1
|
Wirtz L, Casanova F, Schaffrath U, Wegner A. Development of a telomere vector-based approach to overcome limitations caused by lethal phenotypes in the study of essential genes in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13460. [PMID: 38695626 PMCID: PMC11064798 DOI: 10.1111/mpp.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Reverse genetic approaches are common tools in genomics for elucidating gene functions, involving techniques such as gene deletion followed by screening for aberrant phenotypes. If the generation of gene deletion mutants fails, the question arises whether the failure stems from technical issues or because the gene of interest (GOI) is essential, meaning that the deletion causes lethality. In this report, we introduce a novel method for assessing gene essentiality using the phytopathogenic ascomycete Magnaporthe oryzae. The method is based on the observation that telomere vectors are lost in transformants during cultivation without selection pressure. We tested the hypothesis that essential genes can be identified in deletion mutants co-transformed with a telomere vector. The M. oryzae gene MoPKC, described in literature as essential, was chosen as GOI. Using CRISPR/Cas9 technology transformants with deleted GOI were generated and backed up by a telomere vector carrying a copy of the GOI and conferring fenhexamid resistance. Transformants in which the GOI deletion in the genome was not successful lost the telomere vector on media without fenhexamid. In contrast, transformants with confirmed GOI deletion retained the telomere vector even in absence of fenhexamid selection. In the latter case, the maintenance of the telomere indicates that the GOI is essential for the surveillance of the fungi, as it would have been lost otherwise. The method presented here allows to test for essentiality of genes when no mutants can be obtained from gene deletion approaches, thereby expanding the toolbox for studying gene function in ascomycetes.
Collapse
Affiliation(s)
- Louisa Wirtz
- Department of Molecular Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Florencia Casanova
- Department of Molecular Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Ulrich Schaffrath
- Department of Molecular Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Alex Wegner
- Department of Molecular Plant PhysiologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
2
|
Zhao L, Hu Y, Liang L, Dhanasekaran S, Zhang X, Yang X, Wu M, Song Y, Zhang H. WSC1 Regulates the Growth, Development, Patulin Production, and Pathogenicity of Penicillium expansum Infecting Pear Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1025-1034. [PMID: 38181197 DOI: 10.1021/acs.jafc.3c07566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
In this study, the role of WSC1 in the infection of pear fruit by Penicillium expansum was investigated. The WSC1 gene was knocked out and complemented by Agrobacterium-mediated homologous recombination technology. Then, the changes in growth, development, and pathogenic processes of the knockout mutant and the complement mutant were analyzed. The results indicated that deletion of WSC1 slowed the growth rate, reduced the mycelial and spore yield, and reduced the ability to produce toxins and pathogenicity of P. expansum in pear fruits. At the same time, the deletion of WSC1 reduced the tolerance of P. expansum to cell wall stress factors, enhanced antioxidant capacity, decreased hypertonic sensitivity, decreased salt stress resistance, and was more sensitive to most metal ions. Our results confirmed that WSC1 plays an important role in maintaining cell wall integrity and responding to stress, toxin production, and the pathogenicity of P. expansum.
Collapse
Affiliation(s)
- Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, People's Republic of China
| | - Yize Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Luyi Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiangzheng Yang
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Maoyu Wu
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
4
|
Ding L, Huang H, Lu F, Lu J, Zhou X, Zhang Y, Cai M. Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature. J Ind Microbiol Biotechnol 2022; 49:kuab073. [PMID: 34661657 PMCID: PMC9113092 DOI: 10.1093/jimb/kuab073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Polar regions are rich in microbial and product resources. Geomyces sp. WNF-15A is an Antarctic psy chrotrophic filamentous fungus producing high quality red pigment with potential for industrial use. However, efficient biosynthesis of red pigment can only realize at low temperature, which brings difficult control and high cost for the large-scale fermentation. This study aims to develop transposon insertion mutation method to improve cell growth and red pigment production adaptive to normal temperature. Genetic manipulation system of this fungus was firstly developed by antibiotic marker screening, protoplast preparation and transformation optimization, by which transformation efficiency of ∼50% was finally achieved. Then transposable insertion systems were established using Helitron, Fot1, and Impala transposons. The transposition efficiency reached 11.9%, 9.4%, and 4.6%, respectively. Mutant MP1 achieved the highest red pigment production (OD520 of 39) at 14°C, which was 40% higher than the wild-type strain. Mutant MP14 reached a maximum red pigment production (OD520 of 14.8) at 20°C, which was about twofold of the wild-type strain. Mutants MP2 and MP10 broke the repression mechanism of red pigment biosynthesis in the wild-type and allowed production at 25°C. For cell growth, eight mutants grew remarkably better (12%∼30% biomass higher) than the wild-type at 25°C. This study established an efficient genetic manipulation and transposon insertion mutation platform for polar filamentous fungus. It provides reference for genetic breeding of psychrotrophic fungi from polar and other regions.
