmaniasis, was reported for the first time. Hesperetin was obtained through the hydrolysis of hesperidin and subsequently subjected to chemical characterisation via Infrared and NMR spectroscopy. The antileishmanial activity and cytotoxicity against RAW 264.7 macrophages were evaluated using the MTT colorimetric assay. In order to investigate the potential mechanisms of action, in vitro acetylcholinesterase inhibition assays and molecular docking analyses were conducted. Hesperetin showed an antipromastigote effect (IC50: 62.89 μM) with no evidence of cytotoxicity (CC50: 612.8 μM), with a selectivity index (SI) of 9.74, being 5.4 times more effective than trivalent antimony. In comparison, antimony showed an IC50 of 80.16 μM, a CC50 of 145.04 μM and a SI of 1.8, indicating a limited safety margin. The compound was observed to inhibit acetylcholinesterase (IC50 of 18.44 μg/mL), present in mitochondrial and plasma membrane of the parasite. Molecular docking and dynamic simulations indicated that hesperetin inhibit sterol C-24 reductase, essential for ergosterol biosynthesis and membrane integrity of L. donovani and shows activity against N-myristoyl transferase, responsible for parasite proliferation cycle. These findings open promising avenues for the development of effective antileishmanial therapies.
Collapse
Affiliation(s)
| | | | | | - Lucas Soares Frota
- Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, Brazil
| | - Andreza Raposo Garcia
- Bioactive Substances Research Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Igor de Almeida Rodrigues
- Bioactive Substances Research Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emmanuel Silva Marinho
- Natural Resources Bioprospecting and Monitoring Laboratory, State University of Ceará, Fortaleza, Brazil
| | - Márcia Machado Marinho
- Natural Resources Bioprospecting and Monitoring Laboratory, State University of Ceará, Fortaleza, Brazil
| | | | - Selene Maia de Morais
- Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
5
|
Zahornacky O, Porubcin S, Rovnakova A, Kopcova M, Jarcuska P, Bohus P, Benicky M. First documented case of visceral leishmaniasis with rare colonic involvement in an immunocompetent adult in Slovakia. BMC Infect Dis 2025; 25:238. [PMID: 39972242 PMCID: PMC11841320 DOI: 10.1186/s12879-024-10276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND This article presents the first documented case of visceral leishmaniasis in an adult patient in Slovakia, with an unusual involvement of the colon. Leishmaniasis is a tropical parasitic infection transmitted by sandflies, predominantly occurring in developing countries. CASE PRESENTATION The patient was a 57-year-old woman without comorbidities or immunocompromising conditions. The clinical presentation included non-specific symptoms such as prolonged fever, marked weakness, hepatosplenomegaly, and generalized lymphadenopathy. The diagnosis was established based on histopathological examination and bone marrow PCR, which confirmed the presence of Leishmania infantum amastigotes. After initiating treatment with amphotericin B, the patient's condition improved, but a relapse occurred shortly thereafter, presenting with colonic involvement-an extremely rare occurrence in immunocompetent patients. The diagnosis of relapse was confirmed by repeated histopathological examination and molecular analysis. Treatment was re-initiated with an extended regimen of amphotericin B and additional supportive therapy. CONCLUSION This case highlights the importance of early diagnosis and targeted treatment of visceral leishmaniasis, even in non-endemic areas of the world. It emphasizes the need to consider this diagnosis in the differential diagnosis of patients with unexplained febrile conditions and hepatosplenomegaly, as the clinical presentation can often mimic various other infectious diseases or hematological malignancies, significantly complicating the diagnostic process.
Collapse
Affiliation(s)
- Ondrej Zahornacky
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, Košice, 041 90, Slovakia
| | - Stefan Porubcin
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, Košice, 041 90, Slovakia
| | - Alena Rovnakova
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, Košice, 041 90, Slovakia
| | - Milota Kopcova
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, Košice, 041 90, Slovakia
| | - Pavol Jarcuska
- Department of Infectology and Travel Medicine, Faculty of Medicine, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, Košice, 041 90, Slovakia.
| | - Peter Bohus
- The Department of Pathology, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, Košice, 041 90, Slovakia
| | - Marian Benicky
- The Department of Pathology, Louis Pasteur University Hospital, Pavol Jozef Šafarik University, Košice, 041 90, Slovakia
| |
Collapse
|
6
|
Zhao R, He G, Xiang L, Ji M, He R, Wei X. Metagenomic next-generation sequencing assists in the diagnosis of visceral leishmaniasis in non-endemic areas of China. Front Cell Infect Microbiol 2025; 15:1517046. [PMID: 39981377 PMCID: PMC11839618 DOI: 10.3389/fcimb.2025.1517046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Leishmaniasis, a protozoan disease caused by infection by Leishmania, is a critical issue in Asia, South America, East Africa, and North Africa. With 12 million cases globally, leishmaniasis is one of the most serious neglected tropical diseases worldwide. Direct identification of infected tissues is currently the primary method of diagnosis; however, the low sensitivity and inconvenience of microscopic examination in detecting amastigotes, parasitic manifestations of Leishmania, leads to the possibility of misdiagnosis, delayed diagnosis, and underdiagnosis. Methods With the development of metagenomic nextgeneration sequencing (mNGS) technology for pathogen identification, it is possible to detect specific nucleic acid sequences characteristic of Leishmania parasites, which opens new avenues for the more accurate diagnosis of leishmaniasis. In this study, we report two cases of leishmaniasis from Henan Province, China, in which Leishmania parasites were identified using mNGS technology, massively expediting diagnosis and treatment. Results Our report demonstrates that the mNGS method is applicable to peripheral blood samples (PB), which are far more readily available in clinical settings, in addition to bone marrow aspirate samples (BM), which are traditionally used for diagnosis of visceral leishmaniasis. Conclusion Our report validates the efficacy of mNGS technology as a rapid and accurate method of diagnosis for leishmaniasis.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Hematopathy, Henan Institute of Hematology, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Guilun He
- Science and Technology Service Center, Nanjing Practice Medicine Diagnostics CO., Ltd., Nanjing, Jiangsu, China
| | - Lin Xiang
- Science and Technology Service Center, Nanjing Practice Medicine Diagnostics CO., Ltd., Nanjing, Jiangsu, China
| | - Melinda Ji
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, United States
| | - Rongheng He
- Department of Hematopathy, Henan Institute of Hematology, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Xudong Wei
- Department of Hematopathy, Henan Institute of Hematology, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Singh VK, Tiwari R, Rajneesh, Kumar A, Chauhan SB, Sudarshan M, Mehrotra S, Gautam V, Sundar S, Kumar R. Advancing Treatment for Leishmaniasis: From Overcoming Challenges to Embracing Therapeutic Innovations. ACS Infect Dis 2025; 11:47-68. [PMID: 39737830 DOI: 10.1021/acsinfecdis.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites. This presents an urgent need to identify new therapeutic targets for leishmaniasis treatment. Understanding the complex life cycle of Leishmania and its survival in host macrophages can provide insights into potential targets for intervention. Current treatments, including antimonials, amphotericin B, and miltefosine, are constrained by side effects, costs, resistance, and reduced efficacy. Exploring novel therapeutic targets within the parasite's physiology, such as key metabolic enzymes or essential surface proteins, may lead to the development of more effective and less toxic drugs. Additionally, innovative strategies like drug repurposing, combination therapies, and nanotechnology-based delivery systems could enhance efficacy and combat resistance, thus improving anti-leishmanial therapies.
Collapse
Affiliation(s)
- Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Rajneesh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Shashi Bhushan Chauhan
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Medhavi Sudarshan
- Department of Zoology, Jagat Narayan Lal College, Patliputra University, Khagaul, Patna-801105, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, U.P. India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| |
Collapse
|
8
|
Al Nasr IS, Koko WS, Khan TA, Schobert R, Biersack B. Antiparasitic Activities of Acyl Hydrazones from Cinnamaldehydes and Structurally Related Fragrances. Antibiotics (Basel) 2024; 13:1114. [PMID: 39766505 PMCID: PMC11672724 DOI: 10.3390/antibiotics13121114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: New drugs for the treatment of protozoal parasite infections such as toxoplasmosis and leishmaniasis are required. Cinnamaldehyde and its derivatives appear to be promising antiparasitic drug candidates. Methods: Acyl hydrazones of cinnamaldehyde, 4-dimethylaminocinnamaldehyde, and of the synthetic fragrances silvialTM and florhydralTM were prepared and tested for activity against Toxoplasma gondii (T. gondii) and Leishmania major (L. major) parasites. Results: Three cinnamaldehyde acyl hydrazones (3-hydroxy-2-naphthoyl 2a and the salicyloyls 2c and 2d) showed good activity against T. gondii, and two compounds derived from cinnamaldehyde and florhydralTM (3-hydroxy-2-naphthoyls 2a and 4a) exhibited moderate activity against L. major promastigotes. Conclusions: In particular, the identified antitoxoplasmal activities are promising and might lead to the development of new potent and cost-effective drug candidates for the therapy of toxoplasmosis.
Collapse
Affiliation(s)
- Ibrahim S. Al Nasr
- Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia; (I.S.A.N.); (W.S.K.)
| | - Waleed S. Koko
- Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia; (I.S.A.N.); (W.S.K.)
| | - Tariq A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Qassim 51452, Saudi Arabia;
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| |
Collapse
|
9
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Qin L, Madden R, Burks H, Gao P, Wu JQ, Sheikh SW, Joice AC, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. Nat Commun 2024; 15:9409. [PMID: 39482311 PMCID: PMC11528044 DOI: 10.1038/s41467-024-53790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Visceral leishmaniasis is a life-threatening parasitic disease, but current antileishmanial drugs have severe drawbacks. Antifungal azoles inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. CYP5122A1 overexpression results in growth delay, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1 possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Arline M Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lingli Qin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS, 66047, USA
| | - Judy Qiju Wu
- Department of Pharmacy Practice, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Salma Waheed Sheikh
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - April C Joice
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA.
| |
Collapse
|
10
|
Lopes A, Teixeira S, Santarém N, Greco A, Pagliaro A, Keminer O, Gul S, Cordeiro-da-Silva A, Carvalho MA. SAR Study of 4,8-Disubstituted Pyrimido[5,4- d]pyrimidines Exhibiting Antitrypanosomal and Antileishmanial Activity. ACS Med Chem Lett 2024; 15:1541-1548. [PMID: 39291018 PMCID: PMC11403736 DOI: 10.1021/acsmedchemlett.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
A set of new derivatives of 4,8-disubstituted pyrimido[5,4-d]pyrimidines were efficiently synthesized and in vitro evaluated against Trypanosoma brucei and Leishmania infantum promastigotes and intramacrophage amastigotes. The in vitro cytotoxicity was determined using the THP-1 cell line, and early in vitro ADME-Tox was carried out using in vitro assays for cytotoxicity (A549 and HEK293 cell lines) and CYP3A4 and hERG cardiotoxicity liabilities. All the new compounds were active against T. brucei (0.11 μM ≤ IC50 ≤ 8.72 μM; 1 ≤ selectivity index (SI) ≤ 877), but only eight were active against L. infantum promastigotes (0.20 μM ≤ IC50 ≤ 14.88 μM; 1 ≤ SI < 502) with three also active against L. infantum intramacrophage amastigotes (3.00 μM ≤ IC50 ≤ 8.51 μM). Compounds 4a, 4c, and 4n were identified as the hit compounds to further develop as antitrypanosomal and antileishmanial agents.
