1
|
Wang N, Yang F, Qiu Z, Zhang L, Zou D, Tang Y, Zhang R, Sun C, Liu P, Qi K, Wang J, He H, Gan L. Curcumin prevents dexamethasone-induced activation of the pseudorabies virus in rat pheochromocytoma cells through the miR-155-5p-Aak1-Numb/Notch2 signalling axis. Vet Res 2025; 56:86. [PMID: 40259414 PMCID: PMC12010530 DOI: 10.1186/s13567-025-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 04/23/2025] Open
Abstract
Pseudorabies virus (PRV) causes neurological disorders and organ damage in diseased animals. After initial infection, PRV activity is gradually inhibited; however, stress stimulation increases the host's glucocorticoid levels, which overcomes the inhibition of PRV activity. Curcumin (Cur) helps maintain the inhibitory state of the Epstein-Barr virus, although further research is needed to establish whether Cur can prevent PRV activation triggered by stress hormones. In this study, we used PC-12 cells to determine the effects of Cur on PRV activation. The cells were successfully infected with PRV at a multiplicity of infection of 1 for 24 h, resulting in the inhibition of PRV activity. Following incubation with 0.5 µM dexamethasone (DEX) for 4 h, the inhibition of PRV activity was blocked. Further mechanistic analyses using a dual-luciferase assay revealed that miR-155-5p directly targets and regulates Aak1 and its downstream signalling molecules, Numb and Notch2, in maintaining and disrupting PRV inhibition. Moreover, in vitro experiments using miR-155-5p mimics and inhibitors, combined with Aak1 overexpression and interference, confirmed that the miR-155-5p-Aak1-Numb/Notch2 axis prevented DEX-induced disruption of PRV inhibition by Cur. These findings provide a novel regulatory target for preventing stress-activated PRV and provide evidence for the potential use of Cur as a stress modulator in practical applications.
Collapse
Affiliation(s)
- Naixiu Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Fan Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Zhiyun Qiu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Lin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Dingqiu Zou
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yanru Tang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Ruihan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Chenlu Sun
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Pei Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Kexin Qi
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Jingyi Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hua He
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, 611130, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
2
|
Jones C. Human alpha-herpesvirus 1 (HSV-1) viral replication and reactivation from latency are expedited by the glucocorticoid receptor. J Virol 2025; 99:e0030325. [PMID: 40145740 PMCID: PMC11998515 DOI: 10.1128/jvi.00303-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
Acute human alpha-herpesvirus 1 (HSV-1) infection leads to infection of neurons within trigeminal ganglia (TG), brainstem, and other regions of the central nervous system. Lytic cycle viral gene expression is subsequently silenced, a subset of neurons survive infection, and life-long latency is established. In contrast to lytic infection, the latency-associated transcript (LAT) is the only viral gene product abundantly expressed in latently infected neurons. Stress (acute or chronic), UV light, or heat stress increases the incidence of reactivation from latency in humans and mouse models of infection. Ironically, these divergent reactivation stimuli activate the glucocorticoid receptor (GR). Recent studies revealed GR and Krüppel-like factors (KLF), KLF4 or KLF15 for example, cooperatively transactivate the infected cell protein 0 (ICP0) promoter and cis-regulatory motifs that activate ICP4 and ICP27 promoter activity. GR and KLF4 are "pioneer transcription factors" that specifically bind DNA even when it exists as heterochromatin; consequently, chromatin is remodeled, and transcription is activated. Conversely, a VP16 cis-regulatory motif is transactivated by GR and Slug but not KLF family members. Female mice that express a GR containing a serine → alanine mutation at position 229 (GRS229A) shed significantly lower HSV-1 levels compared with age-matched male GRS229A mice or wild-type parental C57BL/6 mice during reactivation from latency. These observations imply GR and stress-induced cellular transcription factors play an important role during reactivation from latency by activating key viral promoters. GR activation may also enhance virus spread by impairing immune and inflammatory responses.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| |
Collapse
|
3
|
Harrison KS, Cowan SR, Jones C. Murine nasal-associated lymphoid tissue (NALT) harbors human alphaherpesvirus 1 (HSV-1) DNA during latency, and dexamethasone triggers viral replication. J Virol 2025; 99:e0225124. [PMID: 40135894 PMCID: PMC11998502 DOI: 10.1128/jvi.02251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Human alphaherpesvirus 1 (HSV-1) acute infection causes conjunctivitis, encephalitis, genital lesions, and herpes esophagitis. Following acute infection, HSV-1 and other alpha-herpesvirinae subfamily members establish life-long latency in neurons within the trigeminal ganglia and central nervous system. Notably, certain animal alpha-herpesvirinae subfamily members, including bovine alphaherpesvirus 1 (BoHV-1), canine herpesvirus 1, equine herpesvirus 4, and pseudorabies virus, establish a quiescent/latent infection in tonsils. BoHV-1 viral gene expression and virus shedding from tonsils also occur during reactivation from latency in calves. Consequently, we tested whether nasopharyngeal lymphoid tissue (NALT) harbors HSV-1 DNA in latently infected mice because it is structurally and functionally comparable with tonsils. NALT prepared from latently infected mice consistently contained viral DNA, but infectious virus was not detected. In contrast to latently infected TG neurons, the HSV-1 latency-associated transcript was not detected in NALT of latently infected mice. HSV-1 DNA levels, immediate early RNA expression, and virus shedding were readily detected when NALT explants were cultured with a medium containing the synthetic corticosteroid dexamethasone for 48 h. Increased viral DNA and virus production were not detected in NALT explants when incubated with a medium lacking dexamethasone. Sorting cells from NALT of HSV-1 latently infected mice revealed that dendritic cells, microfold cells, and natural killer cells, but not B or T cells, harbor HSV-1 DNA, and infectious virus was readily detected when cultured in medium containing dexamethasone. In summary, certain NALT cells consistently contain viral DNA in latently infected mice, and dexamethasone triggers viral gene expression and virus production. IMPORTANCE Human alphaherpesvirus 1 (HSV-1) acute infection causes various diseases, including herpes esophagitis. HSV-1 subsequently establishes lifelong latency in neurons within the trigeminal ganglia and central nervous system. Viral DNA, but not infectious virus, was consistently detected in nasopharyngeal lymphoid tissue (NALT) of latently infected mice. NALT is structurally and functionally comparable with the tonsils of other mammals, including humans. RNA and protein expression of infected cell protein 0 (ICP0) and ICP4 plus virus production were consistently detected when NALT explants were cultured with a medium containing dexamethasone, a synthetic corticosteroid. Sorting NALT cells from HSV-1 latently infected mice revealed dendritic cells, microfold cells, and natural killer cells that harbor HSV-1 DNA. Virus shedding was readily detected when viral DNA-positive NALT cells were cultured in a medium containing dexamethasone. These studies revealed that specific NALT cells harbor viral DNA, and dexamethasone triggered viral replication and virus production, suggesting that reactivation from a latent or quiescent infection had occurred.
Collapse
Affiliation(s)
- Kelly S. Harrison
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Shannon R. Cowan
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Galluzzo P, Di Bella S, Migliore S, Raimondi MV, Bivacqua R, Borgonovo G, Princiotto S, Girgenti A, Palumbo L, Dara S, Guercio A, Alduina R, Loria GR, Cannella V. Preliminary Data on the Antiviral Activity of Helleborus bocconei subsp. intermedius Root Extracts Against Animal Herpesviruses. Microorganisms 2025; 13:891. [PMID: 40284727 PMCID: PMC12029677 DOI: 10.3390/microorganisms13040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Orthoherpesviridae is a large family of enveloped DNA virus. Among the most significant animal-infecting viruses are bovine alphaherpesvirus 1 (BoAHV1), caprine alphaherpesvirus 1 (CpAHV1) and equid alphaherpesvirus 1 (EqAHV1). Research into new methods to combat herpesvirus infections is ongoing. The aim of this study was to evaluate the antiviral activity of three extracts of the Helleborus bocconei roots against BoAHV1, CpAHV1 and EqAHV1. The roots were air-dried, extracted with methanol (MeOH) and then partitioned between n-butanol (n-BuOH) and water. All three extracts were tested for cytotoxicity on MDBK and RK-13 cells, and for antiviral activity. Two non-cytotoxic concentrations were assessed for their anti-BoAHV1, anti-CpAHV1 and anti-EqAHV1effects. Cells were incubated with the extracts for 72 h under three experimental conditions: pretreatment before viral infection, treatment post virus infection and simultaneous viral infection and treatment with extracts. The n-BuOH extract (BE) at 0.62 µg/mL inhibited the cytopathic effects of all three viruses in the simultaneous assay. Additionally, no cytopathic effect was observed in MDBK cells infected with CpAHV1and treated with 0.31 µg/mL BE post virus infection. Therefore, the BE contains molecules or groups of molecules potentially useful for developing an alternative therapy against herpesvirus (HV) infection.
Collapse
Affiliation(s)
- Paola Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.G.); (S.M.); (S.D.); (A.G.); (G.R.L.); (V.C.)
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy; (M.V.R.); (R.B.); (R.A.)
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.G.); (S.M.); (S.D.); (A.G.); (G.R.L.); (V.C.)
| | - Sergio Migliore
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.G.); (S.M.); (S.D.); (A.G.); (G.R.L.); (V.C.)
| | - Maria Valeria Raimondi
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy; (M.V.R.); (R.B.); (R.A.)
| | - Roberta Bivacqua
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy; (M.V.R.); (R.B.); (R.A.)
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences, Section of Chemical and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (G.B.); (S.P.)
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences, Section of Chemical and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (G.B.); (S.P.)
| | - Antonella Girgenti
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (L.P.)
| | - Laura Palumbo
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (L.P.)
| | - Salvatore Dara
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.G.); (S.M.); (S.D.); (A.G.); (G.R.L.); (V.C.)
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.G.); (S.M.); (S.D.); (A.G.); (G.R.L.); (V.C.)
| | - Rosa Alduina
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, University of Palermo, 90133 Palermo, Italy; (M.V.R.); (R.B.); (R.A.)
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.G.); (S.M.); (S.D.); (A.G.); (G.R.L.); (V.C.)
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.G.); (S.M.); (S.D.); (A.G.); (G.R.L.); (V.C.)
| |
Collapse
|
5
|
Kornuta CA, Bidart JE, Soria I, Quattrocchi V, Gammella M, Tribulatti MV, Campetella O, Prato CA, Carabelli J, Cheuquepán FA, Hecker YP, Moore PD, Zamorano PI, Langellotti CA. Galectin-8 and GEL01 as potential adjuvants to enhance the immune response induced by a DNA vaccine against bovine alphaherpesvirus Type-1. Virology 2025; 604:110402. [PMID: 39854916 DOI: 10.1016/j.virol.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Bovine alphaherpesvirus-1 (BoAHV-1) causes several symptoms in cattle, leading to significant costs for the livestock industry. In this study, we used a plasmid encoding a secreted form of BoAHV-1 glycoprotein D (pCIgD) as a DNA vaccine. To enhance the potency of the pCIgD vaccine, we used Montanide™ GEL01 PR (GEL01) and introduced Galectin-8 (Gal-8), a lectin considered a novel adjuvant due to its immunostimulatory effects, into the formulation. Animals were vaccinated with pCIgD, pCIgD with Gal-8 (pCIgD-Gal-8), pCIgD with Gal-8 and GEL01 (pCIgD-Gal-8-GEL01), or the control plasmid pCIneo. The immune response was first assessed in a mouse model and then in bovines. The results showed that combining Gal-8 and GEL01 with pCIgD modulated immune responses at both the humoral and cellular levels in both animal models. This study evaluates the efficacy of a DNA vaccine with Gal-8 and GEL01 as potential adjuvants to enhance immune protection against BoAHV-1.
