1
|
Savic B, Savic B, Kalezic T, Dacic-Krnjaja B, Milosevic V, Petrovic Pajic S, Maric V, Petrovic T, Stanojlovic S. Assessment of IL28 (rs12980275) and (rs8099917) Frequency in Recurrent Ocular Herpes Simplex Virus (HSV) Infection. Life (Basel) 2025; 15:389. [PMID: 40141734 PMCID: PMC11944099 DOI: 10.3390/life15030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
(1) Introduction: The main way of spreading the herpes simplex virus 1 (HSV-1) is through direct contact, as the virus enters the host via mucous membranes. Ocular infection can occur as a primary infection or as a recurrent one. The movement of HSV-1 along the ophthalmic branch of the fifth cranial nerve from its latency phase in the trigeminal ganglion and its activation represent a process influenced by various symbiotic factors, such as environmental conditions and the host's genetic characteristics. The aim of this study was to assess the frequency of IL28 (rs12980275) and (rs8099917) in recurrent ocular HSV infections. (2) Materials and methods: The study included 60 patients aged over 18, of both sexes, all of whom had a history of herpes simplex labialis (HSL). Patients were tested for HSV-1-specific IgG antibodies, and seropositive individuals were genotyped for single nucleotide polymorphisms (SNPs) rs12980275 and rs8099917. A total of 57 seropositive patients were included in the study. (3) Results: A statistically significant association was found between recurrent HSV keratitis (HSK) and heterozygous GT rs8099917 and homozygous TT rs8099917, as well as heterozygous AG rs12980275 and homozygous AA rs12980275 (p < 0.01). Interestingly, patients with homozygous GG polymorphism for both genotypes GG rs8099917 and GG rs12980275 did not develop recurrent HSV keratitis. (4) Conclusion: The most frequent SNP variations in patients with recurrent HSV disease were heterozygous AG rs12980275 (61.40%) and heterozygous GT rs8099917 (52.63%). Patients with recurrent HSV keratitis lacked the homozygous GG polymorphism in both GG rs8099917 and GG rs12980275 genotypes, suggesting that HSV-seropositive individuals expressing these genotypes may have lower predisposition to develop recurrent stromal HSV keratitis.
Collapse
Affiliation(s)
- Borivoje Savic
- University Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia
| | - Bozidar Savic
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Tanja Kalezic
- University Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Dacic-Krnjaja
- University Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Veljko Milosevic
- Institute of Forensic Medicine “Milovan Milovanović”, University of Belgrade-School of Medicine, 31a Deligradska Str., 11000 Belgrade, Serbia
| | - Sanja Petrovic Pajic
- University Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Maric
- University Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tiana Petrovic
- University Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia
| | - Svetlana Stanojlovic
- University Clinical Centre of Serbia, University Eye Hospital, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Lisac L, Raccagni AR, Lolatto R, Passini F, Maci C, Bruzzesi E, Moschetta N, Castagna A, Nozza S. Interest and Expectations for a Herpes Vaccine Among People Diagnosed with Genital HSV 1-2 Infection: Results from an Italian Survey. Viruses 2024; 16:1789. [PMID: 39599903 PMCID: PMC11599056 DOI: 10.3390/v16111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Genital herpes simplex virus (HSV) is associated with a reduction in quality of life and adverse outcomes. The aim of this study is to assess the interest and expectations for a therapeutic HSV vaccine among individuals diagnosed with genital herpes in Italy. A retrospective survey was conducted at the Infectious Diseases Unit of the IRCCS San Raffaele Scientific Institute, Milan, Italy. The study collected data on demographics, clinical history and interest in HSV vaccination. The results showed that 87.5% of participants were interested in a therapeutic vaccine, with interest higher among younger people and those with frequent genital herpes recurrences. Participants most expected the vaccine to reduce the pain associated with outbreaks, followed by a reduction in the frequency and duration of recurrences. These findings underscore the strong demand for a therapeutic HSV vaccine, especially among those who experience recurrent outbreaks, and highlight the importance of considering patient expectations when developing preventive and therapeutic strategies for genital herpes.
Collapse
Affiliation(s)
- Lovel Lisac
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (L.L.); (A.R.R.); (F.P.); (C.M.); (E.B.); (N.M.); (A.C.)
| | - Angelo Roberto Raccagni
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (L.L.); (A.R.R.); (F.P.); (C.M.); (E.B.); (N.M.); (A.C.)
| | - Riccardo Lolatto
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Flavia Passini
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (L.L.); (A.R.R.); (F.P.); (C.M.); (E.B.); (N.M.); (A.C.)
| | - Chiara Maci
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (L.L.); (A.R.R.); (F.P.); (C.M.); (E.B.); (N.M.); (A.C.)
| | - Elena Bruzzesi
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (L.L.); (A.R.R.); (F.P.); (C.M.); (E.B.); (N.M.); (A.C.)
| | - Nicolò Moschetta
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (L.L.); (A.R.R.); (F.P.); (C.M.); (E.B.); (N.M.); (A.C.)
| | - Antonella Castagna
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (L.L.); (A.R.R.); (F.P.); (C.M.); (E.B.); (N.M.); (A.C.)
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silvia Nozza
- Infectious Diseases Unit, Vita-Salute San Raffaele University, 20132 Milan, Italy; (L.L.); (A.R.R.); (F.P.); (C.M.); (E.B.); (N.M.); (A.C.)
- Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
3
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Roy A, Swetha RG, Basu S, Biswas R, Ramaiah S, Anbarasu A. Integrating pan-genome and reverse vaccinology to design multi-epitope vaccine against Herpes simplex virus type-1. 3 Biotech 2024; 14:176. [PMID: 38855144 PMCID: PMC11153438 DOI: 10.1007/s13205-024-04022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Herpes simplex virus type-1 (HSV-1), the etiological agent of sporadic encephalitis and recurring oral (sometimes genital) infections in humans, affects millions each year. The evolving viral genome reduces susceptibility to existing antivirals and, thus, necessitates new therapeutic strategies. Immunoinformatics strategies have shown promise in designing novel vaccine candidates in the absence of a clinically licensed vaccine to prevent HSV-1. However, to encourage clinical translation, the HSV-1 pan-genome was integrated with the reverse-vaccinology pipeline for rigorous screening of universal vaccine candidates. Viral targets were screened from 104 available complete genomes. Among 364 proteins, envelope glycoprotein D being an outer membrane protein with a high antigenicity score (> 0.4) and solubility (> 0.6) was selected for epitope screening. A total of 17 T-cell and 4 B-cell epitopes with highly antigenic, immunogenic, non-toxic properties and high global population coverage were identified. Furthermore, 8 vaccine constructs were designed using different combinations of epitopes and suitable linkers. VC-8 was identified as the most potential vaccine candidate regarding chemical and structural stability. Molecular docking revealed high interactive affinity (low binding energy: - 56.25 kcal/mol) of VC-8 with the target elicited by firm intermolecular H-bonds, salt-bridges, and hydrophobic interactions, which was validated with simulations. Compatibility of the vaccine candidate to be expressed in pET-29(a) + plasmid was established by in silico cloning studies. Immune simulations confirmed the potential of VC-8 to trigger robust B-cell, T-cell, cytokine, and antibody-mediated responses, thereby suggesting a promising candidate for the future of HSV-1 prevention. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04022-6.