Collapse
Affiliation(s)
- André Lopes
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Braga, Portugal and Departamento de Química, Escola de Ciências da Universidade do Minho, Braga 4710-057, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, University of Porto, Porto 4150-180, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto 4050-313, Portugal
| | - Sofia Teixeira
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Braga, Portugal and Departamento de Química, Escola de Ciências da Universidade do Minho, Braga 4710-057, Portugal
| | - Nuno Santarém
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, University of Porto, Porto 4150-180, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto 4050-313, Portugal
| | - Alessandro Greco
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg 22525, Germany
| | - Angela Pagliaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg 22525, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg 22525, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg 22525, Germany
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, University of Porto, Porto 4150-180, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto 4050-313, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Braga, Portugal and Departamento de Química, Escola de Ciências da Universidade do Minho, Braga 4710-057, Portugal
| |
Collapse
|
11
|
Baber H, Aghajani A, Gallimore BH, Bethel C, Hyatt JG, King EFB, Price HP, Maciej-Hulme ML, Sari S, Winter A. Galactokinase-like protein from Leishmania donovani: Biochemical and structural characterization of a recombinant protein. Biochimie 2024; 223:31-40. [PMID: 38579894 DOI: 10.1016/j.biochi.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Leishmaniasis is a spectrum of conditions caused by infection with the protozoan Leishmania spp. parasites. Leishmaniasis is endemic in 98 countries around the world, and resistance to current anti-leishmanial drugs is rising. Our work has identified and characterised a previously unstudied galactokinase-like protein (GalK) in Leishmania donovani, which catalyses the MgATP-dependent phosphorylation of the C-1 hydroxyl group of d-galactose to galactose-1-phosphate. Here, we report the production of the catalytically active recombinant protein in E. coli, determination of its substrate specificity and kinetic constants, as well as analysis of its molecular envelope using in solution X-ray scattering. Our results reveal kinetic parameters in range with other galactokinases with an average apparent Km value of 76 μM for galactose, Vmax and apparent Kcat values with 4.46376 × 10-9 M/s and 0.021 s-1, respectively. Substantial substrate promiscuity was observed, with galactose being the preferred substrate, followed by mannose, fructose and GalNAc. LdGalK has a highly flexible protein structure suggestive of multiple conformational states in solution, which may be the key to its substrate promiscuity. Our data presents novel insights into the galactose salvaging pathway in Leishmania and positions this protein as a potential target for the development of pharmaceuticals seeking to interfere with parasite substrate metabolism.
Collapse
Affiliation(s)
- Hasana Baber
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Arega Aghajani
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - B Harold Gallimore
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Cassandra Bethel
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - James G Hyatt
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Elizabeth F B King
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Helen P Price
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Marissa L Maciej-Hulme
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Ankara, Turkey
| | - Anja Winter
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
12
|
Winge T, Imberg L, Perry B, Matheeussen A, Caljon G, Kalinin D, Wünsch B. N-Pyrazolyl- and N-Triazolylamines and -Ureas as Antileishmanial and Antitrypanosomal Drugs. ChemMedChem 2024; 19:e202400220. [PMID: 38687962 DOI: 10.1002/cmdc.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Three types of modifications of antileishmanial pyrazole lead compounds 7 and 8 were conducted to expand understanding of the relationships between structural features and antileishmanial/antitrypanosomal activity: (1) the pyrazole core was retained or replaced by a 1,2,4-triazole ring; (2) various aryl moieties including 2-fluorophenyl, pyridin-3-yl and pyrazin-2-yl rings were attached at 3-position of the core azole; (3) either arylmethylamino or ureido substituents were introduced at 5-position of the azole core. The synthesis followed established routes starting with esters 9 or 15 and anhydride 21. The synthesized 3-arylpyrazoles and 3-aryl-1,2,4-triazoles had only very low antileishmanial activity. The 2-fluorophenyl-substituted pyrazole 18c revealed the highest antileishmanial activity of this series of compounds, but its IC50 value (20 μM) still indicates low activity. However, low micromolar antitrypanosomal activity was detected for the pyridin-3-yl-substituted pyrazoles 12b (IC50=4.7 μM) and 14a (IC50=2.1 μM). Their IC50 values are comparable with the IC50 values of the reference compounds benznidazole and nifurtimox. Whereas only low unspecific cytotoxicity at the primary peritoneal mouse macrophages (PMM) was detected, considerable cytotoxicity at MRC-5 human fibroblast cells was found for both pyrazoles 12b an 14a. The activity of pyrazole 12b against T. cruzi is 4-fold higher than its unspecific MRC-5 cytotoxicity.
Collapse
Affiliation(s)
- Tobias Winge
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Lukas Imberg
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Ben Perry
- Drugs for Neglected Diseases initiative, 15 chemin Camille-Vidart, 1202, Geneva, Switzerland
- current Address: Medicxi Ventures, 10 Cours de Rive, 1204, Geneva, Switzerland
| | - An Matheeussen
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1, B-2610, Wilrijk-Antwerpen
| | - Guy Caljon
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1, B-2610, Wilrijk-Antwerpen
| | - Dmitrii Kalinin
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Universität Münster, Corrensstr. 48, D-48149, Münster, Germany
| |
Collapse
|
13
|
Prajapat VM, Aalhate M, Sriram A, Mahajan S, Maji I, Gupta U, Kumari D, Singh K, Kalia NP, Dua K, Singh SK, Singh PK. Amphotericin B loaded nanoemulsion: Optimization, characterization and in-vitro activity against L. donovani promastigotes. Parasitol Int 2024; 100:102848. [PMID: 38159836 DOI: 10.1016/j.parint.2023.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The present work aimed to develop and evaluate AmB-loaded nano-emulsion (AmB-NE) which will augment the solubility of AmB and lead to enhanced anti-leishmanial activity. The composition of AmB-NE was optimized by systematic screening followed by DoE-extreme vertices mixture design. The optimized NE revealed mean droplet size and PDI of 44.19 ± 5.5 nm, 0.265 ± 0.0723, respectively. The NE could efficiently encapsulate AmB with drug content and efficiency 83.509 ± 0.369% and 81.659 ± 0.013%, respectively. The presence of cholesterol and stearyl amine retarded the release (P < 0.0001) of AmB significantly compared to AmB suspension. The AmB-NE and pure AmB suspension demonstrated the IC50 of 0.06309 μg/mL and 0.3309 μg/mL against L.donovani promastigotes after 48 h incubation. The formulation was robust at all exaggerated stability conditions such as freeze-thaw and centrifugation. These findings indicate that AmB-NE is an attractive approach to treat visceral leishmaniasis with improved activity.
Collapse
Affiliation(s)
- Vikram Mohanlal Prajapat
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitin Pal Kalia
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
14
|
Vilas-Boas DF, Nakasone EKN, Gonçalves AAM, Lair DF, de Oliveira DS, Pereira DFS, Silva GG, Conrado IDSS, Resende LA, Zaldívar MF, Mariano RMDS, Dutra WO, Chávez-Fumagalli MA, Galdino AS, Silveira-Lemos D, Giunchetti RC. Global Distribution of Canine Visceral Leishmaniasis and the Role of the Dog in the Epidemiology of the Disease. Pathogens 2024; 13:455. [PMID: 38921753 PMCID: PMC11206782 DOI: 10.3390/pathogens13060455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Visceral leishmaniasis is a disease caused by protozoa of the species Leishmania (Leishmania) infantum (syn = Leishmania chagasi) and Leishmania (Leishmania) donovani, which are transmitted by hematophagous insects of the genera Lutzomyia and Phlebotomus. The domestic dog (Canis familiaris) is considered the main urban reservoir of the parasite due to the high parasite load on its skin, serving as a source of infection for sandfly vectors and, consequently, perpetuating the disease in the urban environment. Some factors are considered important in the perpetuation and spread of canine visceral leishmaniasis (CVL) in urban areas, such as stray dogs, with their errant behavior, and houses that have backyards with trees, shade, and organic materials, creating an attractive environment for sandfly vectors. CVL is found in approximately 50 countries, with the number of infected dogs reaching millions. However, due to the difficulty of controlling and diagnosing the disease, the number of infected animals could be even greater. In the four continents endemic for CVL, there are reports of disease expansion in endemic countries such as Brazil, Italy, Morocco, and Tunisia, as well as in areas where CVL is not endemic, for example, Uruguay. Socio-environmental factors, such as migration, drought, deforestation, and global warming, have been pointed out as reasons for the expansion into areas where it had been absent. Thus, the objective of this review is to address (i) the distribution of CVL in endemic areas, (ii) the role of the dog in the visceral leishmaniasis epidemiology and the factors that influence dog infection and the spread of the disease, and (iii) the challenges faced in the control of CVL.
