1
|
Eom GD, Chu KB, Mao J, Yoon KW, Kang HJ, Moon EK, Kim SS, Quan FS. Heterologous immunization targeting the CST1 antigen confers better protection than ROP18 in mice. Nanomedicine (Lond) 2024; 19:2437-2446. [PMID: 39320318 PMCID: PMC11520538 DOI: 10.1080/17435889.2024.2403333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: To evaluate the protective efficacy induced by heterologous immunization with recombinant baculoviruses or virus-like particles targeting the CST1 and ROP18 antigens of Toxoplasma gondii.Materials & methods: Recombinant baculovirus and virus-like particle vaccines expressing T. gondii CST1 or ROP18 antigens were developed to evaluate protective immunity in mice upon challenge infection with 450 Toxoplasma gondii (ME49).Results: Immunization with CST1 or ROP18 vaccines induced similar levels of T. gondii-specific IgG and IgA responses. Compared with ROP 18, CST1 vaccine showed better antibody-secreting cell response, germinal center B cell activation, and significantly reduced brain cyst burden and body weight loss.Conclusion: Our findings suggest that CST1 heterologous immunization elicited better protection than ROP18, providing important insight into improving the toxoplasmosis vaccine design strategy.
Collapse
Affiliation(s)
- Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan, 47392, Republic of Korea
- Department of Infectious Disease & Malaria, Paik Institute of Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae-Ji Kang
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species & Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
2
|
Wang D, Jiang P, Wu X, Zhang Y, Wang C, Li M, Liu M, Yin J, Zhu G. Requirement of microtubules for secretion of a micronemal protein CpTSP4 in the invasive stage of the apicomplexan Cryptosporidium parvum. mBio 2024; 15:e0315823. [PMID: 38265238 PMCID: PMC10865969 DOI: 10.1128/mbio.03158-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
The zoonotic Cryptosporidium parvum is a global contributor to infantile diarrheal diseases and opportunistic infections in immunocompromised or weakened individuals. Like other apicomplexans, it possesses several specialized secretory organelles, including micronemes, rhoptry, and dense granules. However, the understanding of cryptosporidial micronemal composition and secretory pathway remains limited. Here, we report a new micronemal protein in C. parvum, namely, thrombospondin (TSP)-repeat domain-containing protein-4 (CpTSP4), providing insights into these ambiguities. Immunostaining and enzyme-linked assays show that CpTSP4 is prestored in the micronemes of unexcysted sporozoites but secreted during sporozoite excystation, gliding, and invasion. In excysted sporozoites, CpTSP4 is also distributed on the two central microtubules unique to Cryptosporidium. The secretion and microtubular distribution could be completely blocked by the selective kinesin-5 inhibitors SB-743921 and SB-715992, resulting in the accumulation of CpTSP4 in micronemes. These support the kinesin-dependent microtubular trafficking of CpTSP4 for secretion. We also localize γ-tubulin, consistent with kinesin-dependent anterograde trafficking. Additionally, recombinant CpTSP4 displays nanomolar binding affinity to the host cell surface, for which heparin acts as one of the host ligands. A novel heparin-binding motif is identified and validated biochemically for its contribution to the adhesive property of CpTSP4 by peptide competition assays and site-directed mutagenesis. These findings shed light on the mechanisms of intracellular trafficking and secretion of a cryptosporidial micronemal protein and the interaction of a TSP-family protein with host cells.IMPORTANCECryptosporidium parvum is a globally distributed apicomplexan parasite infecting humans and/or animals. Like other apicomplexans, it possesses specialized secretory organelles in the zoites, in which micronemes discharge molecules to facilitate the movement and invasion of zoites. Although past and recent studies have identified several proteins in cryptosporidial micronemes, our understanding of the composition, secretory pathways, and domain-ligand interactions of micronemal proteins remains limited. This study identifies a new micronemal protein, namely, CpTSP4, that is discharged during excystation, gliding, and invasion of C. parvum sporozoites. The CpTSP4 secretion depends on the intracellular trafficking on the two Cryptosporidium-unique microtubes that could be blocked by kinesin-5/Eg5 inhibitors. Additionally, a novel heparin-binding motif is identified and biochemically validated, which contributes to the nanomolar binding affinity of CpTSP4 to host cells. These findings indicate that kinesin-dependent microtubular trafficking is critical to CpTSP4 secretion, and heparin/heparan sulfate is one of the ligands for this micronemal protein.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenchen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Bhalchandra S, Gevers K, Heimburg-Molinaro J, van Roosmalen M, Coppens I, Cummings RD, Ward HD. Identification of the glycopeptide epitope recognized by a protective Cryptosporidium monoclonal antibody. Infect Immun 2023; 91:e0027523. [PMID: 37725059 PMCID: PMC10580954 DOI: 10.1128/iai.00275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Cryptosporidium species are a leading cause of pediatric diarrheal disease and death in low- and middle-income countries and pose a particular threat to immunocompromised individuals. As a zoonotic pathogen, Cryptosporidium can have devastating effects on the health of neonatal calves. Despite its impact on human and animal health, consistently effective drug treatments for cryptosporidiosis are lacking and no vaccine is available. We previously showed that C. parvum mucin-like glycoproteins, gp40, and gp900 express an epitope identified by a monoclonal antibody 4E9. 4E9 neutralized C. parvum infection in vitro as did glycan-binding proteins specific for the Tn antigen (GalNAc-α1-S/T). Here, we show that 4E9 ameliorates disease in vivo in a calf challenge model. The 4E9 epitope is present on C. hominis in addition to C. parvum gp40 and gp900 and localizes to the plasma membrane and dense granules of invasive and intracellular stages. To characterize the epitope recognized by 4E9, we probed a glycan array containing over 500 defined glycans together with a custom-made glycopeptide microarray containing glycopeptides from native mucins or C. parvum gp40 and gp15. 4E9 exhibited no binding to the glycan array but bound strongly to glycopeptides from native mucins or gp40 on the glycopeptide array, suggesting that the antibody epitope contains both peptide and glycan moieties. 4E9 only recognized glycopeptides with adjacent S or T residues in the motif S*/T*-X-S*/T* where X = 0 or 1. These data define the 4E9 epitope and have implications for the inclusion of the epitope in the development of vaccines or other immune-based therapies.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | | | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Honorine D. Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Dąbrowska J, Sroka J, Cencek T. Investigating Cryptosporidium spp. Using Genomic, Proteomic and Transcriptomic Techniques: Current Progress and Future Directions. Int J Mol Sci 2023; 24:12867. [PMID: 37629046 PMCID: PMC10454211 DOI: 10.3390/ijms241612867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cryptosporidiosis is a widespread disease caused by the parasitic protozoan Cryptosporidium spp., which infects various vertebrate species, including humans. Once unknown as a gastroenteritis-causing agent, Cryptosporidium spp. is now recognized as a pathogen causing life-threatening disease, especially in immunocompromised individuals such as AIDS patients. Advances in diagnostic methods and increased awareness have led to a significant shift in the perception of Cryptosporidium spp. as a pathogen. Currently, genomic and proteomic studies play a main role in understanding the molecular biology of this complex-life-cycle parasite. Genomics has enabled the identification of numerous genes involved in the parasite's development and interaction with hosts. Proteomics has allowed for the identification of protein interactions, their function, structure, and cellular activity. The combination of these two approaches has significantly contributed to the development of new diagnostic tools, vaccines, and drugs for cryptosporidiosis. This review presents an overview of the significant achievements in Cryptosporidium research by utilizing genomics, proteomics, and transcriptomics approaches.
Collapse
Affiliation(s)
- Joanna Dąbrowska
- Department of Parasitology and Invasive Disease, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland (T.C.)
| | | | | |
Collapse
|
5
|
Gilchrist CA, Campo JJ, Pablo JV, Ma JZ, Teng A, Oberai A, Shandling AD, Alam M, Kabir M, Faruque A, Haque R, Petri WA. Specific Cryptosporidium antigens associate with reinfection immunity and protection from cryptosporidiosis. J Clin Invest 2023; 133:e166814. [PMID: 37347553 PMCID: PMC10425216 DOI: 10.1172/jci166814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
There is no vaccine to protect from cryptosporidiosis, a leading cause of diarrhea in infants in low- and middle-income countries. Here, we comprehensively identified parasite antigens associated with protection from reinfection. A Cryptosporidium protein microarray was constructed by in vitro transcription and translation of 1,761 C. parvum, C. hominis, or C. meleagridis antigens, including proteins with a signal peptide and/or a transmembrane domain. Plasma IgG and/or IgA from Bangladeshi children longitudinally followed for cryptosporidiosis from birth to 3 years of age allowed for identification of 233 seroreactive proteins. Seven of these were associated with protection from reinfection. These included Cp23, Cp17, Gp900, and 4 additional antigens - CpSMP1, CpMuc8, CpCorA and CpCCDC1. Infection in the first year of life, however, often resulted in no detectable antigen-specific antibody response, and antibody responses, when detected, were specific to the infecting parasite genotype and decayed in the months after infection. In conclusion, humoral immune responses against specific parasite antigens were associated with acquired immunity. While antibody decay over time and parasite genotype-specificity may limit natural immunity, this work serves as a foundation for antigen selection for vaccine design.