Collapse
Affiliation(s)
- Lulu Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hezhou Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengning Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangshan Zhou
- China Resources Angde Biotech Pharma Co., Ltd., 78 E-jiao Street, Liaocheng, Shandong 252299, China
- China Resources Biopharmaceutical Co., Ltd., 1301-84 Sightseeing Road, Shenzhen 518110, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Madhavan A, Arun KB, Sindhu R, Alphonsa Jose A, Pugazhendhi A, Binod P, Sirohi R, Reshmy R, Kumar Awasthi M. Engineering interventions in industrial filamentous fungal cell factories for biomass valorization. BIORESOURCE TECHNOLOGY 2022; 344:126209. [PMID: 34715339 DOI: 10.1016/j.biortech.2021.126209] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 05/15/2023]
Abstract
Filamentous fungi possess versatile capabilities for synthesizing a variety of valuable bio compounds, including enzymes, organic acids and small molecule secondary metabolites. The advancements of genetic and metabolic engineering techniques and the availability of sequenced genomes discovered their potential as expression hosts for recombinant protein production. Remarkably, plant-biomass degrading filamentous fungi show the unique capability to decompose lignocellulose, an extremely recalcitrant biopolymer. The basic biochemical approaches have motivated several industrial processes for lignocellulose biomass valorisation into fermentable sugars and other biochemical for biofuels, biomolecules, and biomaterials. The review gives insight into current trends in engineering filamentous fungi for enzymes, fuels, and chemicals from lignocellulose biomass. This review describes the variety of enzymes and compounds that filamentous fungi produce, engineering of filamentous fungi for biomass valorisation with a special focus on lignocellulolytic enzymes and other bulk chemicals.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014, India.
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| | - Anju Alphonsa Jose
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| | | | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy & Environmental Sustainability, Lucknow 226001. Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, PR China
| |
Collapse
|
6
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
7
|
Son YE, Park HS. Genetic Manipulation and Transformation Methods for Aspergillus spp. MYCOBIOLOGY 2020; 49:95-104. [PMID: 37970179 PMCID: PMC10635212 DOI: 10.1080/12298093.2020.1838115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2023]
Abstract
Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Xue A, Robbins N, Cowen LE. Advances in fungal chemical genomics for the discovery of new antifungal agents. Ann N Y Acad Sci 2020; 1496:5-22. [PMID: 32860238 DOI: 10.1111/nyas.14484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality around the globe. This is in part due to a scarcity in the number of antifungal drugs available to combat mycotic disease, making the discovery of novel bioactive compounds and determining their mode of action of utmost importance. The development and application of chemical genomic assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of diverse molecules in a living cell. Furthermore, complementary assays are continually being developed in fungal pathogens, most notably Candida albicans and Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple fungal species enables the identification of candidate drug target genes, as well as genes involved in buffering drug target pathways, and genes involved in general cellular responses to small molecules. In this review, we examine current yeast chemical genomic assays and highlight how such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Malavia D, Gow NAR, Usher J. Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms 2020; 8:E803. [PMID: 32466582 PMCID: PMC7356103 DOI: 10.3390/microorganisms8060803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic fungi represent an increasing infectious disease threat to humans, especially with an increasing challenge of antifungal drug resistance. Over the decades, numerous tools have been developed to expedite the study of pathogenicity, initiation of disease, drug resistance and host-pathogen interactions. In this review, we highlight advances that have been made in the use of molecular tools using CRISPR technologies, RNA interference and transposon targeted mutagenesis. We also discuss the use of animal models in modelling disease of human fungal pathogens, focusing on zebrafish, the silkworm, Galleria mellonella and the murine model.
Collapse
Affiliation(s)
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (N.A.R.G.)
| |
Collapse
|
10
|
Blachowicz A, Chiang AJ, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich JE, Torok T, Wang CCC, Venkateswaran K. Proteomic and Metabolomic Characteristics of Extremophilic Fungi Under Simulated Mars Conditions. Front Microbiol 2019; 10:1013. [PMID: 31156574 PMCID: PMC6529585 DOI: 10.3389/fmicb.2019.01013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi have been associated with extreme habitats, including nuclear power plant accident sites and the International Space Station (ISS). Due to their immense adaptation and phenotypic plasticity capacities, fungi may thrive in what seems like uninhabitable niches. This study is the first report of fungal survival after exposure of monolayers of conidia to simulated Mars conditions (SMC). Conidia of several Chernobyl nuclear accident-associated and ISS-isolated strains were tested for UV-C and SMC sensitivity, which resulted in strain-dependent survival. Strains surviving exposure to SMC for 30 min, ISSFT-021-30 and IMV 00236-30, were further characterized for proteomic, and metabolomic changes. Differential expression of proteins involved in ribosome biogenesis, translation, and carbohydrate metabolic processes was observed. No significant metabolome alterations were revealed. Lastly, ISSFT-021-30 conidia re-exposed to UV-C exhibited enhanced UV-C resistance when compared to the conidia of unexposed ISSFT-021.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Abby J Chiang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Department of Ecology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
11
|
Inducible Cell Fusion Permits Use of Competitive Fitness Profiling in the Human Pathogenic Fungus Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 63:AAC.01615-18. [PMID: 30397071 DOI: 10.1128/aac.01615-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022] Open
Abstract
Antifungal agents directed against novel therapeutic targets are required for treating invasive, chronic, and allergic Aspergillus infections. Competitive fitness profiling technologies have been used in a number of bacterial and yeast systems to identify druggable targets; however, the development of similar systems in filamentous fungi is complicated by the fact that they undergo cell fusion and heterokaryosis. Here, we demonstrate that cell fusion in Aspergillus fumigatus under standard culture conditions is not predominately constitutive, as with most ascomycetes, but can be induced by a range of extracellular stressors. Using this knowledge, we have developed a barcode-free genetic profiling system that permits high-throughput parallel determination of strain fitness in a collection of diploid A. fumigatus mutants. We show that heterozygous cyp51A and arf2 null mutants have reduced fitness in the presence of itraconazole and brefeldin A, respectively, and a heterozygous atp17 null mutant is resistant to brefeldin A.