Collapse
Affiliation(s)
- Aditi Roy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Rayapadi G. Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biosciences, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Soumya Basu
- Department of Biotechnology, NIST University, Berhampur, Odisha 761008 India
| | - Rhitam Biswas
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biosciences, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
5
|
Zhu J, Miner MD. Local Power: The Role of Tissue-Resident Immunity in Human Genital Herpes Simplex Virus Reactivation. Viruses 2024; 16:1019. [PMID: 39066181 PMCID: PMC11281577 DOI: 10.3390/v16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
From established latency, human herpes virus type 2 (HSV-2) frequently reactivates into the genital tract, resulting in symptomatic ulcers or subclinical shedding. Tissue-resident memory (TRM) CD8+ T cells that accumulate and persist in the genital skin at the local site of recrudescence are the "first responders" to viral reactivation, performing immunosurveillance and containment and aborting the ability of the virus to induce clinical lesions. This review describes the unique spatiotemporal characteristics, transcriptional signatures, and noncatalytic effector functions of TRM CD8+ T cells in the tissue context of human HSV-2 infection. We highlight recent insights into the intricate overlaps between intrinsic resistance, innate defense, and adaptive immunity in the tissue microenvironment and discuss how rapid virus-host dynamics at the skin and mucosal level influence clinical outcomes of genital herpes diseases.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Maurine D. Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Srivastava R, Tran J, Dang V, Shaik AM, Chilukurri A, Suzer B, De Vera P, Sun M, Nguyen P, Lee A, Salem A, Loi J, Singer M, Nakayama T, Vahed H, Nesburn AB, BenMohamed L. Mucosal CCL28 Chemokine Improves Protection against Genital Herpes through Mobilization of Antiviral Effector Memory CCR10+CD44+ CD62L-CD8+ T Cells and Memory CCR10+B220+CD27+ B Cells into the Infected Vaginal Mucosa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:118-129. [PMID: 37222480 PMCID: PMC10330291 DOI: 10.4049/jimmunol.2300093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Four major mucosal-associated chemokines, CCL25, CCL28, CXCL14, and CXCL17, play an important role in protecting mucosal surfaces from infectious pathogens. However, their role in protection against genital herpes remains to be fully explored. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). In this study, we investigated the role of the CCL28/CCR10 chemokine axis in mobilizing protective antiviral B and T cell subsets into the VM site of herpes infection. We report a significant increase in the frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10, in herpes-infected asymptomatic (ASYMP) women compared with symptomatic women. Similarly, a significant increase in the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP C57BL/6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected ASYMP mice. Inversely, compared with wild-type C57BL/6 mice, the CCL28 knockout (CCL28-/-) mice (1) appeared to be more susceptible to intravaginal infection and reinfection with HSV type 2, and (2) exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. These findings suggest a critical role of the CCL28/CCR10 chemokine axis in the mobilization of antiviral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Jennifer Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Vivian Dang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amruth Chilukurri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Phil De Vera
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pauline Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ashley Lee
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amirah Salem
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Joyce Loi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
7
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Singer M, Takashi N, Vahed H, BenMohamed L. High Frequencies of Antiviral Effector Memory T EM Cells and Memory B Cells Mobilized into Herpes Infected Vaginal Mucosa Associated With Protection Against Genital Herpes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542021. [PMID: 37292784 PMCID: PMC10245907 DOI: 10.1101/2023.05.23.542021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vaginal mucosa-resident anti-viral effector memory B- and T cells appeared to play a crucial role in protection against genital herpes. However, how to mobilize such protective immune cells into the vaginal tissue close to infected epithelial cells remains to be determined. In the present study, we investigate whether and how, CCL28, a major mucosal-associated chemokine, mobilizes effector memory B- and T cells in leading to protecting mucosal surfaces from herpes infection and disease. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). We found the presence of significant frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10 receptor, in herpes-infected asymptomatic (ASYMP) women compared to symptomatic (SYMP) women. A significant amount of the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP B6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected asymptomatic mice. In contrast, compared to wild-type (WT) B6 mice, the CCL28 knockout (CCL28(-/-)) mice: (i) Appeared more susceptible to intravaginal infection and re-infection with HSV-2; (ii) Exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. The results imply a critical role of the CCL28/CCR10 chemokine axis in the mobilization of anti-viral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
8
|
KC B, Bhattarai HB, Shah S, Bhattarai M, Uprety M, Jha A, Rayamajhi S, Pant S, Limbu CP, Shrestha BR. Herpes simplex encephalitis in a patient abusing morphine: a case report from Nepal. Ann Med Surg (Lond) 2023; 85:1216-1219. [PMID: 37113868 PMCID: PMC10129145 DOI: 10.1097/ms9.0000000000000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Herpes simplex encephalitis results from either primary infection with the herpes simplex virus (HSV) or reactivation of latent HSV residing within the nuclei of sensory neurons. Opioid's administration is known to reactivate HSV infection. Case presentation We report a 46-year-old male who was in a rehabilitation center for 17 days for abusing morphine for 2 years. Discussion Chronic morphine use weakens immune system thereby, making body prone for development of infection. Opioids may reactivate HSV infection because of their immunosuppressive function. Conclusion Herpes simplex encephalitis is a potentially fatal condition but can be treated with early diagnosis and intervention.
Collapse
Affiliation(s)
- Bijay KC
- Department of Anesthesia and Intensive Care
| | | | - Sangam Shah
- Institute of Medicine, Tribhuvan University, Maharajgunj
| | - Madhur Bhattarai
- Institute of Medicine, Tribhuvan University, Maharajgunj
- Corresponding author. Address: Institute of Medicine, Tribhuvan University, Maharajgunj 44600, Nepal. Tel.: +977-9861678146. E-mail address: (M. Bhattarai)
| | - Manish Uprety
- Kathmandu University School of Medical Science, Dhulikhel Hospital, Panauti
| | | | | | - Subhash Pant
- Department of Medicine, Kathmandu Medical College and Teaching Hospital
| | | | | |
Collapse
|
9
|
Thakur D, Fatima T, Sharma P, Hasan MR, Malhotra N, Khanuja M, Shukla SK, Narang J. High-performance biosensing systems for diagnostics of Sexually transmitted disease – A strategic review. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Tian R, Ju F, Yu M, Liang Z, Xu Z, Zhao M, Qin Y, Lin Y, Huang X, Chang Y, Li S, Ren W, Lin C, Xia N, Huang C. A potent neutralizing and protective antibody against a conserved continuous epitope on HSV glycoprotein D. Antiviral Res 2022; 201:105298. [PMID: 35341808 DOI: 10.1016/j.antiviral.2022.105298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Infections caused by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) remain a serious global health issue, and the medical countermeasures available thus far are limited. Virus-neutralizing monoclonal antibodies (NAbs) are crucial tools for studying host-virus interactions and designing effective vaccines, and the discovery and development of these NAbs could be one approach to treat or prevent HSV infection. Here, we report the isolation of five HSV NAbs from mice immunized with both HSV-1 and HSV-2. Among these were two antibodies that potently cross-neutralized both HSV-1 and HSV-2 with the 50% virus-inhibitory concentrations (IC50) below 200 ng/ml, one of which (4A3) exhibited high potency against HSV-2, with an IC50 of 59.88 ng/ml. 4A3 neutralized HSV at the prebinding stage and prevented HSV infection and cell-to-cell spread. Significantly, administration of 4A3 completely prevented weight loss and improved survival of mice challenged with a lethal dose of HSV-2. Using structure-guided molecular modeling combined with alanine-scanning mutagenesis, we observed that 4A3 bound to a highly conserved continuous epitope (residues 216 to 220) within the receptor-binding domain of glycoprotein D (gD) that is essential for viral infection and the triggering of membrane fusion. Our results provide guidance for developing NAb drugs and vaccines against HSV.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fei Ju
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mengqin Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhiqi Liang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zilong Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Min Zhao
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yaning Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanhua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxuan Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yating Chang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenfeng Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chaolong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
11
|
Cavalcante RS, Souza BS, Duarte IX, Moraes MPT, Coelho KIR, Griva BL, Pereira BAS, Calvi SA, Betini M, Mendes RP. Herpes simplex Virus Pneumonitis in an Acute/Subacute Paracoccidioidomycosis Patient With Malabsorption Syndrome. Case-Report and Literature Review. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:805502. [PMID: 37744114 PMCID: PMC10512208 DOI: 10.3389/ffunb.2021.805502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/29/2021] [Indexed: 09/26/2023]
Abstract
Paracoccidioides sp.-Herpes simplex virus (HSV) co-infection was not reported until now and malabsorption syndrome is a rare complication of the acute/subacute form (AF) of paracoccidioidomycosis (PCM), characterized by life-threatening abnormalities, such as fat and protein loss, lymphopenia, ascites, and intense immunosuppression. A 21-year-old woman presented the PCM AF with intense involvement of the abdominal and intestinal lymphoid organs, which leads to the malabsorption syndrome and severe immunosuppression. This patient developed a fatal-disseminated HSV infection associated with the paracoccidioidal disease. This case demonstrates that, in addition to the antigen-specific immunosuppression, some PCM patients can present a generalized cell-mediated immune depression and endogenous infection of latent microorganisms. On the best of our knowledge, this is the first report of an association between PCM and HSV infection.