Collapse
Affiliation(s)
- Carol A. Gilchrist
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Jennie Z. Ma
- Public Health Science, University of Virginia, Charlottesville, Virginia, USA
| | - Andy Teng
- Antigen Discovery Inc, Irvine, California, USA
| | - Amit Oberai
- Antigen Discovery Inc, Irvine, California, USA
| | | | - Masud Alam
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Mamun Kabir
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - A.S.G. Faruque
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - William A. Petri
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Microbiology, Immunology and Cancer Biology, and
- Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Saraav I, Sibley LD. Dendritic Cells and Cryptosporidium: From Recognition to Restriction. Microorganisms 2023; 11:1056. [PMID: 37110479 PMCID: PMC10144555 DOI: 10.3390/microorganisms11041056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Host immune responses are required for the efficient control of cryptosporidiosis. Immunity against Cryptosporidium infection has been best studied in mice, where it is mediated by both innate and adaptive immune responses. Dendritic cells are the key link between innate and adaptive immunity and participate in the defense against Cryptosporidium infection. While the effector mechanism varies, both humans and mice rely on dendritic cells for sensing parasites and restricting infection. Recently, the use of mouse-adapted strains C. parvum and mouse-specific strain C. tyzzeri have provided tractable systems to study the role of dendritic cells in mice against this parasite. In this review, we provide an overview of recent advances in innate immunity acting during infection with Cryptosporidium with a major focus on the role of dendritic cells in the intestinal mucosa. Further work is required to understand the role of dendritic cells in the activation of T cells and to explore associated molecular mechanisms. The identification of Cryptosporidium antigen involved in the activation of Toll-like receptor signaling in dendritic cells during infection is also a matter of future study. The in-depth knowledge of immune responses in cryptosporidiosis will help develop targeted prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Apical Secretory Glycoprotein Complex Contributes to Cell Attachment and Entry by Cryptosporidium parvum. mBio 2023; 14:e0306422. [PMID: 36722968 PMCID: PMC9973360 DOI: 10.1128/mbio.03064-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cryptosporidium parvum is an enteric pathogen that invades epithelial cells in the intestine, where it resides at the apical surface in a unique epicellular location. Compared with those of related apicomplexan parasites, the processes of host cell attachment and invasion by C. parvum are poorly understood. The streamlined C. parvum genome contains numerous mucin-like glycoproteins, several of which have previously been shown to mediate cell attachment, although the majority are unstudied. Here, we identified the antigens recognized by monoclonal antibody (MAb) 1A5, which stains the apical end of sporozoites and mature merozoites. Immunoprecipitation with MAb 1A5 followed by mass spectrometry identified a heterodimer comprised of paralogous proteins which are related to additional orthologs in the genome of C. parvum and related species. Paralogous glycoproteins recognized by MAb 1A5 heterodimerize as a complex displayed on the parasite surface, and they also interact with lectins that suggest that they contain mucin-like, O-linked oligosaccharides. Although the gene encoding one of the paralogs was readily disrupted by CRISPR/Cas9 gene editing, its partner, which contains a mucin-like domain related to GP900, was refractory to deletion. Combined with the ability of MAb 1A5 to partially neutralize host cell attachment by sporozoites, these findings define a new family of secretory glycoproteins that participate in cell invasion by Cryptosporidium spp. IMPORTANCE Although Cryptosporidium is extremely efficient at penetrating mucus and invading epithelial cells in the intestine, the mechanism of cell attachment is poorly understood. To expand our understanding of this process, we characterized the antigens recognized by a monoclonal antibody that stains the apical end of invasive stages called sporozoites and merozoites. Our studies identify a family of glycoproteins that form heterodimers on the parasite cell surface to facilitate host cell attachment and entry. By further defining the role of mucin-like glycoproteins in host cell attachment, our studies may lead to strategies to disrupt cell adhesion and thereby decrease infection.
Collapse
|
8
|
Xiao D, Wang N, Chen S, Wang S, Yuan X, Fan W, Huo M. Synergism in sequential inactivation of Cryptosporidium parvum with trypsin and UV irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8354-8362. [PMID: 36445526 DOI: 10.1007/s11356-022-24408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium, a protozoan parasite, in wastewater presents a major public health concern for water safety. However, bactericidal efficiencies of conventional disinfection methods towards Cryptosporidium oocysts are still hampered owing to the presence of their thick outer wall. In this study, we present a novel UV inactivation process where the efficiency has been significantly enhanced by addition of a trypsin pretreatment stage. Notably, inactivation (log-reduction) of oocysts was noted to be 73.75-294.72% higher than that obtained by UV irradiation alone, under identical conditions. Experimental observations and supporting mechanistic analyses suggest that trypsin led to cleavage of the protein layers on the oocyst wall, facilitating penetration of UV radiation into the oocysts leading to degradation of their genomic DNA (gDNA). The dissociative effect of trypsin on the oocyst wall was indicated by the fact that 64.50% of oocysts displayed early apoptosis after trypsinization. Imaging by scanning electron microscopy indicated that this combined treatment led to substantial disruption of the oocyst coat, deforming their shape. This resulted in the release of cellular proteins and gDNA, their concentrations in bulk solution increasing by 1.22-8.60 times. As UV irradiation time was prolonged, gDNA was degraded into smaller fragments with lower molecular masses. Both laddering and diffuse smear patterns in gel analysis indicated significantly detrimental effects on gDNA and viability of oocysts. Overall, this study demonstrated enhancement of UV inactivation of Cryptosporidium oocysts by trypsin and explored the underlying mechanisms for the process.
Collapse
Affiliation(s)
- Dan Xiao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Nan Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, China
| | - Shiheng Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Siyue Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangyi Yuan
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Wei Fan
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|
9
|
Li X, Yin J, Wang D, Gao X, Zhang Y, Wu M, Zhu G. The mucin-like, secretory type-I transmembrane glycoprotein GP900 in the apicomplexan Cryptosporidium parvum is cleaved in the secretory pathway and likely plays a lubrication role. Parasit Vectors 2022; 15:170. [PMID: 35581607 PMCID: PMC9111948 DOI: 10.1186/s13071-022-05286-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptosporidium parvum is a zoonotic parasite and member of the phylum Apicomplexa with unique secretory organelles, including a rhoptry, micronemes and dense granules that discharge their contents during parasite invasion. The mucin-like glycoprotein GP900 with a single transmembrane domain is an immunodominant antigen and micronemal protein. It is relocated to the surface of excysted sporozoites and shed to form trails by sporozoites exhibiting gliding motility (gliding sporozoites). However, the biological process underlying its relocation and shedding remains unclear. The primary aim of this study was to determine whether GP900 is present as a transmembrane protein anchored to the plasma membrane on the surface of sporozoites and whether it is cleaved before being shed from the sporozoites. METHODS Two anti-GP900 antibodies, a mouse monoclonal antibody (mAb) to the long N-terminal domain (GP900-N) and a rabbit polyclonal antibody (pAb) to the short C-terminal domain (GP900-C), were produced for the detection of intact and cleaved GP900 proteins in sporozoites and other parasite developmental stages by microscopic immunofluorescence assay and in discharged molecules by enzyme-linked immunosorbent assay. RESULTS Both anti-GP900 antibodies recognized the apical region of unexcysted and excysted sporozoites. However, anti-GP900-N (but not anti-GP900-C) also stained both the pellicles/surface of excysted sporozoites and the trails of gliding sporozoites. Both antibodies stained the intracellular meronts, both developing and developed, but not the macro- and microgamonts. Additionally, the epitope was recognized by anti-GP900-N (but not anti-GP900-C) and detected in the secretions of excysted sporozoites and intracellular parasites. CONCLUSIONS GP900 is present in sporozoites and intracellular meronts, but absent in sexual stages. It is stored in the micronemes of sporozoites, but enters the secretory pathway during excystation and invasion. The short cytoplasmic domain of GP900 is cleaved in the secretory pathway before it reaches the extracellular space. The molecular features and behavior of GP900 imply that it plays mainly a lubrication role.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, The College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jigang Yin
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, The College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Dongqiang Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, The College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Gao
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, The College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ying Zhang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, The College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mingbo Wu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, The College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, The College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Tichkule S, Cacciò SM, Robinson G, Chalmers RM, Mueller I, Emery-Corbin SJ, Eibach D, Tyler KM, van Oosterhout C, Jex AR. Global population genomics of two subspecies of Cryptosporidium hominis during 500 years of evolution. Mol Biol Evol 2022; 39:6550530. [PMID: 35302613 PMCID: PMC9004413 DOI: 10.1093/molbev/msac056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidiosis is a major global health problem and a primary cause of diarrhea, particularly in young children in low- and middle-income countries (LMICs). The zoonotic Cryptosporidium parvum and anthroponotic Cryptosporidium hominis cause most human infections. Here, we present a comprehensive whole-genome study of C. hominis, comprising 114 isolates from 16 countries within five continents. We detect two lineages with distinct biology and demography, which diverged circa 500 years ago. We consider these lineages two subspecies and propose the names C. hominis hominis and C. hominis aquapotentis (gp60 subtype IbA10G2). In our study, C. h. hominis is almost exclusively represented by isolates from LMICs in Africa and Asia and appears to have undergone recent population contraction. In contrast, C. h. aquapotentis was found in high-income countries, mainly in Europe, North America, and Oceania, and appears to be expanding. Notably, C. h. aquapotentis is associated with high rates of direct human-to-human transmission, which may explain its success in countries with well-developed environmental sanitation infrastructure. Intriguingly, we detected genomic regions of introgression following secondary contact between the subspecies. This resulted in high diversity and divergence in genomic islands of putative virulence genes, including muc5 (CHUDEA2_430) and a hypothetical protein (CHUDEA6_5270). This diversity is maintained by balancing selection, suggesting a co-evolutionary arms race with the host. Finally, we find that recent gene flow from C. h. aquapotentis to C. h. hominis, likely associated with increased human migration, maybe driving the evolution of more virulent C. hominis variants.