Collapse
Affiliation(s)
- Claudia Alejandra Kornuta
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Juan Esteban Bidart
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - María Virginia Tribulatti
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Oscar Campetella
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Cecilia Arahí Prato
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Julieta Carabelli
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Argentina
| | - Felipe Andrés Cheuquepán
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Yanina Paola Hecker
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Prando Dadin Moore
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS (INTA-CONICET), Balcarce, Argentina
| | - Patricia Inés Zamorano
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia Ana Langellotti
- Instituto de Virología e Innovaciones Tecnológicas, (IVIT, INTA-CONICET), Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Santos VC, Wijesekera N, El-Mayet FS, Jones C. Glucocorticoid receptor and specificity protein 1 (Sp1) or Sp3 transactivate HSV-1 ICP0 promoter sequences but a GC-rich binding antibiotic, Mithramycin A, impairs reactivation from latency. Virus Res 2024; 350:199487. [PMID: 39490590 PMCID: PMC11570323 DOI: 10.1016/j.virusres.2024.199487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Glucocorticoid receptor (GR) activation enhances Human alpha-herpes virus 1 (HSV-1) replication and explant-induced reactivation from latency. Furthermore, GR and Krüppel-like factor 15 (KLF15) cooperatively transactivate cis-regulatory modules (CRMs) that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. KLF and specificity protein (Sp) family members bind GC-rich or C-rich sequences and belong to the same super-family of transcription factors. Based on these observations, we hypothesized CRMs spanning the ICP0 promoter are transactivated by GR and Sp1 or Sp3. CRM-A (-800 to -635), CRM-B (-485 to -635), and CRM-D (-232 to -24), but not CRM-C, were significantly transactivated by GR, DEX, and Sp1 or Sp3 in mouse neuroblastoma cells (Neuro-2A). Mutagenesis of Sp1/Sp3 binding sites were important for transactivation of CRM-A and CRM-B. Chromatin immunoprecipitation studies revealed significantly higher levels of GR occupied ICP0 promoter sequences when Sp1 or Sp3 was over-expressed suggesting these transcriptions factors recruit GR to ICP0 CRM sequences. Mithramycin A, an antibiotic that preferentially binds GC-rich DNA and impairs Sp1/Sp3 dependent transactivation and reduced virus shedding during reactivation from latency in mice latently infected with HSV-1. These studies indicate GR and certain stress-induced cellular transcription factors preferentially bind GC rich DNA, which stimulates HSV-1 gene expression and reactivation from latency in trigeminal ganglia of latently infected mice.
Collapse
Affiliation(s)
- Vanessa Claire Santos
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, USA.
| | - Nishani Wijesekera
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, USA.
| | - Fouad S El-Mayet
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, USA; Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt.
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, USA.
| |
Collapse
|
7
|
Van Crombrugge E, Ren X, Glorieux S, Zarak I, Van den Broeck W, Bachert C, Zhang N, Van Zele T, Kim D, Smith GA, Laval K, Nauwynck H. The alphaherpesvirus gE/gI glycoprotein complex and proteases jointly orchestrate invasion across the host's upper respiratory epithelial barrier. mBio 2024; 15:e0187324. [PMID: 39382295 PMCID: PMC11558996 DOI: 10.1128/mbio.01873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), pseudorabies virus (PRV), and bovine herpesvirus type 1 (BoHV-1), are significant pathogens affecting humans and animals. These viruses penetrate the upper respiratory tract mucosa, yet the mechanisms facilitating this invasion are not fully understood. This study investigates the role of the gE/gI glycoprotein complex and proteases in mucosal invasion by these viruses. Using species-specific respiratory mucosal explants, we observed that the removal of extracellular calcium disrupts epithelial junction integrity, enhancing viral infection across all viruses and suggesting a common mechanism of targeting a basolaterally located receptor. PRV exhibited significantly faster replication and deeper invasion compared to HSV-1 and BoHV-1. The gE glycoprotein was consistently polarized at the basement membrane across all viruses, indicating a critical role in the process of viral entry and subsequent spread through the epithelium. In this context, "infection" refers to the virus's attachment to its cell-surface receptor, entry into the cell, and completion of the viral life cycle, culminating in the production of progeny virions. Notably, in gE/gI null mutants of PRV and HSV-1, while the infection was not abortive and the viral life cycle was completed, the infection was delayed, and the invasion into the deeper layers of the epithelium and underlying mucosa was significantly reduced. In BoHV-1 mutants, this effect was even more pronounced, with infection restricted to the apical cells, failing to progress to the basal cells. In addition, PRV and HSV-1 invasion involved serine protease activity, unlike BoHV-1, which correlates with its slower invasion pace. Notably, the protease facilitating PRV invasion was identified as a urokinase plasminogen activator (uPA), while the specific protease for HSV-1 remains unidentified. These findings highlight the critical roles of the gE/gI complex and proteases in alphaherpesvirus pathogenesis, offering potential targets for therapeutic intervention. IMPORTANCE Herpes simplex virus type 1 (HSV-1) infections are a worldwide issue. More than three billion people are infected with HSV-1 globally. Although most infections with HSV-1 occur subclinically, severe symptoms and complications are numerous and can be life-threatening. Complications include encephalitis and blindness. Recently, HSV-1 infections have been associated with the development of Alzheimer's Disease. To date, no effective vaccines against HSV-1 are on the market. Pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1) are two alphaherpesviruses of major veterinary importance. Although efforts have been made to eradicate these viruses from livestock animals, clinical problems still occur, resulting in great economic losses for farmers. It is evident that new insights into the pathogenesis of alphaherpesviruses are needed, to develop effective treatments and novel preventive therapies.
Collapse
Affiliation(s)
- E. Van Crombrugge
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - X. Ren
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - S. Glorieux
- Center for Human Body Material, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - I. Zarak
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - W. Van den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C. Bachert
- Department of Otorhinolaryngology – Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - N. Zhang
- Department of Head and Skin, Upper Airways Research Laboratory, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - T. Van Zele
- Department of Head and Skin, Upper Airways Research Laboratory, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - D. Kim
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - G. A. Smith
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - K. Laval
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - H. Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
El-Mayet F, Jones C. Stress Can Induce Bovine Alpha-Herpesvirus 1 (BoHV-1) Reactivation from Latency. Viruses 2024; 16:1675. [PMID: 39599791 PMCID: PMC11599084 DOI: 10.3390/v16111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are importantsites for latency. Reactivation from latency can lead to reproductive problems in pregnant cows, virus transmission to young calves, suppression of immune responses, and bacterial pneumonia. BoHV-1 is also a significant cofactor in bovine respiratory disease (BRD). Stress, as mimicked by the synthetic corticosteroid dexamethasone, reproducibly initiates reactivation from latency. Stress-mediated activation of the glucocorticoid receptor (GR) stimulates viral replication and transactivation of viral promoters that drive the expression of infected cell protein 0 (bICP0) and bICP4. Notably, GR and Krüppel-like factor 15 (KLF15) form a feed-forward transcription loop that cooperatively transactivates immediate early transcription unit 1 (IEtu1 promoter). Two pioneer transcription factors, GR and KLF4, cooperatively transactivate the bICP0 early promoter. Pioneer transcription factors bind silent viral heterochromatin, remodel chromatin, and activate gene expression. Thus, wepredict that these novel transcription factors mediate early stages of BoHV-1 reactivation from latency.
Collapse
Affiliation(s)
- Fouad El-Mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Benha 74078, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
9
|
Jiang B, Cao M, Zhou L, Zhen H, Cheng J, Jinqiang C, Liu W, Li Y. Transcriptomic analysis reveals bovine herpesvirus 1 infection regulates innate immune response resulted in restricted viral replication in neuronal cells. Microb Pathog 2024; 195:106896. [PMID: 39208957 DOI: 10.1016/j.micpath.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Bovine herpesvirus 1 (BoHV-1) is a major pathogen that affects the global bovine population, primarily inducing respiratory and reproductive disorders. Its ability to establish latent infections in neuronal cells and to reactivate under certain conditions poses a continual threat to uninfected hosts. In this study, we aimed to analyze the replication characteristics of BoHV-1 in neuronal cells, as well as the effects of viral replication on host cell immunity and physiology. METHODS Using the Neuro-2a neuronal-origin cell line as a model, we explored the dynamics of BoHV-1 replication and analyzed differential gene expression profiles post-BoHV-1 infection using high-throughput RNA sequencing. RESULTS BoHV-1 demonstrated restricted replication in Neuro-2a cells. BoHV-1 induced apoptotic pathways and enhanced the transcription of interferon-stimulated genes and interferon regulatory factors while suppressing the complement cascade in Neuro-2a cells. CONCLUSIONS Different from BoHV-1 infection in other non-highly differentiated somatic cells result in viral dominance, BoHV-1 regulated the innate immune response in neuronal cells formed a "virus-nerve cell" relative equilibrium state, which may account for the restricted replication of BoHV-1 in neuronal cells, leading to a latent infection. These findings provide a foundation for further research into the mechanism underlying BoHV-1-induced latent infection in nerve cells.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| | - Mengyao Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China; College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Hongyue Zhen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China; College of Animal Science and Technology, Northeast Forestry University, Heilongjiang, 150000, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Cui Jinqiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
10
|
Hao J, Fu J, Yu K, Gao X, Zang K, Ma H, Xue H, Song Y, Zhu K, Yang M, Zhang Y. Isolation of the Initial Bovine Alphaherpesvirus 1 Isolate from Yanbian, China. Vet Sci 2024; 11:348. [PMID: 39195802 PMCID: PMC11360619 DOI: 10.3390/vetsci11080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Bovine infectious rhinotracheitis (IBR), caused by bovine alphaherpesvirus 1 (BoAHV1), poses significant challenges to the global cattle industry due to its high contagiousness and economic impact. In our study, we successfully isolated a BoAHV1 strain from suspected infected bovine nasal mucus samples in Yanji city, revealing genetic similarities with strains from Sichuan, Egypt, and the USA, while strains from Xinjiang, Beijing, Hebei, and Inner Mongolia showed more distant associations, indicating potential cross-border transmission. Additionally, our investigation of BoAHV1 infection dynamics within host cells revealed early upregulation of gB, which is critical for sustained infection, while the expression of gC and gD showed variations compared to previous studies. These findings enhance our understanding of BoAHV1 diversity and infection kinetics, underscoring the importance of international collaboration for effective surveillance and control strategies. Furthermore, they lay the groundwork for the development of targeted therapeutics and vaccines to mitigate the impact of IBR on the cattle industry.
Collapse
Affiliation(s)
- Jingrui Hao
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Jingfeng Fu
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Kai Yu
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Xu Gao
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Keyan Zang
- Department of Animal Disease Prevention and Control Centre, Longjing 133400, China;
| | - Haoyuan Ma
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Haowen Xue
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Yanhao Song
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Kunru Zhu
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Meng Yang
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| | - Yaning Zhang
- Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China; (J.H.); (J.F.); (K.Y.); (H.M.); (H.X.); (Y.S.); (K.Z.); (M.Y.); (Y.Z.)
| |
Collapse
|
11
|
Paredes-Galarza B, Oliveira MT, Timm FB, Stone NV, Violet-Lozano L, Salvato RS, Müller ND, Prandi BA, Gasparetto R, Gonçalves M, Teixeira MAS, Moura MAO, Riet-Correa G, Cerqueira VD, Bezerra PS, Campos FS, Franco AC, Roehe PM. Bovine Alphaherpesvirus 1, Bovine Alphaherpesvirus 5 and Bubaline Alphaherpesvirus 1 in Palatine Tonsils from Water Buffaloes in Northern Brazil and Possible Links with the Origin of Bovine Alphaherpesvirus Type 5. Viruses 2024; 16:1024. [PMID: 39066187 PMCID: PMC11281340 DOI: 10.3390/v16071024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Herpesviruses are significant pathogens of ruminants. In water buffaloes (Bubalus bubalis), however, herpesviruses have not been thoroughly studied. Although bubaline alphaherpesvirus 1 (BuAHV1) and bovine alphaherpesvirus 1 (BoAHV1) have already been recovered from water buffaloes, to date, no reports on the occurrence of bovine alphaherpesvirus 5 (BoAHV5) in these animals have been published. Therefore, the aim of this study was to search for BuAHV1, BoAHV1, and BoAHV5 in palatine tonsils of apparently healthy water buffaloes from the Pará state, Northern Brazil. Tissue samples of tonsils (n = 293) were screened by a nested PCR (nPCR) targeting a region of UL44 (gC coding gene), followed by sequencing, to detect and differentiate between the viral types. Viral genome segments were detected in 18 out of 293 (6.1%) of the palatine tonsil samples. Two animals carried genomes of BoAHV1 only, eleven animals carried BoAHV5 genomes only, and four animals carried BuAHV1 only. Another animal had both BoAHV1 and BoAHV5 genomes in its tonsils. No infectious virus could be recovered from any of the samples. The BuAHV1 sequences identified here were more closely related to BuAHV1 genomes identified in India. Phylogenetic analyses suggested a closer relationship between the recovered BoAHV5 and BuAHV1 genomes. Therefore, evidence is provided here to confirm that not only BoAHV1 and BuAHV1, but also BoAHV5, can infect water buffaloes. This report highlights (i) the first detection of BoAHV5 in water buffaloes and (ii) the occurrence of coinfections with BoAHV1 and BoAHV5 in that species. Such findings and the similarity of BoAHV5 to Indian herpesvirus genomes suggest that the origin of type 5 may be linked to recombinations between bovine and bubaline herpesviruses within bubalines, since the scenario for generation of recombinants in buffaloes is potentially present.
