1
|
Tottey J, Etienne-Mesmin L, Chalançon S, Sausset A, Denis S, Mazal C, Blavignac C, Sallé G, Laurent F, Blanquet-Diot S, Lacroix-Lamandé S. Exploring the impact of digestive physicochemical parameters of adults and infants on the pathophysiology of Cryptosporidium parvum using the dynamic TIM-1 gastrointestinal model. Gut Pathog 2024; 16:55. [PMID: 39354600 PMCID: PMC11443851 DOI: 10.1186/s13099-024-00648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human cryptosporidiosis is distributed worldwide, and it is recognised as a leading cause of acute diarrhoea and death in infants in low- and middle-income countries. Besides immune status, the higher incidence and severity of this gastrointestinal disease in young children could also be attributed to the digestive environment. For instance, human gastrointestinal physiology undergoes significant changes with age, however the role this variability plays in Cryptosporidium parvum pathogenesis is not known. In this study, we analysed for the first time the impact of digestive physicochemical parameters on C. parvum infection in a human and age-dependent context using a dynamic in vitro gastrointestinal model. RESULTS Our results showed that the parasite excystation, releasing sporozoites from oocysts, occurs in the duodenum compartment after one hour of digestion in both child (from 6 months to 2 years) and adult experimental conditions. In the child small intestine, slightly less sporozoites were released from excystation compared to adult, however they exhibited a higher luciferase activity, suggesting a better physiological state. Sporozoites collected from the child jejunum compartment also showed a higher ability to invade human intestinal epithelial cells compared to the adult condition. Global analysis of the parasite transcriptome through RNA-sequencing demonstrated a more pronounced modulation in ileal effluents compared to gastric ones, albeit showing less susceptibility to age-related digestive condition. Further analysis of gene expression and enriched pathways showed that oocysts are highly active in protein synthesis in the stomach compartment, whereas sporozoites released in the ileum showed downregulation of glycolysis as well as strong modulation of genes potentially related to gliding motility and secreted effectors. CONCLUSIONS Digestion in a sophisticated in vitro gastrointestinal model revealed that invasive sporozoite stages are released in the small intestine, and are highly abundant and active in the ileum compartment, supporting reported C. parvum tissue tropism. Our comparative analysis suggests that physicochemical parameters encountered in the child digestive environment can influence the amount, physiological state and possibly invasiveness of sporozoites released in the small intestine, thus potentially contributing to the higher susceptibility of young individuals to cryptosporidiosis.
Collapse
Affiliation(s)
- Julie Tottey
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France.
| | - Lucie Etienne-Mesmin
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sandrine Chalançon
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Alix Sausset
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Sylvain Denis
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Carine Mazal
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, Clermont- Ferrand, France
| | - Guillaume Sallé
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Fabrice Laurent
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sonia Lacroix-Lamandé
- UMR 1282 ISP, Infectiologie et Santé Publique, INRAE, Université de Tours, Nouzilly, France
| |
Collapse
|
2
|
Khan A, Alves-Ferreira EVC, Vogel H, Botchie S, Ayi I, Pawlowic MC, Robinson G, Chalmers RM, Lorenzi H, Grigg ME. Phylogenomic reconstruction of Cryptosporidium spp. captured directly from clinical samples reveals extensive genetic diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589752. [PMID: 38659886 PMCID: PMC11042339 DOI: 10.1101/2024.04.17.589752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cryptosporidium is a leading cause of severe diarrhea and mortality in young children and infants in Africa and southern Asia. More than twenty Cryptosporidium species infect humans, of which C. parvum and C. hominis are the major agents causing moderate to severe diarrhea. Relatively few genetic markers are typically applied to genotype and/or diagnose Cryptosporidium. Most infections produce limited oocysts making it difficult to perform whole genome sequencing (WGS) directly from stool samples. Hence, there is an immediate need to apply WGS strategies to 1) develop high-resolution genetic markers to genotype these parasites more precisely, 2) to investigate endemic regions and detect the prevalence of different genotypes, and the role of mixed infections in generating genetic diversity, and 3) to investigate zoonotic transmission and evolution. To understand Cryptosporidium global population genetic structure, we applied Capture Enrichment Sequencing (CES-Seq) using 74,973 RNA-based 120 nucleotide baits that cover ~92% of the genome of C. parvum. CES-Seq is sensitive and successfully sequenced Cryptosporidium genomic DNA diluted up to 0.005% in human stool DNA. It also resolved mixed strain infections and captured new species of Cryptosporidium directly from clinical/field samples to promote genome-wide phylogenomic analyses and prospective GWAS studies.
Collapse
Affiliation(s)
- A Khan
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - E V C Alves-Ferreira
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Vogel
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Comparative Biomedical Scientist Training Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - S Botchie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - I Ayi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - M C Pawlowic
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - G Robinson
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - R M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - H Lorenzi
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Hasan MM, Mattice EB, Teixeira JE, Jumani RS, Stebbins EE, Klopfer CE, Franco SE, Love MS, McNamara CW, Huston CD. Cryptosporidium life cycle small molecule probing implicates translational repression and an Apetala 2 transcription factor in macrogamont differentiation. PLoS Pathog 2024; 20:e1011906. [PMID: 38669269 PMCID: PMC11078545 DOI: 10.1371/journal.ppat.1011906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The apicomplexan parasite Cryptosporidium is a leading cause of childhood diarrhea in developing countries. Current treatment options are inadequate and multiple preclinical compounds are being actively pursued as potential drugs for cryptosporidiosis. Unlike most apicomplexans, Cryptosporidium spp. sequentially replicate asexually and then sexually within a single host to complete their lifecycles. Anti-cryptosporidial compounds are generally identified or tested through in vitro phenotypic assays that only assess the asexual stages. Therefore, compounds that specifically target the sexual stages remain unexplored. In this study, we leveraged the ReFRAME drug repurposing library against a newly devised multi-readout imaging assay to identify small-molecule compounds that modulate macrogamont differentiation and maturation. RNA-seq studies confirmed selective modulation of macrogamont differentiation for 10 identified compounds (9 inhibitors and 1 accelerator). The collective transcriptomic profiles of these compounds indicates that translational repression accompanies Cryptosporidium sexual differentiation, which we validated experimentally. Additionally, cross comparison of the RNA-seq data with promoter sequence analysis for stage-specific genes converged on a key role for an Apetala 2 (AP2) transcription factor (cgd2_3490) in differentiation into macrogamonts. Finally, drug annotation for the ReFRAME hits indicates that an elevated supply of energy equivalence in the host cell is critical for macrogamont formation.
Collapse
Affiliation(s)
- Muhammad M. Hasan
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - Ethan B. Mattice
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - José E. Teixeira
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Rajiv S. Jumani
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - Erin E. Stebbins
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Connor E. Klopfer
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Sebastian E. Franco
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Melissa S. Love
- Calibr at Scripps Research, San Diego, California, United States of America
| | - Case W. McNamara
- Calibr at Scripps Research, San Diego, California, United States of America
| | - Christopher D. Huston
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
4
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2023; 53:477-489. [PMID: 36400306 DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
5
|
In Vitro Susceptibility of Cryptosporidium parvum to Plant Antiparasitic Compounds. Pathogens 2022; 12:pathogens12010061. [PMID: 36678409 PMCID: PMC9863366 DOI: 10.3390/pathogens12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidium parvum is a significant cause of watery diarrhoea in humans and other animals worldwide. Although hundreds of novel drugs have been evaluated, no effective specific chemotherapeutic intervention for C. parvum has been reported. There has been much recent interest in evaluating plant-derived products in the fight against gastrointestinal parasites, including C. parvum. This study aimed to identify extracts from 13 different plant species that provide evidence for inhibiting the growth of C. parvum in vitro. Efficacy against C. parvum was detected and quantified using quantitative PCR and immunofluorescence assays. All plant extracts tested against C. parvum showed varying inhibition activities in vitro, and none of them produced a cytotoxic effect on HCT-8 cells at concentrations up to 500 µg/mL. Four plant species with the strongest evidence of activity against C. parvum were Curcuma longa, Piper nigrum, Embelia ribes, and Nigella sativa, all with dose-dependent efficacy. To the authors' knowledge, this is the first time that these plant extracts have proven to be experimentally efficacious against C. parvum. These results support further exploration of these plants and their compounds as possible treatments for Cryptosporidium infections.