Collapse
Affiliation(s)
- Swapnil Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Simone M Cacciò
- Department of Infectious Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK.,Swansea University Medical School, Swansea, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK.,Swansea University Medical School, Swansea, UK
| | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Samantha J Emery-Corbin
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Kevin M Tyler
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.,Center of Excellence for Bionanoscience Research, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Aaron R Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Gao X, Yin J, Wang D, Li X, Zhang Y, Wang C, Zhang Y, Zhu G. Discovery of New Microneme Proteins in Cryptosporidium parvum and Implication of the Roles of a Rhomboid Membrane Protein (CpROM1) in Host-Parasite Interaction. Front Vet Sci 2021; 8:778560. [PMID: 34966810 PMCID: PMC8710574 DOI: 10.3389/fvets.2021.778560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023] Open
Abstract
Apicomplexan parasites possess several unique secretory organelles, including rhoptries, micronemes, and dense granules, which play critical roles in the invasion of host cells. The molecular content of these organelles and their biological roles have been well-studied in Toxoplasma and Plasmodium, but are underappreciated in Cryptosporidium, which contains many parasites of medical and veterinary importance. Only four proteins have previously been identified or proposed to be located in micronemes, one of which, GP900, was confirmed using immunogold electron microscopy (IEM) to be present in the micronemes of intracellular merozoites. Here, we report on the discovery of four new microneme proteins (MICs) in the sporozoites of the zoonotic species C. parvum, identified using immunofluorescence assay (IFA). These proteins are encoded by cgd3_980, cgd1_3550, cgd1_3680, and cgd2_1590. The presence of the protein encoded by cgd3_980 in sporozoite micronemes was further confirmed using IEM. Cgd3_980 encodes one of the three C. parvum rhomboid peptidases (ROMs) and is, thus, designated CpROM1. IEM also confirmed the presence of CpROM1 in the micronemes of intracellular merozoites, parasitophorous vacuole membranes (PVM), and feeder organelles (FO). CpROM1 was enriched in the pellicles and concentrated at the host cell–parasite interface during the invasion of sporozoites and its subsequent transformation into trophozoites. CpROM1 transcript levels were also higher in oocysts and excysted sporozoites than in the intracellular parasite stages. These observations indicate that CpROM1, an intramembrane peptidase with membrane proteolytic activity, is involved in host–parasite interactions, including invasion and proteostasis of PVM and FO.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dongqiang Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaohui Li
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenchen Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- Electron Microscopy Core Facility, The Institute of Zoonosis, Jilin University, Changchun, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
12
|
Tucker MS, O’Brien CN, Jenkins MC, Rosenthal BM. Dynamically expressed genes provide candidate viability biomarkers in a model coccidian. PLoS One 2021; 16:e0258157. [PMID: 34597342 PMCID: PMC8486141 DOI: 10.1371/journal.pone.0258157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
Eimeria parasites cause enteric disease in livestock and the closely related Cyclosporacayetanensis causes human disease. Oocysts of these coccidian parasites undergo maturation (sporulation) before becoming infectious. Here, we assessed transcription in maturing oocysts of Eimeria acervulina, a widespread chicken parasite, predicted gene functions, and determined which of these genes also occur in C. cayetanensis. RNA-Sequencing yielded ~2 billion paired-end reads, 92% of which mapped to the E. acervulina genome. The ~6,900 annotated genes underwent temporally-coordinated patterns of gene expression. Fifty-three genes each contributed >1,000 transcripts per million (TPM) throughout the study interval, including cation-transporting ATPases, an oocyst wall protein, a palmitoyltransferase, membrane proteins, and hypothetical proteins. These genes were enriched for 285 gene ontology (GO) terms and 13 genes were ascribed to 17 KEGG pathways, defining housekeeping processes and functions important throughout sporulation. Expression differed in mature and immature oocysts for 40% (2,928) of all genes; of these, nearly two-thirds (1,843) increased their expression over time. Eight genes expressed most in immature oocysts, encoding proteins promoting oocyst maturation and development, were assigned to 37 GO terms and 5 KEGG pathways. Fifty-six genes underwent significant upregulation in mature oocysts, each contributing at least 1,000 TPM. Of these, 40 were annotated by 215 GO assignments and 9 were associated with 18 KEGG pathways, encoding products involved in respiration, carbon fixation, energy utilization, invasion, motility, and stress and detoxification responses. Sporulation orchestrates coordinated changes in the expression of many genes, most especially those governing metabolic activity. Establishing the long-term fate of these transcripts in sporulated oocysts and in senescent and deceased oocysts will further elucidate the biology of coccidian development, and may provide tools to assay infectiousness of parasite cohorts. Moreover, because many of these genes have homologues in C. cayetanensis, they may prove useful as biomarkers for risk.
Collapse
Affiliation(s)
- Matthew S. Tucker
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Celia N. O’Brien
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Mark C. Jenkins
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Benjamin M. Rosenthal
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
13
|
Xu R, Feng Y, Xiao L, Sibley LD. Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum. mBio 2021; 12:e03405-20. [PMID: 33688009 PMCID: PMC8092296 DOI: 10.1128/mbio.03405-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 01/25/2023] Open
Abstract
The apicomplexan parasite Cryptosporidium parvum contains an expanded family of 22 insulinase-like proteases (INS), a feature that contrasts with their otherwise streamlined genome. Here, we examined the function of INS1, which is most similar to the human insulinase protease that cleaves a variety of small peptide substrates. INS1 is an M16A clan member and contains a signal peptide, an N-terminal domain with the HXXEH active site, followed by three inactive domains. Unlike previously studied C. parvum INS proteins that are expressed in sporozoites and during merogony, INS1 was expressed exclusively in macrogamonts, where it was localized in small cytoplasmic vesicles. Although INS1 did not colocalize with the oocyst wall protein recognized by the antibody OW50, immune-electron microscopy indicated that INS1 resides in small vesicles in the secretory system. Notably, these small INS1-positive vesicles were often in close proximity to large OW50-positive vacuoles resembling wall-forming bodies, which contain precursors for oocyst wall formation. Genetic deletion of INS1, or replacement with an active-site mutant, resulted in lower formation of macrogamonts in vitro and reduced oocyst shedding in vivo Our findings reveal that INS1 functions in the formation or maturation of macrogamonts and that its loss results in attenuated virulence in immunocompromised mice.IMPORTANCE Cryptosporidiosis is a debilitating diarrheal disease in young children in developing countries. The absence of effective treatments or vaccines makes this infection very difficult to manage in susceptible populations. Although the oral dose of oocysts needed to cause infection is low, infected individuals shed very high numbers of oocysts, readily contaminating the environment. Our studies demonstrate that the protease INS1 is important for formation of female sexual stages and that in its absence, parasites produce fewer oocysts and are attenuated in immunocompromised mice. These findings suggest that mutants lacking INS1, or related proteases, are useful for further characterizing the pathway that leads to macrogamont maturation and oocyst wall formation.