Collapse
Affiliation(s)
- Diego Fernandes Vilas-Boas
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Eiji Kevin Nakasone Nakasone
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Daniel Ferreira Lair
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Diana Souza de Oliveira
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Diogo Fonseca Soares Pereira
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Geralda Gabriele Silva
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Ingrid dos Santos Soares Conrado
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Reysla Maria da Silveira Mariano
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, Federal University of São João Del-Rei (UFSJ), Midwest Campus, Divinópolis 35501-296, MG, Brazil;
| | - Denise Silveira-Lemos
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.F.V.-B.); (E.K.N.N.); (A.A.M.G.); (D.F.L.); (D.S.d.O.); (D.F.S.P.); (G.G.S.); (I.d.S.S.C.); (L.A.R.); (M.F.Z.); (R.M.d.S.M.); (W.O.D.); (D.S.-L.)
| |
Collapse
|
15
|
Freitas de Lima Hercos G, Gabriela Faleiro de Moura Lodi Cruz M, Clara Cassiano Martinho A, de Melo Resende D, Farago Nascimento D, Derksen Macruz P, Jorge Pilau E, Maria Fonseca Murta S, de Oliveira Rezende Júnior C. Optimization of benzenesulfonyl derivatives as anti-Trypanosomatidae agents: Structural design, synthesis, and pharmacological assessment against Trypanosoma cruzi and Leishmania infantum. Bioorg Med Chem 2024; 105:117736. [PMID: 38677111 DOI: 10.1016/j.bmc.2024.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.
Collapse
Affiliation(s)
- Guilherme Freitas de Lima Hercos
- Laboratório de Síntese de Candidatos a Fármacos (LaSFar), Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | | | - Ana Clara Cassiano Martinho
- Laboratório de Síntese de Candidatos a Fármacos (LaSFar), Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Daniela de Melo Resende
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG 30190-002, Brazil
| | - Danilo Farago Nascimento
- Laboratório de Síntese de Candidatos a Fármacos (LaSFar), Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil
| | - Paula Derksen Macruz
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR 807020-900, Brazil
| | - Eduardo Jorge Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR 807020-900, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG 30190-002, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratório de Síntese de Candidatos a Fármacos (LaSFar), Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38400-902, Brazil.
| |
Collapse
|
16
|
Roy S, Moulik S, Chaudhuri SJ, Ghosh MK, Goswami RP, Saha B, Chatterjee M. Molecular monitoring of treatment efficacy in human visceral leishmaniasis. Trans R Soc Trop Med Hyg 2024; 118:343-345. [PMID: 38223920 DOI: 10.1093/trstmh/trad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Focused efforts of the visceral leishmaniasis elimination program have led to a drastic decline in cases, and the present challenge is disease monitoring, which this study aimed to assess. METHODS A Leishmania kinetoplastid-targeted qPCR quantified parasite load at disease presentation, and following treatment completion (n=49); an additional 80 cases were monitored after completion of treatment. RESULTS The parasite load at disease presentation was 13 461.00 (2560.00-37764.00)/µg gDNA, which upon completion of treatment reduced in 47 of 49 cases to 1(1-1)/µg gDNA, p<0.0001. In 80 cases that presented >2 months post-treatment, their parasite burden similarly decreased to 1(1-1)/µg gDNA except in 6 of 80 cases, which were qPCR positive. CONCLUSION In 129 cases of visceral leishmaniasis, qPCR by quantification of parasite burden proved effective for monitoring treatment.
Collapse
Affiliation(s)
- Sutopa Roy
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata 700020, India
| | - Srija Moulik
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata 700020, India
| | - Surya Jyati Chaudhuri
- Department of Microbiology, Sarat Chandra Chattopadhyay Government Medical College and Hospital, Uluberia, Howrah 711316, India
| | - Manab K Ghosh
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata700073, India
| | - R P Goswami
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata700073, India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata700073, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata 700020, India
| |
Collapse
|
17
|
Khairnar P, Saathoff JM, Cook DW, Hochstetler SR, Pandya U, Robinson SJ, Satam V, Donsbach KO, Gupton BF, Jin LM, Shanahan CS. Practical Synthesis of 6-Amino-1-hydroxy-2,1-benzoxaborolane: A Key Intermediate of DNDI-6148. Org Process Res Dev 2024; 28:1213-1223. [PMID: 38660377 PMCID: PMC11036395 DOI: 10.1021/acs.oprd.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Visceral leishmaniasis (VL), a parasitic, poverty-linked, neglected disease, is endemic across multiple regions of the world and fatal if untreated. There is an urgent need for a better and more affordable treatment for VL. DNDI-6148 is a promising drug candidate being evaluated for the treatment of VL; however, the current process for producing the key intermediate of DNDI-6148, 6-amino-1-hydroxy-2,1-benzoxaborolane, is expensive and difficult to scale up. Herein, we describe two practical approaches to synthesizing 6-amino-1-hydroxy-2,1-benzoxaborolane from inexpensive and readily available raw materials. Starting with 4-tolunitrile, the first approach is a five-step sequence involving a Hofmann rearrangement, resulting in an overall yield of 40%. The second approach utilizes 2-methyl-5-nitroaniline as the starting material and features borylation of aniline and continuous flow hydrogenation as the key steps, with an overall yield of 46%. Both routes bypass the nitration of 1-hydroxy-2,1-benzoxaborolane, which is challenging and expensive to scale. In particular, the second approach is more practical and scalable because of the mild operating conditions and facile isolation process.
Collapse
Affiliation(s)
- Pankaj
V. Khairnar
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - John M. Saathoff
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Daniel W. Cook
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Samuel R. Hochstetler
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Urvish Pandya
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Stephen J. Robinson
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Vijay Satam
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Kai O. Donsbach
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - B. Frank Gupton
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Li-Mei Jin
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Charles S. Shanahan
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| |
Collapse
|
18
|
Grigoryan M, Manukyan V, Hovhannisyan S, Apresyan H. A Case Series of Hemophagocytic Lymphohistiocytosis: An Atypical Presentation of Visceral Leishmaniasis. Cureus 2024; 16:e58237. [PMID: 38745796 PMCID: PMC11091941 DOI: 10.7759/cureus.58237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 05/16/2024] Open
Abstract
Visceral leishmaniasis (VL) is a parasitic vector-borne disease endemic in Armenia. Its complications include hemophagocytic lymphohistiocytosis (HLH), which is a potentially fatal syndrome if misdiagnosed or left untreated. Higher clinical caution is required for the prompt diagnosis of HLH since the clinical findings associated with systemic inflammation overlap with those of many other pathological conditions, such as sepsis or Kawasaki disease. This study aims to provide an overview of the most common presentations that should prompt consideration of HLH. We described a case series of three pediatric patients with VL who developed HLH during antiparasitic treatment and received total doses of 40 mg/kg of liposomal amphotericin B for complete elimination of the pathogen.
Collapse
Affiliation(s)
- Mark Grigoryan
- Infectious Diseases, Muratsan University Hospital Complex, Yerevan, ARM
- Infectious Diseases, Yerevan State Medical University, Yerevan, ARM
| | - Violeta Manukyan
- Infectious Diseases, Muratsan University Hospital Complex, Yerevan, ARM
| | - Saten Hovhannisyan
- Pediatric Oncology, Yeolyan Hematology and Oncology Center, Yerevan, ARM
| | - Hripsime Apresyan
- Infectious Diseases, Yerevan State Medical University, Yerevan, ARM
- Infectious Diseases, Muratsan University Hospital Complex, Yerevan, ARM
| |
Collapse
|
19
|
Lapierre TJWJD, Farago DN, de Moura Lodi Cruz MGF, de Melo Resende D, de Oliveira ACR, Dos Santos BRM, de Oliveira Souza F, Michelan-Duarte S, Chelucci RC, Andricopulo AD, Ferreira LLG, Pilau EJ, Murta SMF, de Oliveira Rezende Júnior C. Evaluation and discovery of novel benzothiazole derivatives as promising hits against Leishmania infantum. Chem Biol Drug Des 2024; 103:e14525. [PMID: 38627214 DOI: 10.1111/cbdd.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
An early exploration of the benzothiazole class against two kinetoplastid parasites, Leishmania infantum and Trypanosoma cruzi, has been performed after the identification of a benzothiazole derivative as a suitable antileishmanial initial hit. The first series of derivatives focused on the acyl fragment of its class, evaluating diverse linear and cyclic, alkyl and aromatic substituents, and identified two other potent compounds, the phenyl and cyclohexyl derivatives. Subsequently, new compounds were designed to assess the impact of the presence of diverse substituents on the benzothiazole ring or the replacement of the endocyclic sulfur by other heteroatoms. All compounds showed relatively low cytotoxicity, resulting in decent selectivity indexes for the most active compounds. Ultimately, the in vitro ADME properties of these compounds were assessed, revealing a satisfying water solubility, gastrointestinal permeability, despite their low metabolic stability and high lipophilicity. Consequently, compounds 5 and 6 were identified as promising hits for further hit-to-lead exploration within this benzothiazole class against L. infantum, thus providing promising starting points for the development of antileishmanial candidates.
Collapse
Affiliation(s)
| | - Danilo Nascimento Farago
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Daniela de Melo Resende
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Adriane Cristina Rosa de Oliveira
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Brenda Rosa Macedo Dos Santos
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Felipe de Oliveira Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, Paraná, Brazil
| | - Simone Michelan-Duarte
- Laboratório de Química Medicinal e Computacional (LQMC), Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Rafael C Chelucci
- Laboratório de Química Medicinal e Computacional (LQMC), Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional (LQMC), Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Leonardo L G Ferreira
- Laboratório de Química Medicinal e Computacional (LQMC), Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Eduardo Jorge Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, Paraná, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
20
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
21
|
Khodkar I, Saki J, Arjmand R, Saki G, Khorsandi L. Adipose-Derived Stem Cells' Secretome Attenuates Lesion Size and Parasite Loading in Leishmaniasis Caused by Leishmania Major in Mice. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:121-129. [PMID: 38356483 PMCID: PMC10862109 DOI: 10.30476/ijms.2023.96413.2795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/20/2022] [Accepted: 12/25/2022] [Indexed: 02/16/2024]
Abstract
Background Stem cell-derived secretome (SE) released into the extracellular space contributes to tissue repair. The present study aimed to investigate the impact of isolated secretome (SE) from adipose-derived mesenchymal stem cells (ASCs) on Leishmania major (L. major) lesions in BALB/c mice. Methods This experimental study was conducted at Ahvaz University of Medical Sciences (Ahvaz, Iran) in 2021. Forty female BALB/c mice were infected with stationary phase promastigotes through intradermal injection in the bottom of their tail and randomly divided into four groups (n=10 per group). The mice were given SE (20 mg/mL), either alone or in combination with Glucantime (GC, 20 mg/mL/Kg), meglumine antimoniate (20 mg/mL/Kg) for the GC group, and phosphate-buffered saline (PBS) for the control group. After eight weeks, the lesion size, histopathology, the levels of Interleukin 10 (IL-10), and Interleukin 12 (IL-12) were assessed. For the comparison of values between groups, the parametric one-way ANOVA was used to assess statistical significance. Results At the end of the experiment, the mice that received SE had smaller lesions (4.56±0.83 mm versus 3.62±0.59 mm, P=0.092), lower levels of IL-10 (66.5±9.7 pg/mL versus 285.4±25.2 pg/mL, P<0.001), and higher levels of IL-12 (152.2±14.2 pg/mL versus 24.2±4.4 pg/mL, P<0.001) than the control. Histopathology findings revealed that mice treated with SE had a lower parasite burden in lesions and spleen than the control group. Conclusion The current study demonstrated that ADSC-derived SE could protect mice infected with L. major against leishmaniasis.