Collapse
Affiliation(s)
- Bruna Paredes-Galarza
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Martha T. Oliveira
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Francine B. Timm
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Nicole V. Stone
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Lina Violet-Lozano
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Richard S. Salvato
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde (CEVS) da Secretaria Estadual da Saúde do Rio Grande do Sul (SESRS), Porto Alegre CEP 90450-190, RS, Brazil
| | - Nícolas D. Müller
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Bruno A. Prandi
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Raíssa Gasparetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Michelen Gonçalves
- Laboratório de Virologia, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Irrigação, Estrada do Conde, 6000, Eldorado do Sul CEP 92990-000, RS, Brazil
| | - María A. S. Teixeira
- Agência Estadual de Defesa Agropecuária do Estado do Pará (ADEPARÁ), Belém CEP 66080-008, PA, Brazil
| | - Márcio A. O. Moura
- Laboratório de Patologia Animal, Instituto de Medicina Veterinária, Universidade Federal do Pará (UFPA), Castanhal CEP 68740-970, PA, Brazil
| | - Gabriela Riet-Correa
- Laboratório de Patologia Animal, Instituto de Medicina Veterinária, Universidade Federal do Pará (UFPA), Castanhal CEP 68740-970, PA, Brazil
| | - Valíria D. Cerqueira
- Laboratório de Patologia Animal, Instituto de Medicina Veterinária, Universidade Federal do Pará (UFPA), Castanhal CEP 68740-970, PA, Brazil
| | - Pedro S. Bezerra
- Laboratório de Patologia Animal, Instituto de Medicina Veterinária, Universidade Federal do Pará (UFPA), Castanhal CEP 68740-970, PA, Brazil
| | - Fabrício S. Campos
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Ana C. Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| | - Paulo M. Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre CEP 90035-003, RS, Brazil; (B.P.-G.); (N.V.S.)
| |
Collapse
|
12
|
El-mayet FS, Jones C. Specificity protein 1 (Sp1) and glucocorticoid receptor (GR) stimulate bovine alphaherpesvirus 1 (BoHV-1) replication and cooperatively transactivate the immediate early transcription unit 1 promoter. J Virol 2024; 98:e0143623. [PMID: 38084958 PMCID: PMC10804982 DOI: 10.1128/jvi.01436-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) infections cause respiratory tract disorders and suppress immune responses, which can culminate in bacterial pneumonia. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons present in trigeminal ganglia (TG) and unknown cells in pharyngeal tonsil. Latently infected calves consistently reactivate from latency after an intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics the effects of stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two key viral transcriptional regulators. The IEtu1 promoter contains two functional glucocorticoid receptor (GR) response elements (GREs), and this promoter is transactivated by GR, DEX, and certain Krüppel transcription factors that interact with GC-rich motifs, including consensus specificity protein 1 (Sp1) binding sites. Based on these observations, we hypothesized that Sp1 stimulates productive infection and transactivates key BoHV-1 promoters. DEX treatment of latently infected calves increased the number of Sp1+ TG neurons and cells in pharyngeal tonsil indicating that Sp1 expression is induced by stress. Silencing Sp1 protein expression with siRNA or mithramycin A, a drug that preferentially binds GC-rich DNA, significantly reduced BoHV-1 replication. Moreover, BoHV-1 infection of permissive cells increased Sp1 steady-state protein levels. In transient transfection studies, GR and Sp1 cooperatively transactivate IEtu1 promoter activity unless both GREs are mutated. Co-immunoprecipitation studies revealed that GR and Sp1 interact in mouse neuroblastoma cells (Neuro-2A) suggesting this interaction stimulates IEtu1 promoter activity. Collectively, these studies suggested that the cellular transcription factor Sp1 enhances productive infection and stress-induced BoHV-1 reactivation from latency.IMPORTANCEFollowing acute infection, bovine alphaherpesvirus 1 (BoHV-1) establishes lifelong latency in sensory neurons in trigeminal ganglia (TG) and pharyngeal tonsil. The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. The number of TG neurons and cells in pharyngeal tonsil expressing the cellular transcription factor specificity protein 1 (Sp1) protein increases during early stages of dexamethasone-induced reactivation from latency. Silencing Sp1 expression impairs BoHV-1 replication in permissive cells. Interestingly, mithramycin A, a neuroprotective antibiotic that preferentially binds GC-rich DNA, impairs Sp1 functions and reduces BoHV-1 replication suggesting that it is a potential antiviral drug. The glucocorticoid receptor (GR) and Sp1 cooperatively transactivate the BoHV-1 immediate early transcript unit 1 (IEtu1) promoter, which drives expression of infected cell protein 0 (bICP0) and bICP4. Mithramycin A also reduced Sp1- and GR-mediated transactivation of the IEtu1 promoter. These studies revealed that GR and Sp1 trigger viral gene expression and replication following stressful stimuli.
Collapse
Affiliation(s)
- Fouad S. El-mayet
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
- Department of Virology, Benha University, Faculty of Veterinary Medicine, Benha, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| |
Collapse
|
13
|
Divilov K, Wang X, Swisher AE, Yeoman PC, Rintoul M, Fleener GB, Schoolfield B, Langdon C, Jin L. Ostreid herpesvirus 1 latent infection and reactivation in adult Pacific oysters, Crassostrea gigas. Virus Res 2024; 339:199245. [PMID: 37839558 PMCID: PMC10613911 DOI: 10.1016/j.virusres.2023.199245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Ostreid herpesvirus 1 (OsHV-1) is one of the most economically important pathogens of Pacific oysters. Understanding the pathogenesis of this virus is critical to developing tools to control outbreaks on shellfish farms. OsHV-1 is genetically related to vertebrate herpesviruses, which have a lytic and a latent stage, with the latent stage capable of being reactivated to the lytic stage. Here, OsHV-1 latency in Pacific oysters was investigated in experimentally and naturally infected oysters. Lytic infection in one-year-old oysters injected with the Tomales Bay strain of OsHV-1 was detectable between 1 and 4 days post-injection (dpi) but was not detectable after 5 dpi. The injected oysters shed 1 × 102 to 1 × 104 DNA copies/ml into the water during the 4-day acute phase. Lytic shedding was not detectable in two-year-old oysters injected similarly with the same strain of OsHV-1; however, the OsHV-1 genome was detectable by qPCR in the adductor muscle, gill, mantle, and hemocytes within the first 3 dpi, after which it became undetectable. No OsHV-1 was detectable in the adductor muscle, gill, or mantle from experimentally infected oysters on days 15 and 21 post-injection or from oysters sampled 9 months after surviving an OsHV-1 mortality event; however, OsHV-1 DNA could be detected in hemocytes of both experimentally infected oysters at 21 dpi and naturally infected oysters using nested PCR. In addition, lytic viral gene transcription was detectable in hemocytes of experimentally infected oysters between 1 and 21 dpi and in hemocytes of naturally infected oysters. Furthermore, OsHV-1 reactivation from latency was induced in experimentally infected oysters at 21 dpi and in naturally infected oysters 12 months after an OsHV-1 outbreak.
Collapse
Affiliation(s)
- Konstantin Divilov
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, OR 97365, USA
| | - Xisheng Wang
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Alexandra E Swisher
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Peyton C Yeoman
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | | | - Blaine Schoolfield
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, OR 97365, USA
| | - Chris Langdon
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
14
|
Salazar S, Luong KTY, Koyuncu OO. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023; 15:2284. [PMID: 38140525 PMCID: PMC10747186 DOI: 10.3390/v15122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.
Collapse
Affiliation(s)
| | | | - Orkide O. Koyuncu
- Department of Microbiology & Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.)
| |
Collapse
|
15
|
Synowiec A, Dąbrowska A, Pachota M, Baouche M, Owczarek K, Niżański W, Pyrc K. Feline herpesvirus 1 (FHV-1) enters the cell by receptor-mediated endocytosis. J Virol 2023; 97:e0068123. [PMID: 37493545 PMCID: PMC10506464 DOI: 10.1128/jvi.00681-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
Feline herpesvirus type 1 (FHV-1) is an enveloped dsDNA virus belonging to the Herpesviridae family and is considered one of the two primary viral etiological factors of feline upper respiratory tract disease. In this study, we investigated the entry of FHV-1 into host cells using two models: the AK-D cell line and primary feline skin fibroblasts (FSFs). We employed confocal microscopy, siRNA silencing, and selective inhibitors of various entry pathways. Our observations revealed that the virus enters cells via pH and dynamin-dependent endocytosis, as the infection was significantly inhibited by NH4Cl, bafilomycin A1, dynasore, and mitmab. Additionally, genistein, nystatin, and filipin treatments, siRNA knock-down of caveolin-1, as well as FHV-1 and caveolin-1 colocalization suggest the involvement of caveolin-mediated endocytosis during the entry process. siRNA knock-down of clathrin heavy chain and analysis of virus particle colocalization with clathrin indicated that clathrin-mediated endocytosis also takes part in the primary cells. This is the first study to systematically examine FHV-1 entry into host cells, and for the first time, we describe FHV-1 replication in AK-D and FSFs. IMPORTANCE Feline herpesvirus 1 (FHV-1) is one of the most prevalent viruses in cats, causing feline viral rhinotracheitis, which is responsible for over half of viral upper respiratory diseases in cats and can lead to ocular lesions resulting in loss of sight. Although the available vaccine reduces the severity of the disease, it does not prevent infection or limit virus shedding. Despite the clinical relevance, the entry mechanisms of FHV-1 have not been thoroughly studied. Considering the limitations of commonly used models based on immortalized cells, we sought to verify our findings using primary feline skin fibroblasts, the natural target for infection in cats.
Collapse
Affiliation(s)
- Aleksandra Synowiec
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Dąbrowska
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pachota
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, University of Environmental Science, Wrocław, Poland
| | - Katarzyna Owczarek
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, University of Environmental Science, Wrocław, Poland
| | - Krzysztof Pyrc
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
16
|
Bhat S, Pradeep S, Patil SS, Flores-Holguín N, Glossman-Mitnik D, Frau J, Sommano SR, Ali N, Mohany M, Shivamallu C, Prasad SK, Kollur SP. Preliminary Evaluation of Lablab purpureus Phytochemicals for Anti-BoHV-1 Activity Using In Vitro and In Silico Approaches. ACS OMEGA 2023; 8:22684-22697. [PMID: 37396248 PMCID: PMC10308559 DOI: 10.1021/acsomega.3c01478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Lablab purpureus from the Fabaceae family has been reported to have antiviral properties and used in traditional medical systems like ayurveda and Chinese medicine and has been employed to treat a variety of illnesses including cholera, food poisoning, diarrhea, and phlegmatic diseases. The bovine alphaherpesvirus-1 (BoHV-1) is notorious for causing significant harm to the veterinary and agriculture industries. The removal of the contagious BoHV-1 from host organs, particularly in those reservoir creatures, has required the use of antiviral drugs that target infected cells. This study developed LP-CuO NPs from methanolic crude extracts, and FTIR, SEM, and EDX analyses were used to confirm their formation. SEM analysis revealed that the LP-CuO NPs had a spherical shape with particle sizes between 22 and 30 nm. Energy-dispersive X-ray pattern analysis revealed the presence of only copper and oxide ions. By preventing viral cytopathic effects in the Madin-Darby bovine kidney cell line, the methanolic extract of Lablab purpureus and LP-CuO NPs demonstrated a remarkable dose-dependent anti-BoHV-1 action in vitro. Furthermore, molecular docking and molecular dynamics simulation studies of bio-actives from Lablab purpureus against the BoHV-1 viral envelope glycoprotein disclosed effective interactions between all phytochemicals and the protein, although kievitone was found to have the highest binding affinity, with the greatest number of interactions, which was also validated with molecular dynamics simulation studies. Understanding the chemical reactivity qualities of the four ligands was taken into consideration facilitated by the global and local descriptors, which aimed to predict the chemical reactivity descriptors of the studied molecules through the conceptual DFT methodology, which, along with ADMET finding, support the in vitro and in silico results.