Collapse
|
6
|
Ramírez-Flores CJ, Tibabuzo Perdomo AM, Gallego-López GM, Knoll LJ. Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional In Vitro Cultures. Microbiol Mol Biol Rev 2022; 86:e0002522. [PMID: 35412359 PMCID: PMC9199416 DOI: 10.1128/mmbr.00025-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum are among the most successful pathogens known in nature. They can infect a wide range of hosts, often remain undetected by the immune system, and cause acute and chronic illness. In this phylum, we can find parasites of human and veterinary health relevance, such as Toxoplasma, Plasmodium, Cryptosporidium, and Eimeria. There are still many unknowns about the biology of these pathogens due to the ethical and practical issues of performing research in their natural hosts. Animal models are often difficult or nonexistent, and as a result, there are apicomplexan life cycle stages that have not been studied. One recent alternative has been the use of three-dimensional (3D) systems such as organoids, 3D scaffolds with different matrices, microfluidic devices, organs-on-a-chip, and other tissue culture models. These 3D systems have facilitated and expanded the research of apicomplexans, allowing us to explore life stages that were previously out of reach and experimental procedures that were practically impossible to perform in animal models. Human- and animal-derived 3D systems can be obtained from different organs, allowing us to model host-pathogen interactions for diagnostic methods and vaccine development, drug testing, exploratory biology, and other applications. In this review, we summarize the most recent advances in the use of 3D systems applied to apicomplexans. We show the wide array of strategies that have been successfully used so far and apply them to explore other organisms that have been less studied.
Collapse
Affiliation(s)
- Carlos J. Ramírez-Flores
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrés M. Tibabuzo Perdomo
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Gina M. Gallego-López
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Yu X, Guo F, Mouneimne RB, Zhu G. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion. J Infect Dis 2021; 221:1816-1825. [PMID: 31872225 DOI: 10.1093/infdis/jiz684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/21/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cryptosporidium is a genus of apicomplexan parasites, the causative agents of cryptosporidiosis in humans and/or animals. Although most apicomplexans parasitize within the host cell cytosols, Cryptosporidium resides on top of host cells, but it is embraced by a double-layer parasitophorous vacuole membrane derived from host cell. There is an electron-dense band to separate the parasite from host cell cytoplasm, making it as an intracellular but extracytoplasmic parasite. However, little is known on the molecular machinery at the host cell-parasite interface. METHODS Cryptosporidium parvum at various developmental stages were obtained by infecting HCT-8 cells cultured in vitro. Immunofluorescence assay was used to detect CpEF1α with a polyclonal antibody and host cell F-actin with rhodamine-phalloidin. Recombinant CpEF1α protein was used to evaluate its effect on the invasion by the parasite. RESULTS We discovered that a C parvum translation elongation factor 1α (CpEF1α) was discharged from the invading sporozoites into host cells, forming a crescent-shaped patch that fully resembles the electron-dense band. At the same time, host cell F-actin aggregated to form a globular-shaped plug beneath the CpEF1α patch. The CpEF1α patch remained for most of the time but became weakened and dissolved upon the completion of the invasion process. In addition, recombinant CpEF1α protein could effectively interfere the invasion of sporozoites into host cells. CONCLUSIONS CpEF1α plays a role in the parasite invasion by participating in the formation of electron-dense band at the base of the parasite infection site.
Collapse
Affiliation(s)
- Xue Yu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rola Barhoumi Mouneimne
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Xu R, Feng Y, Xiao L, Sibley LD. Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum. mBio 2021; 12:e03405-20. [PMID: 33688009 PMCID: PMC8092296 DOI: 10.1128/mbio.03405-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 01/25/2023] Open
Abstract
The apicomplexan parasite Cryptosporidium parvum contains an expanded family of 22 insulinase-like proteases (INS), a feature that contrasts with their otherwise streamlined genome. Here, we examined the function of INS1, which is most similar to the human insulinase protease that cleaves a variety of small peptide substrates. INS1 is an M16A clan member and contains a signal peptide, an N-terminal domain with the HXXEH active site, followed by three inactive domains. Unlike previously studied C. parvum INS proteins that are expressed in sporozoites and during merogony, INS1 was expressed exclusively in macrogamonts, where it was localized in small cytoplasmic vesicles. Although INS1 did not colocalize with the oocyst wall protein recognized by the antibody OW50, immune-electron microscopy indicated that INS1 resides in small vesicles in the secretory system. Notably, these small INS1-positive vesicles were often in close proximity to large OW50-positive vacuoles resembling wall-forming bodies, which contain precursors for oocyst wall formation. Genetic deletion of INS1, or replacement with an active-site mutant, resulted in lower formation of macrogamonts in vitro and reduced oocyst shedding in vivo Our findings reveal that INS1 functions in the formation or maturation of macrogamonts and that its loss results in attenuated virulence in immunocompromised mice.IMPORTANCE Cryptosporidiosis is a debilitating diarrheal disease in young children in developing countries. The absence of effective treatments or vaccines makes this infection very difficult to manage in susceptible populations. Although the oral dose of oocysts needed to cause infection is low, infected individuals shed very high numbers of oocysts, readily contaminating the environment. Our studies demonstrate that the protease INS1 is important for formation of female sexual stages and that in its absence, parasites produce fewer oocysts and are attenuated in immunocompromised mice. These findings suggest that mutants lacking INS1, or related proteases, are useful for further characterizing the pathway that leads to macrogamont maturation and oocyst wall formation.
Collapse
Affiliation(s)
- Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaoyu Feng
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agriculture University, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agriculture University, Guangzhou, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Pance A. The Stem Cell Revolution Revealing Protozoan Parasites' Secrets and Paving the Way towards Vaccine Development. Vaccines (Basel) 2021; 9:105. [PMID: 33572549 PMCID: PMC7911700 DOI: 10.3390/vaccines9020105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Protozoan infections are leading causes of morbidity and mortality in humans and some of the most important neglected diseases in the world. Despite relentless efforts devoted to vaccine and drug development, adequate tools to treat and prevent most of these diseases are still lacking. One of the greatest hurdles is the lack of understanding of host-parasite interactions. This gap in our knowledge comes from the fact that these parasites have complex life cycles, during which they infect a variety of specific cell types that are difficult to access or model in vitro. Even in those cases when host cells are readily available, these are generally terminally differentiated and difficult or impossible to manipulate genetically, which prevents assessing the role of human factors in these diseases. The advent of stem cell technology has opened exciting new possibilities to advance our knowledge in this field. The capacity to culture Embryonic Stem Cells, derive Induced Pluripotent Stem Cells from people and the development of protocols for differentiation into an ever-increasing variety of cell types and organoids, together with advances in genome editing, represent a huge resource to finally crack the mysteries protozoan parasites hold and unveil novel targets for prevention and treatment.
Collapse
Affiliation(s)
- Alena Pance
- The Wellcome Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, UK
| |
Collapse
|
10
|
Kubina S, Costa D, Favennec L, Gargala G, Rousseau A, Villena I, La Carbona S, Razakandrainibe R. Detection of Infectious Cryptosporidium parvum Oocysts from Lamb's Lettuce: CC-qPCR's Intake. Microorganisms 2021; 9:microorganisms9020215. [PMID: 33494236 PMCID: PMC7909830 DOI: 10.3390/microorganisms9020215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium spp. is responsible for several food and waterborne disease outbreaks worldwide. Healthier lifestyles attract consumers to eat, notably, fresh food like fruits and vegetables. The consumption of raw or under-cooked food increases the risk of foodborne transmission of Cryptosporidiosis. The assessment of the consumer’s exposure to Cryptosporidium danger is crucial for public health. Still, the standardized method to detect this parasite in fresh leafy greens and berry fruits has only been available since 2016 and suffers from weaknesses. Consequently, in this study, we propose a method with minimum processing steps that combines cell culture and the quantitative PCR (CC–qPCR) for detecting infectious C. parvum oocysts recovered from lamb’s lettuce. This CC–qPCR is a rapid and easy method that can detect up to one oocyst, whereas it is undetectable by classic qPCR.
Collapse
Affiliation(s)
- Sophie Kubina
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50 000 Saint-Lô, France; (A.R.); (S.L.C.)
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Correspondence: (S.K.); (R.R.)
| | - Damien Costa
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, 76 000 Rouen, France
| | - Loïc Favennec
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, 76 000 Rouen, France
| | - Gilles Gargala
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, 76 000 Rouen, France
| | - Angélique Rousseau
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50 000 Saint-Lô, France; (A.R.); (S.L.C.)
- Laboratoire de Parasitologie-Mycologie, EA 7510, SFR CAP-Santé, Université Reims-Champagne Ardenne, Centre Hospitalier Universitaire de Reims, 51 000 Reims, France;
| | - Isabelle Villena
- Laboratoire de Parasitologie-Mycologie, EA 7510, SFR CAP-Santé, Université Reims-Champagne Ardenne, Centre Hospitalier Universitaire de Reims, 51 000 Reims, France;
| | - Stéphanie La Carbona
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50 000 Saint-Lô, France; (A.R.); (S.L.C.)
| | - Romy Razakandrainibe
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, 76 000 Rouen, France; (D.C.); (L.F.); (G.G.)
- Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, 76 000 Rouen, France
- Correspondence: (S.K.); (R.R.)
| |
Collapse
|
11
|
Bhalchandra S, Lamisere H, Ward H. Intestinal organoid/enteroid-based models for Cryptosporidium. Curr Opin Microbiol 2020; 58:124-129. [PMID: 33113480 PMCID: PMC7758878 DOI: 10.1016/j.mib.2020.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
Cryptosporidium is a leading cause of diarrhea and death in young children and untreated AIDS patients in resource-poor settings, and of waterborne outbreaks of disease in developed countries. However, there is no consistently effective treatment for vulnerable populations. Progress towards development of therapeutics for cryptosporidiosis has been hampered by lack of optimal culture systems to study it. New advances in organoid/enteroid technology have contributed to improved platforms to culture and propagate Cryptosporidium. Here we discuss recent breakthroughs in the field and highlight different models for functional ex vivo organoid or enteroidderived culture systems. These systems will lead to a better understanding of the mechanisms of host-parasite interactions in vivo.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| | - Hymlaire Lamisere
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Honorine Ward
- Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
12
|
Abstract
High-content screening (HCS) is a cell-based type of phenotypic screening that combines multiple simultaneous readouts with a high level of throughput. A particular benefit of this form of screening for drug discovery is the ability to perform the interrogation in a biologically relevant system. This approach has greatly advanced the field of drug discovery for cryptosporidiosis, a diarrheal disease caused by protozoan parasites of Cryptosporidium spp. These parasites are obligate intracellular parasites and cannot be cultured in vitro without the support of a host cell, limiting the options for potential assay readout. Here we describe an established 384- or 1536-well format high-content imaging (HCI) assay of Cryptosporidium-infected HCT-8 human ileocecal adenocarcinoma cells. This HCS assay is a powerful tool to assess large numbers of compounds to power drug discovery, as well as to phenotypically characterize known Cryptosporidium-active compounds.
Collapse
|
13
|
Love MS, McNamara CW. Phenotypic screening techniques for Cryptosporidium drug discovery. Expert Opin Drug Discov 2020; 16:59-74. [PMID: 32892652 DOI: 10.1080/17460441.2020.1812577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Two landmark epidemiological studies identified Cryptosporidium spp. as a significant cause of diarrheal disease in pediatric populations in resource-limited countries. Notably, nitazoxanide is the only approved drug for treatment of cryptosporidiosis but shows limited efficacy. As a result, many drug discovery efforts have commenced to find improved treatments. The unique biology of Cryptosporidium presents challenges for traditional drug discovery methods, which has inspired new assay platforms to study parasite biology and drug screening. Areas covered: The authors review historical advancements in phenotypic-based assays and techniques for Cryptosporidium drug discovery, as well as recent advances that will define future drug discovery. The reliance on phenotypic-based screens and repositioning of phenotypic hits from other pathogens has quickly created a robust pipeline of potential cryptosporidiosis therapeutics. The latest advances involve new in vitro culture methods for oocyst generation, continuous culturing capabilities, and more physiologically relevant assays for testing compounds. Expert opinion: Previous phenotypic screening techniques have laid the groundwork for recent cryptosporidiosis drug discovery efforts. The resulting improved methodologies characterize compound activity, identify, and validate drug targets, and prioritize new compounds for drug development. The most recent improvements in phenotypic assays are poised to help advance compounds into clinical development.
Collapse
Affiliation(s)
- Melissa S Love
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| |
Collapse
|
14
|
A chicken embryo model for the maintenance and amplification of Cryptosporidium parvum and Cryptosporidium baileyi oocysts. Eur J Protistol 2020; 75:125718. [PMID: 32604041 DOI: 10.1016/j.ejop.2020.125718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 11/23/2022]
Abstract
Cryptosporidium is a genus of apicomplexan parasites that inhabit the respiratory and gastrointestinal tracts of vertebrates. Research of these parasites is limited by a lack of model hosts. This study aimed to determine the extent to which infection at the embryo stage can enhance the propagation of Cryptosporidium oocysts in chickens. Nine-day-old chicken embryos and one-day-old chickens were experimentally infected with different doses of Cryptosporidium baileyi and Cryptosporidium parvum oocysts. Post hatching, all chickens had demonstrable infections, and the infection dose had no effect on the course of infection. Chickens infected as embryos shed oocysts immediately after hatching and shed significantly more oocysts over the course of the infection than chickens infected as one-day-olds. In chickens infected as embryos, C. baileyi was found in all organs except the brain whereas, C. parvum was only found in the gastrointestinal tract and trachea. In chickens infected as one-day-olds, C. baileyi was only found in the gastrointestinal tract and trachea. Chickens infected as embryos with C. baileyi died within 16 days of hatching. All other chickens cleared the infection. Infection of chickens as embryos could be used as an effective and simple model for the propagation of C. baileyi and C. parvum.
Collapse
|
15
|
Hailu M, Asmare K, Gebremedhin EZ, Sheferaw D, Gizaw D, Di Marco V, Vitale M. Cryptosporidium and Giardia infections in dairy calves in southern Ethiopia. Parasite Epidemiol Control 2020; 10:e00155. [PMID: 32490221 PMCID: PMC7256661 DOI: 10.1016/j.parepi.2020.e00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/30/2022] Open
Abstract
Giardia and Cryptosporidium are the most common enteric protozoan parasites causing diarrhea in humans and animals worldwide. This study was conducted with the objectives of estimating prevalence and identifying risk factors for Cryptosporidium and Giardia infections in dairy calves in selected districts of southern Ethiopia. Fecal samples (n = 330) were collected from calves in 92 farms. The monoclonal antibody-based commercial direct immunofluorescent kit was used to test the samples for Cryptosporidium oocysts and Giardia cysts. A questionnaire survey was also administered to collect data on potential risk factors of infections. The results showed a farm-level prevalence of 69.6% (95% confidence interval [CI]: 59.1–78.7%) for Cryptosporidium and 38.04% (95% CI: 28.1–48.8%) for Giardia. Likewise, an overall animal level prevalence of 13.0% (95% CI: 9.6–17.2%) for Cryptosporidium and 9.7% (95% CI: 6.7–13.4%) for Giardia was found. At the farm level, multivariate logistic regression model showed that calves in smallholder farms were 5.3 times more likely to shed Cryptosporidium oocysts than calves in commercial farms (p=0.019). However, in case of Giardia, calves in commercial farms were 5.5 times more likely to shed cysts than calves in smallholder farms (p=0.037). Calves with diarrhea were nearly three times more likely to be positive for Cryptosporidium oocysts than those with normal feces (p=0.027). At the animal level, larger farms and younger calves were associated with Giardia cysts shedding, while larger herd size and lose fecal consistency were associated with Cryptosporidium oocysts shedding. Giardia and Cryptosporidium infection are endemic in the studied dairy farms. Therefore, detailed molecular epidemiological studies are essential to identify the role of domestic animals in the transmission of infections to humans and vice versa, and to determine the best options for prevention and control of cryptosporidiosis and giardiasis. Giardia, Cryptosporidium and mixed infection are common among calves in Sothern Ethiopia. The prevalence of Cryptosporidium in calves is 69.6%. The prevalence of Giardia in calves is 35%. The prevalence of mixed infections in calves is estimated to reach 12%.
Collapse
Affiliation(s)
| | - Kassahun Asmare
- American University of Beirut, Faculty of Agriculture and Food Sciences, Beirut, Lebanon
| | | | - Desie Sheferaw
- Hawassa University Faculty of Veterinary Medicine, Hawassa, P.o Box 005, Ethiopia
| | - Daniel Gizaw
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Vincenzo Di Marco
- Italian National Reference Centre for Toxoplasmosis at Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Italy
| | - Maria Vitale
- Italian National Reference Centre for Toxoplasmosis at Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Italy
| |
Collapse
|
16
|
Abstract
Currently, nitazoxanide is the only FDA-approved treatment for cryptosporidiosis; unfortunately, it is ineffective in immunocompromised patients, has varied efficacy in immunocompetent individuals, and is not approved in infants under 1 year of age. Identifying new inhibitors for the treatment of cryptosporidiosis requires standardized and quantifiable in vitro assays for assessing potency, selectivity, timing of activity, and reversibility. Here, we provide new protocols for defining which stages of the life cycle are susceptible to four highly active compound classes that likely inhibit different targets in the parasite. We also utilize a newly developed long-term culture system to define assays for monitoring reversibility as a means of defining cidal activity as a function of concentration and time of treatment. These assays should provide valuable in vitro parameters to establish conditions for efficacious in vivo treatment. Cryptosporidium parvum and Cryptosporidium hominis have emerged as major enteric pathogens of infants in the developing world, in addition to their known importance in immunocompromised adults. Although there has been recent progress in identifying new small molecules that inhibit Cryptosporidium sp. growth in vitro or in animal models, we lack information about their mechanism of action, potency across the life cycle, and cidal versus static activities. Here, we explored four potent classes of compounds that include inhibitors that likely target phosphatidylinositol 4 kinase (PI4K), phenylalanine-tRNA synthetase (PheRS), and several potent inhibitors with unknown mechanisms of action. We utilized monoclonal antibodies and gene expression probes for staging life cycle development to define the timing of when inhibitors were active during the life cycle of Cryptosporidium parvum grown in vitro. These different classes of inhibitors targeted different stages of the life cycle, including compounds that blocked replication (PheRS inhibitors), prevented the segmentation of daughter cells and thus blocked egress (PI4K inhibitors), or affected sexual-stage development (a piperazine compound of unknown mechanism). Long-term cultivation of C. parvum in epithelial cell monolayers derived from intestinal stem cells was used to distinguish between cidal and static activities based on the ability of parasites to recover from treatment. Collectively, these approaches should aid in identifying mechanisms of action and for designing in vivo efficacy studies based on time-dependent concentrations needed to achieve cidal activity.