Collapse
Affiliation(s)
- Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaoyu Feng
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agriculture University, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agriculture University, Guangzhou, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Cryptosporidium parvum gp40/15 Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Vaccine Target. Microorganisms 2020; 8:microorganisms8030363. [PMID: 32143441 PMCID: PMC7143253 DOI: 10.3390/microorganisms8030363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
Cryptosporidium parvum is a zoonotic intracellular protozoan responsible for the diarrheal illness cryptosporidiosis in humans and animals. Although a number of zoite surface proteins are known to be expressed during, and believed to be involved in, attachment and invasion of host cells, the molecular mechanisms by which C. parvum invades the host epithelial cells are not well understood. In the present study, we investigated the gene expression patterns, protein localization in developmental stages in culture, and in vitro neutralization characteristics of Cpgp40/15 and Cpgp40. Indirect immunofluorescence assay showed that Cpgp40/15 is associated with the parasitophorous vacuole membrane (PVM) during intracellular development. Both anti-gp40/15 and anti-gp40 antibodies demonstrated the ability to neutralize C. parvum infection in vitro. Further studies are needed to fully understand the specific role and functional mechanism of Cpgp40/15 (or gp40/15 complex) in the invasion of the host or in the PVM and to determine the feasibility of gp40/15 as a vaccine candidate for cryptosporidiosis in vivo.
Collapse
|
15
|
Tandel J, English ED, Sateriale A, Gullicksrud JA, Beiting DP, Sullivan MC, Pinkston B, Striepen B. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum. Nat Microbiol 2019; 4:2226-2236. [PMID: 31477896 PMCID: PMC6877471 DOI: 10.1038/s41564-019-0539-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
The apicomplexan parasite Cryptosporidium is a leading global cause of severe diarrhoeal disease and an important contributor to early childhood mortality. Currently, there are no fully effective treatments or vaccines available. Parasite transmission occurs through ingestion of oocysts, through either direct contact or consumption of contaminated water or food. Oocysts are meiotic spores and the product of parasite sex. Cryptosporidium has a single-host life cycle in which both asexual and sexual processes occur in the intestine of infected hosts. Here, we genetically engineered strains of Cryptosporidium to make life cycle progression and parasite sex tractable. We derive reporter strains to follow parasite development in culture and in infected mice and define the genes that orchestrate sex and oocyst formation through mRNA sequencing of sorted cells. After 2 d, parasites in cell culture show pronounced sexualization, but productive fertilization does not occur and infection falters. By contrast, in infected mice, male gametes successfully fertilize female parasites, which leads to meiotic division and sporulation. To rigorously test for fertilization, we devised a two-component genetic-crossing assay using a reporter that is activated by Cre recombinase. Our findings suggest obligate developmental progression towards sex in Cryptosporidium, which has important implications for the treatment and prevention of the infection. Infection with Cryptosporidium parvum is a leading cause of severe diarrhoeal disease and childhood mortality worldwide. Using tools they recently developed to genetically engineer Cryptosporidium, the authors define life cycle stage-specific markers and generate reporter parasites, making life cycle progression and parasite sex tractable.
Collapse
Affiliation(s)
- Jayesh Tandel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth D English
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan C Sullivan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brittain Pinkston
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Franklin College of Arts and Science, University of Georgia, Athens, GA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
A Stem-Cell-Derived Platform Enables Complete Cryptosporidium Development In Vitro and Genetic Tractability. Cell Host Microbe 2019; 26:123-134.e8. [PMID: 31231046 PMCID: PMC6617391 DOI: 10.1016/j.chom.2019.05.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Despite being a frequent cause of severe diarrheal disease in infants and an opportunistic infection in immunocompromised patients, Cryptosporidium research has lagged due to a lack of facile experimental methods. Here, we describe a platform for complete life cycle development and long-term growth of C. parvum in vitro using “air-liquid interface” (ALI) cultures derived from intestinal epithelial stem cells. Transcriptomic profiling revealed that differentiating epithelial cells grown under ALI conditions undergo profound changes in metabolism and development that enable completion of the parasite life cycle in vitro. ALI cultures support parasite expansion > 100-fold and generate viable oocysts that are transmissible in vitro and to mice, causing infection and animal death. Transgenic parasite lines created using CRISPR/Cas9 were used to complete a genetic cross in vitro, demonstrating Mendelian segregation of chromosomes during meiosis. ALI culture provides an accessible model that will enable innovative studies into Cryptosporidium biology and host interactions. Air-liquid interface (ALI) cultivation of Cryptosporidium supports robust parasite growth Both asexual and sexual phases of the parasite complete development in ALI cultures ALI culture supports the production of de novo oocysts that can trigger an infection in mice In vitro crossing in ALI cultures opens up forward genetics for Cryptosporidium
Collapse
|
17
|
Calarco L, Ellis J. Annotating the ‘hypothetical’ in hypothetical proteins: In-silico analysis of uncharacterised proteins for the Apicomplexan parasite, Neospora caninum. Vet Parasitol 2019; 265:29-37. [DOI: 10.1016/j.vetpar.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
|
18
|
Lippuner C, Ramakrishnan C, Basso WU, Schmid MW, Okoniewski M, Smith NC, Hässig M, Deplazes P, Hehl AB. RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites. Int J Parasitol 2018; 48:413-422. [DOI: 10.1016/j.ijpara.2017.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
|
19
|
DeCicco RePass MA, Bhat N, Heimburg-Molinaro J, Bunnell S, Cummings RD, Ward HD. Molecular cloning, expression, and characterization of UDP N-acetyl-α-d-galactosamine: Polypeptide N-acetylgalactosaminyltransferase 4 from Cryptosporidium parvum. Mol Biochem Parasitol 2018; 221:56-65. [PMID: 29581010 DOI: 10.1016/j.molbiopara.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
Cryptosporidium spp. are the causative agents of diarrheal disease worldwide, but effective treatments are lacking. Cryptosporidium employs mucin-like glycoproteins with O-glycans to attach to and infect host intestinal epithelial cells. The Tn antigen (GalNAcα1-Ser/Thr) is an O-glycan essential for these processes, as Tn-specific lectins and a Tn-specific monoclonal antibody block attachment to and infection of host cells in vitro. The enzymes in Cryptosporidium catalyzing their synthesis, however, have not been studied. Previously, we identified four genes encoding putative UDP N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) in the genomes of three Cryptosporidium spp. Here we report the in silico analysis, cloning, expression, purification, and characterization of one of the four enzymes Cryptosporidium parvum (Cp)-ppGalNAc-T4. This enzyme contains the characteristic domains and motifs conserved in ppGalNAc-Ts and is expressed at multiple time points during in vitro infection. Recombinant soluble Cp-ppGalNAc-T4 was enzymatically active against an unmodified EA2 peptide suggesting that it may function as an "initiating" ppGalNAc-T. Cp-ppGalNAc-T4 also exhibited a strong preference for UDP-GalNAc over other nucleotide sugar donors and was active against unmodified and O-glycosylated versions of the C. parvum gp40-derived peptide, with a preference for the former, suggesting it may play a role in modifying this glycoprotein in vivo. Given the importance of mucin-type O-glycosylation in Cryptosporidium spp., the enzymes that catalyze their synthesis may serve as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Stephen Bunnell
- Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Honorine D Ward
- Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
20
|
Abstract
Genome sequencing has greatly contributed to our understanding of parasitic protozoa. This is particularly the case for Cryptosporidium species (phylum Apicomplexa) which are difficult to propagate. Because of their polymorphic nature, simple sequence repeats have been used extensively as genotypic markers to differentiate between isolates, but no global analysis of amino acid repeats in Cryptosporidium genomes has been reported. Taking advantage of several newly sequenced Cryptosporidium genomes, a comparative analysis of single-amino-acid repeats (SAARs) in seven species was undertaken. This analysis revealed a striking difference between the SAAR profile of the gastric and intestinal species which infect mammals and one species which infects birds. In average, total SAAR length in gastric species is only 25% of the cumulative SAAR length in the genome of Cryptosporidium parvum, Cryptosporidium hominis and Cryptosporidium meleagridis, species infectious to humans. The SAAR profile in the avian parasite Cryptosporidium baileyi stands out due to the presence of long asparagine repeats. Cryptosporidium baileyi proteins with repeats ⩾20 residues are significantly enriched in regulatory functions. As postulated for the related apicomplexan species Plasmodium falciparum, these observations suggest that Cryptosporidium SAARs evolve in response to selective pressure. The putative selective mechanisms driving SAAR evolution in Cryptosporidium species are unknown.