Collapse
Affiliation(s)
- Smitha
S. Bhat
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Sushma Pradeep
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Sharanagouda S. Patil
- ICAR-National
Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560 064, India
| | - Norma Flores-Holguín
- Laboratorio
Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31136, Mexico
| | - Daniel Glossman-Mitnik
- Laboratorio
Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31136, Mexico
| | - Juan Frau
- Departament
de Química, Facultat de Ciences, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Sarana Rose Sommano
- Plant
Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Chandan Shivamallu
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Shashanka K. Prasad
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
- Plant
Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Shiva Prasad Kollur
- School
of Physical Sciences, Amrita Vishwa Vidyapeetham,
Mysuru Campus, Mysuru, Karnataka 570 026, India
| |
Collapse
|
17
|
Microscopic lesions and modulation of gene expression in cervical medulla during BoAHV-1and BoAHV-5 infection: A mini-review. Res Vet Sci 2023; 156:81-87. [PMID: 36791580 DOI: 10.1016/j.rvsc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Bovine herpesvirus (BoAHV) types 1 and 5 are closely-related neurotropic alpha-herpesviruses. BoAHV-1 generally causes respiratory and genital disease but can occasionally cause encephalitis. BoAHV-5 is the causative agent of non suppurative meningoencephalitis in calves. During neuroinvasion, both viruses reach the central and peripheral nervous system. While brain alterations are well-described, the changes that occur in the medulla have not been fully detailed. In this work, we integrated and analyzed the virological findings, the microscopic lesions and the changes that occur in the expression of genes related to the innate immunity, cell cycle and apoptosis in the cervical medulla of calves experimentally-infected with BoAHV-1 and BoAHV-5. This will contribute to the understanding of the differential neuropathogenesis of these alpha-herpesviruses of cattle.
Collapse
|
18
|
Ostler JB, Jones C. The Bovine Herpesvirus 1 Latency-Reactivation Cycle, a Chronic Problem in the Cattle Industry. Viruses 2023; 15:552. [PMID: 36851767 PMCID: PMC9966457 DOI: 10.3390/v15020552] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) is a persistent and recurring disease that affects cattle worldwide. It is a major contributor to bovine respiratory disease and reproductive failure in the US. A major complication of BoHV-1 arises from the lifelong latent infection established in the sensory ganglia of the peripheral nervous system following acute infection. Lifelong latency is marked by periodic reactivation from latency that leads to virus transmission and transient immunosuppression. Physiological and environmental stress, along with hormone fluctuations, can drive virus reactivation from latency, allowing the virus to spread rapidly. This review discusses the mechanisms of the latency/reactivation cycle, with particular emphasis on how different hormones directly regulate BoHV-1 gene expression and productive infection. Glucocorticoids, including the synthetic corticosteroid dexamethasone, are major effectors of the stress response. Stress directly regulates BoHV-1 gene expression through multiple pathways, including β-catenin dependent Wnt signaling, and the glucocorticoid receptor. Related type 1 nuclear hormone receptors, the androgen and progesterone receptors, also drive BoHV-1 gene expression and productive infection. These receptors form feed-forward transcription loops with the stress-induced Krüppel-like transcription factors KLF4 and KLF15. Understanding these molecular pathways is critical for developing novel therapeutics designed to block reactivation and reduce virus spread and disease.
Collapse
Affiliation(s)
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
19
|
Zhang L, Zhang L, Li F, Liu W, Tai Z, Yang J, Zhang H, Tuo J, Yu C, Xu Z. When herpes simplex virus encephalitis meets antiviral innate immunity. Front Immunol 2023; 14:1118236. [PMID: 36742325 PMCID: PMC9896518 DOI: 10.3389/fimmu.2023.1118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Herpes simplex virus (HSV) is the most common pathogen of infectious encephalitis, accounting for nearly half of the confirmed cases of encephalitis. Its clinical symptoms are often atypical. HSV PCR in cerebrospinal fluid is helpful for diagnosis, and the prognosis is usually satisfactory after regular antiviral treatment. Interestingly, some patients with recurrent encephalitis have little antiviral effect. HSV PCR in cerebrospinal fluid is negative, but glucocorticoid has a significant effect after treatment. Specific antibodies, such as the NMDA receptor antibody, the GABA receptor antibody, and even some unknown antibodies, can be isolated from cerebrospinal fluid, proving that the immune system contributes to recurrent encephalitis, but the specific mechanism is still unclear. Based on recent studies, we attempt to summarize the relationship between herpes simplex encephalitis and innate immunity, providing more clues for researchers to explore this field further.
Collapse
Affiliation(s)
- Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| |
Collapse
|
20
|
Sun M, Hou L, Song H, Lyu C, Tang YD, Qin L, Liu Y, Wang S, Meng F, Cai X. The relationship between autophagy and apoptosis during pseudorabies virus infection. Front Vet Sci 2022; 9:1064433. [PMID: 36605762 PMCID: PMC9810027 DOI: 10.3389/fvets.2022.1064433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Both autophagy and apoptosis are mechanisms that maintain homeostasis in cells and that play essential roles in viral infections. Previous studies have demonstrated that autophagy and apoptosis pathways occurred with complex relationships in virus-infected cells. However, the regulation between these two processes in Pseudorabies virus (PRV) infection remains unclear. In the present study, we demonstrated that activated autophagy was induced at the early stage of PRV infection and that apoptosis was induced at the late stage of infection. Autophagy induction inhibited apoptosis and decreased viral replication, and autophagy inhibition promoted apoptosis and increased viral replication. We also found that viral infection resulted in an increase in the production of reactive oxygen species (ROS) and activation of apoptosis in autophagy-impaired cells, suggesting that ROS may participate in the cross-talk between autophagy and apoptosis in PRV-infected cells. Our studies provide possible molecular mechanisms for the cross-talk between apoptosis and autophagy induced by PRV infection in porcine cells. This suggests that these two cell death processes should be considered as the same continuum rather than as completely separate processes.
Collapse
Affiliation(s)
- Mingxia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Linlin Hou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Huan Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan-dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China,Laboratory Animal Centre, Qiqihar Medical University, Qiqihar, China
| | - Yonggang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fandan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China,*Correspondence: Xuehui Cai, ✉
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China,Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China,Fandan Meng, ✉
| |
Collapse
|
21
|
Hoyos-Jaramillo A, Palomares R, Bittar J, Divers S, Chamorro M, Berghaus R, Kirks S, Rush J, Edmondson M, Rodriguez A, Gonzalez-Altamiranda E. Clinical status and endoscopy of the upper respiratory tract of dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 after vaccination and trace minerals injection. Res Vet Sci 2022; 152:582-595. [DOI: 10.1016/j.rvsc.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
|
22
|
Martínez Cuesta L, Nieto Farías MV, Romeo F, Verna A, Pérez S. Expression of apoptosis-related genes at different stages of BoHV-1 and 5 infection of bovine neural tissue. Comp Immunol Microbiol Infect Dis 2022; 90-91:101906. [DOI: 10.1016/j.cimid.2022.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
23
|
Tombácz D, Kakuk B, Torma G, Csabai Z, Gulyás G, Tamás V, Zádori Z, Jefferson VA, Meyer F, Boldogkői Z. In-Depth Temporal Transcriptome Profiling of an Alphaherpesvirus Using Nanopore Sequencing. Viruses 2022; 14:v14061289. [PMID: 35746760 PMCID: PMC9229804 DOI: 10.3390/v14061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
In this work, a long-read sequencing (LRS) technique based on the Oxford Nanopore Technology MinION platform was used for quantifying and kinetic characterization of the poly(A) fraction of bovine alphaherpesvirus type 1 (BoHV-1) lytic transcriptome across a 12-h infection period. Amplification-based LRS techniques frequently generate artefactual transcription reads and are biased towards the production of shorter amplicons. To avoid these undesired effects, we applied direct cDNA sequencing, an amplification-free technique. Here, we show that a single promoter can produce multiple transcription start sites whose distribution patterns differ among the viral genes but are similar in the same gene at different timepoints. Our investigations revealed that the circ gene is expressed with immediate–early (IE) kinetics by utilizing a special mechanism based on the use of the promoter of another IE gene (bicp4) for the transcriptional control. Furthermore, we detected an overlap between the initiation of DNA replication and the transcription from the bicp22 gene, which suggests an interaction between the two molecular machineries. This study developed a generally applicable LRS-based method for the time-course characterization of transcriptomes of any organism.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Vivien Tamás
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (V.T.); (Z.Z.)
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (V.T.); (Z.Z.)
| | - Victoria A. Jefferson
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman P.O. Box 9655, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (F.M.)
| | - Florencia Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman P.O. Box 9655, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (F.M.)
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
- Correspondence:
| |
Collapse
|
24
|
Wijesekera N, Hazell N, Jones C. Independent Cis-Regulatory Modules within the Herpes Simplex Virus 1 Infected Cell Protein 0 (ICP0) Promoter Are Transactivated by Krüppel-like Factor 15 and Glucocorticoid Receptor. Viruses 2022; 14:v14061284. [PMID: 35746756 PMCID: PMC9228413 DOI: 10.3390/v14061284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
A corticosteroid antagonist impairs Herpes Simplex Virus 1 (HSV-1) productive infection and explant-induced reactivation from latency, suggesting corticosteroids and the glucocorticoid receptor (GR) mediate certain aspects of these complex virus-host interactions. GR-hormone complexes regulate transcription positively and negatively, in part, by binding GR response elements (GREs). Recent studies revealed infected cell protein 0 (ICP0), ICP4, and ICP27 promoter/cis-regulatory modules (CRMs) are cooperatively transactivated by GR and Krüppel-like factor 15 (KLF15), which forms a feed-forward transcription loop. We hypothesized the ICP0 promoter contains independent CRMs that are transactivated by GR, KLF15, and the synthetic corticosteroid dexamethasone (DEX). This hypothesis is based on the finding that the ICP0 promoter contains multiple transcription factor binding sites, and GR and KLF15 cooperatively transactivate the full-length ICP0 promoter. ICP0 promoter sequences spanning -800 to -635 (fragment A) were efficiently transactivated by GR, KLF15, and DEX in monkey kidney cells (Vero), whereas GR and DEX significantly enhanced promoter activity in mouse neuroblastoma cells (Neuro-2A). Furthermore, ICP0 fragment B (-458 to -635) was efficiently transactivated by GR, KLF15, and DEX in Vero cells, but not Neuro-2A cells. Finally, fragment D (-232 to -24) was transactivated significantly in Vero cells by GR, KLF15, and DEX, whereas KLF15 and DEX were sufficient for transactivation in Neuro-2A cells. Collectively, these studies revealed efficient transactivation of three independent CRMs within the ICP0 promoter by GR, KLF15, and/or DEX. Finally, GC-rich sequences containing specificity protein 1 (Sp1) binding sites were essential for transactivation.