Collapse
|
17
|
Cell Culture Infectivity to Assess Chlorine Disinfection of Cryptosporidium Oocysts in Water. Methods Mol Biol 2020; 2052:283-302. [PMID: 31452168 DOI: 10.1007/978-1-4939-9748-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter provides a detailed protocol to assess disinfection efficacy of chlorine against Cryptosporidium oocysts including the core chlorine disinfection assay, the in vitro cell culture infectivity assay, and microscopy analysis and data interpretation.
Collapse
|
18
|
Wilke G, Wang Y, Ravindran S, Stappenbeck T, Witola WH, Sibley LD. In Vitro Culture of Cryptosporidium parvum Using Stem Cell-Derived Intestinal Epithelial Monolayers. Methods Mol Biol 2020; 2052:351-372. [PMID: 31452172 DOI: 10.1007/978-1-4939-9748-0_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryptosporidium parvum has a complex life cycle consisting of asexual and sexual phases that culminate in oocyst formation in vivo. The most widely used cell culture platforms to study C. parvum only support a few days of growth and do not allow the parasite to proceed past the sexual stages to complete oocyst formation. Additionally, these cell culture platforms are mostly adenocarcinoma cell lines, which do not adequately model the parasite's natural environment in the small intestine. We describe here a method to create primary intestinal epithelial cell monolayers that support long-term C. parvum growth. Monolayers were derived from mouse intestinal stem cells grown as spheroids and plated onto transwells, allowing for separate apical and basolateral compartments. In the apical chamber, the cell growth medium was removed to create an "air-liquid interface" that enhanced host cell differentiation and supported long-term C. parvum growth. The use of primary intestinal cells to grow C. parvum in vitro will be a valuable tool for studying host-parasite interactions using a convenient in vitro model that more closely resembles the natural niche in the intestine.
Collapse
Affiliation(s)
- Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yi Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Soumya Ravindran
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Thaddeus Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - William H Witola
- Department of Pathobiology, University of Illinois College of Veterinary Medicine, Urbana, IL, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
19
|
A Stem-Cell-Derived Platform Enables Complete Cryptosporidium Development In Vitro and Genetic Tractability. Cell Host Microbe 2019; 26:123-134.e8. [PMID: 31231046 PMCID: PMC6617391 DOI: 10.1016/j.chom.2019.05.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Despite being a frequent cause of severe diarrheal disease in infants and an opportunistic infection in immunocompromised patients, Cryptosporidium research has lagged due to a lack of facile experimental methods. Here, we describe a platform for complete life cycle development and long-term growth of C. parvum in vitro using “air-liquid interface” (ALI) cultures derived from intestinal epithelial stem cells. Transcriptomic profiling revealed that differentiating epithelial cells grown under ALI conditions undergo profound changes in metabolism and development that enable completion of the parasite life cycle in vitro. ALI cultures support parasite expansion > 100-fold and generate viable oocysts that are transmissible in vitro and to mice, causing infection and animal death. Transgenic parasite lines created using CRISPR/Cas9 were used to complete a genetic cross in vitro, demonstrating Mendelian segregation of chromosomes during meiosis. ALI culture provides an accessible model that will enable innovative studies into Cryptosporidium biology and host interactions. Air-liquid interface (ALI) cultivation of Cryptosporidium supports robust parasite growth Both asexual and sexual phases of the parasite complete development in ALI cultures ALI culture supports the production of de novo oocysts that can trigger an infection in mice In vitro crossing in ALI cultures opens up forward genetics for Cryptosporidium
Collapse
|
20
|
Pisarski K. The Global Burden of Disease of Zoonotic Parasitic Diseases: Top 5 Contenders for Priority Consideration. Trop Med Infect Dis 2019; 4:E44. [PMID: 30832380 PMCID: PMC6473363 DOI: 10.3390/tropicalmed4010044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/21/2023] Open
Abstract
With the rise of global migration, international trade, and global environmental challenges such as climate change, it is not surprising that the interactions between humans and other animals are shifting. Salient infectious diseases, such as malaria and HIV (which have high burdens of disease), attract sophisticated public health frameworks and funding from global/regional organisations, such as the WHO. This unfortunately detracts attention from the many emerging zoonoses that fall under the radar as neglected tropical diseases (NTDs). This review considers the available literature and the attribution of burden of disease to the most insidious NTDs and recommends which five are deserving of policy prioritisation. In line with WHO analyses of NTDs, intestinal nematode infections, leishmaniasis, schistosomiasis, and lymphatic filariasis should be prioritised, as well as the burden of disease of cryptosporidiosis, which is largely underestimated. Both monitoring and treatment/prevention control methods for cryptosporidiosis are suggested and explored.
Collapse
Affiliation(s)
- Konrad Pisarski
- Division of Tropical Health & Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia.
- Faculty of Medicine, University of Queensland, Herston, St Lucia, QLD 4072, Australia.
| |
Collapse
|
21
|
Jossé L, Bones AJ, Purton T, Michaelis M, Tsaousis AD. A Cell Culture Platform for the Cultivation of Cryptosporidium parvum. ACTA ACUST UNITED AC 2019; 53:e80. [PMID: 30735306 DOI: 10.1002/cpmc.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cryptosporidium is a genus of ubiquitous unicellular parasites belonging to the phylum Apicomplexa. Cryptosporidium species are the second largest cause of childhood diarrhea and are associated with increased morbidity. Accompanying this is the low availability of treatment and lack of vaccines. The major barrier to developing effective treatment is the lack of reliable in vitro culture methods. Recently, our lab has successfully cultivated C. parvum in the esophageal cancer-derived cell line COLO-680N, and has been able to maintain infection for several weeks. The success of this cell line was assessed with a combination of various techniques including fluorescent microscopy and qPCR. In addition, to tackle the issue of long-term oocyst production in vitro, a simple, low-cost bioreactor system using the COLO-680N cell line was established, which produced infectious oocysts for 4 months. This chapter provides details on the methodologies used to culture, maintain, and assess Cryptosporidium infection and propagation in COLO-680N. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lyne Jossé
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Alexander J Bones
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, United Kingdom.,Current address: Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Tracey Purton
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
22
|
Bones AJ, Jossé L, More C, Miller CN, Michaelis M, Tsaousis AD. Past and future trends of Cryptosporidium in vitro research. Exp Parasitol 2018; 196:28-37. [PMID: 30521793 PMCID: PMC6333944 DOI: 10.1016/j.exppara.2018.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022]
Abstract
Cryptosporidium is a genus of single celled parasites capable of infecting a wide range of animals including humans. Cryptosporidium species are members of the phylum apicomplexa, which includes well-known genera such as Plasmodium and Toxoplasma. Cryptosporidium parasites cause a severe gastro-intestinal disease known as cryptosporidiosis. They are one of the most common causes of childhood diarrhoea worldwide, and infection can have prolonged detrimental effects on the development of children, but also can be life threatening to HIV/AIDS patients and transplant recipients. A variety of hosts can act as reservoirs, and Cryptosporidium can persist in the environment for prolonged times as oocysts. While there has been substantial interest in these parasites, there is very little progress in terms of treatment development and understanding the majority of the life cycle of this unusual organism. In this review, we will provide an overview on the existing knowledge of the biology of the parasite and the current progress in developing in vitro cultivation systems. We will then describe a synopsis of current and next generation approaches that could spearhead further research in combating the parasite.
Collapse
Affiliation(s)
- Alexander J Bones
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Lyne Jossé
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Charlotte More
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Christopher N Miller
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, UK; School of Biosciences, University of Kent, Canterbury, Kent, UK.
| |
Collapse
|
23
|
Lejard-Malki R, Follet J, Vlandas A, Senez V. Selective electrohydrodynamic concentration of waterborne parasites on a chip. LAB ON A CHIP 2018; 18:3310-3322. [PMID: 30283951 DOI: 10.1039/c8lc00840j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Concentrating diluted samples is a key step to improve detection capabilities. The wise use of scaling laws shows the advantages of working with sub-microliter-sized samples. Rapid progress in MEMS technologies has driven the design of integrated platforms performing many biochemical operations. Here we report a new concentrator device based on electro-hydrodynamic forces which can be easily integrated into electrowetting-on-dielectric (EWOD) platforms. This approach is label-free and applicable to a wide range of micro-objects. The detection and analysis of two common waterborne parasites, Cryptosporidium and Giardia, is a perfect test case due to their global health relevance. By fully controlling the interplay of the various forces acting on the micron-sized Cryptosporidium parvum and Cryptosporidium muris oocysts, we show that it is possible to concentrate them on the side of a 10 μL initial drop and then extract them efficiently from a droplet of a few hundred nanoliters. We performed a finite element modeling of the forces acting on the parasites' oocysts to optimize the electrodes' shapes. We obtained state-of-the-art concentration factors of 12 ± 0.4 times and 2 to 4 times in the sub-region of the drop and the extracted droplet, respectively, with an efficiency of 70 ± 6%. Furthermore, this device had the ability to selectively concentrate parasites of different species out of a mix. We demonstrated this by segregating C. parvum oocysts from either Giardia lamblia cysts or its related species, C. muris oocysts.