Collapse
Affiliation(s)
- Iman Khodkar
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jasem Saki
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Arjmand
- Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Muhammed Hassan G, Zuhair Ali H, Muhammed Hussein W. Evaluation of IL-8, nitric oxide and macrophage inhibitory factor as clinical circulatory markers in patients with cutaneous leishmaniasis, before and during sodium stibogluconate treatment. Cytokine 2024; 173:156450. [PMID: 37988922 DOI: 10.1016/j.cyto.2023.156450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
The clinical spectrum of cutaneous leishmaniasis (CL), an intracellular parasitic pathogen, ranges from a single sore healing to chronic crusty lesions with a manifestation of treatment resistance. The complicated interaction between Leishmania bodies and the early immune response, including innate and adaptive mechanisms, determines the evolution of nodules. This study examined the levels of the chemoattractant interleukin 8 (IL-8), pro-inflammatory nitric oxide (NO), and immunoregulatory macrophage inhibitory factor (MIF) in the serum of subjects recently diagnosed with cutaneous leishmaniasis, in parallel with patients being monitored during consecutive sodium stibogluconate (Pentostam) treatment. A total of 161 serum samples of newly diagnosed individuals and patients undergoing pentostam injections were collected form an endemic area of Diyala, east central of Iraq. Sandwich ELISA was used to measure the level of IL-8, NO and MIF in the studied groups. Results of circulatory markers levels showed a considerable difference in all groups, with IL-8 being exceptionally higher in the first two groups of pretreated and dose-1 (191.5, 273.64) pg/ml respectively, while NO was found to be lower than in control subjects, particularly in the pretreated group (12.08 µmol/L) and MIF level was significantly higher in the pretreated group, which was (7.18 pg/ml). These findings can provide insights for distinction of disease phase and monitoring treatment efficacy along consecutive dosages, particularly in populations where CL is endemic.
Collapse
Affiliation(s)
- Ghuffran Muhammed Hassan
- Deptartment of Biology, College of Science, University of Baghdad, Al-Jaderiya Campus, Baghdad 10071, Iraq
| | - Hayder Zuhair Ali
- Deptartment of Biology, College of Science, University of Baghdad, Al-Jaderiya Campus, Baghdad 10071, Iraq.
| | | |
Collapse
|
23
|
Munir A, Dahal P, Kumar R, Singh-Phulgenda S, Siddiqui NA, Naylor C, Wilson J, Buck G, Rahi M, Alves F, Malaviya P, Sundar S, Ritmeijer K, Stepniewska K, Pandey K, Guérin PJ, Musa A. Haematological dynamics following treatment of visceral leishmaniasis: a protocol for systematic review and individual participant data (IPD) meta-analysis. BMJ Open 2023; 13:e074841. [PMID: 38101841 PMCID: PMC10729213 DOI: 10.1136/bmjopen-2023-074841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. Despite anaemia being a common haematological manifestation of VL, the evolution of different haematological characteristics following treatment remains poorly understood. An individual participant data meta-analysis (IPD-MA) is planned to characterise the haematological dynamics in patients with VL. METHODS AND ANALYSIS The Infectious Diseases Data Observatory (IDDO) VL data platform is a global repository of IPD from therapeutic studies identified through a systematic search of published literature (PROSPERO registration: CRD42021284622). The platform currently holds datasets from clinical trials standardised to a common data format. Corresponding authors and principal investigators of the studies indexed in the IDDO VL data platform meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Mixed-effects multivariable regression models will be constructed to identify determinants of haematological parameters by taking clustering within study sites into account. ETHICS AND DISSEMINATION This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (exempt granted on 29 March 2023, OxTREC REF: IDDO). Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (letter no.: RMRI/EC/30/2022) on 4 July 2022. The results of this analysis will be disseminated at conferences, the IDDO website and peer-reviewed publications in open-access journals. The findings of this research will be critically important for control programmes at regional and global levels, policymakers and groups developing new VL treatments. PROSPERO REGISTRATION NUMBER CRD42021284622.
Collapse
Affiliation(s)
- Abdalla Munir
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Prabin Dahal
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rishikesh Kumar
- Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, India
| | - Sauman Singh-Phulgenda
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Caitlin Naylor
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Wilson
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gemma Buck
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manju Rahi
- Indian Council of Medical Research (ICMR), New Delhi, India
| | - Fabiana Alves
- Drugs for Neglected Disease Initiative, Geneva, Switzerland
| | - Paritosh Malaviya
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Kasia Stepniewska
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Krishna Pandey
- Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, India
| | - Philippe J Guérin
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ahmed Musa
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
24
|
Kaye PM, Matlashewski G, Mohan S, Le Rutte E, Mondal D, Khamesipour A, Malvolti S. Vaccine value profile for leishmaniasis. Vaccine 2023; 41 Suppl 2:S153-S175. [PMID: 37951693 DOI: 10.1016/j.vaccine.2023.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 11/14/2023]
Abstract
Leishmania infections are global, occurring in 98 countries and all World Health Organization (WHO) regions with 600 million to 1 billion people at risk of infection. Visceral leishmaniasis is associated with almost 20,000 reported deaths annually, with children under 5 years of age being at the greatest risk of mortality. Amongst WHO-recognised Neglected Tropical Diseases (NTDs), leishmaniasis is one of the most important in terms of mortality and morbidity. With an increasing global burden of disease and a growing threat from climate change, urbanisation and drug resistance, there remains an imperative to develop leishmaniasis vaccines. New tools to understand correlates of protection and to assess vaccine efficacy are being developed to ease the transition into larger scale efficacy trials or provide alternate routes to licensure. Early indications suggest a diverse portfolio of manufacturers exists in endemic countries with an appetite to develop leishmaniasis vaccines. This Vaccine Value Profile (VVP) provides a high-level, comprehensive assessment of the currently available data to inform the potential public health, economic, and societal value of leishmaniasis vaccines. The leishmaniasis VVP was developed by a working group of subject matter experts from academia, public health groups, policy organizations, and non-profit organizations. All contributors have extensive expertise on various elements of the leishmaniasis VVP and have collectively described the state of knowledge and identified the current gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| | - Sakshi Mohan
- Center for Health Economics (CHE), University of York, York, UK.
| | - Epke Le Rutte
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Dinesh Mondal
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
25
|
Dey R, Alshaweesh J, Singh KP, Lypaczewski P, Karmakar S, Klenow L, Paulini K, Kaviraj S, Kamhawi S, Valenzuela JG, Singh S, Hamano S, Satoskar AR, Gannavaram S, Nakhasi HL, Matlashewski G. Production of leishmanin skin test antigen from Leishmania donovani for future reintroduction in the field. Nat Commun 2023; 14:7028. [PMID: 37919280 PMCID: PMC10622560 DOI: 10.1038/s41467-023-42732-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
The leishmanin skin test was used for almost a century to detect exposure and immunity to Leishmania, the causative agent of leishmaniasis, a major neglected tropical disease. Due to a lack of antigen used for the intradermal injection, the leishmanin skin test is no longer available. As leishmaniasis control programs are advancing and new vaccines are entering clinical trials, it is essential to re-introduce the leishmanin skin test. Here we establish a Leishmania donovani strain and describe the production, under Good Laboratory Practice conditions, of leishmanin soluble antigen used to induce the leishmanin skin test in animal models of infection and vaccination. Using a mouse model of cutaneous leishmaniasis and a hamster model of visceral leishmaniasis, soluble antigen induces a leishmanin skin test response following infection and vaccination with live attenuated Leishmania major (LmCen-/-). Both the CD4+ and CD8+ T-cells are necessary for the leishmanin skin test response. This study demonstrates the feasibility of large-scale production of leishmanin antigen addressing a major bottleneck for performing the leishmanin skin test in future surveillance and vaccine clinical trials.
Collapse
Affiliation(s)
- Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Jalal Alshaweesh
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Subir Karmakar
- Gennova Biopharmaceuticals, Hinjawadi Phase II, Pune, Maharashtra, India
| | - Laura Klenow
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Swarnendu Kaviraj
- Gennova Biopharmaceuticals, Hinjawadi Phase II, Pune, Maharashtra, India
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, 20852, USA
| | - Sanjay Singh
- Gennova Biopharmaceuticals, Hinjawadi Phase II, Pune, Maharashtra, India.
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
| | - Abhay R Satoskar
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, USA.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA.
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA.
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Yajima A, Lin Z, Mohamed AJ, Dash A, Rijal S. Finishing the task of eliminating neglected tropical diseases (NTDs) in WHO South-East Asia Region: promises kept, challenges, and the way forward. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 18:100302. [PMID: 38028173 PMCID: PMC10667292 DOI: 10.1016/j.lansea.2023.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Globally 20 Neglected tropical diseases (NTDs) are prioritized by World Health Organization (WHO), of which 15 are present in the South-East Asia Region (SEAR) with all 11 countries being affected. As the region bears 54% of the global burden, "Finishing the task of eliminating neglected tropical diseases and other diseases on the verge of elimination" was identified as a regional flagship priority in 2014 with focus on lymphatic filariasis (LF), kala-azar, yaws, trachoma, and leprosy. Intensified efforts have been made to raise and sustain political commitment and momentum among partners innovate tools, interventions and strategies to accelerate elimination, and establish the process and support countries to accelerate and validate achievement of elimination targets. Seven countries have verified or validated for having eliminated at least one NTD since 2016, including yaws, LF and trachoma. Between 2010 and 2020, the number of people requiring interventions against NTDs in the South-East Asia Region reduced by 20%. The priorities in the next decade are to strengthen last-mile efforts to eliminate identified NTDs, sustain it and to use the lessons learnt to eliminate other NTDs. Funding None.