Collapse
Affiliation(s)
- Nishani Wijesekera
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 208 N McFarland Street, RM 250 McElroy Hall, Stillwater, OK 74078, USA;
| | - Nicholas Hazell
- Experimental Pathology Program, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 208 N McFarland Street, RM 250 McElroy Hall, Stillwater, OK 74078, USA;
- Correspondence: ; Tel.: +1-405-744-1842
| |
Collapse
|
25
|
Progesterone Sporadically Induces Reactivation from Latency in Female Calves but Proficiently Stimulates Bovine Herpesvirus 1 Productive Infection. J Virol 2022; 96:e0213021. [PMID: 35019726 DOI: 10.1128/jvi.02130-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute infection of the ocular, oral, or nasal cavity by bovine herpesvirus 1 (BoHV-1) culminates in lifelong latency in sensory neurons within trigeminal ganglia. The BoHV-1 latency reactivation cycle, including calves latently infected with commercially available modified live vaccines, can lead to reproductive complications, including abortions. Recent studies demonstrated progesterone stimulated BoHV-1 productive infection and sporadically induced reactivation from latency in male rabbits. The progesterone receptor (PR) and progesterone transactivate the immediate early transcription unit 1 (IEtu1) promoter and the infected cell protein 0 (bICP0) early promoter. These viral promoters drive expression of two viral transcriptional regulatory proteins (bICP0 and bICP4) that are crucial for productive infection. Based on these observations, we hypothesize that progesterone induces reactivation in a subset of calves latently infected with BoHV-1. These studies demonstrated progesterone was less efficient than dexamethasone at initiating reactivation from latency in female calves. Notably, heat stress correlated with enhancing the ability of progesterone to induce reactivation from latency. Previous studies demonstrated that heat stress activates the glucocorticoid receptor (GR), which suggested GR activation augments progesterone-mediated reactivation from latency. Additional studies revealed GR and PR cooperatively stimulated productive infection and synergistically transactivated the IEtu1 promoter when cultures were treated with dexamethasone. Mutating one or both GR binding sites in the IEtu1 promoter blocked transactivation. Collectively, these studies indicated that progesterone intermittently triggered reactivation from latency, and heat stress augmented reactivation from reactivation. Finally, these studies suggest progesterone enhances virus spread in tissues and cells where PR is abundantly expressed. IMPORTANCE Steroid hormone fluctuations are predicted to enhance or initiate bovine herpesvirus 1 (BoHV-1) replication and virus spread in cattle. For example, stress increases the incidence of BoHV-1 reactivation from latency in cattle, and the synthetic corticosteroid dexamethasone consistently induces reactivation from latency. The glucocorticoid receptor (GR) and dexamethasone stimulate key viral regulatory promoters and productive infection, in part because the viral genome contains numerous consensus GR-responsive elements (GREs). The progesterone receptor (PR) and GR belong to the type I nuclear hormone receptor family. PR and progesterone specifically bind to and transactivate viral promoters that contain GREs and stimulate BoHV-1 productive infection. Although progesterone did not induce reactivation from latency in female calves as efficiently as dexamethasone, heat stress enhanced progesterone-mediated reactivation from latency. Consequently, we predict that low levels of stressful stimuli can cooperate with progesterone to induce reactivation from latency or promote virus spread.
Collapse
|
26
|
Ataseven VS, Gürel K, Pestil Z, Ambarcıoğlu P, Doğan F, Kayhanlar M. BVDV, BHV-1 and BLV antibodies in dromedary camels of Turkey kept without and with ruminants. Trop Anim Health Prod 2021; 54:27. [PMID: 34958424 DOI: 10.1007/s11250-021-03030-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Camels are the only animals bred to sustain the tradition of wrestling in Turkey and are reared within a limited set of geographic areas. Farmers of such animals may also be engaged in ruminant breeding. The current research was aimed at documenting bovine viral diarrhoea virus (BVDV), bovine herpesvirus-1 (BHV-1), and bovine leukaemia virus (BLV) infections in sera collected from dromedary camels in four different geographical regions of Turkey during the years 2019-2021. All samples were tested for BVDV, BHV-1 and BLV antibodies as well as BVDV antigen by ELISA. Antibodies against BVDV were found in 16.8% of the camel sera tested. However, none of the camels sampled were positive in terms of BHV-1 and BLV antibodies as well as BVDV antigen. The prevalence was observed higher in the herds in which ruminants were raised in addition to camels (OR = 4.583, 95% CI, 1.298-16.182), (p = 0.018), while the prevalence was observed lower in the herds in which only camels were raised. This study showed that BVDV infection was more prevalent than BHV-1 and BLV infections in Turkish dromedary camels. Herewith, the camels, being a susceptible species to numerous viral ruminant diseases, may also serve as an important source of BVDV infection for other ruminant animals in the same flock.
Collapse
Affiliation(s)
- Veysel Soydal Ataseven
- Department of Virology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Kemal Gürel
- Department of Virology, Graduate School of Health Sciences, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Züleyha Pestil
- Viral Diagnostic Laboratory, Institute of Pendik Veterinary Control, Istanbul, Turkey
| | - Pınar Ambarcıoğlu
- Department of Biostatistics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Fırat Doğan
- Department of Virology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | | |
Collapse
|
27
|
Ostler JB, Jones C. Stress Induced Transcription Factors Transactivate the Herpes Simplex Virus 1 Infected Cell Protein 27 (ICP27) Transcriptional Enhancer. Viruses 2021; 13:2296. [PMID: 34835102 PMCID: PMC8622287 DOI: 10.3390/v13112296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons, including sensory neurons within trigeminal ganglia. During latency, lytic cycle viral gene expression is silenced. However, stressful stimuli can trigger reactivation from latency. The viral tegument protein, VP-16, transactivates all immediate early (IE) promoters during productive infection. Conversely, cellular factors are expected to trigger viral gene expression during early stages of reactivation from latency and in non-neuronal cells that do not support high levels of productive infection. The glucocorticoid receptor (GR), synthetic corticosteroid dexamethasone, and certain stress-induced transcription factors cooperatively transactivate infected cell protein 0 (ICP0) and ICP4 promoters. Since ICP27 protein expression is required for productive infection, we hypothesized that the ICP27 promoter is transactivated by stress-induced transcription factors. New studies have demonstrated that ICP27 enhancer sequences were transactivated by GR and Krüppel-like factor 15 (KLF15). Mutation of a consensus Sp1 binding site within ICP27 enhancer sequences impaired transactivation by GR and KLF15. Chromatin immunoprecipitation studies have demonstrated that GR and KLF15 occupy ICP27 promoter sequences during productive infection. Cells transfected with an ICP27 enhancer fragment revealed the GR and KLF15 occupancy of ICP27 enhancer sequences required the intact Sp1 binding site. Notably, GR and KLF15 form a feed-forward transcription loop in response to stress, suggesting these cellular factors promote viral replication following stressful stimuli.
Collapse
Affiliation(s)
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
28
|
Regulation of neurotropic herpesvirus productive infection and latency-reactivation cycle by glucocorticoid receptor and stress-induced transcription factors. VITAMINS AND HORMONES 2021; 117:101-132. [PMID: 34420577 DOI: 10.1016/bs.vh.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurotropic α-herpesvirinae subfamily members, herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1), are important viral pathogens in their respective hosts. Following acute infection on mucosal surfaces, these viruses establish life-long latency in neurons within trigeminal ganglia (TG) and central nervous system. Chronic or acute stress (physiological or psychological) increases the frequency of reactivation from latency, which leads to virus shedding, virus transmission, and recurrent disease. While stress impairs immune responses and inflammatory signaling cascades, we predict stressful stimuli directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. For example, BoHV-1 and HSV-1 productive infection is impaired by glucocorticoid receptor (GR) antagonists but is stimulated by the synthetic corticosteroid dexamethasone. Promoters that drive expression of key viral transcriptional regulatory proteins are cooperatively stimulated by GR and specific Krüppel like transcription factors (KLF) induced during stress induced reactivation from latency. The BoHV-1 immediate early transcription unit 1 promoter and contains two GR response elements (GRE) that are essential for cooperative transactivation by GR and KLF15. Conversely, the HSV-1 infected cell protein 0 (ICP0) and ICP4 promoter as well as the BoHV-1 ICP0 early promoter lack consensus GREs: however, these promoters are cooperatively transactivated by GR and KLF4 or KLF15. Hence, growing evidence suggests GR and stress-induced transcription factors directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. We predict the immune inhibitory effects of stress enhance virus spread at late stages during reactivation from latency.
Collapse
|
29
|
Maróti Z, Tombácz D, Moldován N, Torma G, Jefferson VA, Csabai Z, Gulyás G, Dörmő Á, Boldogkői M, Kalmár T, Meyer F, Boldogkői Z. Time course profiling of host cell response to herpesvirus infection using nanopore and synthetic long-read transcriptome sequencing. Sci Rep 2021; 11:14219. [PMID: 34244540 PMCID: PMC8270970 DOI: 10.1038/s41598-021-93142-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
Third-generation sequencing is able to read full-length transcripts and thus to efficiently identify RNA molecules and transcript isoforms, including transcript length and splice isoforms. In this study, we report the time-course profiling of the effect of bovine alphaherpesvirus type 1 on the gene expression of bovine epithelial cells using direct cDNA sequencing carried out on MinION device of Oxford Nanopore Technologies. These investigations revealed a substantial up- and down-regulatory effect of the virus on several gene networks of the host cells, including those that are associated with antiviral response, as well as with viral transcription and translation. Additionally, we report a large number of novel bovine transcript isoforms identified by nanopore and synthetic long-read sequencing. This study demonstrates that viral infection causes differential expression of host transcript isoforms. We could not detect an increased rate of transcriptional readthroughs as described in another alphaherpesvirus. According to our knowledge, this is the first report on the use of LoopSeq for the analysis of eukaryotic transcriptomes. This is also the first report on the application of nanopore sequencing for the kinetic characterization of cellular transcriptomes. This study also demonstrates the utility of nanopore sequencing for the characterization of dynamic transcriptomes in any organisms.
Collapse
Affiliation(s)
- Zoltán Maróti
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary.,MTA-SZTE Momentum GeMiNI Research Group, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Victoria A Jefferson
- Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS, 39762, USA
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Miklós Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Florencia Meyer
- Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS, 39762, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary.
| |
Collapse
|
30
|
El-mayet FS, Harrison KS, Jones C. Regulation of Krüppel-Like Factor 15 Expression by Herpes Simplex Virus Type 1 or Bovine Herpesvirus 1 Productive Infection. Viruses 2021; 13:1148. [PMID: 34203849 PMCID: PMC8232590 DOI: 10.3390/v13061148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.
Collapse
Affiliation(s)
- Fouad S. El-mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Kaliobyia, Egypt
| | - Kelly S. Harrison
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
| |
Collapse
|
31
|
Jin L, Black W, Sawyer T. Application of Environment-Friendly Rhamnolipids against Transmission of Enveloped Viruses Like SARS-CoV2. Viruses 2021; 13:v13020322. [PMID: 33672561 PMCID: PMC7924030 DOI: 10.3390/v13020322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
In the face of new emerging respiratory viruses, such as SARS-CoV2, vaccines and drug therapies are not immediately available to curb the spread of infection. Non-pharmaceutical interventions, such as mask-wearing and social distance, can slow the transmission. However, both mask and social distance have not prevented the spread of respiratory viruses SARS-CoV2 within the US. There is an urgent need to develop an intervention that could reduce the spread of respiratory viruses. The key to preventing transmission is to eliminate the emission of SARS-CoV2 from an infected person and stop the virus from propagating in the human population. Rhamnolipids are environmentally friendly surfactants that are less toxic than the synthetic surfactants. In this study, rhamnolipid products, 222B, were investigated as disinfectants against enveloped viruses, such as bovine coronavirus and herpes simplex virus 1 (HSV-1). The 222B at 0.009% and 0.0045% completely inactivated 6 and 4 log PFU/mL of HSV-1 in 5–10 min, respectively. 222B at or below 0.005% is also biologically safe. Moreover, 50 μL of 222B at 0.005% on ~1 cm2 mask fabrics or plastic surface can inactivate ~103 PFU HSV-1 in 3–5 min. These results suggest that 222B coated on masks or plastic surface can reduce the emission of SARS-CoV2 from an infected person and stop the spread of SARS-CoV2.
Collapse
Affiliation(s)
- Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: ; Tel.: +1-541-737-9893
| | - Wendy Black
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| | - Teresa Sawyer
- Electron Microscopy Facility, 145 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
32
|
Koganti R, Yadavalli T, Naqvi RA, Shukla D, Naqvi AR. Pathobiology and treatment of viral keratitis. Exp Eye Res 2021; 205:108483. [PMID: 33556334 DOI: 10.1016/j.exer.2021.108483] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Keratitis is one of the most prevalent ocular diseases manifested by partial or total loss of vision. Amongst infectious (viz., microbes including bacteria, fungi, amebae, and viruses) and non-infectious (viz., eye trauma, chemical exposure, and ultraviolet exposure, contact lens) risk factors, viral keratitis has been demonstrated as one of the leading causes of corneal opacity. While many viruses have been shown to cause keratitis (such as rhabdoviruses, coxsackieviruses, etc.), herpesviruses are the predominant etiologic agent of viral keratitis. This chapter will summarize current knowledge on the prevalence, diagnosis, and pathobiology of viral keratitis. Virus-mediated immunomodulation of host innate and adaptive immune components is critical for viral persistence, and dysfunctional immune responses may cause destruction of ocular tissues leading to keratitis. Immunosuppressed or immunocompromised individuals may display recurring disease with pronounced severity. Early diagnosis of viral keratitis is beneficial for disease management and response to treatment. Finally, we have discussed current and emerging therapies to treat viral keratitis.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, IL, 60612, USA.