Collapse
Affiliation(s)
- Romuald Lejard-Malki
- CNRS, ISEN, UMR 8520 - IEMN, Univ. Lille, Avenue Poincaré, C.S. 60069, 59652 Villeneuve d'Ascq cedex, Lille F-59000, France.
| | | | | | | |
Collapse
|
24
|
Abstract
The intestinal apicomplexan parasite
Cryptosporidium is a major cause of diarrheal disease in humans worldwide. However, treatment options are severely limited. The search for novel interventions is imperative, yet there are several challenges to drug development, including intractability of the parasite and limited technical tools to study it. This review addresses recent, exciting breakthroughs in this field, including novel cell culture models, strategies for genetic manipulation, transcriptomics, and promising new drug candidates. These advances will stimulate the ongoing quest to understand
Cryptosporidium and the pathogenesis of cryptosporidiosis and to develop new approaches to combat this disease.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA
| | - Daviel Cardenas
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, 02111, USA.,Medicine, Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| |
Collapse
|
25
|
Yarlett N, Morada M. Long-term in vitro Culture of Cryptosporidium parvum. Bio Protoc 2018; 8:e2947. [PMID: 34395759 DOI: 10.21769/bioprotoc.2947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 11/02/2022] Open
Abstract
Continuous in vitro growth of Cryptosporidium parvum has proved difficult and conventional in vitro culture techniques result in short-term (2-5 days) growth of the parasite resulting in thin-walled oocysts that fail to propagate using in vitro cultures, and do not produce an active infection using immunosuppressed or immunodeficient mouse models (Arrowood, 2002). Here we describe the use of hollow fiber bioreactors (HFB) that simulate in vivo conditions by providing oxygen and nutrients to host intestinal cells from the basal surface and permit the establishment of a low redox, high nutrient environment on the apical surface. When inoculated with 105 C. parvum (Iowa isolate) oocysts the bioreactor produced 108 oocysts per ml (20 ml extra-capillary volume) after 14 days, and was maintained for over 2 years. In vivo infectivity studies using a TCR-α-immune deficient mouse model showed that oocysts produced from the bioreactor at 6, 12 and 18 months were indistinguishable from the parent Iowa isolate used to initiate the culture. HFB produced oocysts had similar percent excystation profiles to the parent Iowa isolate.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, USA.,Department of Chemistry and Physical Sciences, Pace University, New York, NY, USA
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, USA
| |
Collapse
|
26
|
Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression In Vitro. mSphere 2018; 3:3/3/e00124-18. [PMID: 29848759 PMCID: PMC5976880 DOI: 10.1128/msphere.00124-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
Cryptosporidium is a protozoan parasite that causes gastrointestinal disease in humans and animals. Currently, there is a limited array of antibodies available against the parasite, which hinders imaging studies and makes it difficult to visualize the parasite life cycle in different culture systems. In order to alleviate this reagent gap, we created a library of novel antibodies against the intracellular life cycle stages of Cryptosporidium. We identified antibodies that recognize specific life cycle stages in distinctive ways, enabling unambiguous description of the parasite life cycle. These MAbs will aid future investigation into Cryptosporidium biology and help illuminate growth differences between various culture platforms. Among the obstacles hindering Cryptosporidium research is the lack of an in vitro culture system that supports complete life development and propagation. This major barrier has led to a shortage of widely available anti-Cryptosporidium antibodies and a lack of markers for staging developmental progression. Previously developed antibodies against Cryptosporidium were raised against extracellular stages or recombinant proteins, leading to antibodies with limited reactivity across the parasite life cycle. Here we sought to create antibodies that recognize novel epitopes that could be used to define intracellular development. We identified a mouse epithelial cell line that supported C. parvum growth, enabling immunization of mice with infected cells to create a bank of monoclonal antibodies (MAbs) against intracellular parasite stages while avoiding the development of host-specific antibodies. From this bank, we identified 12 antibodies with a range of reactivities across the parasite life cycle. Importantly, we identified specific MAbs that can distinguish different life cycle stages, such as trophozoites, merozoites, type I versus II meronts, and macrogamonts. These MAbs provide valuable tools for the Cryptosporidium research community and will facilitate future investigation into parasite biology. IMPORTANCECryptosporidium is a protozoan parasite that causes gastrointestinal disease in humans and animals. Currently, there is a limited array of antibodies available against the parasite, which hinders imaging studies and makes it difficult to visualize the parasite life cycle in different culture systems. In order to alleviate this reagent gap, we created a library of novel antibodies against the intracellular life cycle stages of Cryptosporidium. We identified antibodies that recognize specific life cycle stages in distinctive ways, enabling unambiguous description of the parasite life cycle. These MAbs will aid future investigation into Cryptosporidium biology and help illuminate growth differences between various culture platforms.
Collapse
|
27
|
Lippuner C, Ramakrishnan C, Basso WU, Schmid MW, Okoniewski M, Smith NC, Hässig M, Deplazes P, Hehl AB. RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites. Int J Parasitol 2018; 48:413-422. [DOI: 10.1016/j.ijpara.2017.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
|
28
|
Chao AT, Lee BH, Wan KF, Selva J, Zou B, Gedeck P, Beer DJ, Diagana TT, Bonamy GMC, Manjunatha UH. Development of a Cytopathic Effect-Based Phenotypic Screening Assay against Cryptosporidium. ACS Infect Dis 2018; 4:635-645. [PMID: 29341586 DOI: 10.1021/acsinfecdis.7b00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.
Collapse
Affiliation(s)
- Alexander T. Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Boon Heng Lee
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Jeremy Selva
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Bin Zou
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Peter Gedeck
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - David John Beer
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Ghislain M. C. Bonamy
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
29
|
Lemieux MW, Sonzogni-Desautels K, Ndao M. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis. Pathogens 2017; 7:pathogens7010002. [PMID: 29295550 PMCID: PMC5874728 DOI: 10.3390/pathogens7010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.
Collapse
Affiliation(s)
- Maxime W Lemieux
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Karine Sonzogni-Desautels
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Faculty of Agricultural and Environmental Sciences, Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
30
|
Melicherová J, Hofmannová L, Valigurová A. Response of cell lines to actual and simulated inoculation with Cryptosporidium proliferans. Eur J Protistol 2017; 62:101-121. [PMID: 29316479 DOI: 10.1016/j.ejop.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The need for an effective treatment against cryptosporidiosis has triggered studies in the search for a working in vitro model. The peculiar niche of cryptosporidia at the brush border of host epithelial cells has been the subject of extensive debates. Despite extensive research on the invasion process, it remains enigmatic whether cryptosporidian host-parasite interactions result from an active invasion process or through encapsulation. We used HCT-8 and HT-29 cell lines for in vitro cultivation of the gastric parasite Cryptosporidium proliferans strain TS03. Using electron and confocal laser scanning microscopy, observations were carried out 24, 48 and 72 h after inoculation with a mixture of C. proliferans oocysts and sporozoites. Free sporozoites and putative merozoites were observed apparently searching for an appropriate infection site. Advanced stages, corresponding to trophozoites and meronts/gamonts enveloped by parasitophorous sac, and emptied sacs were detected. As our observations showed that even unexcysted oocysts became enveloped by cultured cell projections, using polystyrene microspheres, we evaluated the response of cell lines to simulated inoculation with cryptosporidian oocysts to verify innate and parasite-induced behaviour. We found that cultured cell encapsulation of oocysts is induced by parasite antigens, independent of any active invasion/motility.
Collapse
Affiliation(s)
- Janka Melicherová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lada Hofmannová
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
31
|
Abstract
Cryptosporidium research has focused on the development of infection control, and effective therapy that has thus far been hampered by the inability to culture Cryptosporidium in vitro. Other limitations include inadequate animal models, cumbersome screening procedures for chemotherapeutic approaches and a lack of tools for genetic manipulation. These limitations can, however, be eased by the improvement and focused development of in vitro cultivation. The ability to culture relevant Cryptosporidium isolates in vitro and to propagate the life cycle stages that are responsible for causing disease in an infected host is still a critical link. This ability will facilitate other relevant approaches, e.g., the ability to knockout genes and the application of broader screening for drug discoveries and vaccine developments, in combination with new discoveries on the parasite's basic biology, genetic manipulation and new life cycle stages. Success in this effort represents an essential step towards significant progress in the control of cryptosporidiosis.