Collapse
Affiliation(s)
- Aya Yajima
- Department of Communicable Diseases, World Health Organization Regional Office for South-East Asia, Delhi, India
| | - Zaw Lin
- Department of Communicable Diseases, World Health Organization Regional Office for South-East Asia, Delhi, India
| | - Ahmed Jamsheed Mohamed
- World Health Organization Representative to the Democratic People’s Republic of Korea, Democratic People’s Republic of Korea
| | - A.P. Dash
- Asian Institute of Public Health University, Odisha, India
| | - Suman Rijal
- Department of Communicable Diseases, World Health Organization Regional Office for South-East Asia, Delhi, India
| |
Collapse
|
27
|
Kumar R, Dahal P, Singh-Phulgenda S, Siddiqui NA, Munir A, Naylor C, Wilson J, Buck G, Rahi M, Malaviya P, Alves F, Sundar S, Ritmeijer K, Stepniewska K, Guérin PJ, Pandey K. Host, parasite and drug determinants of clinical outcomes following treatment of visceral leishmaniasis: a protocol for individual participant data meta-analysis. BMJ Open 2023; 13:e074679. [PMID: 37898487 PMCID: PMC10618999 DOI: 10.1136/bmjopen-2023-074679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023] Open
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. There is an observed variation in the efficacy of the current first-line therapies across different regions. Such heterogeneity could be a function of host, parasite and drug factors. An individual participant data meta-analysis (IPD-MA) is planned to explore the determinants of treatment outcomes. METHODS AND ANALYSIS The Infectious Diseases Data Observatory (IDDO) VL living systematic review (IDDO VL LSR) library is an open-access resource of all published therapeutic studies in VL since 1980. For this current review, the search includes all clinical trials published between 1 January 1980 and 2 May 2021. Studies indexed in the IDDO VL LSR library were screened for eligibility for inclusion in this IPD-MA. Corresponding authors and principal investigators of the studies meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Authors agreeing to participate in this collaborative research were requested to share the IPD using the IDDO VL data platform. The IDDO VL data platform currently holds data sets from clinical trials standardised to a common data format and provides a unique opportunity to identify host, parasite and drug determinants of treatment outcomes. Multivariable regression models will be constructed to identify determinants of therapeutic outcomes using generalised linear mixed-effects models accounting for within-study site clustering. ETHICS AND DISSEMINATION This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (Exempt granted on 29 March 2023, OxTREC REF: IDDO) Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (Letter no: RMRI/EC/30/2022) on 04-07-2022. The results of this IPD-MA will be disseminated at conferences, IDDO website and any peer-reviewed publications. All publications will be open source. Findings of this research will be critically important for the control programmes at regional/global levels, policy makers and groups developing new VL treatments. PROSPERO REGISTRATION CRD42021284622.
Collapse
Affiliation(s)
- Rishikesh Kumar
- Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, India
| | - Prabin Dahal
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sauman Singh-Phulgenda
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Niyamat Ali Siddiqui
- Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, India
| | - Abdalla Munir
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Caitlin Naylor
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Wilson
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gemma Buck
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manju Rahi
- Epidemiology and Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, Delhi, India
| | - Paritosh Malaviya
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Fabiana Alves
- Drugs for Neglected Disease Initiative, Geneva, Switzerland
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Kasia Stepniewska
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philippe J Guérin
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Krishna Pandey
- Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, India
| |
Collapse
|
28
|
Wilson J, Chowdhury F, Hassan S, Harriss EK, Alves F, Dahal P, Stepniewska K, Guérin PJ. Prognostic prediction models for clinical outcomes in patients diagnosed with visceral leishmaniasis: protocol for a systematic review. BMJ Open 2023; 13:e075597. [PMID: 37879686 PMCID: PMC10603465 DOI: 10.1136/bmjopen-2023-075597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a neglected tropical disease responsible for many thousands of preventable deaths each year. Symptomatic patients often struggle to access effective treatment, without which death is the norm. Risk prediction tools support clinical teams and policymakers in identifying high-risk patients who could benefit from more intensive management pathways. Investigators interested in using their clinical data for prognostic research should first identify currently available models that are candidates for validation and possible updating. Addressing these needs, we aim to identify, summarise and appraise the available models predicting clinical outcomes in VL patients. METHODS AND ANALYSIS We will include studies that have developed, validated or updated prognostic models predicting future clinical outcomes in patients diagnosed with VL. Systematic reviews and meta-analyses that include eligible studies are also considered for review. Conference abstracts and educational theses are excluded. Data extraction, appraisal and reporting will follow current methodological guidelines. Ovid Embase; Ovid MEDLINE; the Web of Science Core Collection, SciELO and LILACS are searched from database inception to 1 March 2023 using terms developed for the identification of prediction models, and with no language restriction. Screening, data extraction and risk of bias assessment will be performed in duplicate with discordance resolved by a third independent reviewer. Risk of bias will be assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Tables and figures will compare and contrast key model information, including source data, participants, model development and performance measures, and risk of bias. We will consider the strengths, limitations and clinical applicability of the identified models. ETHICS AND DISSEMINATION Ethics approval is not required for this review. The systematic review and all accompanying data will be submitted to an open-access journal. Findings will also be disseminated through the research group's website (www.iddo.org/research-themes/visceral-leishmaniasis) and social media channels. PROSPERO REGISTRATION NUMBER CRD42023417226.
Collapse
Affiliation(s)
- James Wilson
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Forhad Chowdhury
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Shermarke Hassan
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Elinor K Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | - Fabiana Alves
- Drugs for Neglected Disease Initiative, Geneva, Switzerland
| | - Prabin Dahal
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Kasia Stepniewska
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Philippe J Guérin
- Infectious Diseases Data Observatory (IDDO), University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Maity S, Sengupta S, Sen M. Therapeutic potential of rWnt5A in curbing Leishmania donovani infection. Infect Immun 2023; 91:e0026723. [PMID: 37725061 PMCID: PMC10580910 DOI: 10.1128/iai.00267-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023] Open
Abstract
In view of the antagonism of Wnt5A signaling toward microbial pathogens, we were interested in evaluating the therapeutic potential of recombinant Wnt5A (rWnt5A) in curbing Leishmania donovani infection. Initially, using L. donovani-infected RAW 264.7 and peritoneal macrophages, we demonstrated that application of rWnt5A as opposed to the vehicle control to the infected cells significantly dampens L. donovani infection. Inhibition of infection was associated with increase in cell-associated reactive oxygen species (ROS), and blocked by the ROS production inhibitor diphenylene iodonium chloride (DPI). rWnt5A, but not the vehicle control (PBS: phosphate-buffered saline) administration to L. donovani-infected mice appreciably reduced the infection load, and inhibited disease progression as evident from the preservation of splenic white pulp architecture. rWnt5A administration, moreover, led to elevation of both cell-associated ROS and the activation of splenic T cells. Substantial increase in T cell-associated Interleukin-2 (IL-2) and Granzyme B (GRB) upon exposure of splenic lymphocytes harvested from rWnt5A-treated mice to L. donovani-infected RAW 264.7 macrophages in vitro validated the occurrence of L. donovani-responsive T cell activation in vivo. In summary, this study unveils the therapeutic potential of rWnt5A in curbing L. donovani infection and the progression of experimental visceral leishmaniasis possibly through increase in cellular ROS and T cell activation. Accordingly, it opens up a new avenue of investigation into the use of rWnt5A as a therapeutic agent for restraining the progression of drug-resistant L. donovani infection.
Collapse
Affiliation(s)
- Shreyasi Maity
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Soham Sengupta
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Malini Sen
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
30
|
Affiliation(s)
- Nitin Bansal
- Infectious Diseases, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi-110085, India
| | - Ankur Jain
- Clinical Haematology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi-110029, India
| |
Collapse
|
31
|
da Silva BB, da Silva Junior AB, Araújo LDS, Santos ENFN, da Silva ACM, Florean EOPT, van Tilburg MF, Guedes MIF. Subcutaneous, Oral, and Intranasal Immunization of BALB/c Mice with Leishmania infantum K39 Antigen Induces Non-Protective Humoral Immune Response. Trop Med Infect Dis 2023; 8:444. [PMID: 37755905 PMCID: PMC10534909 DOI: 10.3390/tropicalmed8090444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Visceral leishmaniasis is a high-burden disease caused by parasites of the Leishmania genus. The K39 kinesin is a highly antigenic protein of Leishmania infantum, but little is known about the immune response elicited by this antigen. We evaluated the humoral immune response of female BALB/c mice (n = 6) immunized with the rK39-HFBI construct, formed by the fusion of the K39 antigen to a hydrophobin partner. The rK39-HFBI construct was administered through subcutaneous, oral, and intranasal routes using saponin as an adjuvant. We analyzed the kinetics of IgG, IgG1, and IgG2a production. The groups were then challenged by an intravenous infection with L. infantum promastigote cells. The rK39-HFBI antigen-induced high levels of total IgG (p < 0.05) in all groups, but only the subcutaneous route was associated with increased production of IgG1 and IgG2a 42 days after immunization (p < 0.05), suggesting a potential secondary immune response following the booster dose. There was no reduction in the splenic parasite load; thus, the rK39-HFBI failed to protect the mice against infection under the tested conditions. The results presented here demonstrate that the high antigenicity of the K39 antigen does not contribute to a protective immune response against visceral leishmaniasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Izabel Florindo Guedes
- Laboratory of Biotechnology and Molecular Biology, Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza 60714903, Brazil
| |
Collapse
|
32
|
Santos GDA, Sousa JM, de Aguiar AHBM, Torres KCS, Coelho AJS, Ferreira AL, Lima MIS. Systematic Review of Treatment Failure and Clinical Relapses in Leishmaniasis from a Multifactorial Perspective: Clinical Aspects, Factors Associated with the Parasite and Host. Trop Med Infect Dis 2023; 8:430. [PMID: 37755891 PMCID: PMC10534360 DOI: 10.3390/tropicalmed8090430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Leishmaniasis is a disease caused by protozoa of the genus Leishmania. Treatment options are limited, and there are frequent cases of treatment failure and clinical relapse. To understand these phenomena better, a systematic review was conducted, considering studies published between 1990 and 2021 in Portuguese, English, and Spanish. The review included 64 articles divided into three categories. Case reports (26 articles) focused on treatment failure and clinical relapse in cutaneous leishmaniasis patients (47.6%), primarily affecting males (74%) and children (67%), regardless of the clinical manifestation. Experimental studies on the parasite (19 articles), particularly with L. major (25%), indicated that alterations in DNA and genic expression (44.82%) played a significant role in treatment failure and clinical relapse. Population data on the human host (19 articles) identified immunological characteristics as the most associated factor (36%) with treatment failure and clinical relapse. Each clinical manifestation of the disease presented specificities in these phenomena, suggesting a multifactorial nature. Additionally, the parasites were found to adapt to the drugs used in treatment. In summary, the systematic review revealed that treatment failure and clinical relapse in leishmaniasis are complex processes influenced by various factors, including host immunology and parasite adaptation.