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
33
|
Ostler JB, Thunuguntla P, Hendrickson BY, Jones C. Transactivation of Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 4 Enhancer by Glucocorticoid Receptor and Stress-Induced Transcription Factors Requires Overlapping Krüppel-Like Transcription Factor 4/Sp1 Binding Sites. J Virol 2021; 95:e01776-20. [PMID: 33208447 PMCID: PMC7851558 DOI: 10.1128/jvi.01776-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023] Open
Abstract
Following acute infection, herpes simplex virus 1 (HSV-1) lytic cycle viral gene expression is silenced; consequently, lifelong latency in neurons is established. Certain external stimuli that trigger reactivation from latency also activate the glucocorticoid receptor (GR). The synthetic corticosteroid dexamethasone, but not a GR-specific antagonist, increases the frequency of explant-induced reactivation from latency and stimulates productive infection. Furthermore, dexamethasone increases expression of cellular transcription factors in trigeminal ganglionic neurons: for example, SLUG and three Krüppel-like transcription factor (KLF) family members, KLF4, KLF15, and promyelocytic leukemia zinc finger protein (PLZF). Consequently, we hypothesized that stress-induced transcription factors stimulate expression of ICP4, a viral transcriptional regulator required for productive infection. New studies demonstrated that GR and KLF4, PLZF, or SLUG cooperatively transactivate the ICP4 enhancer upstream of a minimal promoter in monkey kidney cells (Vero) and mouse neuroblastoma cells (Neuro-2A). Strikingly, mutagenesis of two KLF4/Sp1 binding sites reduced GR- plus KLF4-, PLZF-, or SLUG-mediated transactivation to basal levels. A consensus enhancer (E)-Box adjacent to a KLF4/Sp1 binding site was also required for GR- and SLUG-, but not KLF family member-, mediated transactivation of the ICP4 promoter. Chromatin immunoprecipitation studies (ChIP) revealed GR and stress-induced transcription factors occupy ICP4 enhancer sequences. Conversely, specific binding was generally reduced in the KLF4/Sp1 mutant. Furthermore, GR and SLUG occupancy of ICP4 enhancer sequences was reduced in the E-Box mutant. Based on these studies, we suggest stressful stimuli can trigger productive infection because GR and specific stress-induced transcription factors activate ICP4 expression.IMPORTANCE Certain stressful stimuli activate the glucocorticoid receptor (GR) and increase the incidence of herpes simplex virus 1 (HSV-1) reactivation from latency. For example, a corticosteroid antagonist impairs productive infection and virus shedding following explant of trigeminal ganglia from latently infected mice. Infected cell protein 4 (ICP4) is the only immediate early viral transcriptional regulator required for productive infection, suggesting stressful stimuli stimulate ICP4 expression. New studies revealed GR and stress-induced transcription factors identified during reactivation from latency, SLUG and three Krüppel-like transcription factor family members (KLF4, KLF15, and promyelocytic leukemia zinc finger protein), cooperatively transactivate the ICP4 enhancer. Two KLF4 consensus binding sites were crucial for cooperative transactivation of the ICP4 enhancer. A consensus enhancer-box also mediated cooperative transactivation of the ICP4 enhancer by GR and SLUG. The ability of GR and stress-induced transcription factors to transactivate ICP4 enhancer activity is predicted to trigger productive infection following stressful stimuli.
Collapse
Affiliation(s)
- Jeffery B Ostler
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Prasanth Thunuguntla
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Bailey Y Hendrickson
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
34
|
Kornuta CA, Langellotti CA, Bidart JE, Soria I, Quattrocchi V, Gammella M, Cheuquepán Valenzuela F, Mignaqui AC, Ferraris S, Charleston B, Hecker YP, Moore DP, Zamorano PI. A plasmid encoding the extracellular domain of CD40 ligand and Montanide™ GEL01 as adjuvants enhance the immunogenicity and the protection induced by a DNA vaccine against BoHV-1. Vaccine 2021; 39:1007-1017. [PMID: 33446386 DOI: 10.1016/j.vaccine.2020.11.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 02/09/2023]
Abstract
DNA vaccines are capable of inducing humoral and cellular immunity, and are important to control bovine herpesvirus 1 (BoHV-1), an agent of the bovine respiratory disease complex. In previous work, a DNA plasmid that encodes a secreted form of BoHV-1 glycoprotein D (pCIgD) together with commercial adjuvants provided partial protection against viral challenge of bovines. In this work, we evaluate new molecules that could potentiate the DNA vaccine. We show that a plasmid encoding a soluble CD40 ligand (CD40L) and the adjuvant Montanide™ GEL01 (GEL01) activate in vitro bovine afferent lymph dendritic cells (ALDCs). CD40L is a co-stimulating molecule, expressed transiently on activated CD4+ T cells and, to a lesser extent, on activated B cells and platelets. The interaction with its receptor, CD40, exerts effects on the presenting cells, triggering responses in the immune system. GEL01 was designed to improve transfection of DNA vaccines. We vaccinated cattle with: pCIgD; pCIgD-GEL01; pCIgD with GEL01 and CD40L plasmid (named pCIgD-CD40L-GEL01) or with pCIneo vaccines. The results show that CD40L plasmid with GEL01 improved the pCIgD DNA vaccine, increasing anti-BoHV-1 total IgGs, IgG1, IgG2 subclasses, and neutralizing antibodies in serum. After viral challenge, bovines vaccinated with pCIgD-GEL01-CD40L showed a significant decrease in viral excretion and clinical score. On the other hand, 80% of animals in group pCIgD-GEL01-CD40L presented specific anti-BoHV-1 IgG1 antibodies in nasal swabs. In addition, PBMCs from pCIgD-CD40L-GEL01 had the highest percentage of animals with a positive lymphoproliferative response against the virus and significant differences in the secretion of IFNγ and IL-4 by mononuclear cells, indicating the stimulation of the cellular immune response. Overall, the results demonstrate that a plasmid expressing CD40L associated with the adjuvant GEL01 improves the efficacy of a DNA vaccine against BoHV-1.
Collapse
Affiliation(s)
- Claudia Alejandra Kornuta
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cecilia Ana Langellotti
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Esteban Bidart
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Felipe Cheuquepán Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Ana Clara Mignaqui
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - Yanina Paola Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Dadin Prando Moore
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Patricia Inés Zamorano
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET) Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad del Salvador, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Sawant L, Thunuguntla P, Jones C. Cooperative activation of bovine herpesvirus 1 productive infection and viral regulatory promoters by androgen receptor and Krüppel-like transcription factors 4 and 15. Virology 2021; 552:63-72. [PMID: 33065464 DOI: 10.1016/j.virol.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen, establishes latency in sensory neurons. The viral genome contains more than 100 consensus glucocorticoid receptor (GR) regulatory elements (GREs): consequently, stress stimulates viral replication and reactivation from latency. The immediate early transcription unit 1 (IEtu1) and bICP0 early promoters are transactivated by GR and synthetic corticosteroid dexamethasone. The androgen receptor (AR), like GR, is a Type 1 nuclear hormone receptor that binds and stimulates certain promoters containing GREs. Consequently, we hypothesized AR and 5α-Dihydrotestosterone (DHT) stimulate productive infection and key viral promoters. New studies demonstrated AR, DHT, and Krüppel like transcription factor 4 (KLF4) cooperatively stimulated productive infection and bICP0 E promoter activity in mouse neuroblastoma cells (Neuro-2A). KLF15 also cooperated with AR and DHT to stimulate IEtu1 promoter activity. We suggest AR and testosterone increase the prevalence of virus in semen by stimulating viral gene expression and replication.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Prasanth Thunuguntla
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA.
| |
Collapse
|
36
|
Zhou HY, Gao SQ, Gong YS, Lin T, Tong S, Xiong W, Shi CY, Wang WQ, Fang JG. Anti-HSV-1 effect of dihydromyricetin from Ampelopsis grossedentata via the TLR9-dependent anti-inflammatory pathway. J Glob Antimicrob Resist 2020; 23:370-376. [PMID: 33161114 DOI: 10.1016/j.jgar.2020.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/09/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Herpes simplex virus 1 (HSV-1) is one of the most prevalent viruses in humans worldwide. Owing to limited therapeutic options mainly with acyclovir (ACV) and analogues and the emergence of ACV-resistant strains, new drugs with different modes of action and low toxicity are required. The aim of this study was to determine the anti-HSV-1 effect and mechanism of action of the flavonoid compound dihydromyricetin (DHM) from Ampelopsis grossedentata. METHODS The HSV-1 inhibitory effect of DHM was evaluated by measuring plaque formation and generation of progeny virus as well as expression of HSV-1-related genes in Vero cells. The molecular mechanism of the antiviral activity of DHM against HSV-1 was explored by real-time quantitative PCR and ELISA. RESULTS DHM presented a significant inhibitory effect on HSV-1 plaque formation and generation of progeny virus, with an EC50 (50% effective concentration) of 12.56 μM in Vero cells. Furthermore, expression of HSV-1 immediate-early genes (ICP4 and ICP22), early genes (ICP8 and UL42) and late genes (gB, VP1/2) was decreased by DHM at concentrations of 16 μM and 32 μM. DHM specifically suppressed mRNA levels of Toll-like receptor 9 (TLR9), leading to inhibition of the inflammatory transcriptional factor NFκB and a decrease in TNFα. CONCLUSION These findings indicate that the effective inhibitory activity of DHM was achieved by suppressing TNFα production in a TLR9-dependent manner. Although further studies are needed to better characterise the activity of DHM in vivo, the results suggest this extract as a promising new anti-HSV-1 agent.
Collapse
Affiliation(s)
- Hai-Yun Zhou
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shuang-Qi Gao
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Yu-Sheng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Tong Lin
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shuai Tong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Wei Xiong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chun-Yang Shi
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Wen-Qing Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jian-Guo Fang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
37
|
Specific Akt Family Members Impair Stress-Mediated Transactivation of Viral Promoters and Enhance Neuronal Differentiation: Important Functions for Maintaining Latency. J Virol 2020; 94:JVI.00901-20. [PMID: 32796067 DOI: 10.1128/jvi.00901-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Neurotropic Alphaherpesvirinae subfamily members such as bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) establish and maintain lifelong latent infections in neurons. Following infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia (TG) are an important site for latency. Certain external stressors can trigger reactivation from latency, in part because activation of the glucocorticoid receptor (GR) stimulates productive infection and promoters that drive expression of key viral transcriptional regulators. The Akt serine/threonine protein kinase family is linked to maintaining latency. For example, Akt3 is detected in more TG neurons during BoHV-1 latency than in reactivation and uninfected calves. Furthermore, Akt signaling correlates with maintaining HSV-1 latency in certain neuronal models of latency. Finally, an active Akt protein kinase is crucial for the ability of the HSV-1 latency-associated transcript (LAT) to inhibit apoptosis in neuronal cell lines. Consequently, we hypothesized that viral and/or cellular factors impair stress-induced transcription and reduce the incidence of reactivation triggered by low levels of stress. New studies demonstrate that Akt1 and Akt2, but not Akt3, significantly reduced GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, the HSV-1 infected cell protein 0 (ICP0) promoter, and the mouse mammary tumor virus long terminal repeat (MMTV-LTR). Akt3, but not Akt1 or Akt2, significantly enhanced neurite formation in mouse neuroblastoma cells, which correlates with repairing damaged neurons. These studies suggest that unique biological properties of the three Akt family members promote the maintenance of latency in differentiated neurons.IMPORTANCE External stressful stimuli are known to increase the incidence of reactivation of Alphaherpesvirinae subfamily members. Activation of the glucocorticoid receptor (GR) by the synthetic corticosteroid dexamethasone (DEX) stimulates bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) reactivation. Furthermore, GR and dexamethasone stimulate productive infection and promoters that drive expression of viral transcriptional regulators. These observations lead us to predict that stress-induced transcription is impaired by factors abundantly expressed during latency. Interestingly, activation of the Akt family of serine/threonine protein kinases is linked to maintenance of latency. New studies reveal that Akt1 and Ak2, but not Akt3, impaired GR- and dexamethasone-mediated transactivation of the BoHV-1 immediate early transcription unit 1 and HSV-1 ICP0 promoters. Strikingly, Akt3, but not Akt1 or Akt2, stimulated neurite formation in mouse neuroblastoma cells, a requirement for neurogenesis. These studies provide insight into how Akt family members may promote the maintenance of lifelong latency.