Collapse
|
21
|
Haserick JR, Klein JA, Costello CE, Samuelson J. Cryptosporidium parvum vaccine candidates are incompletely modified with O-linked-N-acetylgalactosamine or contain N-terminal N-myristate and S-palmitate. PLoS One 2017; 12:e0182395. [PMID: 28792526 PMCID: PMC5549699 DOI: 10.1371/journal.pone.0182395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022] Open
Abstract
Cryptosporidium parvum (studied here) and Cryptosporidium hominis are important causes of diarrhea in infants and immunosuppressed persons. C. parvum vaccine candidates, which are on the surface of sporozoites, include glycoproteins with Ser- and Thr-rich domains (Gp15, Gp40, and Gp900) and a low complexity, acidic protein (Cp23). Here we used mass spectrometry to determine that O-linked GalNAc is present in dense arrays on a glycopeptide with consecutive Ser derived from Gp40 and on glycopeptides with consecutive Thr derived from Gp20, a novel C. parvum glycoprotein with a formula weight of ~20 kDa. In contrast, the occupied Ser or Thr residues in glycopeptides from Gp15 and Gp900 are isolated from one another. Gly at the N-terminus of Cp23 is N-myristoylated, while Cys, the second amino acid, is S-palmitoylated. In summary, C. parvum O-GalNAc transferases, which are homologs of host enzymes, densely modify arrays of Ser or Thr, as well as isolated Ser and Thr residues on C. parvum vaccine candidates. The N-terminus of an immunodominant antigen has lipid modifications similar to those of host cells and other apicomplexan parasites. Mass spectrometric demonstration here of glycopeptides with O-glycans complements previous identification C. parvum O-GalNAc transferases, lectin binding to vaccine candidates, and human and mouse antibodies binding to glycopeptides. The significance of these post-translational modifications is discussed with regards to the function of these proteins and the design of serological tests and vaccines.
Collapse
Affiliation(s)
- John R. Haserick
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joshua A. Klein
- Program for Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Haserick JR, Leon DR, Samuelson J, Costello CE. Asparagine-Linked Glycans of Cryptosporidium parvum Contain a Single Long Arm, Are Barely Processed in the Endoplasmic Reticulum (ER) or Golgi, and Show a Strong Bias for Sites with Threonine. Mol Cell Proteomics 2017; 16:S42-S53. [PMID: 28179475 PMCID: PMC5393390 DOI: 10.1074/mcp.m116.066035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/05/2017] [Indexed: 12/27/2022] Open
Abstract
Cryptosporidium parvum causes severe diarrhea in infants in developing countries and in immunosuppressed persons, including those with AIDS. We are interested in the Asn-linked glycans (N-glycans) of C. parvum, because (1) the N-glycan precursor is predicted to contain five mannose and two glucose residues on a single long arm versus nine mannose and three glucose residues on the three-armed structure common in host N-glycans, (2) C. parvum is a rare eukaryote that lacks the machinery for N-glycan-dependent quality control of protein folding in the lumen of the Endoplasmic Reticulum (ER), and (3) ER and Golgi mannosidases, as well as glycosyltransferases that build complex N-glycans, are absent from the predicted proteome. The C. parvum N-glycans reported here, which were determined using a combination of collision-induced dissociation and electronic excitation dissociation, contain a single, unprocessed mannose arm ± terminal glucose on the trimannosyl chitobiose core. Upon nanoUPLC-MS/MS separation and analysis of the C. parvum tryptic peptides, the total ion and extracted oxonium ion chromatograms delineated 32 peptides with occupied N-glycan sites; these were derived from 16 glycoproteins. Although the number of potential N-glycan sites with Thr (NxT) is only about twice that with Ser (NxS), almost 90% of the occupied N-glycan sites contain NxT. The two most abundant C. parvum proteins modified with N-glycans were an immunodominant antigen on the surface of sporozoites (gp900) and the possible oocyst wall protein 1 (POWP1). Seven other glycoproteins with N-glycans were unique to C. parvum; five shared common ancestry with other apicomplexans; two glycoproteins shared common ancestry with many organisms. In summary, C. parvum N-glycans are remarkable for the absence of ER and Golgi modification and for the strong bias toward occupancy of N-glycan motifs containing Thr.
Collapse
Affiliation(s)
- John R Haserick
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - John Samuelson
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Catherine E Costello
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| |
Collapse
|
23
|
Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. Int J Parasitol 2017; 47:281-290. [PMID: 28192123 DOI: 10.1016/j.ijpara.2016.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022]
Abstract
Host adaptation is known to occur in Cryptosporidium parvum, with IIa and IId subtype families preferentially infecting calves and lambs, respectively. To improve our understanding of the genetic basis of host adaptation in Cryptosporidium parvum, we sequenced the genomes of two IId specimens and one IIa specimen from China and Egypt using the Illumina technique and compared them with the published IIa IOWA genome. Sequence data were obtained for >99.3% of the expected genome. Comparative genomic analysis identified differences in numbers of three subtelomeric gene families between sequenced genomes and the reference genome, including those encoding SKSR secretory proteins, the MEDLE family of secretory proteins, and insulinase-like proteases. These gene gains and losses compared with the reference genome were confirmed by PCR analysis. Altogether, 5,191-5,766 single nucleotide variants were seen between genomes sequenced in this study and the reference genome, with most SNVs occurring in subtelomeric regions of chromosomes 1, 4, and 6. The most highly polymorphic genes between IIa and IId encode mainly invasion-associated and immunodominant mucin proteins, and other families of secretory proteins. Further studies are needed to verify the biological significance of these genomic differences.
Collapse
|
24
|
Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 2016; 17:1006. [PMID: 27931183 PMCID: PMC5146892 DOI: 10.1186/s12864-016-3343-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background The switch from photosynthetic or predatory to parasitic life strategies by apicomplexans is accompanied with a reductive evolution of genomes and losses of metabolic capabilities. Cryptosporidium is an extreme example of reductive evolution among apicomplexans, with losses of both the mitosome genome and many metabolic pathways. Previous observations on reductive evolution were largely based on comparative studies of various groups of apicomplexans. In this study, we sequenced two divergent Cryptosporidium species and conducted a comparative genomic analysis to infer the reductive evolution of metabolic pathways and differential evolution of invasion-related proteins within the Cryptosporidium lineage. Results In energy metabolism, Cryptosporidium species differ from each other mostly in mitosome metabolic pathways. Compared with C. parvum and C. hominis, C. andersoni possesses more aerobic metabolism and a conventional electron transport chain, whereas C. ubiquitum has further reductions in ubiquinone and polyisprenoid biosynthesis and has lost both the conventional and alternative electron transport systems. For invasion-associated proteins, similar to C. hominis, a reduction in the number of genes encoding secreted MEDLE and insulinase-like proteins in the subtelomeric regions of chromosomes 5 and 6 was also observed in C. ubiquitum and C. andersoni, whereas mucin-type glycoproteins are highly divergent between the gastric C. andersoni and intestinal Cryptosporidium species. Conclusions Results of the study suggest that rapidly evolving mitosome metabolism and secreted invasion-related proteins could be involved in tissue tropism and host specificity in Cryptosporidium spp. The finding of progressive reduction in mitosome metabolism among Cryptosporidium species improves our knowledge of organelle evolution within apicomplexans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3343-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiyou Liu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Yaqiong Guo
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Na Li
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Michael A Frace
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
25
|
Ryan U, Paparini A, Monis P, Hijjawi N. It's official - Cryptosporidium is a gregarine: What are the implications for the water industry? WATER RESEARCH 2016; 105:305-313. [PMID: 27639055 DOI: 10.1016/j.watres.2016.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Parasites of the genus Cryptosporidium are a major cause of diarrhoea and ill-health in humans and animals and are frequent causes of waterborne outbreaks. Until recently, it was thought that Cryptosporidium was an obligate intracellular parasite that only replicated within a suitable host, and that faecally shed oocysts could survive in the environment but could not multiply. In light of extensive biological and molecular data, including the ability of Cryptosporidium to complete its life cycle in the absence of a host and the production of novel extracellular stages, Cryptosporidium has been formally transferred from the Coccidia, to a new subclass, Cryptogregaria, with gregarine parasites. In this review, we discuss the close relationship between Cryptosporidium and gregarines and discuss the implications for the water industry.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water, Adelaide, Australia
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, PO Box 150459, Zarqa, 13115, Jordan
| |
Collapse
|
26
|
Bandini G, Haserick JR, Motari E, Ouologuem DT, Lourido S, Roos DS, Costello CE, Robbins PW, Samuelson J. O-fucosylated glycoproteins form assemblies in close proximity to the nuclear pore complexes of Toxoplasma gondii. Proc Natl Acad Sci U S A 2016; 113:11567-11572. [PMID: 27663739 PMCID: PMC5068260 DOI: 10.1073/pnas.1613653113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that causes disseminated infections in fetuses and immunocompromised individuals. Although gene regulation is important for parasite differentiation and pathogenesis, little is known about protein organization in the nucleus. Here we show that the fucose-binding Aleuria aurantia lectin (AAL) binds to numerous punctate structures in the nuclei of tachyzoites, bradyzoites, and sporozoites but not oocysts. AAL also binds to Hammondia and Neospora nuclei but not to more distantly related apicomplexans. Analyses of the AAL-enriched fraction indicate that AAL binds O-linked fucose added to Ser/Thr residues present in or adjacent to Ser-rich domains (SRDs). Sixty-nine Ser-rich proteins were reproducibly enriched with AAL, including nucleoporins, mRNA-processing enzymes, and cell-signaling proteins. Two endogenous SRDs-containing proteins and an SRD-YFP fusion localize with AAL to the nuclear membrane. Superresolution microscopy showed that the majority of the AAL signal localizes in proximity to nuclear pore complexes. Host cells modify secreted proteins with O-fucose; here we describe the O-fucosylation pathway in the nucleocytosol of a eukaryote. Furthermore, these results suggest O-fucosylation is a mechanism by which proteins involved in gene expression accumulate near the NPC.