Collapse
Affiliation(s)
- Ricardo S. Cavalcante
- Tropical Diseases Area, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| | - Bruno S. Souza
- Tropical Diseases Area, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| | - Iverson X. Duarte
- Department of Pathology, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| | - Marcelo P. T. Moraes
- Department of Pathology, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| | - Kunie I. R. Coelho
- Department of Pathology, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| | - Beatriz L. Griva
- Nuclear Medicine Service, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| | - Beatriz A. S. Pereira
- Tropical Diseases Area, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| | - Sueli A. Calvi
- Tropical Diseases Area, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| | - Marluci Betini
- University Library, São Paulo State University–UNESP, Botucatu, Brazil
| | - Rinaldo P. Mendes
- Tropical Diseases Area, School of Medicine, São Paulo State University—UNESP, Botucatu, Brazil
| |
Collapse
|
12
|
Microglia activate early anti-viral responses upon HSV-1 entry into the brain to counteract development of encephalitis-like disease in mice. J Virol 2022; 96:e0131121. [PMID: 35045263 DOI: 10.1128/jvi.01311-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spread of herpes simplex virus 1 (HSV1) from the periphery to the central nervous system (CNS) can lead to extensive infection and pathological inflammation in the brain, causing herpes simplex encephalitis (HSE). It has been shown that microglia, the CNS-resident macrophages, are involved in early sensing of HSV1 and an induction of antiviral responses. In addition, infiltration of peripheral immune cells may contribute to control of viral infection. In this study, we tested the effect of microglia depletion in a mouse model of HSE. Increased viral titers and increased disease severity were observed in microglia-depleted mice. The effect of microglia depletion was more pronounced in wild-type than in cGas-/- mice, revealing that this immune sensor contributes to the antiviral activity of microglia. Importantly, microglia depletion led to reduced production of type I interferon (IFN), pro-inflammatory cytokines and chemokines at early time points after viral entry into the CNS. In line with this, in vitro experiments on murine primary CNS cells demonstrated microglial presence to be essential for IFN RNA induction, and control of HSV1 replication. However, the effect of microglia depletion on expression of IFNs, and inflammatory cytokines was restricted to early time point of HSV1 entry into the CNS. There was no major alteration of infiltration of CD45-positive cells in microglia-depleted mice. Collectively, our data demonstrate a key role for microglia in controlling HSV1 replication early after viral entry into the CNS and highlight the importance of a prompt antiviral innate response to reduce the risk of HSE development. Importance One of the most devastating and acute neurological conditions is encephalitis, i.e. inflammation of brain tissue. Herpes simplex virus 1 (HSV1) is a highly prevalent pathogen in humans, and the most frequent cause of viral sporadic encephalitis, called herpes simplex encephalitis (HSE). HSV1 has the ability to infect peripheral neurons and reach the central nervous system (CNS) of humans, where it can be detected by brain resident cells and infiltrating immune cells, leading to protective and damaging immune responses. In this study, we investigated the effects of a depletion of microglia, the main brain-resident immune cell type. For this purpose, we used a mouse model of HSE. We found that viral levels increased and disease symptoms worsened in microglia-depleted mice. In addition, mice lacking a major sensor of viral DNA, cGAS, manifested more pronounced disease than wild-type mice, highlighting the importance of this immune sensor in the activity of microglia. Evidently, microglia depletion led to a reduced production of many known antiviral factors, most notably type I interferon (IFN). The importance of microglia in the early control of HSV1 spread and the generation of antiviral responses is further demonstrated by experiments on murine mixed glial cell cultures. Interestingly, mice with microglia depletion exhibited an unaltered activation of antiviral responses and recruitment of immune cells from the periphery at later time points of infection, but this did not prevent the development of the disease. Overall, the data highlight the importance of a rapid activation of the host defense, with microglia playing a critical role in controlling HSV1 infection, which eventually prevents damage to neurons and brain tissue.
Collapse
|
13
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
14
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
15
|
Ghosh S, Brown AM, Jenkins C, Campbell K. Viral Vector Systems for Gene Therapy: A Comprehensive Literature Review of Progress and Biosafety Challenges. APPLIED BIOSAFETY 2020; 25:7-18. [PMID: 36033383 PMCID: PMC9134621 DOI: 10.1177/1535676019899502] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Introduction National Institutes of Health (NIH) defines gene therapy as an experimental technique that uses genes to treat or prevent disease. Although gene therapy is a promising treatment option for a number of diseases (including inherited disorders, some types of cancer, and certain viral infections), the technique remains risky and is still under study to make sure that it will be effective and safe. Methods Applications of viral vectors and nonviral gene delivery systems have found an encouraging new beginning in gene therapy in recent years. Although several viral vectors and nonviral gene delivery systems have been developed in the past 3 decades, no one delivery system can be applied in gene therapy to all cell types in vitro and in vivo. Furthermore, the use of viral vector systems (both in vitro and in vivo) present unique occupational health and safety challenges. In this review article, we discuss the biosafety challenges and the current framework of risk assessment for working with the viral vector systems. Discussion The recent advances in the field of gene therapy is exciting, but it is important for scientists, institutional biosafety committees, and biosafety officers to safeguard public trust in the use of this technology in clinical trials and make conscious efforts to engage the public through ongoing forums and discussions.
Collapse
Affiliation(s)
- Sumit Ghosh
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Alex M. Brown
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chris Jenkins
- Clinical Biosafety Services, A Division of Sabai Global, Wildwood, MO, USA
| | - Katie Campbell
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
16
|
Jayawardena N, Burga LN, Poirier JT, Bostina M. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Oncolytic Virother 2019; 8:39-56. [PMID: 31754615 PMCID: PMC6825474 DOI: 10.2147/ov.s218494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent advancements in oncolytic virotherapy commend a special attention to developing new strategies for targeting cancer cells with oncolytic viruses (OVs). Modifications of the viral envelope or coat proteins serve as a logical mean of repurposing viruses for cancer treatment. In this review, we discuss how detailed structural knowledge of the interactions between OVs and their natural receptors provide valuable insights into tumor specificity of some viruses and re-targeting of alternate receptors for broad tumor tropism or improved tumor selectivity.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
La Rosa F, Agostini S, Bianchi A, Nemni R, Piancone F, Marventano I, Mancuso R, Saresella M, Clerici M. Herpes simplex virus-1 (HSV-1) infection induces a potent but ineffective IFN-λ production in immune cells of AD and PD patients. J Transl Med 2019; 17:286. [PMID: 31455413 PMCID: PMC6712644 DOI: 10.1186/s12967-019-2034-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background The sequential activation of immediate early (IE), early (E) and late (L) genes is required to allow productive herpes simplex virus type 1 (HSV-1) infection. Several evidences suggest that, together with inflammation, an immunological response incapable to counteract HSV-1 reactivation plays a role in the pathogenesis of Alzheimer’s (AD) and Parkinson’s (PD) diseases. IFN-lambda (IFN-λ), a cytokine endowed with a robust antiviral activity, contains HSV-1 reactivation. HSV-1-induced IFN-λ, IL-10 and IL-1β as well as the expression of viral IE, E and L genes were analyzed in vitro in peripheral blood mononuclear cells (PBMC) of AD and PD patients as well as of healthy controls (HC). Methods PBMC of AD, PD and HC were in vitro infected with one multiplicity of infection (1 MOI) HSV-1. IE, E, and L viral genes transcription as well as IFN-λ, IL-10 and IL-1β production were analyzed. Results In HSV-1-infected cells of AD and PD patients compared to HC: (1) transcription of IE (ICP0, ICP27) genes was reduced whereas that of E (UL41, UL29) and L (UL48, LAT) genes was increased; (2) IFN-λ mRNA expression was increased. IL-1β was augmented and IL-10 was reduced in unstimulated cells of AD and PD compared to HC; HSV-1 infection significantly increased IL-10 production in HC alone. Conclusions Data herein show that a proinflammatory condition is present in AD and PD, in whom attempts to obstacle viral replication via an initial, possibly more potent IFN-λ-mediated control of IE viral genes is unsuccessful.