Collapse
|
12
|
Identification of Antifungal Targets Based on Computer Modeling. J Fungi (Basel) 2018; 4:jof4030081. [PMID: 29973534 PMCID: PMC6162656 DOI: 10.3390/jof4030081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host⁻pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.
Collapse
|
13
|
Motaung TE. Cryptococcus neoformans mutant screening: a genome-scale's worth of function discovery. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Identification of Enzymes Involved in Sesterterpene Biosynthesis in Marine Fungi. Methods Enzymol 2018; 604:441-498. [DOI: 10.1016/bs.mie.2018.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol 2017; 101:8063-8075. [PMID: 28965220 DOI: 10.1007/s00253-017-8486-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 10/18/2022]
Abstract
Functional genomics of filamentous fungi has gradually uncovered gene information for constructing 'cell factories' and controlling pathogens. Available gene manipulation methods of filamentous fungi include random integration methods, gene targeting technology, gene editing with artificial nucleases and RNA technology. This review describes random gene integration constructed by restriction enzyme-mediated integration (REMI); Agrobacterium-mediated transformation (AMT); transposon-arrayed gene knockout (TAGKO); gene targeting technology, mainly about homologous recombination; and modern gene editing strategies containing transcription activator-like effector nucleases (TALENs) and a clustered regularly interspaced short palindromic repeat/associated protein system (CRISPR/Cas) developed in filamentous fungi and RNA technology including RNA interference (RNAi) and ribozymes. This review describes historical and modern gene manipulation methods in filamentous fungi and presents the molecular tools available to researchers investigating filamentous fungi. The biggest difference of this review from the previous ones is the addition of successful application and details of the promising gene editing tool CRISPR/Cas9 system in filamentous fungi.
Collapse
|
16
|
van Dam P, Rep M. The Distribution of Miniature Impala Elements and SIX Genes in the Fusarium Genus is Suggestive of Horizontal Gene Transfer. J Mol Evol 2017; 85:14-25. [PMID: 28744785 PMCID: PMC5579170 DOI: 10.1007/s00239-017-9801-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022]
Abstract
The mimp family of miniature inverted-repeat transposable elements was previously found only in genomes of Fusarium oxysporum and is contextually associated with virulence genes in this species. Through extensive comparative analysis of 83 F. oxysporum and 52 other Fusarium genomes, we uncovered the distribution of different mimp families throughout the genus. We show that (i) mimps are not exclusive to F. oxysporum; (ii) pathogenic isolates generally possess more mimps than non-pathogenic strains and (iii) two isolates of F. hostae and one F. proliferatum isolate display evidence for horizontal transfer of genetic material to or from F. oxysporum. Multiple instances of mimp elements identical to F. oxysporum mimps were encountered in the genomes of these isolates. Moreover, homologs of effector genes (SIX1, 2, 6, 7, 11 and FomAVR2) were discovered here, several with very high (97-100%) pairwise nucleotide sequence identity scores. These three strains were isolated from infected flower bulbs (Hyacinthus and Lilium spp.). Their ancestors may thus have lived in close proximity to pathogenic strains of F. oxysporum f. sp. hyacinthi and f. sp. lilii. The Fo f. sp. lycopersici SIX2 effector gene was found to be widely distributed (15/18 isolates) throughout the F. fujikuroi species complex, exhibiting a predominantly vertical inheritance pattern. These findings shed light on the potential evolutionary mechanism underlying plant-pathogenicity in Fusarium and show that interspecies horizontal gene transfer may have occurred.
Collapse
Affiliation(s)
- Peter van Dam
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Ianiri G, Boyce KJ, Idnurm A. Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans. Curr Genet 2016; 63:519-530. [PMID: 27783209 DOI: 10.1007/s00294-016-0659-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/02/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Discovering the genes underlying fundamental processes that enable cells to live and reproduce is a technical challenge, because loss of gene function in mutants results in organisms that cannot survive. This study describes a forward genetics method to identify essential genes in fungi, based on the propensity for Agrobacterium tumefaciens to insert T-DNA molecules into the promoters or 5' untranslated regions of genes and by placing a conditional promoter within the T-DNA. Insertions of the promoter of the GAL7 gene were made in the human pathogen Cryptococcus neoformans. Nine strains of 960 T-DNA insertional mutants screened grew on media containing galactose, but had impaired growth on media containing glucose, which suppresses expression from GAL7. T-DNA insertions were found in the homologs of IDI1, MRPL37, NOC3, NOP56, PRE3 and RPL17, all of which are essential in ascomycete yeasts Saccharomyces cerevisiae or Schizosaccharomyces pombe. Altering the carbon source in the medium provided a system to identify phenotypes in response to stress agents. The pre3 proteasome subunit mutant was further characterized. The T-DNA insertion and phenotype co-segregate in progeny from a cross, and the growth defect is complemented by the reintroduction of the wild type gene into the insertional mutant. A deletion allele was generated in a diploid strain, this heterozygous strain was sporulated, and analysis of the progeny provided additional genetic evidence that PRE3 is essential. The experimental design is applicable to other fungi and has other forward genetic applications such as to isolate over-expression suppressors or enhance the production of traits of interest.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via F. De Sanctis Snc, 86100, Campobasso, Italy
| | - Kylie J Boyce
- School of BioSciences, BioSciences 2, University of Melbourne, Building 122, Melbourne, VIC, 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, BioSciences 2, University of Melbourne, Building 122, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
18
|
Blum A, Benfield AH, Stiller J, Kazan K, Batley J, Gardiner DM. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production. Fungal Genet Biol 2016; 90:1-11. [PMID: 26932301 DOI: 10.1016/j.fgb.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/02/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023]
Abstract
Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes.