Collapse
Affiliation(s)
- Giulia Bandini
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118
| | - John R Haserick
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Edwin Motari
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | | | | | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Phillips W Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118;
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118;
| |
Collapse
|
27
|
Diversity of extracellular proteins during the transition from the ‘proto-apicomplexan’ alveolates to the apicomplexan obligate parasites. Parasitology 2015; 143:1-17. [DOI: 10.1017/s0031182015001213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SUMMARYThe recent completion of high-coverage draft genome sequences for several alveolate protozoans – namely, the chromerids, Chromera velia and Vitrella brassicaformis; the perkinsid Perkinsus marinus; the apicomplexan, Gregarina niphandrodes, as well as high coverage transcriptome sequence information for several colpodellids, allows for new genome-scale comparisons across a rich landscape of apicomplexans and other alveolates. Genome annotations can now be used to help interpret fine ultrastructure and cell biology, and guide new studies to describe a variety of alveolate life strategies, such as symbiosis or free living, predation, and obligate intracellular parasitism, as well to provide foundations to dissect the evolutionary transitions between these niches. This review focuses on the attempt to identify extracellular proteins which might mediate the physical interface of cell–cell interactions within the above life strategies, aided by annotation of the repertoires of predicted surface and secreted proteins encoded within alveolate genomes. In particular, we discuss what descriptions of the predicted extracellular proteomes reveal regarding a hypothetical last common ancestor of a pre-apicomplexan alveolate – guided by ultrastructure, life strategies and phylogenetic relationships – in an attempt to understand the evolution of obligate parasitism in apicomplexans.
Collapse
|
28
|
Ryan U, Hijjawi N. New developments in Cryptosporidium research. Int J Parasitol 2015; 45:367-73. [DOI: 10.1016/j.ijpara.2015.01.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
|
29
|
Dresely I, Daugschies A, Lendner M. Establishment of a germ carrier assay to assess disinfectant efficacy against oocysts of coccidian parasites. Parasitol Res 2014; 114:273-81. [PMID: 25339515 DOI: 10.1007/s00436-014-4189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/14/2014] [Indexed: 11/24/2022]
Abstract
Parasites are a common threat to human and animal health. One option to combat parasites that produce infective environmental stages is to inactivate them by chemical disinfection. Standardised laboratory assays that enable proper evaluation of products suspected to be efficient are highly desirable to allow prudent selection and use of such potentially hazardous agents. Here, we present a newly developed in vitro germ carrier assay to evaluate inactivation of oocysts of the model organism Cryptosporidium parvum by chemical disinfectants. Stainless steel discs were used as carrier to mimic surface contamination by C. parvum oocysts. The germ carriers were incubated with approved chemical disinfectant for the specified time (2 h) and rinsed thereafter to remove the disinfectant and recover the exposed oocysts. Recovered oocysts were transferred to HCT-8 monolayers, and 48 h later, genomic DNA was extracted and quantified by real-time PCR targeting the hsp70 gene to estimate parasite reproduction. A panel of commercially available and approved disinfectants were examined and data compared with those of suspension assays and historical data obtained from efficacy assays based on infection of chicken with oocysts of Eimeria tenella. Altogether, data achieved by these divergent assays allowed similar conclusions although the sensitivity of the in vitro assay was higher. Consequently, a threshold of 99.5% inactivation is proposed to evaluate disinfectants in vitro using C. parvum as model organism as compared to the E. tenella animal infection assay (95%).
Collapse
Affiliation(s)
- Ira Dresely
- Institute of Parasitology, An den Tierkliniken 35, 04103, Leipzig, Germany
| | | | | |
Collapse
|
30
|
Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa. Parasitology 2014; 142 Suppl 1:S57-70. [PMID: 25257746 PMCID: PMC4413850 DOI: 10.1017/s0031182014001528] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Apicomplexa is a phylum of parasitic protozoa, which includes the malaria parasite Plasmodium, amongst other species that can devastate human and animal health. The past decade has seen the release of genome sequences for many of the most important apicomplexan species, providing an excellent basis for improving our understanding of their biology. One of the key features of each genome is a unique set of large, variant gene families. Although closely related species share the same families, even different types of malaria parasite have distinct families. In some species they tend to be found at the ends of chromosomes, which may facilitate aspects of gene expression regulation and generation of sequence diversity. In others they are scattered apparently randomly across chromosomes. For some families there is evidence they are involved in antigenic variation, immune regulation and immune evasion. For others there are no known functions. Even where function is unknown these families are most often predicted to be exposed to the host, contain much sequence diversity and evolve rapidly. Based on these properties it is clear that they are at the forefront of host–parasite interactions. In this review I compare and contrast the genomic context, gene structure, gene expression, protein localization and function of these families across different species.
Collapse
|
31
|
Characterization of a novel otubain-like cysteine protease of Cryptosporidium parvum. Parasitol Int 2014; 63:580-3. [PMID: 24709083 DOI: 10.1016/j.parint.2014.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/22/2014] [Accepted: 03/26/2014] [Indexed: 11/24/2022]
Abstract
Otubains are a recently discovered family of cysteine proteases that participate in the ubiquitin pathway. Here, we partially characterized the biochemical properties of a cysteine protease of Cryptosporidium parvum, which is closely related to otubains. The gene encoding otubain-like cysteine protease of C. parvum (CpOTU) contained the aspartate, cysteine and histidine residues that form the catalytic triad of otubains. The modified ubiquitin-associated domain and LxxL motif were identified in CpOTU. The recombinant CpOTU showed the isopeptidase activity at neutral pH values and its activity was effectively inhibited by ubiquitin aldehyde, N-ethylmaleimide and iodoacetic acid. Interestingly, CpOTU had an unusual C-terminal extension of 217 amino acids compared to mammalian otubains, and the C-terminal extension is essential for the activity of the enzyme. Expression of CpOTU peaked in the oocyst stage of the parasite, which suggested its potential physiological role for the oocyst stage.
Collapse
|
32
|
Abstract
SUMMARYCryptosporidiumhost cell interaction remains fairly obscure compared with other apicomplexans such asPlasmodiumorToxoplasma. The reason for this is probably the inability of this parasite to complete its life cyclein vitroand the lack of a system to genetically modifyCryptosporidium. However, there is a substantial set of data about the molecules involved in attachment and invasion and about the host cell pathways involved in actin arrangement that are altered by the parasite. Here we summarize the recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics.