Collapse
|
32
|
Abstract
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Collapse
|
33
|
Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development. mSphere 2017; 2:mSphere00409-17. [PMID: 29062899 PMCID: PMC5646244 DOI: 10.1128/msphere.00409-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 12/30/2022] Open
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin domain-containing IMC proteins across developmental stages. Our work shows universal but distinct roles for IMC1, -3, and -7 during Toxoplasma asexual division but more specialized functions for these proteins during gametogenesis. In addition, we find that IMC15 is involved in daughter formation in both Toxoplasma and Sarcocystis tachyzoites, bradyzoites, and sporozoites. IMC14 and IMC15 function in limiting the number of Toxoplasma offspring per division. Furthermore, IMC7, -12, and -14, which are recruited in the G1 cell cycle stage, are required for stress resistance of extracellular tachyzoites. Thus, although the roles of the different IMC proteins appear to overlap, stage- and development-specific behaviors indicate that their functions are uniquely tailored to each life stage requirement. The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother’s cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis, IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma. IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin domain-containing IMC proteins across developmental stages. Our work shows universal but distinct roles for IMC1, -3, and -7 during Toxoplasma asexual division but more specialized functions for these proteins during gametogenesis. In addition, we find that IMC15 is involved in daughter formation in both Toxoplasma and Sarcocystis. IMC14 and IMC15 function in limiting the number of Toxoplasma offspring per division. Furthermore, IMC7, -12, and -14, which are recruited in the G1 cell cycle stage, are required for stress resistance of extracellular tachyzoites. Thus, although the roles of the different IMC proteins appear to overlap, stage- and development-specific behaviors indicate that their functions are uniquely tailored to each life stage requirement.
Collapse
|
34
|
Ch Stratakos A, Sima F, Ward P, Linton M, Kelly C, Pinkerton L, Stef L, Pet I, Iancu T, Pircalabioru G, Corcionivoschi N. The in vitro and ex vivo effect of Auranta 3001 in preventing Cryptosporidium hominis and Cryptosporidium parvum infection. Gut Pathog 2017; 9:49. [PMID: 28883891 PMCID: PMC5580208 DOI: 10.1186/s13099-017-0192-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/27/2017] [Indexed: 01/22/2023] Open
Abstract
Background Cryptosporidium is a major cause of diarrhea worldwide in both humans and farm animals with no completely effective treatment available at present. In this study, we assessed the inhibitory effect of different concentrations of Auranta 3001 (0.1, 0.5 and 1%), a novel natural feed supplement, on C. hominis and C. parvum invasion of human ileocecal adenocarcinoma (HCT-8), bovine primary cells and C. parvum invasion of HCT-8, bovine primary cells and bovine intestinal biopsies. The effect of the feed supplement on the production of pro-inflammatory cytokines IL-8 and INF-γ, the anti-inflammatory cytokine IL-10, the expression of CpSUB1 protease gene during infection was also assessed by quantitative PCR (q-PCR). Transepithelial electrical resistance (TEER) was employed to measure the integrity of tight junction dynamics of the culture models. Results Pre-treatment of intestinal cells or oocysts with the Auranta 3001 significantly reduced the invasiveness of C. hominis and C. parvum against HCT-8 and bovine primary cells in a dose dependent manner. The most pronounced reduction in the invasiveness of both parasites was observed when Auranta 3001 was present during infection. Levels of IL-8 were significantly reduced in both HCT-8 and bovine primary cells, while the levels of INF-γ and IL-10 showed opposite trends in the two cell lines during infection in the presence of Auranta 3001. CpSUB1 gene protease expression, which mediates infection, was significantly reduced suggesting that this enzyme is a possible target of Auranta 3001. Conclusions Although, C. hominis and C. parvum use different invasion mechanisms to infect cells, the novel feed additive can significantly attenuate the entry of Cryptosporidium in HCT-8 cells, primary bovine cells and bovine intestinal biopsies and thus provide an alternative method to control cryptosporidiosis.
Collapse
Affiliation(s)
- Alexandros Ch Stratakos
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK
| | - Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK.,School of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, Romania
| | - Patrick Ward
- Auranta, NovaUCD, Belfield Innovation Park, Belfield, Dublin 4, Ireland
| | - Mark Linton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK
| | - Carmel Kelly
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK
| | - Laurette Pinkerton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK
| | - Lavinia Stef
- Banat's University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Calea Aradului 119, 300645 Timisoara, Romania
| | - Ioan Pet
- Banat's University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Calea Aradului 119, 300645 Timisoara, Romania
| | - Tiberiu Iancu
- Banat's University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Calea Aradului 119, 300645 Timisoara, Romania
| | - Gratiela Pircalabioru
- Research Institute of University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK.,Banat's University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Calea Aradului 119, 300645 Timisoara, Romania
| |
Collapse
|
35
|
Improvement of in vitro evaluation of chemical disinfectants for efficacy on Cryptosporidium parvum oocysts. Vet Parasitol 2017; 245:5-13. [PMID: 28969838 DOI: 10.1016/j.vetpar.2017.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 07/19/2017] [Indexed: 11/22/2022]
Abstract
Cryptosporidium parvum has been suggested as a suitable target for in vitro efficacy testing of disinfectants. To improve validity of a method based on exposure of HCT-8 monolayers to C. parvum oocysts we here critically evaluate and we propose certain procedural steps needed for the validation of disinfectants. Within a range of 0.02% to 0.4%, sodium taurocholate at 0.2% stimulated infection most efficiently while preserving host cell integrity. The course of invasion was monitored for periods of 30-240min post infection (p.i.). FACS analysis revealed that the proportion of sporozoites liberated from oocysts in the presence of 0.2% sodium taurocholate increased within 120min of incubation but remained constant thereafter. Maximum invasion of cells measured by qPCR was reached 180min p.i. and therefore set as invasion endpoint. As monolayers harvested 24h or 48h p.i. did not differ in the quantity of parasite hsp70 gene copies, DNA extraction can be performed as early as 24h p.i. Incubation of oocysts with 20% H2O2 for 2h resulted in inactivation of more than 99.5% both at room temperature and 10°C and appeared thus suitable as positive chemical treatment control. Four washing procedures considered to remove potentially toxic residual disinfectant from oocyst suspensions were tested. An application of a combination of DMSO (Dimethylsulfoxid), Tween20 and WSH (water of standardized hardness) appeared most efficient without deleterious effect of disinfectant residuals on the cell monolayer viability when oocysts accordingly washed were applied. In conclusion, for standardized in vitro evaluation of chemical disinfectants in C. parvum infected HTC-8 monolayers. (i) excystation medium should contain 0.2 % sodium taurocholate. (ii) excystation medium should be replaced by growth medium after 180 min. (iii) monolayers should be harvested 24 h p.i. for DNA preparation. (iv) ocysts exposed to 20 % H2O2 should be included as positive controls. (v) disinfected oocysts should be washed with DMSO/Tween20/WSH before they are transferred to monolayers.
Collapse
|
36
|
Novel Bioengineered Three-Dimensional Human Intestinal Model for Long-Term Infection of Cryptosporidium parvum. Infect Immun 2017; 85:IAI.00731-16. [PMID: 28052996 DOI: 10.1128/iai.00731-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023] Open
Abstract
Cryptosporidium spp. are apicomplexan parasites of global importance that cause human diarrheal disease. In vitro culture models that may be used to study this parasite and that have physiological relevance to in vivo infection remain suboptimal. Thus, the pathogenesis of cryptosporidiosis remains poorly characterized, and interventions for the disease are limited. In this study, we evaluated the potential of a novel bioengineered three-dimensional (3D) human intestinal tissue model (which we developed previously) to support long-term infection by Cryptosporidium parvum Infection was assessed by immunofluorescence assays and confocal and scanning electron microscopy and quantified by quantitative reverse transcription-PCR. We found that C. parvum infected and developed in this tissue model for at least 17 days, the extent of the study time used in the present study. Contents from infected scaffolds could be transferred to fresh scaffolds to establish new infections for at least three rounds. Asexual and sexual stages and the formation of new oocysts were observed during the course of infection. Additionally, we observed ablation, blunting, or distortion of microvilli in infected epithelial cells. Ultimately, a 3D model system capable of supporting continuous Cryptosporidium infection will be a useful tool for the study of host-parasite interactions, identification of putative drug targets, screening of potential interventions, and propagation of genetically modified parasites.