Collapse
|
38
|
Trukhmanov AS, Makushina AA, Storonova OA, Ivashkina NY. [Evaluation and management of infectious esophagitis in immunocompromised patients and immunocompetent individuals]. TERAPEVT ARKH 2020; 92:108-117. [PMID: 33346470 DOI: 10.26442/00403660.2020.08.000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/22/2022]
Abstract
Among the many causes of the inflammatory process in the esophagus, infectious diseases are becoming increasingly important due to their steady growth. Previously esophageal infections have traditionally been associated with immunodeficiency syndromes, but now in clinical practice, these disorders are becoming increasingly recognized in immunocompetent individuals. Early diagnosis of infectious esophagitis is necessary to develop effective treatment tactics, and, as a result, reduce the risk of complications and adverse outcomes of the disease. This study reviewed the most clinical relevant pathogens of infectious esophagitis, both among patients with immunodeficiency and among healthy individuals. Specific diagnostic, risk factors, clinical presentation and therapeutic features were considered depending on the immune status of patients.
Collapse
Affiliation(s)
- A S Trukhmanov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Makushina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - O A Storonova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N Y Ivashkina
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
39
|
Kornuta CA, Bidart JE, Soria I, Gammella M, Quattrocchi V, Pappalardo JS, Salmaso S, Torchilin VP, Cheuquepán Valenzuela F, Hecker YP, Moore DP, Zamorano PI, Langellotti CA. MANα1-2MAN decorated liposomes enhance the immunogenicity induced by a DNA vaccine against BoHV-1. Transbound Emerg Dis 2020; 68:587-597. [PMID: 32643286 DOI: 10.1111/tbed.13718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Abstract
New technologies in the field of vaccinology arise as a necessity for the treatment and control of many diseases. Whole virus inactivated vaccines and modified live virus ones used against Bovine Herpesvirus-1 (BoHV-1) infection have several disadvantages. Previous works on DNA vaccines against BoHV-1 have demonstrated the capability to induce humoral and cellular immune responses. Nevertheless, 'naked' DNA induces low immunogenic response. Thus, loading of antigen encoding DNA sequences in liposomal formulations targeting dendritic cell receptors could be a promising strategy to better activate these antigen-presenting cells (APC). In this work, a DNA-based vaccine encoding the truncated version of BoHV-1 glycoprotein D (pCIgD) was evaluated alone and encapsulated in a liposomal formulation containing LPS and decorated with MANα1-2MAN-PEG-DOPE (pCIgD-Man-L). The vaccinations were performed in mice and bovines. The results showed that the use of pCIgD-Man-L enhanced the immune response in both animal models. For humoral immunity, significant differences were achieved when total antibody titres and isotypes were assayed in sera. Regarding cellular immunity, a significant increase in the proliferative response against BoHV-1 was detected in animals vaccinated with pCIgD-Man-L when compared to the response induced in animals vaccinated with pCIgD. In addition, upregulation of CD40 molecules on the surface of bovine dendritic cells (DCs) was observed when cells were stimulated and activated with the vaccine formulations. When viral challenge was performed, bovines vaccinated with MANα1-2MAN-PEG-DOPE elicited better protection which was evidenced by a lower viral excretion. These results demonstrate that the dendritic cell targeting using MANα1-2MAN decorated liposomes can boost the immunogenicity resulting in a long-lasting immunity. Liposomes decorated with MANα1-2MAN-PEG-DOPE were tested for the first time as a DNA vaccine nanovehicle in cattle as a preventive treatment against BoHV-1. These results open new perspectives for the design of vaccines for the control of bovine rhinotracheitis.
Collapse
Affiliation(s)
- Claudia A Kornuta
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan E Bidart
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina
| | - Juan S Pappalardo
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), Río Negro, Argentina
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, Universita degli Studi di Padova, Padova PD, Italy
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Felipe Cheuquepán Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,EEA Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - Yanina P Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,EEA Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
| | - Dadin P Moore
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Balcarce, Argentina
| | - Patricia I Zamorano
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Universidad del Salvador, Buenos Aires, Argentina
| | - Cecilia A Langellotti
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
40
|
Wang HH, Liu J, Li LT, Chen HC, Zhang WP, Liu ZF. Typical gene expression profile of pseudorabies virus reactivation from latency in swine trigeminal ganglion. J Neurovirol 2020; 26:687-695. [PMID: 32671812 DOI: 10.1007/s13365-020-00866-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/15/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
Pseudorabies virus (PRV) establishes a lifelong latent infection in swine trigeminal ganglion (TG) following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Muscle injection combined with intravenous deliver of the synthetic corticosteroid dexamethasone (DEX) consistently induces reactivation from latency in pigs. In this study, PRV-free piglets were infected with PRV. Viral shedding in nasal and ocular swabs demonstrated that PRV infection entered the latent period. The anti-PRV antibody was detected by enzyme-linked immunosorbent assay and the serum neutralization test, which suggested that the PRV could establish latent infection in the presence of humoral immunity. Immunohistochemistry and viral genome detection of TG neurons suggested that PRV was reactivated from latency. Viral gene expressions of IE180, EP0, VP16, and LLT-intron were readily detected at 3-h post-DEX treatment, but gB, a γ1 gene, was not detectable. The differentially expressed phosphorylated proteins of TG neurons were analyzed by ITRAQ coupled with LC-MS/MS, and p-EIF2S2 differentially expression was confirmed by western blot assay. Taken together, our study provides the evidence that typical gene expression in PRV reactivation from latency in TG is disordered compared with known lytic infection in epithelial cells.
Collapse
Affiliation(s)
- Hai-Hua Wang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Jie Liu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin-Tao Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan-Po Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
41
|
Yezid H, Pannhorst K, Wei H, Chowdhury SI. Bovine herpesvirus 1 (BHV-1) envelope protein gE subcellular trafficking is contributed by two separate YXXL/Φ motifs within the cytoplasmic tail which together promote efficient virus cell-to-cell spread. Virology 2020; 548:136-151. [PMID: 32838935 DOI: 10.1016/j.virol.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022]
Abstract
Bovine herpesvirus envelope glycoprotein E (gE) and, in particular, the gE cytoplasmic tail (CT) is a virulence determinant in cattle. Also, the gE CT contributes to virus cell-to-cell spread and anterograde neuronal transport. In this study, our goal was to map the gE CT sub-domains that contribute to virus cell-to-cell spread property. A panel of gE-CT specific mutant viruses was constructed and characterized, in vitro, with respect to their plaque phenotypes, gE recycling and gE basolateral membrane targeting. The results revealed that disruption of the tyrosine-based motifs, 467YTSL470 and 563YTVV566, individually produced smaller plaque phenotypes than the wild type. However, they were slightly larger than the gE CT-null virus plaques. The Y467A mutation affected the gE endocytosis, gE trans-Golgi network (TGN) recycling, and gE virion incorporation properties. However, the Y563A mutation affected only the gE basolateral cell-surface redistribution function. Notably, the simultaneous Y467A/Y563A mutations produced gE CT-null virus-like plaque phenotypes.
Collapse
Affiliation(s)
- Hocine Yezid
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Katrin Pannhorst
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Huiyong Wei
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Shafiqul I Chowdhury
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
42
|
El-Mayet FS, Sawant L, Wijesekera N, Jones C. Progesterone increases the incidence of bovine herpesvirus 1 reactivation from latency and stimulates productive infection. Virus Res 2020; 276:197803. [PMID: 31697987 PMCID: PMC7068234 DOI: 10.1016/j.virusres.2019.197803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, can cause abortions in pregnant cows. Progesterone maintains pregnancy and promotes spermiogenesis and testosterone biosynthesis in males: furthermore, progesterone is a neuro-steroid. Recent published studies demonstrated progesterone stimulated the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, and two glucocorticoid receptor response elements within the promoter were required for progesterone mediated transactivation. In this study, we tested whether progesterone induces reactivation from latency in rabbits. As expected, the synthetic corticosteroid dexamethasone consistently induced reactivation from latency in males and females. While progesterone induced reactivation from latency in approximately one-half of male rabbits, virus shedding was sporadic compared to dexamethasone and less efficient in female rabbits. Progesterone significantly increased productive infection in rabbit skin cells, which correlated with stimulating reactivation. These studies suggest progesterone promotes BoHV-1 spread in cattle, in part, by increasing the frequency of reactivation from latency.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States; Benha University, Faculty of Veterinary Medicine, Department of Virology, Moshtohor 13736, Kaliobyia, Egypt
| | - Laximan Sawant
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States
| | - Nishani Wijesekera
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States
| | - Clinton Jones
- Oklahoma State University, College for Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, United States.
| |
Collapse
|
43
|
Marin M, Burucúa M, Rensetti D, Rosales JJ, Odeón A, Pérez S. Distinctive features of bovine alphaherpesvirus types 1 and 5 and the virus-host interactions that might influence clinical outcomes. Arch Virol 2019; 165:285-301. [PMID: 31845150 DOI: 10.1007/s00705-019-04494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are two closely related alphaherpesviruses. BoHV-1 causes several syndromes in cattle, including respiratory disease and sporadic cases of encephalitis, whereas BoHV-5 is responsible for meningoencephalitis in calves. Although both viruses are neurotropic, they differ in their neuropathogenic potential. This review summarizes the findings on the specific mechanisms and pathways known to modulate the pathogenesis of BoHV-1 and BoHV-5, particularly in relation to respiratory and neurological syndromes, which characterize BoHV-1 and BoHV-5 infections, respectively.
Collapse
Affiliation(s)
- Maia Marin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Mercedes Burucúa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Daniel Rensetti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Juan José Rosales
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Anselmo Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Sandra Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina. .,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.
| |
Collapse
|
44
|
Nissen J, Trabjerg B, Pedersen MG, Banasik K, Pedersen OB, Sørensen E, Nielsen KR, Erikstrup C, Petersen MS, Paarup HM, Bruun-Rasmussen P, Westergaard D, Hansen TF, Pedersen CB, Werge T, Torrey F, Hjalgrim H, Mortensen PB, Yolken R, Brunak S, Ullum H, Burgdorf KS. Herpes Simplex Virus Type 1 infection is associated with suicidal behavior and first registered psychiatric diagnosis in a healthy population. Psychoneuroendocrinology 2019; 108:150-154. [PMID: 31284079 DOI: 10.1016/j.psyneuen.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Abstract
Increasing evidence shows that latent infections and inflammation is associated with cognitive and behavioral changes in humans. This case-control study investigates the association between Herpes Simplex Virus Type 1 (HSV-1) infection and C-reactive Protein (CRP) levels, and psychiatric disorders and suicidal behavior. Public health register data from 81,912 participants in the Danish Blood Donor Study, were reviewed to identify individuals registered with an ICD-10 code of any psychiatric diagnosis, or who had attempted or committed suicide. We found 1,504 psychiatric cases and 353 suicidal cases; for all cases, controls were frequency-matched by age and sex, resulting in 5,336 participants. Plasma samples were analyzed for IgG-class antibodies against HSV-1 and CRP. HSV-1 infection was associated with suicidal behavior (odds-ratio, 1.40; 95% confidence interval [CI] 1.11-1.77). Accounting for temporality, HSV-1 infection was associated with having first psychiatric disorder after the date of blood collection (incidence rate ration, 1.44; 95% CI, 1.05-1.95). No association between CRP and psychiatric disorders or suicidal behavior was found. The finding that HSV-1 was associated with suicidal behavior and first psychiatric disorder indicates that infection may play a role in the etiology and pathogenesis of suicidal behavior and development of psychiatric disorders.