Collapse
Affiliation(s)
- Francesca La Rosa
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy.
| | - Simone Agostini
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Anna Bianchi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Raffaello Nemni
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Federica Piancone
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Ivana Marventano
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Roberta Mancuso
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Marina Saresella
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, via Capecelatro, 66, 20148, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Hasan M, Islam S, Chakraborty S, Mustafa AH, Azim KF, Joy ZF, Hossain MN, Foysal SH, Hasan MN. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): an exploratory immunoinformatic approach. J Biomol Struct Dyn 2019; 38:2898-2915. [PMID: 31328668 DOI: 10.1080/07391102.2019.1647286] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) cause a variety of infections including oral-facial infections, genital herpes, herpes keratitis, cutaneous infection and so on. To date, FDA-approved licensed HSV vaccine is not available yet. Hence, the study was conducted to identify and characterize an effective epitope based polyvalent vaccine against both types of Herpes Simplex Virus. The selected proteins were retrieved from ViralZone and assessed to design highly antigenic epitopes by binding analyses of the peptides with MHC class-I and class-II molecules, antigenicity screening, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach. The final vaccine was constructed by the combination of top CTL, HTL and BCL epitopes from each protein along with suitable adjuvant and linkers. Physicochemical and secondary structure analysis, disulfide engineering, molecular dynamic simulation and codon adaptation were further employed to develop a unique multi-epitope peptide vaccine. Docking analysis of the refined vaccine structure with different MHC molecules and human immune TLR-2 receptor demonstrated higher interaction. Complexed structure of the modeled vaccine and TLR-2 showed minimal deformability at molecular level. Moreover, translational potency and microbial expression of the modeled vaccine was analyzed with pET28a(+) vector for E. coli strain K12 and the vaccine constructs had no similarity with entire human proteome. The study enabled design of a novel chimeric polyvalent vaccine to confer broad range immunity against both HSV serotypes. However, further wet lab based research using model animals are highly recommended to experimentally validate our findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sourav Chakraborty
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abu Hasnat Mustafa
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ziaul Faruque Joy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Md Nazmul Hossain
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shakhawat Hossain Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
19
|
Caruso A, Ceramella J, Iacopetta D, Saturnino C, Mauro MV, Bruno R, Aquaro S, Sinicropi MS. Carbazole Derivatives as Antiviral Agents: An Overview. Molecules 2019; 24:E1912. [PMID: 31109016 PMCID: PMC6572111 DOI: 10.3390/molecules24101912] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Keywords: carbazole; tetrahydrocarbazole; antiviral agents.
Collapse
Affiliation(s)
- Anna Caruso
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Jessica Ceramella
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Domenico Iacopetta
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Potenza 85100, Italy.
| | | | - Rosalinda Bruno
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| |
Collapse
|
20
|
Attenuated Herpes Simplex Virus 1 (HSV-1) Expressing a Mutant Form of ICP6 Stimulates a Strong Immune Response That Protects Mice against HSV-1-Induced Corneal Disease. J Virol 2018; 92:JVI.01036-18. [PMID: 29950407 DOI: 10.1128/jvi.01036-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
We previously isolated a herpes simplex virus 1 (HSV-1) mutant, KOS-NA, that carries two nonsynonymous mutations in UL39, resulting in L393P and R950H amino acid substitutions in infected cell protein 6 (ICP6). Our published data studying KOS-NA pathogenesis strongly suggest that one of these ICP6 substitutions expressed from KOS-NA, R950H, severely impaired acute viral replication in the eyes and trigeminal ganglia of mice after inoculation onto the cornea and consequently impaired establishment and reactivation from latency. Because of its significant neuroattenuation, we tested KOS-NA as a potential prophylactic vaccine against HSV-1 in a mouse model of corneal infection. KOS-NA stimulated stronger antibody and T cell responses than a replication-competent ICP0-null mutant and a replication-incompetent ICP8-null mutant optimized for immunogenicity. Immunizations with the ICP0-, ICP8-, and KOS-NA viruses all reduced replication of wild-type HSV-1 challenge virus in the corneal epithelium to similar extents. Low immunizing doses of KOS-NA and the ICP8- virus, but not the ICP0- virus, protected mice against eyelid disease (blepharitis). Notably, only KOS-NA protected almost completely against corneal disease (keratitis) and greatly reduced latent infection by challenge virus. Thus, vaccination of mice with KOS-NA prior to corneal challenge provides significant protection against HSV-1-mediated disease of the eye, even at a very low immunizing dose. These results suggest that KOS-NA may be the foundation of an effective prophylactic vaccine to prevent or limit HSV-1 ocular diseases.IMPORTANCE HSV-1 is a ubiquitous human pathogen that infects the majority of the world's population. Although most infections are asymptomatic, HSV-1 establishes lifelong latency in infected sensory neurons, from which it can reactivate to cause deadly encephalitis or potentially blinding eye disease. No clinically effective vaccine is available. In this study, we tested the protective potential of a neuroattenuated HSV-1 mutant (KOS-NA) as a vaccine in mice. We compared the effects of immunization with KOS-NA to those of two other attenuated viruses, a replication-competent (ICP0-) virus and a replication-incompetent (ICP8-) virus. Our data show that KOS-NA proved superior to the ICP0- and ICP8-null mutants in protecting mice from corneal disease and latent infection. With its significant neuroattenuation, severe impairment in establishing latency, and excellent protective effect, KOS-NA represents a significant discovery in the field of HSV-1 vaccine development.
Collapse
|
21
|
Sehrawat S, Kumar D, Rouse BT. Herpesviruses: Harmonious Pathogens but Relevant Cofactors in Other Diseases? Front Cell Infect Microbiol 2018; 8:177. [PMID: 29888215 PMCID: PMC5981231 DOI: 10.3389/fcimb.2018.00177] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 11/24/2022] Open
Abstract
Most vertebrates are infected with one or more herpesviruses and remain so for the rest of their lives. The relationship of immunocompetent healthy host with herpesviruses may sometime be considered as harmonious. However, clinically severe diseases can occur when host immunity is compromised due to aging, during some stress response, co-infections or during neoplastic disease conditions. Discord can also occur during iatrogenic immunosuppression used for controlling graft rejection, in some primary genetic immunodeficiencies as well as when the virus infects a non-native host. In this review, we discuss such issues and their influence on host-herpesvirus interaction.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Dhaneshwar Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
22
|
Bauer D, Alt M, Dirks M, Buch A, Heilingloh CS, Dittmer U, Giebel B, Görgens A, Palapys V, Kasper M, Eis-Hübinger AM, Sodeik B, Heiligenhaus A, Roggendorf M, Krawczyk A. A Therapeutic Antiviral Antibody Inhibits the Anterograde Directed Neuron-to-Cell Spread of Herpes Simplex Virus and Protects against Ocular Disease. Front Microbiol 2017; 8:2115. [PMID: 29163407 PMCID: PMC5671610 DOI: 10.3389/fmicb.2017.02115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) is a leading cause of blindness and viral encephalitis in the developed world. Upon reactivation from sensory neurons, HSV returns via axonal transport to peripheral tissues where it causes, e.g., severe, potentially blinding ocular diseases. In the present study we investigated whether the HSV-1/2 glycoprotein B-specific antibody mAb 2c or its humanized counterpart mAb hu2c can protect from ocular disease in a mouse model of HSV-1-induced acute retinal necrosis (ARN). In this model the viral spread from the initially infected to the contralateral eye resembles the routes taken in humans upon HSV reactivation. Systemic antibody treatment prior or early after infection effectively protected the mice from the development of ARN. These observations suggest that the antibody potently neutralized the infection and inhibited the viral transmission, since there was almost no virus detectable in the contralateral eyes and trigeminal ganglia of antibody treated mice. Besides of neutralizing free virus or limiting the infection via activating the complement or cellular effector functions, blocking of the anterograde directed neuron-to-cell spread of HSV represents a viable mode of action how mAb 2c protected the mice from ARN. We proved this hypothesis using a microfluidic chamber system. Neurons and epithelial cells were cultured in two separate compartments where the neurons sent axons via connecting microgrooves to the epithelial cells. Neurons were infected with a reporter HSV-1 strain expressing mCherry, and the co-culture was treated with neutralizing antibodies. In contrast to commercial polyclonal human HSV-neutralizing immunoglobulins, mAb 2c effectively blocked the anterograde directed neuron-to-cell transmission of the virus. Our data suggest that the humanized HSV-1/2-gB antibody protects mice from ocular disease by blocking the neuronal spread of HSV. Therefore, mAb hu2c may become a potent novel therapeutic option for severe ocular HSV infections.