Collapse
Affiliation(s)
- Ailisa Blum
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia; School of Agriculture & Food Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Aurélie H Benfield
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| | - Jacqueline Batley
- School of Agriculture & Food Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Donald M Gardiner
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
19
|
Enayati S, Azizi M, Aminollahi E, Ranjvar Shahrivar M, Khalaj V. T7-RNA polymerase dependent RNAi system in Aspergillus fumigatus: a proof of concept study. FEMS Microbiol Lett 2016; 363:fnw029. [PMID: 26850443 DOI: 10.1093/femsle/fnw029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 11/12/2022] Open
Abstract
An RNAi system based on T7 RNA polymerase (TRNAP) was designed and examined in Aspergillus fumigatus. This system consists of two elements; an inducible T7RNAP expressing cassette and an AMA1-based episomal RNAi plasmid. These constructs were transformed into the A. fumigatus protoplasts and the efficiency of this system was tested in downregulation of alb1 gene. Upon the induction of T7RNAP expression, the recombinant T7RNAP was able to recognize T7 promoters, which were located on the episomal plasmid and in opposite direction. As a result, the bidirectional transcription of alb1 fragment led to the silencing of the target gene. However, our results demonstrated that this silencing system is unstable and may not be applicable in preparation of RNAi libraries.
Collapse
Affiliation(s)
- Somayeh Enayati
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| | - Mohammad Azizi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| | - Elahe Aminollahi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| | - Mona Ranjvar Shahrivar
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| |
Collapse
|
20
|
Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus. EUKARYOTIC CELL 2015; 14:1073-80. [PMID: 26318395 DOI: 10.1128/ec.00107-15] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
Low rates of homologous recombination have broadly encumbered genetic studies in the fungal pathogen Aspergillus fumigatus. The CRISPR/Cas9 system of bacteria has recently been developed for targeted mutagenesis of eukaryotic genomes with high efficiency and, importantly, through a mechanism independent of homologous repair machinery. As this new technology has not been developed for use in A. fumigatus, we sought to test its feasibility for targeted gene disruption in this organism. As a proof of principle, we first demonstrated that CRISPR/Cas9 can indeed be used for high-efficiency (25 to 53%) targeting of the A. fumigatus polyketide synthase gene (pksP), as evidenced by the generation of colorless (albino) mutants harboring the expected genomic alteration. We further demonstrated that the constitutive expression of the Cas9 nuclease by itself is not deleterious to A. fumigatus growth or virulence, thus making the CRISPR system compatible with studies involved in pathogenesis. Taken together, these data demonstrate that CRISPR can be utilized for loss-of-function studies in A. fumigatus and has the potential to bolster the genetic toolbox for this important pathogen.
Collapse
|
21
|
Lloyd JP, Seddon AE, Moghe GD, Simenc MC, Shiu SH. Characteristics of Plant Essential Genes Allow for within- and between-Species Prediction of Lethal Mutant Phenotypes. THE PLANT CELL 2015; 27:2133-47. [PMID: 26286535 PMCID: PMC4568498 DOI: 10.1105/tpc.15.00051] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/22/2015] [Accepted: 07/25/2015] [Indexed: 05/18/2023]
Abstract
Essential genes represent critical cellular components whose disruption results in lethality. Characteristics shared among essential genes have been uncovered in fungal and metazoan model systems. However, features associated with plant essential genes are largely unknown and the full set of essential genes remains to be discovered in any plant species. Here, we show that essential genes in Arabidopsis thaliana have distinct features useful for constructing within- and cross-species prediction models. Essential genes in A. thaliana are often single copy or derived from older duplications, highly and broadly expressed, slow evolving, and highly connected within molecular networks compared with genes with nonlethal mutant phenotypes. These gene features allowed the application of machine learning methods that predicted known lethal genes as well as an additional 1970 likely essential genes without documented phenotypes. Prediction models from A. thaliana could also be applied to predict Oryza sativa and Saccharomyces cerevisiae essential genes. Importantly, successful predictions drew upon many features, while any single feature was not sufficient. Our findings show that essential genes can be distinguished from genes with nonlethal phenotypes using features that are similar across kingdoms and indicate the possibility for translational application of our approach to species without extensive functional genomic and phenomic resources.
Collapse
Affiliation(s)
- John P Lloyd
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Alexander E Seddon
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gaurav D Moghe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
| | - Matthew C Simenc
- Department of Biological Sciences, Humboldt State University, Arcata, California 95521
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
22
|
Evangelinos M, Anagnostopoulos G, Karvela-Kalogeraki I, Stathopoulou PM, Scazzocchio C, Diallinas G. Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans. Fungal Genet Biol 2015; 81:1-11. [PMID: 26021704 DOI: 10.1016/j.fgb.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Transposons constitute powerful genetic tools for gene inactivation, exon or promoter trapping and genome analyses. The Minos element from Drosophila hydei, a Tc1/mariner-like transposon, has proved as a very efficient tool for heterologous transposition in several metazoa. In filamentous fungi, only a handful of fungal-specific transposable elements have been exploited as genetic tools, with the impala Tc1/mariner element from Fusarium oxysporum being the most successful. Here, we developed a two-component transposition system to manipulate Minos transposition in Aspergillus nidulans (AnMinos). Our system allows direct selection of transposition events based on re-activation of niaD, a gene necessary for growth on nitrate as a nitrogen source. On average, among 10(8) conidiospores, we obtain up to ∼0.8×10(2) transposition events leading to the expected revertant phenotype (niaD(+)), while ∼16% of excision events lead to AnMinos loss. Characterized excision footprints consisted of the four terminal bases of the transposon flanked by the TA target duplication and led to no major DNA rearrangements. AnMinos transposition depends on the presence of its homologous transposase. Its frequency was not significantly affected by temperature, UV irradiation or the transcription status of the original integration locus (niaD). Importantly, transposition is dependent on nkuA, encoding an enzyme essential for non-homologous end joining of DNA in double-strand break repair. AnMinos proved to be an efficient tool for functional analysis as it seems to transpose in different genomic loci positions in all chromosomes, including a high proportion of integration events within or close to genes. We have used Minos to obtain morphological and toxic analogue resistant mutants. Interestingly, among morphological mutants some seem to be due to Minos-elicited over-expression of specific genes, rather than gene inactivation.