Collapse
Affiliation(s)
- Gustavo de Almeida Santos
- Postgraduate Program in Health and Environment, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil;
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
| | - Juliana Mendes Sousa
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
| | - Antônio Henrique Braga Martins de Aguiar
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
| | - Karina Cristina Silva Torres
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
- Postgraduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Ana Jessica Sousa Coelho
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
- Postgraduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - André Leite Ferreira
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
| | - Mayara Ingrid Sousa Lima
- Postgraduate Program in Health and Environment, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil;
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
- Postgraduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| |
Collapse
|
33
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Madden R, Burks H, Gao P, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. RESEARCH SQUARE 2023:rs.3.rs-3185204. [PMID: 37546914 PMCID: PMC10402201 DOI: 10.21203/rs.3.rs-3185204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Visceral leishmaniasis, caused by Leishmania donovani, is a life-threatening parasitic disease, but current antileishmanial drugs are limited and have severe drawbacks. There have been efforts to repurpose antifungal azole drugs for the treatment of Leishmania infection. Antifungal azoles are known to potently inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets for these compounds. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation reactions to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. Overexpression of CYP5122A1 results in growth delay, differentiation defects, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1, e.g., clotrimazole and posaconazole, possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors, e.g., fluconazole and voriconazole, have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Arline M. Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS 66047, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
34
|
Ferreira BA, Santos GDA, Coser EM, Sousa JM, Gama MEA, Júnior LLB, Pessoa FS, Lima MIS, Uliana SRB, Coelho AC. In Vitro Drug Susceptibility of a Leishmania (Leishmania) infantum Isolate from a Visceral Leishmaniasis Pediatric Patient after Multiple Relapses. Trop Med Infect Dis 2023; 8:354. [PMID: 37505650 PMCID: PMC10383904 DOI: 10.3390/tropicalmed8070354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The parasitic protozoan Leishmania (Leishmania) infantum is the etiological agent of human visceral leishmaniasis in South America, an infectious disease associated with malnutrition, anemia, and hepatosplenomegaly. In Brazil alone, around 2700 cases are reported each year. Treatment failure can occur as a result of drug, host, and/or parasite-related factors. Here, we isolated a Leishmania species from a pediatric patient with visceral leishmaniasis that did not respond to chemotherapy, experiencing a total of nine therapeutic relapses and undergoing a splenectomy. The parasite was confirmed as L. (L.) infantum after sequencing of the ribosomal DNA internal transcribed spacer, and the clinical isolate, in both promastigote and amastigote forms, was submitted to in vitro susceptibility assays with all the drugs currently used in the chemotherapy of leishmaniasis. The isolate was susceptible to meglumine antimoniate, amphotericin B, pentamidine, miltefosine, and paromomycin, similarly to another strain of this species that had previously been characterized. These findings indicate that the multiples relapses observed in this pediatric patient were not due to a decrease in the drug susceptibility of this isolate; therefore, immunophysiological aspects of the patient should be further investigated to understand the basis of treatment failure in this case.
Collapse
Affiliation(s)
- Bianca A Ferreira
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083-862, Brazil
| | - Gustavo de A Santos
- Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
- Programa de Pós-Graduação em Saúde e Ambiente, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - Elizabeth M Coser
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083-862, Brazil
| | - Juliana M Sousa
- Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - Mônica E A Gama
- Programa de Pós-Graduação em Saúde e Ambiente, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - Leônidas L B Júnior
- Departamento de Medicina, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
- Hospital Universitário, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - Fabrício S Pessoa
- Departamento de Medicina, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
- Hospital Universitário, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - Mayara I S Lima
- Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
- Programa de Pós-Graduação em Saúde e Ambiente, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - Silvia R B Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083-862, Brazil
| |
Collapse
|
35
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
36
|
Grifferty G, Shirley H, O’Brien K, Hirsch JL, Orriols AM, Amechi KL, Lo J, Chanda N, El Hamzaoui S, Kahn J, Yap SV, Watson KE, Curran C, Atef AbdelAlim A, Bose N, Cilfone AL, Wamai R. The leishmaniases in Kenya: A scoping review. PLoS Negl Trop Dis 2023; 17:e0011358. [PMID: 37262045 PMCID: PMC10263336 DOI: 10.1371/journal.pntd.0011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 06/13/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The leishmaniases are a group of four vector-borne neglected tropical diseases caused by 20 species of protozoan parasites of the genus Leishmania and transmitted through a bite of infected female phlebotomine sandflies. Endemic in over 100 countries, the four types of leishmaniasis-visceral leishmaniasis (VL) (known as kala-azar), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and post-kala-azar dermal leishmaniasis (PKDL)-put 1.6 billion people at risk. In Kenya, the extent of leishmaniasis research has not yet been systematically described. This knowledge is instrumental in identifying existing research gaps and designing appropriate interventions for diagnosis, treatment, and elimination. METHODOLOGY/PRINCIPAL FINDINGS This study used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to determine the state of leishmaniases research in Kenya and identify research gaps. We searched seven online databases to identify articles published until January 2022 covering VL, CL, MCL, and/or PKDL in Kenya. A total of 7,486 articles were found, of which 479 underwent full-text screening, and 269 met our eligibility criteria. Most articles covered VL only (n = 141, 52%), were published between 1980 and 1994 (n = 108, 39%), and focused on the theme of "vectors" (n = 92, 34%). The most prevalent study types were "epidemiological research" (n = 88, 33%) tied with "clinical research" (n = 88, 33%), then "basic science research" (n = 49, 18%) and "secondary research" (n = 44, 16%). CONCLUSION/SIGNIFICANCE While some studies still provide useful guidance today, most leishmaniasis research in Kenya needs to be updated and focused on prevention, co-infections, health systems/policy, and general topics, as these themes combined comprised less than 4% of published articles. Our findings also indicate minimal research on MCL (n = 1, <1%) and PKDL (n = 2, 1%). We urge researchers to renew and expand their focus on these neglected diseases in Kenya.
Collapse
Affiliation(s)
- Grace Grifferty
- Department of Cellular and Molecular Biology, College of Science, Northeastern University, Boston, Massachusetts, United States of America
- African Centre for Community Investment in Health, Nginyang, Baringo County, Kenya
| | - Hugh Shirley
- African Centre for Community Investment in Health, Nginyang, Baringo County, Kenya
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katherine O’Brien
- African Centre for Community Investment in Health, Nginyang, Baringo County, Kenya
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Jason L. Hirsch
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Adrienne M. Orriols
- African Centre for Community Investment in Health, Nginyang, Baringo County, Kenya
- University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Kiira Lani Amechi
- Department of International Affairs, College of Social Sciences and Humanities, Northeastern University, Boston, Massachusetts, United States of America
| | - Joshua Lo
- Department of Mathematics and Department of Psychology, College of Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Neeharika Chanda
- Department of Cellular and Molecular Biology, College of Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Sarra El Hamzaoui
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Jorja Kahn
- Department of Behavioral Neuroscience, College of Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Samantha V. Yap
- Department of Biology, College of Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Kyleigh E. Watson
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Christina Curran
- Department of Biochemistry, College of Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Amina Atef AbdelAlim
- Department of Biology, College of Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Neeloy Bose
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Alissa Link Cilfone
- Northeastern University Library, Northeastern University, Boston, Massachusetts, United States of America
| | - Richard Wamai
- African Centre for Community Investment in Health, Nginyang, Baringo County, Kenya
- Department of Cultures, Societies and Global Studies, College of Social Sciences and Humanities, Integrated Initiative for Global Health, Northeastern University, Boston, Massachusetts, United States of America
- Department of Global and Public Health, University of Nairobi, Nairobi, Kenya
- Nigerian Institute of Medical Research, Federal Ministry of Health, Lagos, Nigeria
| |
Collapse
|
37
|
Alvar J, Beca-Martínez MT, Argaw D, Jain S, Aagaard-Hansen J. Social determinants of visceral leishmaniasis elimination in Eastern Africa. BMJ Glob Health 2023; 8:e012638. [PMID: 37380365 PMCID: PMC10410987 DOI: 10.1136/bmjgh-2023-012638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Visceral leishmaniasis is a vector-borne, protozoan disease with severe public health implications. Following the successful implementation of an elimination programme in South Asia, there is now a concerted endeavour to replicate these efforts in Eastern Africa based on the five essential elimination pillars of case management, integrated vector management, effective surveillance, social mobilisation and operational research. This article highlights how key social determinants (SD) of health (poverty, sociocultural factors and gender, housing and clustering, migration and the healthcare system) operate at five different levels (socioeconomic context and position, differential exposure, differential vulnerability, differential outcomes and differential consequences). These SD should be considered within the context of increasing the success of the five-pillar elimination programme and reducing inequity in health.