Collapse
Affiliation(s)
- Dirk Bauer
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany
| | - Mira Alt
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Miriam Dirks
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Vivien Palapys
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany
| | | | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany.,Department of Ophthalmology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Liu W, Zhou Y, Wang Z, Zhang Z, Wang Q, Su W, Chen Y, Zhang Y, Gao F, Jiang C, Kong W. Evaluation of recombinant adenovirus vaccines based on glycoprotein D and truncated UL25 against herpes simplex virus type 2 in mice. Microbiol Immunol 2017; 61:176-184. [PMID: 28378925 DOI: 10.1111/1348-0421.12482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022]
Abstract
The high prevalence of herpes simplex virus 2 (HSV-2) infections in humans necessitates the development of a safe and effective vaccine that will need to induce vigorous T-cell responses to control viral infection and transmission. We designed rAd-gD2, rAd-gD2ΔUL25, and rAd-ΔUL25 to investigate whether recombinant replication-defective adenoviruses vaccine could induce specific T-cell responses and protect mice against intravaginal HSV-2 challenge compared with FI-HSV-2. In the present study, recombinant adenovirus-based HSV-2 showed higher reductions in mortality and stronger antigen-specific T-cell responses compared with FI-HSV-2 and the severity of genital lesions in mice immunized with rAd-gD2ΔUL25 was significantly decreased by eliciting IFN-γ-secreting T-cell responses compared with rAd-gD2 and rAd-ΔUL25 groups. Our results demonstrated the immunogenicity and protective efficacy of recombinant adenovirus vaccines in acute HSV-2 infection following intravaginal challenge in mice.
Collapse
Affiliation(s)
- Wei Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Jilin Medical University, Jilin 13201, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ziyan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zeqiang Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qizhi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Attenuated phenotypes and analysis of a herpes simplex virus 1 strain with partial deletion of the UL7, UL41 and LAT genes. Virol Sin 2017; 32:404-414. [PMID: 28971351 DOI: 10.1007/s12250-017-3947-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/17/2017] [Indexed: 01/23/2023] Open
Abstract
We previously constructed a herpes simplex virus 1 (HSV-1) UL7 mutant virus (M1) and showed that a partial deletion mutation of the UL7 gene led to a lower proliferative rate and an attenuated phenotype. Using the M1 mutant, we further modified the UL41 gene, which encodes another tegument protein, and the latency-associated transcript (LAT) gene. Observations of the resulting mutants with modified UL7 and UL41 (M2) or UL7, UL41 and LAT (M3) genes indicated attenuated phenotypes, with lower proliferative ratios in various cells, non-lethal infections in mice and lower viral loads in nervous tissues compared with the wild-type strain. Furthermore, no LAT stable intron could be detected in the trigeminal ganglion of M3-infected animals. The results obtained with the three HSV-1 mutants indicate that the M3 mutant is an attenuated strain with low pathogenicity during both acute and latent infections. Together, the results support the use of the M3 mutant as a candidate for the development of an HSV-1 vaccine.
Collapse
|
25
|
Stone D, Niyonzima N, Jerome KR. Genome editing and the next generation of antiviral therapy. Hum Genet 2016; 135:1071-82. [PMID: 27272125 PMCID: PMC5002242 DOI: 10.1007/s00439-016-1686-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/15/2016] [Indexed: 12/18/2022]
Abstract
Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nixon Niyonzima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Baccari A, Cooney M, Blevins TP, Morrison LA, Larson S, Skoberne M, Belshe RB, Flechtner JB, Long D. Development of a high-throughput β-Gal-based neutralization assay for quantitation of herpes simplex virus-neutralizing antibodies in human samples. Vaccine 2016; 34:3901-6. [DOI: 10.1016/j.vaccine.2016.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 01/21/2023]
|
27
|
Abstract
The majority of the population is infected by several herpesviruses. Once these infections are established the viruses persist for life. Therefore, current therapy may at best reduce symptoms but does not cure the infection. Moreover, the only classes of compounds licensed for systemic treatment of disease are nucleoside, nucleotide and pyrophosphate analogues; all of these ultimately target the herpesvirus DNA polymerase. A vaccine against varicella zoster virus (VZV) is available, but so far no effective vaccines against other human herpesviruses have been launched. At the same time, rising resistance to current medication, especially in the immunocompromised patient population, is a concern. For these reasons, there is an urgent need for new treatment options. Recently, some promising new drugs have been discovered; one of these compounds, developed at Bayer HealthCare under the name BAY 57–1293, is a potent HSV helicase primase inhibitor.
Collapse
|
28
|
Clementi N, Criscuolo E, Cappelletti F, Burioni R, Clementi M, Mancini N. Novel therapeutic investigational strategies to treat severe and disseminated HSV infections suggested by a deeper understanding of in vitro virus entry processes. Drug Discov Today 2016; 21:682-91. [PMID: 26976690 DOI: 10.1016/j.drudis.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 01/28/2023]
Abstract
The global burden of herpes simplex virus (HSV) legitimates the critical need to develop new prevention strategies, such as drugs and vaccines that are able to fight either primary HSV infections or reactivations. Moreover, the ever-growing number of patients receiving transplants increases the number of severe HSV infections that are unresponsive to current therapies. Finally, the high global incidence of genital HSV-2 infection increases the risk of perinatal transmission to newborns, in which disseminated infection or central nervous system (CNS) involvement is frequent, with associated high morbidity and mortality rates. There are several key features shared by novel anti-HSV drugs, from currently available optimized drugs to small molecules able to interfere with various virus replication steps. However, several virological aspects of the disease and associated clinical needs highlight why an ideal anti-HSV drug has yet to be developed.
Collapse
Affiliation(s)
- Nicola Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy.
| | - Elena Criscuolo
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Francesca Cappelletti
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Roberto Burioni
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Massimo Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Nicasio Mancini
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| |
Collapse
|
29
|
Pérez-Hernández M, Gadea I, Escribano J, Tabarés E, Gómez-Sebastián S. Expression and characterization of the gD protein of HSV-2 fused to the tetramerization domain of the transcription factor p53. Protein Expr Purif 2015. [DOI: 10.1016/j.pep.2015.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Stanfield B, Kousoulas KG. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:125-136. [PMID: 27114893 DOI: 10.1007/s40588-015-0020-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections.
Collapse
Affiliation(s)
- Brent Stanfield
- Division of Biotechnology & Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin Gus Kousoulas
- Division of Biotechnology & Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
31
|
Chung BK, Priatel JJ, Tan R. CD1d Expression and Invariant NKT Cell Responses in Herpesvirus Infections. Front Immunol 2015; 6:312. [PMID: 26161082 PMCID: PMC4479820 DOI: 10.3389/fimmu.2015.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells, and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.
Collapse
Affiliation(s)
- Brian K. Chung
- NIHR Birmingham Liver Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John J. Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rusung Tan
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
32
|
Relay of herpes simplex virus between Langerhans cells and dermal dendritic cells in human skin. PLoS Pathog 2015; 11:e1004812. [PMID: 25875649 PMCID: PMC4395118 DOI: 10.1371/journal.ppat.1004812] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/13/2015] [Indexed: 12/24/2022] Open
Abstract
The mechanism by which immunity to Herpes Simplex Virus (HSV) is initiated is not completely defined. HSV initially infects mucosal epidermis prior to entering nerve endings. In mice, epidermal Langerhans cells (LCs) are the first dendritic cells (DCs) to encounter HSV, but it is CD103+ dermal DCs that carry viral antigen to lymph nodes for antigen presentation, suggesting DC cross-talk in skin. In this study, we compared topically HSV-1 infected human foreskin explants with biopsies of initial human genital herpes lesions to show LCs are initially infected then emigrate into the dermis. Here, LCs bearing markers of maturation and apoptosis formed large cell clusters with BDCA3+ dermal DCs (thought to be equivalent to murine CD103+ dermal DCs) and DC-SIGN+ DCs/macrophages. HSV-expressing LC fragments were observed inside the dermal DCs/macrophages and the BDCA3+ dermal DCs had up-regulated a damaged cell uptake receptor CLEC9A. No other infected epidermal cells interacted with dermal DCs. Correspondingly, LCs isolated from human skin and infected with HSV-1 in vitro also underwent apoptosis and were taken up by similarly isolated BDCA3+ dermal DCs and DC-SIGN+ cells. Thus, we conclude a viral antigen relay takes place where HSV infected LCs undergo apoptosis and are taken up by dermal DCs for subsequent antigen presentation. This provides a rationale for targeting these cells with mucosal or perhaps intradermal HSV immunization. Herpes Simplex Virus (HSV) is a highly prevalent virus that causes cold sores and genital herpes but also increases the chance of contracting HIV by several folds. In fact, most new cases of HIV in Africa occur in people infected with HSV. Thus, a protective HSV vaccine would have a large impact on public health. Currently, the process by which immunity to HSV is generated is incompletely understood. Paradoxically, the first immune cells to become infected, Langerhans cells in the epidermis, are not the cells that initiate the immune response, while the dermal dendritic cells thought to be responsible for initiating the immune response are not likely to be infected. Here, we have shown, in human skin models and genital herpes lesion biopsies, an interaction between these dendritic cells that could relay HSV to the lymph node. HSV is taken up by the epidermal Langerhans cells that then migrate into the dermis, die and are taken up by another subset of dermal dendritic cells—the homologs of those in mice which stimulate HSV-specific T cells in the lymph node. Thus, a mucosal or intradermal vaccine targeting these two dendritic cells may be required.