Collapse
Affiliation(s)
- Janna Nissen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Betina Trabjerg
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
| | - M G Pedersen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kaspar René Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Peter Bruun-Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - T F Hansen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark; Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Denmark; Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Carsten B Pedersen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Fuller Torrey
- Stanley Medical Research Institute, Kensington, MD School of Medicine, Baltimore, USA
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark; Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Preben Bo Mortensen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - Robert Yolken
- Stanley Division of Developmental Neurovirology, Stanley Neurovirology Laboratory, Johns Hopkins University, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - K S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
45
|
CHANDRANAIK BM, GOPIKUMAR POOJA, GOMES AMITHAREENA, REDDY POORVI, NANDINI POOJAPPA, RANI MSHOBHA, VENKATESHA MD, BYREGOWDA SM. Stress due to vaccination may induce re-activation of latent bovine herpesvirus-1 in cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i9.93749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study evidences that, stress due to vaccination can cause re-activation and clinical outbreak of bovine herpesvirus-1 in latently infected cattle. Three to four days following mass-vaccination of cattle against Foot and Mouth Disease in Karnataka of India, symptoms of acute respiratory distress, conjunctivitis and vulvo-vaginitis were observed in vaccinated cattle in many villages of the state. Nasal and ocular swabs were collected from 25 ailing cattle in six villages of Hassan district of Karnataka. Upon bacteriological analysis, the samples were found negative for Pasteurella multocida. The serum samples from ailing animals were positive for bovine herpesvirus- 1 (BoHV-1) antibodies by Indirect-ELISA. The swab samples were found for BoHV-1 by PCR targeting glycoprotein- C gene of BoHV-1. The swab samples when subjected to virus isolation in MDBK cells yielded characteristic CPE of bunch of grape like clustering of cells by fifth passage. PCR targeting conserved region on glycoprotein-C gene on DNA extracted from cell-culture supernatants showing CPE confirmed the presence of BoHV-1. Nucleotide sequencing of the PCR amplicon showed that the BoHV-1 isolated during this study shared 100% sequence identity with BoHV-1 isolates from India, Switzerland and Brazil. This study emphasizes that stress due to vaccination can cause re-activation and clinical outbreak of bovine herpesvirus-1 in latently infected cattle.
Collapse
|
46
|
Harrison KS, Zhu L, Thunuguntla P, Jones C. Antagonizing the Glucocorticoid Receptor Impairs Explant-Induced Reactivation in Mice Latently Infected with Herpes Simplex Virus 1. J Virol 2019; 93:e00418-19. [PMID: 30971470 PMCID: PMC6580953 DOI: 10.1128/jvi.00418-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in neurons. Reactivation from latency can lead to serious recurrent disease, including stromal keratitis, corneal scarring, blindness, and encephalitis. Although numerous studies link stress to an increase in the incidence of reactivation from latency and recurrent disease, the mechanism of action is not well understood. We hypothesized that stress, via corticosteroid-mediated activation of the glucocorticoid receptor (GR), stimulates viral gene expression and productive infection during reactivation from latency. Consequently, we tested whether GR activation by the synthetic corticosteroid dexamethasone influenced virus shedding during reactivation from latency using trigeminal ganglion (TG) explants from Swiss Webster mice latently infected with HSV-1, strain McKrae. TG explants from the latently infected mice shed significantly higher levels of virus when treated with dexamethasone. Conversely, virus shedding from TG explants was significantly impaired when they were incubated with medium containing a GR-specific antagonist (CORT-108297) or stripped fetal bovine serum, which lacks nuclear hormones and other growth factors. TG explants from latently infected, but not uninfected, TG contained significantly more GR-positive neurons following explant when treated with dexamethasone. Strikingly, VP16 protein expression was detected in TG neurons at 8 hours after explant whereas infected-cell protein 0 (ICP0) and ICP4 protein expression was not readily detected until 16 hours after explant. Expression of all three viral regulatory proteins was stimulated by dexamethasone. These studies indicated corticosteroid-mediated GR activation increased the number of TG neurons expressing viral regulatory proteins, which enhanced virus shedding during explant-induced reactivation from latency.IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in neurons within trigeminal ganglia (TG); periodically, reactivation from latency occurs, leading to virus transmission and recurrent disease. Chronic or acute stress increases the frequency of reactivation from latency; how this occurs is not well understood. Here, we demonstrate that the synthetic corticosteroid dexamethasone stimulated explant-induced reactivation from latency. Conversely, a glucocorticoid receptor (GR) antagonist significantly impaired reactivation from latency, indicating that GR activation stimulated explant-induced reactivation. The viral regulatory protein VP16 was readily detected in TG neurons prior to infected-cell protein 0 (ICP0) and ICP4 during explant-induced reactivation. Dexamethasone induced expression of all three viral regulatory proteins following TG explant. Whereas the immunosuppressive properties of corticosteroids would facilitate viral spread during reactivation from latency, these studies indicate GR activation increases the number of TG neurons that express viral regulatory proteins during early stages of explant-induced reactivation.
Collapse
Affiliation(s)
- Kelly S Harrison
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Liqian Zhu
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- Yangzhou University, College of Veterinary Medicine and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Prasanth Thunuguntla
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
47
|
Fernandes LG, Denwood MJ, de Sousa Américo Batista Santos C, Alves CJ, Pituco EM, de Campos Nogueira Romaldini AH, De Stefano E, Nielsen SS, de Azevedo SS. Bayesian estimation of herd-level prevalence and risk factors associated with BoHV-1 infection in cattle herds in the State of Paraíba, Brazil. Prev Vet Med 2019; 169:104705. [PMID: 31311643 DOI: 10.1016/j.prevetmed.2019.104705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/28/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023]
Abstract
A cross-sectional study was carried out to estimate the animal- and herd-level prevalence of bovine herpesvirus 1 (BoHV-1) infection in cattle in the State of Paraíba, and to identify risk factors associated with herd-level infection. The state was divided into three sampling strata, and for each stratum, the prevalence of herds infected with BoHV-1 was estimated through a two-stage sampling survey carried out from September 2012 to January 2013. In total, 2443 animals were sampled from 478 herds. A virus-neutralization test was used for BoHV-1 antibody detection. A Bayesian latent-class model was used to describe the data, taking into account imperfect diagnostic test characteristics and the non-independence of test results from animals within the same herd, and using a dynamic within-model risk factor selection method based on indicator variable selection. The adjusted herd-level prevalence was estimated to be 84% (95% CI: 80-88%) for the State of Paraíba, and the animal-level prevalence was estimated to be 73% (95% CI: 66-84%). Only five of the available risk factors were used by the model, with the three most influential being disposal of aborted foetuses (3.78, 95% CI: 1.11-13.85), sharing resources with other farms (3.0, 95% CI: 1.1-8,6), and a herd size of > 23 animals (2.5, 95% CI: 1.1-6.0). Our findings suggest that the animal- and herd-level seroprevalence of BoHV-1 infection in the State of Paraíba is high. While some risk factors such as herd size and sharing resources were identified as risk factors for BoHV-1 infection, these risk factors are initially likely to be of only minor relevance in a control programme due to the extremely high prevalence of infected farms. However, the results are relevant to the risk of reintroduction of disease on farms that have previously eradicated the disease.
Collapse
Affiliation(s)
- Leíse Gomes Fernandes
- Academic Unit of Veterinary Medicine, Center of Rural Technology and Health, Federal University of Campina Grande, 58700-970 Patos, PB, Brazil
| | - Matthew James Denwood
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Clebert José Alves
- Academic Unit of Veterinary Medicine, Center of Rural Technology and Health, Federal University of Campina Grande, 58700-970 Patos, PB, Brazil
| | | | | | - Eliana De Stefano
- Biological Institute, Bovine Viral Diseases Laboratory, São Paulo, SP, Brazil
| | - Søren Saxmose Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sérgio Santos de Azevedo
- Academic Unit of Veterinary Medicine, Center of Rural Technology and Health, Federal University of Campina Grande, 58700-970 Patos, PB, Brazil.
| |
Collapse
|
48
|
Jones C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front Immunol 2019; 10:1008. [PMID: 31134079 PMCID: PMC6514135 DOI: 10.3389/fimmu.2019.01008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
49
|
Functional analysis of the latency-related gene of bovine herpesvirus types 1 and 5. J Neurovirol 2019; 25:597-604. [PMID: 31062246 DOI: 10.1007/s13365-019-00745-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
Bovine herpesvirus type 1 and type 5 (BoHV-1 and BoHV-5) are two alphaherpesviruses that affect cattle with two different syndromes. While BoHV-1 mainly produces respiratory symptoms, BoHV-5 is highly neuropathogenic and responsible for meningoencephalitis in young cattle. The latency-related (LR) gene, which is not conserved between these two herpesviruses, is the only viral gene abundantly expressed in latently infected neurons. The antiapoptotic action of this gene has been demonstrated during acute infection and reactivation from latency and seems to be mainly mediated by a LR protein (ORF-2) which is truncated in amino acid 51 in the case of BoHV-5. In this work, we show that the BoHV-5 LR gene is less efficient at cell survival and apoptosis inhibition in transient as well as in established neuronal cell lines compared to its BoHV-1 homolog. We hypothesize that the BoHV-5 LR gene may have novel functions that are lacking in the BoHV-1 LR gene and that these differences may contribute to its enhanced neuropathogenesis.
Collapse
|
50
|
El-Mayet FS, El-Habbaa AS, D'Offay J, Jones C. Synergistic Activation of Bovine Herpesvirus 1 Productive Infection and Viral Regulatory Promoters by the Progesterone Receptor and Krüppel-Like Transcription Factor 15. J Virol 2019; 93:e01519-18. [PMID: 30305353 PMCID: PMC6288325 DOI: 10.1128/jvi.01519-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, readily infects the fetus and ovaries, which can lead to reproductive failure. The BoHV-1 latency reactivation cycle in sensory neurons may further complicate reproductive failure in pregnant cows. The immediate early transcription unit 1 (IEtu1) promoter drives expression of important viral transcriptional regulators (bICP0 and bICP4). This promoter contains two functional glucocorticoid receptor (GR) response elements (GREs) that have the potential to stimulate productive infection following stressful stimuli. Since progesterone and the progesterone receptor (PR) can activate many GREs, we hypothesized that the PR and/or progesterone regulates productive infection and viral transcription. New studies demonstrated that progesterone stimulated productive infection. Additional studies revealed the PR and Krüppel-like transcription factor 15 (KLF15) cooperated to stimulate productive infection and IEtu1 promoter activity. IEtu1 promoter activation required both GREs, which correlated with the ability of the PR to interact with wild-type (wt) GREs but not mutant GREs. KLF15 also cooperated with the PR to transactivate the bICP0 early promoter, a promoter that maintains bICP0 protein expression during productive infection. Intergenic viral DNA fragments (less than 400 bp) containing two GREs and putative KLF binding sites present within genes encoding unique long 52 (UL-52; component of DNA primase/helicase complex), Circ, bICP4, and IEtu2 were stimulated by KLF15 and the PR more than 10-fold, suggesting that additional viral promoters are activated by these transcription factors. Collectively, these studies suggest progesterone and the PR promote BoHV-1 spread to reproductive tissues, thus increasing the incidence of reproductive failure.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is the most frequently diagnosed cause of abortions in pregnant cows and can cause "abortion storms" in susceptible herds. Virulent field strains and even commercially available modified live vaccines can induce abortion, in part because BoHV-1 replicates efficiently in the ovary and corpus luteum. We now demonstrate that progesterone and the progesterone receptor (PR) stimulate productive infection. The BoHV-1 genome contains approximately 100 glucocorticoid receptor (GR) response elements (GREs). Interestingly, the PR can bind and activate many promoters that contain GREs. The PR and Krüppel-like transcription factor 15 (KLF15), which regulate key steps during embryo implantation, cooperate to stimulate productive infection and two viral promoters that drive expression of key viral transcriptional regulators. These studies suggest that the ability of progesterone and the PR to stimulate productive infection has the potential to promote virus spread in reproductive tissue and induce reproductive failure.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Ayman S El-Habbaa
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Jean D'Offay
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|