Collapse
Affiliation(s)
- Jorge Alvar
- Social Medicine, Royal Academy of Medicine, Madrid, Spain
| | | | - Daniel Argaw
- Neglected Tropical Diseases, World Health Organization, Geneva, GE, Switzerland
| | - Saurabh Jain
- Neglected Tropical Diseases, World Health Organization, Geneva, GE, Switzerland
| | - Jens Aagaard-Hansen
- Health Promotion, Steno Diabetes Center Copenhagen, Herlev, Capital Region, Denmark
- Health Research, University of the Witwatersrand Johannesburg Faculty of Health Sciences, Johannesburg, Gauteng, South Africa
| |
Collapse
|
38
|
Singh R, Kashif M, Srivastava P, Manna PP. Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens 2023; 12:pathogens12050706. [PMID: 37242374 DOI: 10.3390/pathogens12050706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis, a category 1 neglected protozoan disease caused by a kinetoplastid pathogen called Leishmania, is transmitted through dipteran insect vectors (phlebotomine, sand flies) in three main clinical forms: fatal visceral leishmaniasis, self-healing cutaneous leishmaniasis, and mucocutaneous leishmaniasis. Generic pentavalent antimonials have long been the drug of choice against leishmaniasis; however, their success is plagued with limitations such as drug resistance and severe side effects, which makes them redundant as frontline therapy for endemic visceral leishmaniasis. Alternative therapeutic regimens based on amphotericin B, miltefosine, and paromomycin have also been approved. Due to the unavailability of human vaccines, first-line chemotherapies such as pentavalent antimonials, pentamidine, and amphotericin B are the only options to treat infected individuals. The higher toxicity, adverse effects, and perceived cost of these pharmaceutics, coupled with the emergence of parasite resistance and disease relapse, makes it urgent to identify new, rationalized drug targets for the improvement in disease management and palliative care for patients. This has become an emergent need and more relevant due to the lack of information on validated molecular resistance markers for the monitoring and surveillance of changes in drug sensitivity and resistance. The present study reviewed the recent advances in chemotherapeutic regimens by targeting novel drugs using several strategies including bioinformatics to gain new insight into leishmaniasis. Leishmania has unique enzymes and biochemical pathways that are distinct from those of its mammalian hosts. In light of the limited number of available antileishmanial drugs, the identification of novel drug targets and studying the molecular and cellular aspects of these drugs in the parasite and its host is critical to design specific inhibitors targeting and controlling the parasite. The biochemical characterization of unique Leishmania-specific enzymes can be used as tools to read through possible drug targets. In this review, we discuss relevant metabolic pathways and novel drugs that are unique, essential, and linked to the survival of the parasite based on bioinformatics and cellular and biochemical analyses.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mohammad Kashif
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
39
|
Jacques Dit Lapierre TJW, Cruz MGFDML, Brito NPF, Resende DDM, Souza FDO, Pilau EJ, da Silva MFB, Neves BJ, Murta SMF, Rezende Júnior CDO. Hit-to-lead optimization of a pyrazinylpiperazine series against Leishmania infantum and Leishmania braziliensis. Eur J Med Chem 2023; 256:115445. [PMID: 37156183 DOI: 10.1016/j.ejmech.2023.115445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
An early hit-to-lead optimization of a novel pyrazinylpiperazine series against L. infantum and L. braziliensis has been performed after an extensive SAR focusing on the benzoyl fragment of hit (4). Deletion of the meta-Cl of (4) led to the obtention of the para-hydroxyl derivative (12), on which the design of most monosubstituted derivatives of the SAR was based. Further optimization of the series, involving disubstituted benzoyl fragments and the hydroxyl substituent of (12), allowed the obtention of a total of 15 compounds with increased antileishmanial potency (IC50 < 10 μM), nine of which displayed activity in the low micromolar range (IC50 < 5 μM). This optimization ultimately identified the ortho, meta-dihydroxyl derivative (46) as an early lead for this series (IC50 (L. infantum) = 2.8 μM, IC50 (L. braziliensis) = 0.2 μM). Additional assessment of some selected compounds against other trypanosomatid parasites revealed that this series is selective towards Leishmania parasites, and in silico ADMET predictions revealed satisfactory profiles for these compounds, allowing further lead optimization of the pyrazinylpiperazine class against Leishmania.
Collapse
Affiliation(s)
| | | | - Nícolas Peterson Ferreira Brito
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil
| | - Daniela de Melo Resende
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG, 30190-002, Brazil
| | - Felipe de Oliveira Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR, 807020-900, Brazil
| | - Eduardo Jorge Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), Universidade Estadual de Maringá (UEM), Maringá, PR, 807020-900, Brazil
| | - Meryck Felipe Brito da Silva
- Laboratory of Cheminformatics (LabChem), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics (LabChem), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ Minas), Belo Horizonte, MG, 30190-002, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratório de Síntese de Candidatos a Fármacos, Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
40
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
41
|
Sakyi PO, Kwofie SK, Tuekpe JK, Gwira TM, Broni E, Miller WA, Wilson MD, Amewu RK. Inhibiting Leishmania donovani Sterol Methyltransferase to Identify Lead Compounds Using Molecular Modelling. Pharmaceuticals (Basel) 2023; 16:ph16030330. [PMID: 36986430 PMCID: PMC10054574 DOI: 10.3390/ph16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The recent outlook of leishmaniasis as a global public health concern coupled with the reportage of resistance and lack of efficacy of most antileishmanial drugs calls for a concerted effort to find new leads. The study combined In silico and in vitro approaches to identify novel potential synthetic small-molecule inhibitors targeting the Leishmania donovani sterol methyltransferase (LdSMT). The LdSMT enzyme in the ergosterol biosynthetic pathway is required for the parasite’s membrane fluidity, distribution of membrane proteins, and control of the cell cycle. The lack of LdSMT homologue in the human host and its conserved nature among all Leishmania parasites makes it a viable target for future antileishmanial drugs. Initially, six known inhibitors of LdSMT with IC50 < 10 μM were used to generate a pharmacophore model with a score of 0.9144 using LigandScout. The validated model was used to screen a synthetic library of 95,630 compounds obtained from InterBioScreen limited. Twenty compounds with pharmacophore fit scores above 50 were docked against the modelled three-dimensional structure of LdSMT using AutoDock Vina. Consequently, nine compounds with binding energies ranging from −7.5 to −8.7 kcal/mol were identified as potential hit molecules. Three compounds comprising STOCK6S-06707, STOCK6S-84928, and STOCK6S-65920 with respective binding energies of −8.7, −8.2, and −8.0 kcal/mol, lower than 22,26-azasterol (−7.6 kcal/mol), a known LdSMT inhibitor, were selected as plausible lead molecules. Molecular dynamics simulation studies and molecular mechanics Poisson–Boltzmann surface area calculations showed that the residues Asp25 and Trp208 were critical for ligand binding. The compounds were also predicted to have antileishmanial activity with reasonable pharmacological and toxicity profiles. When the antileishmanial activity of the three hits was evaluated in vitro against the promastigotes of L. donovani, mean half-maximal inhibitory concentrations (IC50) of 21.9 ± 1.5 μM (STOCK6S-06707), 23.5 ± 1.1 μM (STOCK6S-84928), and 118.3 ± 5.8 μM (STOCK6S-65920) were obtained. Furthermore, STOCK6S-84928 and STOCK6S-65920 inhibited the growth of Trypanosoma brucei, with IC50 of 14.3 ± 2.0 μM and 18.1 ± 1.4 μM, respectively. The identified compounds could be optimised to develop potent antileishmanial therapeutic agents.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
- Correspondence: (S.K.K.); (R.K.A.); Tel.: +233-203797922 (S.K.K.); +233-543823483 (R.K.A.)
| | - Julius K. Tuekpe
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Theresa M. Gwira
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Correspondence: (S.K.K.); (R.K.A.); Tel.: +233-203797922 (S.K.K.); +233-543823483 (R.K.A.)
| |
Collapse
|
42
|
Musa AM, Mbui J, Mohammed R, Olobo J, Ritmeijer K, Alcoba G, Muthoni Ouattara G, Egondi T, Nakanwagi P, Omollo T, Wasunna M, Verrest L, Dorlo TPC, Musa Younis B, Nour A, Taha Ahmed Elmukashfi E, Ismail Omer Haroun A, Khalil EAG, Njenga S, Fikre H, Mekonnen T, Mersha D, Sisay K, Sagaki P, Alvar J, Solomos A, Alves F. Paromomycin and Miltefosine Combination as an Alternative to Treat Patients With Visceral Leishmaniasis in Eastern Africa: A Randomized, Controlled, Multicountry Trial. Clin Infect Dis 2023; 76:e1177-e1185. [PMID: 36164254 PMCID: PMC9907539 DOI: 10.1093/cid/ciac643] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND This study aimed to determine whether paromomycin plus miltefosine (PM/MF) is noninferior to sodium stibogluconate plus paromomycin (SSG/PM) for treatment of primary visceral leishmaniasis in eastern Africa. METHODS An open-label, phase 3, randomized, controlled trial was conducted in adult and pediatric patients at 7 sites in eastern Africa. Patients were randomly assigned to either 20 mg/kg paromomycin plus allometric dose of miltefosine (14 days), or 20 mg/kg sodium stibogluconate plus 15 mg/kg paromomycin (17 days). The primary endpoint was definitive cure after 6 months. RESULTS Of 439 randomized patients, 424 completed the trial. Definitive cure at 6 months was 91.2% (155 of 170) and 91.8% (156 of 170) in the PM/MF and SSG/PM arms in primary efficacy modified intention-to-treat analysis (difference, 0.6%; 97.5% confidence interval [CI], -6.2 to 7.4), narrowly missing the noninferiority margin of 7%. In the per-protocol analysis, efficacy was 92% (149 of 162) and 91.7% (155 of 169) in the PM/MF and SSG/PM arms (difference, -0.3%; 97.5% CI, -7.0 to 6.5), demonstrating noninferiority. Treatments were well tolerated. Four of 18 serious adverse events were study drug-related, and 1 death was SSG-related. Allometric dosing ensured similar MF exposure in children (<12 years) and adults. CONCLUSIONS PM/MF and SSG/PM efficacies were similar, and adverse drug reactions were as expected given the drugs safety profiles. With 1 less injection each day, reduced treatment duration, and no risk of SSG-associated life-threatening cardiotoxicity, PM/MF is a more patient-friendly alternative for children and adults with primary visceral leishmaniasis in eastern Africa. CLINICAL TRIALS REGISTRATION NCT03129646.
Collapse
Affiliation(s)
- Ahmed M Musa
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Jane Mbui
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rezika Mohammed
- Leishmaniasis Research and Treatment Center, University of Gondar, Gondar, Ethiopia
| | - Joseph Olobo
- Department of Immunology and Molecular Biology, Leishmaniasis Unit, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | | | | | | | | | | - Luka Verrest
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Brima Musa Younis
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ali Nour
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | | | | | - Simon Njenga
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Helina Fikre
- Leishmaniasis Research and Treatment Center, University of Gondar, Gondar, Ethiopia
| | - Tigist Mekonnen
- Leishmaniasis Research and Treatment Center, University of Gondar, Gondar, Ethiopia
| | | | | | | | - Jorge Alvar
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | | - Fabiana Alves
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
43
|
Pawar S, Kumawat MK, Kundu M, Kumar K. Synthetic and medicinal perspective of antileishmanial agents: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Ornellas-Garcia U, Cuervo P, Ribeiro-Gomes FL. Malaria and leishmaniasis: Updates on co-infection. Front Immunol 2023; 14:1122411. [PMID: 36895563 PMCID: PMC9989157 DOI: 10.3389/fimmu.2023.1122411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Malaria and leishmaniasis are endemic parasitic diseases in tropical and subtropical countries. Although the overlap of these diseases in the same host is frequently described, co-infection remains a neglected issue in the medical and scientific community. The complex relationship of concomitant infections with Plasmodium spp. and Leishmania spp. is highlighted in studies of natural and experimental co-infections, showing how this "dual" infection can exacerbate or suppress an effective immune response to these protozoa. Thus, a Plasmodium infection preceding or following Leishmania infection can impact the clinical course, accurate diagnosis, and management of leishmaniasis, and vice versa. The concept that in nature we are affected by concomitant infections reinforces the need to address the theme and ensure its due importance. In this review we explore and describe the studies available in the literature on Plasmodium spp. and Leishmania spp. co-infection, the scenarios, and the factors that may influence the course of these diseases.