Collapse
|
37
|
Ifeonu OO, Simon R, Tennant SM, Sheoran AS, Daly MC, Felix V, Kissinger JC, Widmer G, Levine MM, Tzipori S, Silva JC. Cryptosporidium hominis gene catalog: a resource for the selection of novel Cryptosporidium vaccine candidates. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw137. [PMID: 28095366 PMCID: PMC5070614 DOI: 10.1093/database/baw137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/19/2023]
Abstract
Human cryptosporidiosis, caused primarily by Cryptosporidium hominis and a subset of Cryptosporidium parvum, is a major cause of moderate-to-severe diarrhea in children under 5 years of age in developing countries and can lead to nutritional stunting and death. Cryptosporidiosis is particularly severe and potentially lethal in immunocompromised hosts. Biological and technical challenges have impeded traditional vaccinology approaches to identify novel targets for the development of vaccines against C. hominis, the predominant species associated with human disease. We deemed that the existence of genomic resources for multiple species in the genus, including a much-improved genome assembly and annotation for C. hominis, makes a reverse vaccinology approach feasible. To this end, we sought to generate a searchable online resource, termed C. hominis gene catalog, which registers all C. hominis genes and their properties relevant for the identification and prioritization of candidate vaccine antigens, including physical attributes, properties related to antigenic potential and expression data. Using bioinformatic approaches, we identified ∼400 C. hominis genes containing properties typical of surface-exposed antigens, such as predicted glycosylphosphatidylinositol (GPI)-anchor motifs, multiple transmembrane motifs and/or signal peptides targeting the encoded protein to the secretory pathway. This set can be narrowed further, e.g. by focusing on potential GPI-anchored proteins lacking homologs in the human genome, but with homologs in the other Cryptosporidium species for which genomic data are available, and with low amino acid polymorphism. Additional selection criteria related to recombinant expression and purification include minimizing predicted post-translation modifications and potential disulfide bonds. Forty proteins satisfying these criteria were selected from 3745 proteins in the updated C. hominis annotation. The immunogenic potential of a few of these is currently being tested. Database URL:http://cryptogc.igs.umaryland.edu
Collapse
Affiliation(s)
- Olukemi O Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA.,School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, VA 20110, USA
| | - Raphael Simon
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Sharon M Tennant
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Abhineet S Sheoran
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Maria C Daly
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA
| | - Victor Felix
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA
| | - Jessica C Kissinger
- Department of Genetics, Institute of Bioinformatics and Center for Topical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA and
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Myron M Levine
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA .,School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, VA 20110, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Pecková R, Stuart PD, Sak B, Květoňová D, Kváč M, Foitová I. Statistical comparison of excystation methods in Cryptosporidium parvum oocysts. Vet Parasitol 2016; 230:1-5. [PMID: 27884435 DOI: 10.1016/j.vetpar.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
Excystation of sporozoites of Cryptosporidium parvum from oocysts is essential for successful in vitro assays. It has also been traditionally used as a measure for oocyst viability and infectivity. Laboratories use various excystation protocols so there is a need to clarify which method is the best. In this study, six different protocols for in vitro excystation of C. parvum oocysts were compared to find the most efficient excystation method (expressed as percentage excystation). Tested protocols differed in chemical pre-incubation steps, excystation media or time of incubation. There were significant differences in percentage of excysted oocysts among groups excysted by different methods. There were also significant differences in percentage of excysted oocysts between methods using pre-incubation with sodium hypochlorite and those without. The other variables examined; the presence of trypsin, kind of excystation medium and the incubation time, did not show statistical differences in percentage excystation among groups. Pre-incubation steps which included sodium hypochlorite, enhancing the permeability of the oocysts were found to increase the excystation ratio and methods using this step were the most effective.
Collapse
Affiliation(s)
- Radka Pecková
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Peter D Stuart
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Ivona Foitová
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
39
|
Manjunatha UH, Chao AT, Leong FJ, Diagana TT. Cryptosporidiosis Drug Discovery: Opportunities and Challenges. ACS Infect Dis 2016; 2:530-7. [PMID: 27626293 DOI: 10.1021/acsinfecdis.6b00094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The apicomplexan parasite Cryptosporidium is the second most important diarrheal pathogen causing life-threatening diarrhea in children, which is also associated with long-term growth faltering and cognitive deficiency. Cryptosporidiosis is a parasitic disease of public health concern caused by Cryptosporidium parvum and Cryptosporidium hominis. Currently, nitazoxanide is the only approved treatment for cryptosporidium infections. Unfortunately, it has limited efficacy in the most vulnerable patients, thus there is an urgent need for a safe and efficacious cryptosporidiosis drug. In this work, we present our current perspectives on the target product profile for novel cryptosporidiosis therapies and the perceived challenges and possible mitigation plans at different stages in the cryptosporidiosis drug discovery process.
Collapse
Affiliation(s)
- Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - Alexander T. Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - F. Joel Leong
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| |
Collapse
|
40
|
The fine structure of sexual stage development and sporogony of Cryptosporidium parvum in cell-free culture. Parasitology 2016; 143:749-61. [PMID: 26935529 DOI: 10.1017/s0031182016000275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sexual stages and new oocysts development of Cryptosporidium parvum were investigated in a cell-free culture system using transmission electron microscopy (TEM). Sexual development was extremely rapid after inoculation of oocysts into the medium. The process began within 1/2-12 h and was completed with new oocyst formation 120 h post-inoculation. The macrogamonts were bounded by two membranes and had amylopectin granules and two distinct types of wall-forming bodies. The microgamonts had a large nucleus showing lobe projections and condensation of chromatin, giving rise to peripherally budding microgametes. The microgametes contained a large area of granular substance containing groups of microtubules surrounding the electron-dense nucleus. In some instances, the dividing microgamy was observed in cell-free cultures with no preceding merogonic process. Fertilization was observed with the bullet-shaped microgamete penetrating an immature macrogamont at 24 and 216 h. The new thin- and thick-walled oocysts had a large residuum with polysaccharide granules and sporogony noted inside these oocysts. Novel immature four-layer walled thick oocysts with irregular knob-like protrusions on the outer layer resembling the immature Eimeria oocysts were also observed. The present study confirms the gametogony and sporogony of C. parvum in cell-free culture and describes their ultra-structure for the first time.
Collapse
|
41
|
Headd B, Bradford SA. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies. WATER RESEARCH 2016; 90:185-202. [PMID: 26734779 DOI: 10.1016/j.watres.2015.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 05/06/2023]
Abstract
Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport.
Collapse
Affiliation(s)
- Brendan Headd
- U.S. Salinity Lab USDA, ARS, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA
| | - Scott A Bradford
- U.S. Salinity Lab USDA, ARS, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA.
| |
Collapse
|
42
|
Lu P, Amburgey JE. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration. JOURNAL OF WATER AND HEALTH 2016; 14:109-120. [PMID: 26837835 DOI: 10.2166/wh.2015.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cryptosporidium species are the most common cause of gastrointestinal illness in treated recreational water venues. In order to protect public health during swimming, Cryptosporidium-sized microsphere removals by high-rate sand filtration with six coagulants were evaluated with a 5.5 m(3) pilot-scale swimming pool. A sand filter without coagulation removed 20-63% of Cryptosporidium-sized microspheres. Cryptosporidium-sized microsphere removals exceeded 98% by sand filtration with five of the six tested coagulants. Continuously feeding coagulants A, B, and F (i.e., organic polymers) led to coagulant accumulation in the system and decreased removals over time (<2 days). Coagulant E (polyaluminum chloride) consistently removed more than 90% of microspheres at 30 m/h while the removals dropped to approximately 50% at a filtration rate of 37 m/h. Coagulant C was a chitosan-based product that removed fewer microspheres compared with other products, <75%, under the studied conditions. Results indicated aluminum-based coagulants (coagulants D and E) had an overall performance advantage over the organic polymer based coagulants primarily in terms of their tendency not to accumulate in the water and cease to be effective at improving filter efficiency.
Collapse
Affiliation(s)
- Ping Lu
- Department of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China E-mail: ; Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - James E Amburgey
- Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
43
|
In vitro excystation of Cryptosporidium muris oocysts and viability of released sporozoites in different incubation media. Parasitol Res 2015; 115:1113-21. [PMID: 26678654 DOI: 10.1007/s00436-015-4841-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
This study aimed to evaluate and document the excystation process of Cryptosporidium muris oocysts in various incubation media, and to monitor the behaviour of excysting and freshly excysted sporozoites. A test of oocyst viability, using fluorescent double staining with fluorescein diacetate and propidium iodide, was performed prior to each experimental assay. Light microscope observations confirmed that relatively often only three sporozoites were released; the fourth one either left the oocyst later together with a residual body or remained trapped within the oocyst wall. These results suggest that successful oocyst excystation is not limited by the viability of all four sporozoites. Darkening of oocysts to opaque and their specific movement (the so-called "oocyst dancing") preceded the final excystation and liberation of sporozoites, while the dormant oocysts appeared refractive. The process of excystation in C. muris is not gradual as generally described in cryptosporidia but very rapid in an eruptive manner. Experiments were performed using oocysts stored at 4 °C for various time periods, as well as oocysts freshly shed from host rodents (Mastomys coucha) of different ages. The most suitable medium supporting high excystation rate (76 %) and prolonged motility of sporozoites was RPMI 1640, enriched with 5 % bovine serum albumin (BSA). Our results emphasize that to reliably evaluate the success of in vitro excystation of cryptosporidia, not only the number of released sporozoites in a set time period should be taken into consideration but also their subsequent activity (motility), as it is expected to be essential for the invasion of host cells.