Collapse
Affiliation(s)
- Minoas Evangelinos
- Faculty of Biology, University of Athens, Panepistimioupolis, Athens 15784, Greece
| | | | | | | | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London SW7 2AZ, United Kingdom; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - George Diallinas
- Faculty of Biology, University of Athens, Panepistimioupolis, Athens 15784, Greece.
| |
Collapse
|
23
|
Ianiri G, Idnurm A. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization. mBio 2015; 6:e02334-14. [PMID: 25827419 PMCID: PMC4453551 DOI: 10.1128/mbio.02334-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Fungal diseases represent a major burden to health care globally. As with other pathogenic microbes, there is a limited number of agents suitable for use in treating fungal diseases, and resistance to these agents can develop rapidly. Cryptococcus neoformans is a basidiomycete fungus that causes cryptococcosis worldwide in both immunocompromised and healthy individuals. As a basidiomycete, it diverged from other common pathogenic or model ascomycete fungi more than 500 million years ago. Here, we report C. neoformans genes that are essential for viability as identified through forward and reverse genetic approaches, using an engineered diploid strain and genetic segregation after meiosis. The forward genetic approach generated random insertional mutants in the diploid strain, the induction of meiosis and sporulation, and selection for haploid cells with counterselection of the insertion event. More than 2,500 mutants were analyzed, and transfer DNA (T-DNA) insertions in several genes required for viability were identified. The genes include those encoding the thioredoxin reductase (Trr1), a ribosome assembly factor (Rsa4), an mRNA-capping component (Cet1), and others. For targeted gene replacement, the C. neoformans homologs of 35 genes required for viability in ascomycete fungi were disrupted, meiosis and sporulation were induced, and haploid progeny were evaluated for their ability to grow on selective media. Twenty-one (60%) were found to be required for viability in C. neoformans. These genes are involved in mitochondrial translation, ergosterol biosynthesis, and RNA-related functions. The heterozygous diploid mutants were evaluated for haploinsufficiency on a number of perturbing agents and drugs, revealing phenotypes due to the loss of one copy of an essential gene in C. neoformans. This study expands the knowledge of the essential genes in fungi using a basidiomycete as a model organism. Genes that have no mammalian homologs and are essential in both Cryptococcus and ascomycete human pathogens would be ideal for the development of antifungal drugs with broad-spectrum activity. IMPORTANCE Fungal infections are very common in humans but may be neglected due to misdiagnosis and inattention. Cryptococcus neoformans is a yeast that infects mainly immunocompromised people, causing high mortality rates in developing countries. The fungus infects the lungs, crosses the blood-brain barrier, and invades the cerebrospinal fluid, causing fatal meningitis. C. neoformans infections are treated with amphotericin B, flucytosine, and azoles, all developed decades ago. However, problems with antifungal agents highlight the urgent need for more-effective drugs to treat C. neoformans and other invasive fungal infections. These issues include the negative side effects of amphotericin B, the spontaneous resistance of C. neoformans to azoles, and the inefficacy of the echinocandin antifungals. In this study, we report the identification of C. neoformans essential genes as targets for the development of novel antifungals. Because of the level of evolutionary divergence between C. neoformans and the ascomycetes, a subset of these genes is likely essential in all fungi. Genes identified in this study represent an excellent starting point for the future development of new antifungals by pharmaceutical companies.
Collapse
|
24
|
Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 2013; 31:1562-74. [PMID: 23988676 DOI: 10.1016/j.biotechadv.2013.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 07/06/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
Abstract
Advances in genetic transformation techniques have made important contributions to molecular genetics. Various molecular tools and strategies have been developed for functional genomic analysis of filamentous fungi since the first DNA transformation was successfully achieved in Neurospora crassa in 1973. Increasing amounts of genomic data regarding filamentous fungi are continuously reported and large-scale functional studies have become common in a wide range of fungal species. In this review, various molecular tools used in filamentous fungi are compared and discussed, including methods for genetic transformation (e.g., protoplast transformation, electroporation, and microinjection), the construction of random mutant libraries (e.g., restriction enzyme mediated integration, transposon arrayed gene knockout, and Agrobacterium tumefaciens mediated transformation), and the analysis of gene function (e.g., RNA interference and transcription activator-like effector nucleases). We also focused on practical strategies that could enhance the efficiency of genetic manipulation in filamentous fungi, such as choosing a proper screening system and marker genes, assembling target-cassettes or vectors effectively, and transforming into strains that are deficient in the nonhomologous end joining pathway. In summary, we present an up-to-date review on the different molecular tools and latest strategies that have been successfully used in functional genomics in filamentous fungi.