Collapse
|
33
|
Tomita T, Bzik DJ, Ma YF, Fox BA, Markillie LM, Taylor RC, Kim K, Weiss LM. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. PLoS Pathog 2013; 9:e1003823. [PMID: 24385904 PMCID: PMC3873430 DOI: 10.1371/journal.ppat.1003823] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii infects up to one third of the world's population. A key to the success of T. gondii as a parasite is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. Because most of the antibodies and reagents that recognize the cyst wall recognize carbohydrates, identification of the components of the cyst wall has been technically challenging. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in reduced cyst number and a fragile brain cyst phenotype characterized by a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress, and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that confers essential sturdiness to the T. gondii tissue cyst critical for persistence of bradyzoite forms. Toxoplasma gondii causes severe encephalitis in immune compromised hosts after reactivation of brain cysts that persist for the life span of the host. The biological mechanisms of bradyzoite persistence within cysts are not fully understood. The glycosylated cyst wall is thought to play a crucial role in survival of bradyzoites during chronic infection as well as successful oral transmission of infection. Here we have identified the gene encoding cyst wall glycoprotein CST1. When we delete the CST1 gene, parasites form dramatically fragile brain cysts. Parasites lacking CST1 develop fewer brain cysts, show dysregulation of bradyzoite-specific gene expression and are less able to grow under stressed conditions. The rescue of these phenotypes requires the heavily glycosylated mucin domain of CST1. These studies demonstrate that the glycosylation of CST1 plays a significant role in the structural integrity and persistence of brain cysts. Agents that perturb CST1 glycosylation have the potential to disrupt formation of latent brain cysts, preventing chronic Toxoplasma infection.
Collapse
Affiliation(s)
- Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Yan Fen Ma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Lye Meng Markillie
- Fundamental and Computational Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ronald C. Taylor
- Fundamental and Computational Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kami Kim
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Characterization of biochemical properties of a selenium-independent glutathione peroxidase ofCryptosporidium parvum. Parasitology 2013; 141:570-8. [DOI: 10.1017/s0031182013001832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYGlutathione peroxidase (GPx; EC 1.11.1.9) is an important antioxidant enzyme that catalyses the reduction of organic and inorganic hydroperoxides to water in oxygen-consuming organisms, using glutathione as an electron donor. Here, we report the characterization of a GPx ofCryptosporidium parvum(CpGPx). CpGPx contained a standard UGU codon for cysteine instead of a UGA opal codon for seleno-cysteine (SeCys) at the active site, and no SeCys insertion sequence (SECIS) motif was identified within the 3′-untranslated region (UTR) of CpGPx, which suggested its selenium-independent nature.In silicoand biochemical analyses indicated that CpGPx is a cytosolic protein with a monomeric structure. Recombinant CpGPx was active over a wide pH range and was stable under physiological conditions. It showed a substrate preference against organic hydroperoxides, such as cumene hydroperoxide andt-butyl hydroperoxide, but it also showed activity against inorganic hydroperoxide, hydrogen peroxide. Recombinant CpGPx was not inhibited by potassium cyanide or by sodium azide. The enzyme effectively protected DNA and protein from oxidative damage induced by hydrogen peroxide, and was functionally expressed in various developmental stages ofC. parvum. These results collectively suggest the essential role of CpGPx for the parasite's antioxidant defence system.
Collapse
|
35
|
Strategies to discover the structural components of cyst and oocyst walls. EUKARYOTIC CELL 2013; 12:1578-87. [PMID: 24096907 DOI: 10.1128/ec.00213-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-linked glucose for Toxoplasma, and β-1,3-linked GalNAc for Giardia) and/or acid-fast lipids (Toxoplasma and Cryptosporidium). Because Entamoeba cysts and Toxoplasma oocysts are difficult to obtain, studies of walls of nonhuman pathogens (E. invadens and Eimeria, respectively) accelerate discovery. Biochemical methods to dissect fungal walls work well for cyst and oocyst walls, although the results are often unexpected. For example, echinocandins, which inhibit glucan synthases and kill fungi, arrest the development of oocyst walls and block their release into the intestinal lumen. Candida walls are coated with mannans, while Entamoeba cysts are coated in a dextran-like glucose polymer. Models for cyst and oocyst walls derive from their structural components and organization within the wall. Cyst walls are composed of chitin fibrils and lectins that bind chitin (Entamoeba) or fibrils of the β-1,3-GalNAc polymer and lectins that bind the polymer (Giardia). Oocyst walls of Toxoplasma have two distinct layers that resemble those of fungi (β-1,3-glucan in the inner layer) or mycobacteria (acid-fast lipids in the outer layer). Oocyst walls of Cryptosporidium have a rigid bilayer of acid-fast lipids and inner layer of oocyst wall proteins.
Collapse
|
36
|
Evidence for a structural role for acid-fast lipids in oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. mBio 2013; 4:e00387-13. [PMID: 24003177 PMCID: PMC3760245 DOI: 10.1128/mbio.00387-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp. cause diarrhea in humans and animals, while Toxoplasma causes disseminated infections in fetuses and untreated AIDS patients. Eimeria is a major pathogen of commercial chickens. Oocysts, which are the infectious form of Cryptosporidium and Eimeria and one of two infectious forms of Toxoplasma (the other is tissue cysts in undercooked meat), have a multilayered wall. Recently we showed that the inner layer of the oocyst walls of Toxoplasma and Eimeria is a porous scaffold of fibers of β-1,3-glucan, which are also present in fungal walls but are absent from Cryptosporidium oocyst walls. Here we present evidence for a structural role for lipids in the oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. Briefly, oocyst walls of each organism label with acid-fast stains that bind to lipids in the walls of mycobacteria. Polyketide synthases similar to those that make mycobacterial wall lipids are abundant in oocysts of Toxoplasma and Eimeria and are predicted in Cryptosporidium. The outer layer of oocyst wall of Eimeria and the entire oocyst wall of Cryptosporidium are dissolved by organic solvents. Oocyst wall lipids are complex mixtures of triglycerides, some of which contain polyhydroxy fatty acyl chains like those present in plant cutin or elongated fatty acyl chains like mycolic acids. We propose a two-layered model of the oocyst wall (glucan and acid-fast lipids) that resembles the two-layered walls of mycobacteria (peptidoglycan and acid-fast lipids) and plants (cellulose and cutin). Oocysts, which are essential for the fecal-oral spread of coccidia, have a wall that is thought responsible for their survival in the environment and for their transit through the stomach and small intestine. While oocyst walls of Toxoplasma and Eimeria are strengthened by a porous scaffold of fibrils of β-1,3-glucan and by proteins cross-linked by dityrosines, both are absent from walls of Cryptosporidium. We show here that all oocyst walls are acid fast, have a rigid bilayer, dissolve in organic solvents, and contain a complex set of triglycerides rich in polyhydroxy and long fatty acyl chains that might be synthesized by an abundant polyketide synthase. These results suggest the possibility that coccidia build a waxy coat of acid-fast lipids in the oocyst wall that makes them resistant to environmental stress.