Collapse
|
33
|
Abstract
The successful human papillomavirus and hepatitis B virus subunit vaccines contain single viral proteins that represent 22 and 12%, respectively, of the antigens encoded by these tiny viruses. The herpes simplex virus 2 (HSV-2) genome is >20 times larger. Thus, a single protein subunit represents 1% of HSV-2's total antigenic breadth. Antigenic breadth may explain why HSV-2 glycoprotein subunit vaccines have failed in clinical trials, and why live HSV-2 vaccines that express 99% of HSV-2's proteome may be more effective. I review the mounting evidence that live HSV-2 vaccines offer a greater opportunity to stop the spread of genital herpes, and I consider the unfounded 'safety concerns' that have kept live HSV-2 vaccines out of U.S. clinical trials for 25 years.
Collapse
Affiliation(s)
- William P Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
34
|
|
35
|
Xia J, Veselenak RL, Gorder SR, Bourne N, Milligan GN. Virus-specific immune memory at peripheral sites of herpes simplex virus type 2 (HSV-2) infection in guinea pigs. PLoS One 2014; 9:e114652. [PMID: 25485971 PMCID: PMC4259353 DOI: 10.1371/journal.pone.0114652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022] Open
Abstract
Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation.
Collapse
Affiliation(s)
- Jingya Xia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ronald L. Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Summer R. Gorder
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Alves Dummer L, Pereira Leivas Leite F, van Drunen Littel-van den Hurk S. Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 2014; 45:111. [PMID: 25359626 PMCID: PMC4252008 DOI: 10.1186/s13567-014-0111-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022] Open
Abstract
The viral envelope glycoprotein D from bovine herpesviruses 1 and 5 (BoHV-1 and -5), two important pathogens of cattle, is a major component of the virion and plays a critical role in the pathogenesis of herpesviruses. Glycoprotein D is essential for virus penetration into permissive cells and thus is a major target for virus neutralizing antibodies during infection. In view of its role in the induction of protective immunity, gD has been tested in new vaccine development strategies against both viruses. Subunit, DNA and vectored vaccine candidates have been developed using this glycoprotein as the primary antigen, demonstrating that gD has the capacity to induce robust virus neutralizing antibodies and strong cell-mediated immune responses, as well as protection from clinical symptoms, in target species. This review highlights the structural and functional characteristics of BoHV-1, BoHV-5 and where appropriate, Human herpesvirus gD, as well as its role in viral entry and interactions with host cell receptors. Furthermore, the interactions of gD with the host immune system are discussed. Finally, the application of this glycoprotein in new vaccine design is reviewed, taking its structural and functional characteristics into consideration.
Collapse
Affiliation(s)
- Luana Alves Dummer
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Sylvia van Drunen Littel-van den Hurk
- Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada. .,VIDO-Intervac, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada.
| |
Collapse
|
37
|
Stanfield BA, Stahl J, Chouljenko VN, Subramanian R, Charles AS, Saied AA, Walker JD, Kousoulas KG. A single intramuscular vaccination of mice with the HSV-1 VC2 virus with mutations in the glycoprotein K and the membrane protein UL20 confers full protection against lethal intravaginal challenge with virulent HSV-1 and HSV-2 strains. PLoS One 2014; 9:e109890. [PMID: 25350288 PMCID: PMC4211657 DOI: 10.1371/journal.pone.0109890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/11/2014] [Indexed: 01/01/2023] Open
Abstract
Herpes Simplex Virus type-1 (HSV-1) and type-2 (HSV-2) establish life-long infections and cause significant orofacial and genital infections in humans. HSV-1 is the leading cause of infectious blindness in the western world. Currently, there are no available vaccines to protect against herpes simplex infections. Recently, we showed that a single intramuscular immunization with an HSV-1(F) mutant virus lacking expression of the viral glycoprotein K (gK), which prevents the virus from entering into distal axons of ganglionic neurons, conferred significant protection against either virulent HSV-1(McKrae) or HSV-2(G) intravaginal challenge in mice. Specifically, 90% of the mice were protected against HSV-1(McKrae) challenge, while 70% of the mice were protected against HSV-2(G) challenge. We constructed the recombinant virus VC2 that contains specific mutations in gK and the membrane protein UL20 preventing virus entry into axonal compartments of neurons, while allowing efficient replication in cell culture, unlike the gK-null virus, which has a major defect in virus replication and spread. Intramuscular injection of mice with 107 VC2 plaque forming units did not cause any significant clinical disease in mice. A single intramuscular immunization with the VC2 virus protected 100% of mice against lethal intravaginal challenge with either HSV-1(McKrae) or HSV-2(G) viruses. Importantly, vaccination with VC2 produced robust cross protective humoral and cellular immunity that fully protected vaccinated mice against lethal disease. Quantitative PCR did not detect any viral DNA in ganglionic tissues of vaccinated mice, while unvaccinated mice contained high levels of viral DNA. The VC2 virus may serve as an efficient vaccine against both HSV-1 and HSV-2 infections, as well as a safe vector for the production of vaccines against other viral and bacterial pathogens.
Collapse
Affiliation(s)
- Brent A. Stanfield
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jacque Stahl
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ramesh Subramanian
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Anu-Susan Charles
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ahmad A. Saied
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jason D. Walker
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
38
|
Long D, Skoberne M, Gierahn TM, Larson S, Price JA, Clemens V, Baccari AE, Cohane KP, Garvie D, Siber GR, Flechtner JB. Identification of novel virus-specific antigens by CD4⁺ and CD8⁺ T cells from asymptomatic HSV-2 seropositive and seronegative donors. Virology 2014; 464-465:296-311. [PMID: 25108380 DOI: 10.1016/j.virol.2014.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
Reactivation of latent herpes simplex virus 2 (HSV-2) infections can be characterized by episodic recurrent genital lesions and/or viral shedding. We hypothesize that infected (HSV-2(pos)) asymptomatic individuals have acquired T cell responses to specific HSV-2 antigen(s) that may be an important factor in controlling their recurrent disease symptoms. Our proteomic screening technology, ATLAS, was used to characterize the antigenic repertoire of T cell responses in infected (HSV-2(pos)) and virus-exposed seronegative (HSV-2(neg)) subjects. T cell responses, determined by IFN-γ secretion, were generated to gL, UL2, UL11, UL21, ICP4, ICP0, ICP47 and UL40 with greater magnitude and/or frequency among cohorts of exposed HSV-2(neg) or asymptomatic HSV-2(pos) individuals, compared to symptomatic recurrent HSV-2(pos) subjects. T cell antigens recognized preferentially among individuals who are resistant to infection or who are infected and have mild or no clinical disease may provide new targets for the design of vaccines aimed at treating and/or preventing HSV-2 infection.
Collapse
|
39
|
Davies DH, Chun S, Hermanson G, Tucker JA, Jain A, Nakajima R, Pablo J, Felgner PL, Liang X. T cell antigen discovery using soluble vaccinia proteome reveals recognition of antigens with both virion and nonvirion association. THE JOURNAL OF IMMUNOLOGY 2014; 193:1812-27. [PMID: 25024392 DOI: 10.4049/jimmunol.1400663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccinia virus (VACV) is a useful model system for understanding the immune response to a complex pathogen. Proteome-wide Ab profiling studies reveal the humoral response to be strongly biased toward virion-associated Ags, and several membrane proteins induce Ab-mediated protection against VACV challenge in mice. Some studies have indicated that the CD4 response is also skewed toward proteins with virion association, whereas the CD8 response is more biased toward proteins with early expression. In this study, we have leveraged a VACV strain Western Reserve (VACV-WR) plasmid expression library, produced previously for proteome microarrays for Ab profiling, to make a solubilized full VACV-WR proteome for T cell Ag profiling. Splenocytes from VACV-WR-infected mice were assayed without prior expansion against the soluble proteome in assays for Th1 and Th2 signature cytokines. The response to infection was polarized toward a Th1 response, with the distribution of reactive T cell Ags comprising both early and late VACV proteins. Interestingly, the proportions of different functional subsets were similar to that present in the whole proteome. In contrast, the targets of Abs from the same mice were enriched for membrane and other virion components, as described previously. We conclude that a "nonbiasing" approach to T cell Ag discovery reveals a T cell Ag profile in VACV that is broader and less skewed to virion association than the Ab profile. The T cell Ag mapping method developed in the present study should be applicable to other organisms where expressible "ORFeome" libraries are also available, and it is readily scalable for larger pathogens.