Collapse
|
25
|
Cools HJ, Hammond-Kosack KE. Exploitation of genomics in fungicide research: current status and future perspectives. MOLECULAR PLANT PATHOLOGY 2013; 14:197-210. [PMID: 23157348 PMCID: PMC6638899 DOI: 10.1111/mpp.12001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Every year, fungicide use to control plant disease caused by pathogenic fungi increases. The global fungicide market is now worth more than £5.3 billion, second only to the herbicide market in importance. In the UK, over 5500 tonnes of fungicide were applied to crops in 2010 (The Food and Environment Research Agency, Pesticide Usage Statistics), with 95.5% of the wheat-growing area receiving three fungicide sprays. Although dependence on fungicides to produce food securely, reliably and cheaply may be moderated in the future by further developments in crop biotechnology, modern crop protection will continue to require a diversity of solutions, including effective and safe chemical control. Therefore, investment in exploiting the increasingly available genome sequences of the most devastating fungal and oomycete phytopathogenic species should bring an array of new opportunities for chemical intervention. To date, the impact of whole genome research on the development, introduction and stewardship of fungicides has been limited, but ongoing improvements in computational analysis, molecular biology, chemical genetics, genome sequencing and transcriptomics will facilitate the development and registration of the future suite of crop protection chemicals.
Collapse
Affiliation(s)
- Hans J Cools
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | |
Collapse
|
26
|
Suitability of Vader for transposon-mediated mutagenesis in Aspergillus niger. Appl Environ Microbiol 2011; 77:2332-6. [PMID: 21296936 DOI: 10.1128/aem.02688-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Aspergillus niger is widely used in biotechnological applications. Strain CBS513.88 is known to harbor 21 copies of the nonautonomous transposon Vader. Upon selection of chlorate-resistant A. niger colonies, one Vader copy was found integrated in the nirA gene. This copy was used for vector construction and development of a transposon-tagging method. Vader showed an excision frequency of about 1 in 2.2 × 10(5) conidiospores. A total of 95 of 97 colonies analyzed exhibited an excision event at the DNA level, and Vader footprints were found. By employing thermal asymmetric interlaced (TAIL)-PCR, the reintegration sites of 21 independent excision events were determined. All reintegration events occurred within or very close to genes. Therefore, this method can be used for transposon mutagenesis in A. niger.
Collapse
|
27
|
Marui J, Yoshimi A, Hagiwara D, Fujii-Watanabe Y, Oda K, Koike H, Tamano K, Ishii T, Sano M, Machida M, Abe K. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes. Appl Microbiol Biotechnol 2010; 87:1829-40. [DOI: 10.1007/s00253-010-2627-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 12/11/2022]
|
28
|
The transposon impala is activated by low temperatures: use of a controlled transposition system to identify genes critical for viability of Aspergillus fumigatus. EUKARYOTIC CELL 2010; 9:438-48. [PMID: 20097738 DOI: 10.1128/ec.00324-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genes that are essential for viability represent potential targets for the development of anti-infective agents. However, relatively few have been determined in the filamentous fungal pathogen Aspergillus fumigatus. A novel solution employing parasexual genetics coupled with transposon mutagenesis using the Fusarium oxysporum transposon impala had previously enabled the identification of 20 essential genes from A. fumigatus; however, further use of this system required a better understanding of the mode of action of the transposon itself. Examination of a range of conditions indicated that impala is activated by prolonged exposure to low temperatures. This newly identified property was then harnessed to identify 96 loci that are critical for viability in A. fumigatus, including genes required for RNA metabolism, organelle organization, protein transport, ribosome biogenesis, and transcription, as well as a number of noncoding RNAs. A number of these genes represent potential targets for much-needed novel antifungal drugs.
Collapse
|
29
|
Ogasawara H, Obata H, Hata Y, Takahashi S, Gomi K. Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. Fungal Genet Biol 2009; 46:441-9. [DOI: 10.1016/j.fgb.2009.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 02/16/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
30
|
Thykaer J, Andersen MR, Baker SE. Essential pathway identification: from in silico analysis to potential antifungal targets in Aspergillus fumigatus. Med Mycol 2009; 47 Suppl 1:S80-7. [PMID: 19253142 DOI: 10.1080/13693780802455305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Computational metabolic flux modeling has been a great aid for both understanding and manipulating microbial metabolism. A previously developed metabolic flux model for Aspergillus niger, an economically important biotechnology fungus known for protein and organic acid production, is comprised of 1190 biochemically unique reactions that are associated with 871 open reading frames. Through a systematic in silico deletion of single metabolic reactions using this model, several essential metabolic pathways were identified for A. niger. A total of 138 reactions were identified as being essential biochemical reactions during growth on a minimal glucose medium. The majority of the reactions grouped into essential biochemical pathways covering cell wall biosynthesis, amino acid biosynthesis, energy metabolism and purine and pyrimidine metabolism. Based on the A. niger open reading frames associated with the reactions, we identified orthologous candidate essential genes in Aspergillus fumigatus. Our predictions are validated in part by the modes of action for some antifungal drugs and by molecular genetic studies of essential genes in A. fumigatus and other fungi. The use of metabolic models to predict essential reactions and pathways in Aspergillus spp. has promise to inform reverse genetic studies of gene essentiality and identify potential targets for antifungal development.