Collapse
|
37
|
Oberstaller J, Joseph SJ, Kissinger JC. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile. BMC Genomics 2013; 14:516. [PMID: 23895416 PMCID: PMC3734150 DOI: 10.1186/1471-2164-14-516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/09/2013] [Indexed: 11/16/2022] Open
Abstract
Background There are very few molecular genetic tools available to study the apicomplexan parasite Cryptosporidium parvum. The organism is not amenable to continuous in vitro cultivation or transfection, and purification of intracellular developmental stages in sufficient numbers for most downstream molecular applications is difficult and expensive since animal hosts are required. As such, very little is known about gene regulation in C. parvum. Results We have clustered whole-genome gene expression profiles generated from a previous study of seven post-infection time points of 3,281 genes to identify genes that show similar expression patterns throughout the first 72 hours of in vitro epithelial cell culture. We used the algorithms MEME, AlignACE and FIRE to identify conserved, overrepresented DNA motifs in the upstream promoter region of genes with similar expression profiles. The most overrepresented motifs were E2F (5′-TGGCGCCA-3′); G-box (5′-G.GGGG-3′); a well-documented ApiAP2 binding motif (5′-TGCAT-3′), and an unknown motif (5′-[A/C] AACTA-3′). We generated a recombinant C. parvum DNA-binding protein domain from a putative ApiAP2 transcription factor [CryptoDB: cgd8_810] and determined its binding specificity using protein-binding microarrays. We demonstrate that cgd8_810 can putatively bind the overrepresented G-box motif, implicating this ApiAP2 in the regulation of many gene clusters. Conclusion Several DNA motifs were identified in the upstream sequences of gene clusters that might serve as potential cis-regulatory elements. These motifs, in concert with protein DNA binding site data, establish for the first time the beginnings of a global C. parvum gene regulatory map that will contribute to our understanding of the development of this zoonotic parasite.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
38
|
Zhang H, Guo F, Zhou H, Zhu G. Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum Oocysts associated with environmental survival and stresses. BMC Genomics 2012; 13:647. [PMID: 23171372 PMCID: PMC3542205 DOI: 10.1186/1471-2164-13-647] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/24/2012] [Indexed: 01/08/2023] Open
Abstract
Background Cryptosporidium parvum is a globally distributed zoonotic parasite and an important opportunistic pathogen in immunocompromised patients. Little is known on the metabolic dynamics of the parasite, and study is hampered by the lack of molecular and genetic tools. Here we report the development of the first Agilent microarray for C. parvum (CpArray15K) that covers all predicted ORFs in the parasite genome. Global transcriptome analysis using CpArray15K coupled with real-time qRT-PCR uncovered a number of unique metabolic features in oocysts, the infectious and environmental stage of the parasite. Results Oocyst stage parasites were found to be highly active in protein synthesis, based on the high transcript levels of genes associated with ribosome biogenesis, transcription and translation. The proteasome and ubiquitin associated components were also highly active, implying that oocysts might employ protein degradation pathways to recycle amino acids in order to overcome the inability to synthesize amino acids de novo. Energy metabolism in oocysts was featured by the highest level of expression of lactate dehydrogenase (LDH) gene. We also studied parasite responses to UV-irradiation, and observed complex and dynamic regulations of gene expression. Notable changes included increased transcript levels of genes involved in DNA repair and intracellular trafficking. Among the stress-related genes, TCP-1 family members and some thioredoxin-associated genes appear to play more important roles in the recovery of UV-induced damages in the oocysts. Our observations also suggest that UV irradiation of oocysts results in increased activities in cytoskeletal rearrangement and intracellular membrane trafficking. Conclusions CpArray15K is the first microarray chip developed for C. parvum, which provides the Cryptosporidium research community a needed tool to study the parasite transcriptome and functional genomics. CpArray15K has been successfully used in profiling the gene expressions in the parasite oocysts as well as their responses to UV-irradiation. These observations shed light on how the parasite oocysts might adapt and respond to the hostile external environment and associated stress such as UV irradiation.
Collapse
Affiliation(s)
- Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
39
|
β-1,3-Glucan, Which Can Be Targeted by Drugs, Forms a Trabecular Scaffold in the Oocyst Walls of
Toxoplasma
and
Eimeria. mBio 2012; 3:mBio.00258-12. [PMID: 23015739 PMCID: PMC3518913 DOI: 10.1128/mbio.00258-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The walls of infectious pathogens, which are essential for transmission, pathogenesis, and diagnosis, contain sugar polymers that are defining structural features, e.g., β-1,3-glucan and chitin in fungi, chitin in Entamoeba cysts, β-1,3-GalNAc in Giardia cysts, and peptidoglycans in bacteria. The goal here was to determine in which of three walled forms of Toxoplasma gondii (oocyst, sporocyst, or tissue cyst) is β-1,3-glucan, the product of glucan synthases and glucan hydrolases predicted by whole-genome sequences of the parasite. The three most important discoveries were as follows. (i) β-1,3-glucan is present in oocyst walls of Toxoplasma and Eimeria (a chicken parasite that is a model for intestinal stages of Toxoplasma) but is absent from sporocyst and tissue cyst walls. (ii) Fibrils of β-1,3-glucan are part of a trabecular scaffold in the inner layer of the oocyst wall, which also includes a glucan hydrolase that has a novel glucan-binding domain. (iii) Echinocandins, which target the glucan synthase and kill fungi, arrest development of the Eimeria oocyst wall and prevent release of the parasites into the intestinal lumen. In summary, β-1,3-glucan, which can be targeted by drugs, is an important component of oocyst walls of Toxoplasma but is not a component of sporocyst and tissue cyst walls. We show here that walls of Toxoplasma oocysts, the infectious stage shed by cats, contain β-1,3-glucan, a sugar polymer that is a major component of fungal walls. In contrast to fungi, β-1,3-glucan is part of a trabecular scaffold in the inner layer of the oocyst wall that is independent of the permeability barrier formed by the outer layer of the wall. While glucan synthase inhibitors kill fungi, these inhibitors arrest the development of the oocyst walls of Eimeria (an important chicken pathogen that is a surrogate for Toxoplasma) and block release of oocysts into the intestinal lumen. The absence of β-1,3-glucan in tissue cysts of Toxoplasma suggests that drugs targeted at the glucan synthase might be used to treat Eimeria in chickens but not to treat Toxoplasma in people.
Collapse
|
40
|
Mauzy MJ, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS. The Cryptosporidium parvum transcriptome during in vitro development. PLoS One 2012; 7:e31715. [PMID: 22438867 PMCID: PMC3305300 DOI: 10.1371/journal.pone.0031715] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 01/14/2012] [Indexed: 01/12/2023] Open
Abstract
Cryptosporidiosis is caused by an obligate intracellular parasite that has eluded global transcriptional or proteomic analysis of the intracellular developmental stages. The transcript abundance for 3,302 genes (87%) of the Cryptosporidium parvum protein coding genome was elucidated over a 72 hr infection within HCT8 cells using Real Time-PCR. The parasite had detectable transcription of all genes in vitro within at least one time point tested, and adjacent genes were not co-regulated. Five genes were not detected within the first 24 hr of infection, one containing two AP2 domains. The fewest genes detected were at 2 hr post infection, while 30% (985) of the genes have their highest expression at 48 and/or 72 hr. Nine expression clusters were formed over the entire 72 hr time course and indicate patterns of transcriptional increases at each of the 7 time points collected except 36 hr, including genes paralleling parasite 18S rRNA transcript levels. Clustering within only the first 24 hr of infection indicates spikes in expression at each of the 4 time points, a group paralleling 18S rRNA transcript levels, and a cluster with peaks at both 6 and 24 hr. All genes were classified into 18 functional categories, which were unequally distributed across clusters. Expression of metabolic, ribosomal and proteasome proteins did not parallel 18S rRNA levels indicating distinct biochemical profiles during developmental stage progression. Proteins involved in translation are over-represented at 6 hr, while structural proteins are over-represented at 12 hr. Standardization methods identified 107 genes with <80% at a single of its total expression at a single time point over 72 hr. This comprehensive transcriptome of the intracellular stages of C. parvum provides insight for understanding its complex development following parasitization of intestinal epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | - Mark S. Rutherford
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
41
|
Interaction forces drive the environmental transmission of pathogenic protozoa. Appl Environ Microbiol 2011; 78:905-12. [PMID: 22156429 DOI: 10.1128/aem.06488-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasites Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii are pathogens that are resistant to a number of environmental factors and pose significant risks to public health worldwide. Their environmental transmission is closely governed by the physicochemical properties of their cysts (Giardia) and oocysts (Cryptosporidium and Toxoplasma), allowing their transport, retention, and survival for months in water, soil, vegetables, and mollusks, which are the main reservoirs for human infection. Importantly, the cyst/oocyst wall plays a key role in that regard by exhibiting a complex polymeric coverage that determines the charge and hydrophobic characteristics of parasites' surfaces. Interaction forces between parasites and other environmental particles may be, in a first approximation, evaluated following the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. However, due to the molecular topography and nano- to microstructure of the cyst/oocyst surface, non-DVLO hydrophobic forces together with additional steric attractive and/or repulsive forces may play a pivotal role in controlling the parasite behavior when the organism is subjected to various external conditions. Here, we review several parameters that enhance or hinder the adhesion of parasites to other particles and surfaces and address the role of fast-emerging techniques for mapping the cyst/oocyst surface, e.g., by measuring its topology and the generated interaction forces at the nano- to microscale. We discuss why characterizing these interactions could be a crucial step for managing the environmental matrices at risk of microbial pollution.
Collapse
|
42
|
Chatterjee A, Carpentieri A, Ratner DM, Bullitt E, Costello CE, Robbins PW, Samuelson J. Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. PLoS Pathog 2010; 6:e1001059. [PMID: 20808847 PMCID: PMC2924369 DOI: 10.1371/journal.ppat.1001059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique beta-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWP(LRR)) and a C-terminal conserved Cys-rich region (CWP(CRR)). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (approximately 400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (approximately 1.2 microm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1(LRR). In contrast, neither MBP alone nor MBP fused to CWP1(CRR) bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Andrea Carpentieri
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Daniel M. Ratner
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Esther Bullitt
- Department of Biophysics and Physiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|