Collapse
Affiliation(s)
- Uyla Ornellas-Garcia
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Malaria Research, Diagnosis and Training Center (CPD-Mal) of Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Patricia Cuervo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Malaria Research, Diagnosis and Training Center (CPD-Mal) of Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
45
|
Abstract
Visceral leishmaniasis (VL) is a potentially fatal disease caused mainly by Leishmania infantum in South America and Leishmania donovani in Asia and Africa. Disease outcomes have been associated with patient genotype, nutrition, age, sex, comorbidities, and coinfections. In this study, we examine the effects of parasite genetic variation on VL disease severity in Brazil. We collected and sequenced the genomes of 109 L. infantum isolates from patients in northeastern Brazil and retrieved matching patient clinical data from medical records, including mortality, sex, HIV coinfection, and laboratory data (creatinine, hemoglobin, and leukocyte and platelet counts). We identified genetic differences between parasite isolates, including single nucleotide polymorphisms (SNPs), small insertions/deletions (indels), and variations in genic, intergenic, and chromosome copy numbers (copy number variants [CNVs]). To describe associations between the parasite genotypes and clinical outcomes, we applied quantitative genetics methods of heritability and genome-wide association studies (GWAS), treating clinical outcomes as traits that may be influenced by parasite genotype. Multiple aspects of the genetic analysis indicate that parasite genotype affects clinical outcomes. We estimate that parasite genotype explains 83% chance of mortality (narrow-sense heritability [h2] = 0.83 ± 0.17) and has a significant relationship with patient sex (h2 = 0.60 ± 0.27). Impacts of parasite genotype on other clinical traits are lower (h2 ≤ 0.34). GWAS analysis identified multiple parasite genetic loci that were significantly associated with clinical outcomes; 17 CNVs were significantly associated with mortality, two with creatinine, and one with bacterial coinfection, jaundice, and HIV coinfection, and two SNPs/indels and six CNVs were associated with age, jaundice, HIV and bacterial coinfections, creatinine, and/or bleeding sites. Parasite genotype is an important factor in VL disease severity in Brazil. Our analysis indicates that specific genetic differences between parasites act as virulence factors, enhancing risks of severe disease and mortality. More detailed understanding of these virulence factors could be exploited for novel therapies. IMPORTANCE Multiple factors contribute to the risk of mortality from visceral leishmaniasis (VL), including, patient genotype, comorbidities, and nutrition. Many of these factors are influenced by socioeconomic biases. Our work suggests that the virulence of the infecting parasite is an important risk factor for mortality. We pinpoint some specific genomic markers that are associated with mortality, which can lead to a greater understanding of the molecular mechanisms that cause severe VL disease, to the identification of genetic markers for virulent parasites, and to the development of drug and vaccine therapies.
Collapse
|
46
|
Kumar P, Kumar P, Singh N, Khajuria S, Patel R, Rajana VK, Mandal D, Velayutham R. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review. Front Bioeng Biotechnol 2022; 10:1016925. [PMID: 36588956 PMCID: PMC9794769 DOI: 10.3389/fbioe.2022.1016925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most lethal of all leishmaniasis diseasesand the second most common parasiticdisease after malaria and,still, categorized as a neglected tropical disease (NTD). According to the latest WHO study, >20 Leishmania species spread 0.7-1.0 million new cases of leishmaniasis each year. VL is caused by the genus, Leishmania donovani (LD), which affects between 50,000 and 90,000 people worldwide each year. Lack of new drug development, increasing drug resistance, toxicity and high cost even with the first line of treatmentof Amphotericin B (AmB), demands new formulation for treatment of VLFurther the lack of a vaccine, allowedthe researchers to develop nanofomulation-based AmB for improved delivery. The limitation of AmB is its kidney and liver toxicity which forced the development of costly liposomal AmB (AmBisome) nanoformulation. Success of AmBisome have inspired and attracted a wide range of AmB nanoformulations ranging from polymeric, solid lipid, liposomal/micellar, metallic, macrophage receptor-targetednanoparticles (NP) and even with sophisticated carbon/quantum dot-based AmBnano delivery systems. Notably, NP-based AmB delivery has shown increased efficacy due to increased uptake, on-target delivery and synergistic impact of NP and AmB. In this review, we have discussed the different forms of leishmaniasis disease and their current treatment options with limitations. The discovery, mechanism of action of AmB, clinical status of AmB and improvement with AmBisome over fungizone (AmB-deoxycholate)for VL treatment was further discussed. At last, the development of various AmB nanoformulation was discussed along with its adavantages over traditional chemotherapy-based delivery.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Pawan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Nidhi Singh
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Rahul Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| | - Ravichandiran Velayutham
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,National Institute of Pharmaceutical Education and Research, Kolkata, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| |
Collapse
|
47
|
Dinc R. Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:379-391. [PMID: 36588414 PMCID: PMC9806502 DOI: 10.3347/kjp.2022.60.6.379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Leishmaniasis is a serious parasitic disease caused by Leishmania spp. transmitted through sandfly bites. This disease is a major public health concern worldwide. It can occur in 3 different clinical forms: cutaneous, mucocutaneous, and visceral Leishmaniasis (CL, MCL, and VL, respectively), caused by different Leishmania spp. Currently, licensed vaccines are unavailable for the treatment of human Leishmaniasis. The treatment and prevention of this disease rely mainly on chemotherapeutics, which are highly toxic and have an increasing resistance problem. The development of a safe, effective, and affordable vaccine for all forms of vector-borne disease is urgently needed to block transmission of the parasite between the host and vector. Immunological mechanisms in the pathogenesis of Leishmaniasis are complex. IL-12-driven Th1-type immune response plays a crucial role in host protection. The essential purpose of vaccination is to establish a protective immune response. To date, numerous vaccine studies have been conducted using live/attenuated/killed parasites, fractionated parasites, subunits, recombinant or DNA technology, delivery systems, and chimeric peptides. Most of these studies were limited to animals. In addition, standardization has not been achieved in these studies due to the differences in the virulence dynamics of the Leishmania spp. and the feasibility of the adjuvants. More studies are needed to develop a safe and effective vaccine, which is the most promising approach against Leishmania infection.
Collapse
Affiliation(s)
- Rasit Dinc
- INVAMED RD Global, Mutlukent Mah, 1961 Cd. No.27 Cankaya, Ankara 06810,
Turkey
| |
Collapse
|
48
|
Hall AV, Gostick IEF, Yufit DS, Marchant GY, Kirubakaran P, Madu SJ, Li M, Steel PG, Steed JW. Integral Role of Water in the Solid-State Behavior of the Antileishmanial Drug Miltefosine. CRYSTAL GROWTH & DESIGN 2022; 22:6262-6266. [PMID: 36217416 PMCID: PMC9542694 DOI: 10.1021/acs.cgd.2c00843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Indexed: 05/31/2023]
Abstract
Miltefosine is a repurposed anticancer drug and currently the only orally administered drug approved to treat the neglected tropical disease leishmaniasis. Miltefosine is hygroscopic and must be stored at subzero temperatures. In this work, we report the X-ray structures of miltefosine monohydrate and methanol solvate, along with 12- and 14-carbon chain analogue hydrates and a solvate. The three hydrates are all isostructural and are conformational isomorphs with Z' = 2. Water bridges the gap between phosphocholine head groups caused by the interdigitated bilayer structure. The two methanol solvates are also mutually isostructural with the head groups adopting a more extended conformation. Again, the solvent bridges the gap between head groups in the bilayer. No anhydrous form of miltefosine or its analogues were isolated, with dehydration resulting in significantly reduced crystallinity. This arises as a result of the integral role that hydrogen-bond donors (in the form of water or solvent molecules) play in the stability of the zwitterionic structures.
Collapse
Affiliation(s)
- Amy V. Hall
- Department
of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K.
| | - Isobel E. F. Gostick
- Department
of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K.
| | - Dmitry S. Yufit
- Department
of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K.
| | - Gloria Y. Marchant
- Department
of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K.
| | | | - Shadrack J. Madu
- School
of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
| | - Mingzhong Li
- School
of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K.
| | - Jonathan W. Steed
- Department
of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K.
| |
Collapse
|
49
|
Alpizar-Sosa EA, Ithnin NRB, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJS, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl Trop Dis 2022; 16:e0010779. [PMID: 36170238 PMCID: PMC9581426 DOI: 10.1371/journal.pntd.0010779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.
Collapse
Affiliation(s)
- Edubiel A. Alpizar-Sosa
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Nur Raihana Binti Ithnin
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medical Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms 2022; 10:microorganisms10101887. [PMID: 36296164 PMCID: PMC9609364 DOI: 10.3390/microorganisms10101887] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Visceral Leishmaniasis (VL) is a vector-borne disease caused by an intracellular protozoa of the genus Leishmania that can be lethal if not treated. VL is caused by Leishmania donovani in Asia and in Eastern Africa, where the pathogens’ reservoir is represented by humans, and by Leishmania infantum in Latin America and in the Mediterranean area, where VL is a zoonotic disease and dog is the main reservoir. A part of the infected individuals become symptomatic, with irregular fever, splenomegaly, anemia or pancytopenia, and weakness, whereas others are asymptomatic. VL treatment has made progress in the last decades with the use of new drugs such as liposomal amphotericin B, and with new therapeutic regimens including monotherapy or a combination of drugs, aiming at shorter treatment duration and avoiding the development of resistance. However, the same treatment protocol may not be effective all over the world, due to differences in the infecting Leishmania species, so depending on the geographical area. This narrative review presents a comprehensive description of the clinical picture of VL, especially in children, the diagnostic approach, and some insight into the most used pharmacological therapies available worldwide.
Collapse
|