Collapse
Affiliation(s)
- Jette Thykaer
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | | |
Collapse
|
31
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
32
|
López-Berges MS, DI Pietro A, Daboussi MJ, Wahab HA, Vasnier C, Roncero MIG, Dufresne M, Hera C. Identification of virulence genes in Fusarium oxysporum f. sp. lycopersici by large-scale transposon tagging. MOLECULAR PLANT PATHOLOGY 2009; 10:95-107. [PMID: 19161356 PMCID: PMC6640436 DOI: 10.1111/j.1364-3703.2008.00512.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Forward genetic screens are efficient tools for the dissection of complex biological processes, such as fungal pathogenicity. A transposon tagging system was developed in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici by inserting the novel modified impala element imp160::gfp upstream of the Aspergillus nidulans niaD gene, followed by transactivation with a constitutively expressed transposase. A collection of 2072 Nia(+) revertants was obtained from reporter strain T12 and screened for alterations in virulence, using a rapid assay for invasive growth on apple slices. Seven strains exhibited reduced virulence on both apple slices and intact tomato plants. Five of these were true revertants showing the re-insertion of imp160::gfp within or upstream of predicted coding regions, whereas the other two showed either excision without re-insertion or no excision. Linkage between imp160::gfp insertion and virulence phenotype was determined in four transposon-tagged loci using targeted deletion in the wild-type strain. Knockout mutants in one of the genes, FOXG_00016, displayed significantly reduced virulence, and complementation of the original revertant with the wild-type FOXG_00016 allele fully restored virulence. FOXG_00016 has homology to the velvet gene family of A. nidulans. The high rate of untagged virulence mutations in the T12 reporter strain appears to be associated with increased genetic instability, possibly as a result of the transactivation of endogenous transposable elements by the constitutively expressed transposase.
Collapse
Affiliation(s)
- Manuel Sánchez López-Berges
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Edif C5, 14071 Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dufresne M, Lee TVD, M’Barek SB, Xu X, Zhang X, Liu T, Waalwijk C, Zhang W, Kema GH, Daboussi MJ. Transposon-tagging identifies novel pathogenicity genes in Fusarium graminearum. Fungal Genet Biol 2008; 45:1552-61. [DOI: 10.1016/j.fgb.2008.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/31/2008] [Accepted: 09/03/2008] [Indexed: 01/14/2023]
|
34
|
Dias MVS, Basso LR, Coelho PSR. New transposons to generate GFP protein fusions in Candida albicans. Gene 2008; 417:13-8. [DOI: 10.1016/j.gene.2008.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/17/2022]
|
35
|
Hey P, Robson G, Birch M, Bromley M. Characterisation of Aft1 a Fot1/Pogo type transposon of Aspergillus fumigatus. Fungal Genet Biol 2008; 45:117-26. [DOI: 10.1016/j.fgb.2007.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 09/13/2007] [Accepted: 10/16/2007] [Indexed: 01/05/2023]
|
36
|
Matsumoto S, Hatano K, Maki K. [New advances in antifungal agents]. Nihon Yakurigaku Zasshi 2007; 130:45-51. [PMID: 17634680 DOI: 10.1254/fpj.130.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
37
|
Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 2007; 3:e24. [PMID: 17352532 PMCID: PMC1817658 DOI: 10.1371/journal.ppat.0030024] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 01/08/2007] [Indexed: 01/16/2023] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne filamentous fungal pathogen in humans, causing severe and often fatal invasive infections in immunocompromised patients. Currently available antifungal drugs to treat invasive aspergillosis have limited modes of action, and few are safe and effective. To identify and prioritize antifungal drug targets, we have developed a conditional promoter replacement (CPR) strategy using the nitrogen-regulated A. fumigatus NiiA promoter (pNiiA). The gene essentiality for 35 A. fumigatus genes was directly demonstrated by this pNiiA-CPR strategy from a set of 54 genes representing broad biological functions whose orthologs are confirmed to be essential for growth in Candida albicans and Saccharomyces cerevisiae. Extending this approach, we show that the ERG11 gene family (ERG11A and ERG11B) is essential in A. fumigatus despite neither member being essential individually. In addition, we demonstrate the pNiiA-CPR strategy is suitable for in vivo phenotypic analyses, as a number of conditional mutants, including an ERG11 double mutant (erg11BΔ, pNiiA-ERG11A), failed to establish a terminal infection in an immunocompromised mouse model of systemic aspergillosis. Collectively, the pNiiA-CPR strategy enables a rapid and reliable means to directly identify, phenotypically characterize, and facilitate target-based whole cell assays to screen A. fumigatus essential genes for cognate antifungal inhibitors. Aspergillus fumigatus is an opportunistic filamentous fungal pathogen of emerging clinical significance. Although virulence factors are seen as potential drug targets, neither genetic analyses nor genomic comparisons have identified genuine virulence factors in A. fumigatus. Essential genes required for fungal growth and viability also serve as potential drug targets, yet few have been described in this pathogen. To begin to catalog essential genes in A. fumigatus, we devised a genetic strategy for creating conditional mutants by promoter replacement of target genes using a nitrogen-regulated promoter. Applying this genetic approach to A. fumigatus genes orthologous to known essential genes of the nonpathogenic yeast, Saccharomyces cerevisiae and Candida albicans, we demonstrate a robust enrichment for identifying essential genes conserved within this pathogen. We show that A. fumigatus conditional mutants can be evaluated according to their terminal phenotypes (e.g., conidial germination, growth, morphology, and cidal versus static consequences) and pathogenesis in a murine model of systemic aspergillosis to prioritize essential genes as novel drug targets suitable for developing broad-spectrum antifungal agents.