Collapse
Affiliation(s)
- D Huw Davies
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Sookhee Chun
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | | - Jo Anne Tucker
- Division of Hematology and Oncology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Aarti Jain
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Rie Nakajima
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Jozelyn Pablo
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Philip L Felgner
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
40
|
Accardo A, Vitiello M, Tesauro D, Galdiero M, Finamore E, Martora F, Mansi R, Ringhieri P, Morelli G. Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment. Int J Nanomedicine 2014; 9:2137-48. [PMID: 24855352 PMCID: PMC4019629 DOI: 10.2147/ijn.s57656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The use of micelle aggregates formed from peptide amphiphiles (PAs) as potential synthetic self-adjuvant vaccines to treat Herpes simplex virus (HSV) infection are reported here. The PAs were based on epitopes gB409–505 and gD301–309, selected from HSV envelope glycoprotein B (gB) and glycoprotein D (gD), that had their N-terminus modified with hydrophobic moieties containing two C18 hydrocarbon chains. Pure and mixed micelles of gB and/or gD peptide epitopes were easily prepared after starting with the synthesis of corresponding PAs by solid phase methods. Structural characterization of the aggregates confirmed that they were sufficiently stable and compatible with in vivo use: critical micelle concentration values around 4.0 ⋅ 10−7 mol ⋅ Kg−1; hydrodynamic radii (RH) between 50–80 nm, and a zeta potential (ζ) around − 40 mV were found for all aggregates. The in vitro results indicate that both peptide epitopes and micelles, at 10 μM, triggered U937 and RAW 264.7 cells to release appreciable levels of cytokines. In particular, interleukin (IL)-23-, IL-6-, IL-8- or macrophage inflammatory protein (MIP)-2-, and tumor necrosis factor (TNF)-α-release increased considerably when cells were treated with the gB-micelles or gD-micelles compared with the production of the same cytokines when the stimulus was the single gB or gD peptide.
Collapse
Affiliation(s)
- Antonella Accardo
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Mariateresa Vitiello
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy ; Department of Clinical Pathology and Transfusion Medicine, University Hospital "Ruggi d'Aragona", Salerno, Italy
| | - Diego Tesauro
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Emiliana Finamore
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Francesca Martora
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Rosalba Mansi
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Paola Ringhieri
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| |
Collapse
|
41
|
Vaccination with a HSV-2 UL24 mutant induces a protective immune response in murine and guinea pig vaginal infection models. Vaccine 2014; 32:1398-406. [PMID: 24462481 DOI: 10.1016/j.vaccine.2013.10.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/25/2013] [Accepted: 10/24/2013] [Indexed: 11/21/2022]
Abstract
The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-βgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-βgluc elicited a highly protective immune response. UL24-βgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a>IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-βgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-βgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-βgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine.
Collapse
|
42
|
Atlas A, Franzen-Röhl E, Söderlund J, Jönsson EG, Samuelsson M, Schwieler L, Sköldenberg B, Engberg G. Sustained elevation of kynurenic Acid in the cerebrospinal fluid of patients with herpes simplex virus type 1 encephalitis. Int J Tryptophan Res 2013; 6:89-96. [PMID: 24324341 PMCID: PMC3855257 DOI: 10.4137/ijtr.s13256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 encephalitis (HSE) is a viral infectious disease with commonly occurring neurodegeneration and neurological/cognitive long-term sequelae. Kynurenic acid (KYNA) is a neuroactive tryptophan metabolite, which is elevated in the cerebrospinal fluid (CSF) during viral infection as a result of immune activation. The aim of the study was to investigate the role of endogenous brain KYNA for the long-term outcome of the disease. CSF KYNA concentration was analyzed in 25 HSE patients along the course of the disease and compared with that of 25 age-matched healthy volunteers. Within 3 weeks of admission CSF KYNA of HSE patients was markedly elevated (median 33.6 nM) compared to healthy volunteers (median 1.45 nM). Following a decline observed after 1-2 months, levels of CSF KYNA were elevated more than 1 year after admission (median 3.4 nM range: 1-9 years). A negative correlation was found between initial CSF KYNA concentrations and severity of the long-term sequelae. This study show a marked elevation in CSF KYNA from patients with HSE, most pronounced during the acute phase of the disease and slowly declining along the recovery. We propose that brain KYNA might potentially protect against neurodegeneration while causing a long-lasting loss in cognitive function associated with the disease.
Collapse
Affiliation(s)
- Ann Atlas
- Infectious Diseases Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nicoli F, Finessi V, Sicurella M, Rizzotto L, Gallerani E, Destro F, Cafaro A, Marconi P, Caputo A, Ensoli B, Gavioli R. The HIV-1 Tat protein induces the activation of CD8+ T cells and affects in vivo the magnitude and kinetics of antiviral responses. PLoS One 2013; 8:e77746. [PMID: 24223723 PMCID: PMC3817196 DOI: 10.1371/journal.pone.0077746] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
T cells are functionally compromised during HIV infection despite their increased activation and proliferation. Although T cell hyperactivation is one of the best predictive markers for disease progression, its causes are poorly understood. Anti-tat natural immunity as well as anti-tat antibodies induced by Tat immunization protect from progression to AIDS and reverse signs of immune activation in HIV-infected patients suggesting a role of Tat in T cell dysfunctionality. The Tat protein of HIV-1 is known to induce, in vitro, the activation of CD4(+) T lymphocytes, but its role on CD8(+) T cells and how these effects modulate, in vivo, the immune response to pathogens are not known. To characterize the role of Tat in T cell hyperactivation and dysfunction, we examined the effect of Tat on CD8(+) T cell responses and antiviral immunity in different ex vivo and in vivo models of antigenic stimulation, including HSV infection. We demonstrate for the first time that the presence of Tat during priming of CD8(+) T cells favors the activation of antigen-specific CTLs. Effector CD8(+) T cells generated in the presence of Tat undergo an enhanced and prolonged expansion that turns to a partial dysfunctionality at the peak of the response, and worsens HSV acute infection. Moreover, Tat favors the development of effector memory CD8(+) T cells and a transient loss of B cells, two hallmarks of the chronic immune activation observed in HIV-infected patients. Our data provide evidence that Tat affects CD8(+) T cell responses to co-pathogens and suggest that Tat may contribute to the CD8(+) T cell hyperactivation observed in HIV-infected individuals.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Valentina Finessi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Lara Rizzotto
- Department of Biomedical Sciences, Azienda Ospedaliero Universitaria Sant'Anna, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Federica Destro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Peggy Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
44
|
Single dose of glycoprotein K (gK)-deleted HSV-1 live-attenuated virus protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces lasting T cell memory immune responses. Virol J 2013; 10:317. [PMID: 24165088 PMCID: PMC3826548 DOI: 10.1186/1743-422x-10-317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/30/2013] [Indexed: 11/11/2022] Open
Abstract
Background Herpes simplex virus type-1(HSV-1) and HSV-2 are important human pathogens that cause significant ocular and urogenital complications, respectively. We have previously shown that HSV-1 virions lacking glycoprotein K (gK) are unable to enter into neurons via synaptic axonal membranes and be transported in either retrograde or anterograde manner. Here, we tested the ability of HSV-1 (F) gK-null to protect against lethal challenge with either highly virulent ocular HSV-1 (McKrae strain), or genital HSV-2 (G strain). The gK-null virus vaccine efficiently protected mice against lethal vaginal infection with either HSV-1(McKrae) or HSV-2 (G). Results Female mice were immunized via a single intramuscular injection with 106 PFU of the gK-null virus. Immunized mice were treated with Depo-Provera fourteen days after vaccination and were challenged via the vaginal route one week later. Ninety percent of mice vaccinated with the gK-null virus survived HSV-1 (McKrae) challenge, while 70% of these mice survived after HSV-2 (G) challenge. Moreover, all vaccinated mice exhibited substantially reduced disease symptoms irrespective of HSV-1 or HSV-2 challenge as compared to the mock vaccinated challenge group. T-cell memory immune responses to specific glycoprotein B (gB) and glycoprotein D (gD) peptide epitopes were detectable at 7 months post vaccination. Conclusions These results suggest that the highly attenuated, non-neurotropic gK-null virus may be used as an effective vaccine to protect against both virulent HSV-1 and HSV-2 genital infections and induce lasting immune responses.