Collapse
|
44
|
Zhang H, Zhu G. Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro. Front Microbiol 2015; 6:991. [PMID: 26441920 PMCID: PMC4585199 DOI: 10.3389/fmicb.2015.00991] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022] Open
Abstract
Our laboratory has previously developed a qRT-PCR assay to assess drug efficacy on the growth of Cryptosporidium parvum in vitro by detecting the levels of parasite 18S rRNA. This approach displayed up to four orders of magnitude of linear dynamic range and was much less labor-intensive than the traditional microscopic methods. However, conventional qRT-PCR protocol is not very amendable to high-throughput analysis when total RNA needs to be purified by lengthy, multi-step procedures. Recently, several commercial reagents are available for preparing cell lysates that could be directly used in downstream qRT-PCR analysis (e.g., Ambion Cell-to-cDNA kit and Bio-Rad iScript sample preparation reagent). Using these reagents, we are able to adapt the qRT-PCR assay into high-throughput screening of drugs in vitro (i.e., 96-well and 384-well formats for the cultivation of parasites and qRT-PCR detection, respectively). This qRT-PCR protocol is able to give a >150-fold linear dynamic range using samples isolated from cells infected with various numbers of parasites. The new assay is also validated by the NIH-recommended intra-plate, inter-plate, and inter-day uniformity tests. The robustness and effectiveness of the assay are also confirmed by evaluating the anti-cryptosporidial efficacy of paromomycin and by a small scale screening of compounds.
Collapse
Affiliation(s)
- Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University College Station, TX, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University College Station, TX, USA
| |
Collapse
|
45
|
Murphy JL, Arrowood MJ, Lu X, Hlavsa MC, Beach MJ, Hill VR. Effect of cyanuric acid on the inactivation of Cryptosporidium parvum under hyperchlorination conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7348-55. [PMID: 26042636 PMCID: PMC10919751 DOI: 10.1021/acs.est.5b00962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyanuric acid (CYA) is a chlorine stabilizer used in swimming pools to limit UV degradation of chlorine, thus reducing chlorine use and cost. However, CYA has been shown to decrease the efficacy of chlorine disinfection. In the event of a diarrheal incident, CDC recommends implementing 3-log10 inactivation conditions for Cryptosporidium (CT value = 15 300 mg·min/L) to remediate pools. Currently, CYA's impact on Cryptosporidium inactivation is not fully determined. We investigated the impact of multiple concentrations of CYA on C. parvum inactivation (at 20 and 40 mg/L free chlorine; average pH 7.6; 25 °C). At 20 mg/L free chlorine, average estimated 3-log10 CT values were 17 800 and 31 500 mg·min/L with 8 and 16 mg/L CYA, respectively, and the average estimated 1-log10 CT value was 76 500 mg·min/L with 48 mg/L CYA. At 40 mg/L free chlorine, 3-log10 CT values were lower than those at 20 mg/L, but still higher than those of free chlorine-only controls. In the presence of ∼100 mg/L CYA, average 0.8- and 1.4-log10 reductions were achieved by 72 h at 20 and 40 mg/L free chlorine, respectively. This study demonstrates CYA significantly delays chlorine inactivation of Cryptosporidium oocysts, emphasizing the need for additional pool remediation options following fecal incidents.
Collapse
Affiliation(s)
- Jennifer L. Murphy
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Michael J. Arrowood
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Xin Lu
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Michele C. Hlavsa
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Michael J. Beach
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Vincent R. Hill
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| |
Collapse
|
46
|
Huang L, Zhu H, Zhang S, Wang R, Liu L, Jian F, Ning C, Zhang L. An in vitro model of infection of chicken embryos by Cryptosporidium baileyi. Exp Parasitol 2014; 147:41-7. [DOI: 10.1016/j.exppara.2014.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 11/16/2022]
|
47
|
Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA, Priest JW, Roos DS, Striepen B, Thompson RCA, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. THE LANCET. INFECTIOUS DISEASES 2014; 15:85-94. [PMID: 25278220 DOI: 10.1016/s1473-3099(14)70772-8] [Citation(s) in RCA: 658] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne epidemics and in immunocompromised hosts. Studies have also drawn attention to an underestimated global burden and suggest major gaps in optimum diagnosis, treatment, and immunisation. Cryptosporidiosis is increasingly identified as an important cause of morbidity and mortality worldwide. Studies in low-resource settings and high-income countries have confirmed the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often insensitive. Antigen-detection and PCR improve sensitivity, and multiplexed antigen detection and molecular assays are underused. Therapy has some effect in healthy hosts and no proven efficacy in patients with AIDS. Use of cryptosporidium genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and in animals are not well standardised. Partial immunity after exposure suggests the potential for successful vaccines, and several are in development; however, surrogates of protection are not well defined. Improved methods for propagation and genetic manipulation of the organism would be significant advances.
Collapse
Affiliation(s)
- William Checkley
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins University, Baltimore, MD, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - A Clinton White
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Devan Jaganath
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Rachel M Chalmers
- National Cryptosporidium Reference Unit, Public Health Wales, Swansea, UK
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Ronald Fayer
- Environmental Microbial Food Safety Laboratory, USDA, Beltsville, MD, USA
| | - Jeffrey K Griffiths
- Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Lizbeth Hedstrom
- Department of Biology and Department of Chemistry, Brandeis University, Waltham, MA, USA
| | | | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Jan R Mead
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Mark Miller
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| | - Wesley A Van Voorhis
- Allergy and Infectious Diseases Division, Departments of Medicine, Global Health, and Microbiology, University of Washington, Seattle, WA, USA
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
48
|
Abstract
Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites.
Collapse
Affiliation(s)
- Nishat Hussain Ahmed
- Department of Laboratory Medicine, Delhi State Cancer Institute, New Delhi, India
| |
Collapse
|
49
|
Varughese EA, Bennett-Stamper CL, Wymer LJ, Yadav JS. A new in vitro model using small intestinal epithelial cells to enhance infection of Cryptosporidium parvum. J Microbiol Methods 2014; 106:47-54. [PMID: 25072838 DOI: 10.1016/j.mimet.2014.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 02/04/2023]
Abstract
To better understand and study the infection of the protozoan parasite Cryptosporidium parvum, a more sensitive in vitro assay is required. In vivo, this parasite infects the epithelial cells of the microvilli layer in the small intestine. While cell infection models using colon, kidney, and stomach cells have been studied to understand the infectivity potential of the oocysts, an ideal in vitro model would be readily-available, human-derived, and originating from the small intestine. In this study, we developed a reproducible, quantitative infection model using a non-carcinoma, human small intestinal epithelial cell type, named FHs 74 Int. Our results show that FHs 74 Int cells are productively infected by viable oocysts, and exhibit higher levels of infection susceptibility compared to other cell types. Moreover, infection rate of the sporozoites on the monolayer was found to be comparable or better than other cell types. We furthermore demonstrate that infection can be improved by 65% when pre-treated oocysts are directly inoculated on cells, compared to inoculation of excysted sporozoites on cells. Identification of a better infection model, which captures the preferred site of infection in humans, will facilitate studies on the host pathogenesis mechanisms of this important parasitic human pathogen.
Collapse
Affiliation(s)
- Eunice A Varughese
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; United States Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, USA.
| | - Christina L Bennett-Stamper
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45268, USA
| | - Larry J Wymer
- United States Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, USA
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
50
|
Murphy JL, Haas CN, Arrowood MJ, Hlavsa MC, Beach MJ, Hill VR. Efficacy of chlorine dioxide tablets on inactivation of cryptosporidium oocysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5849-5856. [PMID: 24797292 DOI: 10.1021/es500644d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability of chlorine dioxide (ClO2) to achieve 2-log inactivation of Cryptosporidium in drinking water has been documented. No studies have specifically addressed the effects of ClO2 on C. parvum oocyst infectivity in chlorinated recreational water venues (e.g., pools). The aim of this research was to determine the efficacy of ClO2 as an alternative to existing hyperchlorination protocols that are used to achieve a 3-log inactivation of Cryptosporidium in such venues. To obtain a 3-log inactivation of C. parvum Iowa oocysts, contact times of 105 and 128 min for a solution containing 5 mg/L ClO2 with and without the addition of 2.6 mg/L free chlorine, respectively, were required. Contact times of 294 and 857 min for a solution containing 1.4 mg/L ClO2 with and without the addition of 3.6 mg/L free chlorine, respectively, were required. The hyperchlorination control (21 mg/L free chlorine only) required 455 min for a 3-log inactivation. Use of a solution containing 5 mg/L ClO2 and solutions containing 5 or 1.4 mg/L ClO2 with the addition of free chlorine appears to be a promising alternative to hyperchlorination for inactivating Cryptosporidium in chlorinated recreational water venues, but further studies are required to evaluate safety constraints on use.
Collapse
Affiliation(s)
- Jennifer L Murphy
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention , Atlanta, Georgia 30329, United States
| | | | | | | | | | | |
Collapse
|