Collapse
|
45
|
Kolb AW, Ané C, Brandt CR. Using HSV-1 genome phylogenetics to track past human migrations. PLoS One 2013; 8:e76267. [PMID: 24146849 DOI: 10.1371/journal.pone.0076267] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 08/24/2013] [Indexed: 01/11/2023] Open
Abstract
We compared 31 complete and nearly complete globally derived HSV-1 genomic sequences using HSV-2 HG52 as an outgroup to investigate their phylogenetic relationships and look for evidence of recombination. The sequences were retrieved from NCBI and were then aligned using Clustal W. The generation of a maximum likelihood tree resulted in a six clade structure that corresponded with the timing and routes of past human migration. The East African derived viruses contained the greatest amount of genetic diversity and formed four of the six clades. The East Asian and European/North American derived viruses formed separate clades. HSV-1 strains E07, E22 and E03 were highly divergent and may each represent an individual clade. Possible recombination was analyzed by partitioning the alignment into 5 kb segments, performing individual phylogenetic analysis on each partition and generating a.phylogenetic network from the results. However most evidence for recombination spread at the base of the tree suggesting that recombination did not significantly disrupt the clade structure. Examination of previous estimates of HSV-1 mutation rates in conjunction with the phylogenetic data presented here, suggests that the substitution rate for HSV-1 is approximately 1.38 × 10(-7) subs/site/year. In conclusion, this study expands the previously described HSV-1 three clade phylogenetic structures to a minimum of six and shows that the clade structure also mirrors global human migrations. Given that HSV-1 has co-evolved with its host, sequencing HSV-1 isolated from various populations could serve as a surrogate biomarker to study human population structure and migration patterns.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | |
Collapse
|
46
|
St Leger AJ, Jeon S, Hendricks RL. Broadening the repertoire of functional herpes simplex virus type 1-specific CD8+ T cells reduces viral reactivation from latency in sensory ganglia. THE JOURNAL OF IMMUNOLOGY 2013; 191:2258-65. [PMID: 23878317 DOI: 10.4049/jimmunol.1300585] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A large proportion of the world population harbors HSV type 1 (HSV-1) in a latent state in their trigeminal ganglia (TG). TG-resident CD8(+) T cells appear important for preventing HSV-1 reactivation from latency and recurrent herpetic disease. In C57BL/6J mice, half of these cells are specific for an immunodominant epitope on HSV-1 glycoprotein B, whereas the other half are specific for 18 subdominant epitopes. In this study, we show that the CD8(+) T cell dominance hierarchy in the TG established during acute infection is maintained during latency. However, CD8(+) T cells specific for subdominant epitopes lose functionality, whereas those specific for the immunodominant epitope exhibit increased functionality in latently infected TG. Furthermore, we show that IL-10 produced by 16.4 ± 2.8% of TG-resident CD4(+) T cells maintains the immunodominance hierarchy in part through selective inhibition of subdominant CD8(+) T cell proliferation. Upon systemic anti-IL-10R Ab treatment, we observed a significant expansion of functional subdominant CD8(+) T cells, resulting in significantly improved protection from viral reactivation. In fact, systemic anti-IL-10R Ab treatment prevented viral reactivation in up to 50% of treated mice. Our results not only demonstrate that HSV-1 reactivation from latency can be prevented by expanding the repertoire of functional TG-resident CD8(+) T cells, but also that IL-10R blockade might have therapeutic potential to reduce or eliminate recurrent herpetic disease.
Collapse
Affiliation(s)
- Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
47
|
Liu Z, Xiang Y, Wei Z, Yu B, Shao Y, Zhang J, Yang H, Li M, Guan M, Wan J, Zhang W. Application of shRNA-containing herpes simplex virus type 1 (HSV-1)-based gene therapy for HSV-2-induced genital herpes. J Virol Methods 2013; 193:353-8. [PMID: 23845900 DOI: 10.1016/j.jviromet.2013.06.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/19/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
HSV-1-based vectors have been widely used to achieve targeted delivery of genes into the nervous system. In the current study, we aim to use shRNA-containing HSV-1-based gene delivery system for the therapy of HSV-2 infection. Guinea pigs were infected intravaginally with HSV-2 and scored daily for 100 days for the severity of vaginal disease. HSV-2 shRNA-containing HSV-1 was applied intravaginally daily between 8 and 14 days after HSV-2 challenge. Delivery of HSV-2 shRNA-containing HSV-1 had no effect on the onset of disease and acute virus shedding in animals, but resulted in a significant reduction in both the cumulative recurrent lesion days and the number of days with recurrent disease. Around half of the animals in the HSV-2 shRNA group did not develop recurrent disease 100 days post HSV-2 infection. In conclusion, HSV-2 shRNA-containing HSV-1 particles are effective in reducing the recurrence of genital herpes caused by HSV-2.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong 518036, China; Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The immunologic basis for severe neonatal herpes disease and potential strategies for therapeutic intervention. Clin Dev Immunol 2013; 2013:369172. [PMID: 23606868 PMCID: PMC3626239 DOI: 10.1155/2013/369172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world's population. Infection is life-long and can cause periodic mucocutaneous symptoms, but it only rarely causes life-threatening disease among immunocompetent children and adults. However, when HSV infection occurs during the neonatal period, viral replication is poorly controlled and a large proportion of infants die or develop disability even with optimal antiviral therapy. Increasingly, specific differences are being elucidated between the immune system of newborns and those of older children and adults, which predispose to severe infections and reflect the transition from fetal to postnatal life. Studies in healthy individuals of different ages, individuals with primary or acquired immunodeficiencies, and animal models have contributed to our understanding of the mechanisms that control HSV infection and how these may be impaired during the neonatal period. This paper outlines our current understanding of innate and adaptive immunity to HSV infection, immunologic differences in early infancy that may account for the manifestations of neonatal HSV infection, and the potential of interventions to augment neonatal immune protection against HSV disease.
Collapse
|
49
|
Coleman JL, Shukla D. Recent advances in vaccine development for herpes simplex virus types I and II. Hum Vaccin Immunother 2013; 9:729-35. [PMID: 23442925 DOI: 10.4161/hv.23289] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite recent advances in vaccine design and strategies, latent infection with herpes simplex virus (HSV) remains a formidable challenge. Approaches involving live-attenuated viruses and inactivated viral preparations were popular throughout the twentieth century. In the past ten years, many vaccine types, both prophylactic or therapeutic, have contained a replication-defective HSV, viral DNA or glycoproteins. New research focused on the mechanism of immune evasion by the virus has involved developing vaccines with various gene deletions and manipulations combined with the use of new and more specific adjuvants. In addition, new "prime-boost" methods of strengthening the vaccine efficacy have proven effective, but there have also been flaws with some recent strategies that appear to have compromised vaccine efficacy in humans. Given the complicated lifecycle of HSV and its unique way of spreading from cell-to-cell, it can be concluded that the development of an ideal vaccine needs new focus on cell-mediated immunity, better understanding of the latent viral genome and serious consideration of gender-based differences in immunity development among humans. This review summarizes recent developments made in the field and sheds light on some potentially new ways to conquer the problem including development of dual-action prophylactic microbicides that prohibit viral entry and, in addition, induce a strong antigen response.
Collapse
Affiliation(s)
- Jeffrey L Coleman
- Department of Ophthalmology and Visual Sciences; College of Medicine, University of Illinois at Chicago; Chicago, IL USA; Whitney M. Young Magnet High School; Chicago, IL USA
| | | |
Collapse
|
50
|
An adjuvanted herpes simplex virus 2 subunit vaccine elicits a T cell response in mice and is an effective therapeutic vaccine in Guinea pigs. J Virol 2013; 87:3930-42. [PMID: 23365421 DOI: 10.1128/jvi.02745-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4(+) and CD8(+) T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease.
Collapse
|