Collapse
MESH Headings
- Animals
- Antifungal Agents/therapeutic use
- Aspergillosis/microbiology
- Aspergillus fumigatus/genetics
- Aspergillus fumigatus/growth & development
- Aspergillus fumigatus/pathogenicity
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Disease Models, Animal
- Drug Delivery Systems
- Gene Expression Regulation, Fungal
- Genes, Essential
- Genes, Fungal
- Male
- Mice
- Mice, Nude
- Molecular Sequence Data
- Nitrate Reductases/genetics
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phenotype
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Recombination, Genetic
- Sterol 14-Demethylase
- Transcription, Genetic
- Virulence/genetics
- Virulence/physiology
Collapse
Affiliation(s)
- Wenqi Hu
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Susan Sillaots
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | | | - John Davison
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Anouk Breton
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Annie Linteau
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Chunlin Xin
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Joel Bowman
- Infectious Diseases, Merck Research Laboratories, Rahway, New Jersey, United States of America
| | - Jeff Becker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bo Jiang
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
| | - Terry Roemer
- Merck Frosst Center of Fungal Genetics, Montreal, Quebec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Blaise F, Rémy E, Meyer M, Zhou L, Narcy JP, Roux J, Balesdent MH, Rouxel T. A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans. Fungal Genet Biol 2007; 44:123-38. [PMID: 16979359 DOI: 10.1016/j.fgb.2006.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/11/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
We evaluated the usefulness and robustness of Agrobacterium tumefaciens-mediated transformation (ATMT) as a high-throughput transformation tool for pathogenicity gene discovery in the filamentous phytopathogen Leptosphaeria maculans. Thermal asymmetric interlaced polymerase chain reaction allowed us to amplify the left border (LB) flanking sequence in 135 of 400 transformants analysed, and indicated a high level of preservation of the T-DNA LB. In addition, T-DNA preferentially integrated as a single copy in gene-rich regions of the fungal genome, with a probable bias towards intergenic and/or regulatory regions. A total of 53 transformants out of 1388 (3.8%) showed reproducible pathogenicity defects when inoculated on cotyledons of Brassica napus, with diverse altered phenotypes. Co-segregation of the altered phenotype with the T-DNA integration was observed for 6 of 12 transformants crossed. If extrapolated to the whole collection, this indicates that 1.9% of the collection actually corresponds to tagged pathogenicity mutants. The preferential insertion into gene-rich regions along with the high ratio of tagged mutants renders ATMT a tool of choice for large-scale gene discovery in L. maculans.
Collapse
Affiliation(s)
- Françoise Blaise
- Institut National de la Recherche Agronomique, Phytopathologie et Méthodologies de la Détection, Route de St-Cyr, F-78026 Versailles Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
40
|
Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ. Approaches to functional genomics in filamentous fungi. Cell Res 2006; 16:31-44. [PMID: 16467874 DOI: 10.1038/sj.cr.7310006] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The study of gene function in filamentous fungi is a field of research that has made great advances in very recent years. A number of transformation and gene manipulation strategies have been developed and applied to a diverse and rapidly expanding list of economically important filamentous fungi and oomycetes. With the significant number of fungal genomes now sequenced or being sequenced, functional genomics promises to uncover a great deal of new information in coming years. This review discusses recent advances that have been made in examining gene function in filamentous fungi and describes the advantages and limitations of the different approaches.
Collapse
Affiliation(s)
- Richard J Weld
- National Centre for Advanced Bio-Protection Technologies, PO Box 84, Lincoln University, Canterbury 8150, New Zealand.
| | | | | | | |
Collapse
|
41
|
Abstract
Comparative analyses of fungal genomes and molecular research on genes associated with fungal viability and virulence has led to the identification of many putative targets for novel antifungal agents. So far the rational approach to antifungal discovery, in which compounds are optimized against an individual target then progressed to efficacy against intact fungi and ultimately to infected humans has delivered no new agents. However, the approach continues to hold promise for the future. This review critically assesses the molecular target-based approach to antifungal discovery, outlines problems and pitfalls inherent in the genomics and target discovery strategies and describes the status of heavily investigated examples of target-based research.
Collapse
Affiliation(s)
- Frank C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Department of Molecular and Cell Biology, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
42
|
Fávaro LCDL, Araújo WLD, Azevedo JLD, Paccola-Meirelles LD. The biology and potential for genetic research of transposable elements in filamentous fungi. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000500024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Monroy F, Sheppard DC. Taf1: a class II transposon of Aspergillus fumigatus. Fungal Genet Biol 2005; 42:638-45. [PMID: 15896988 DOI: 10.1016/j.fgb.2005.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/29/2005] [Accepted: 04/02/2005] [Indexed: 12/01/2022]
Abstract
Aspergillus fumigatus is an important medical pathogen that lacks a known sexual cycle. Transposons may provide an important mechanism for the generation of genetic diversity in this organism. Here, we describe Taf1, the first class II transposon to be identified in A. fumigatus. Taf1, a member of the mariner superfamily and pogo family of transposons, is distinguished by the presence of extremely long (89 bp) inverted repeats that flank the transposase coding sequence. Taf1 is present in different locations and copy number among clinical strains of A. fumigatus and is transcribed. Analysis of multiple insertion sequences within a single strain suggests that Taf1 elements undergo inactivation by a repeat induced polymorphism-like mechanism. Taf1 insertion patterns were extremely stable despite multiple stressors including heat shock, serial passage, and infection in mice. Thus Taf1 may be useful for strain identification and molecular typing.
Collapse
Affiliation(s)
- Franz Monroy
- Division of Infectious Diseases, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | |
Collapse
|
44
|
Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J, Pontón J, Garaizar J. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 2005; 22:1-23. [PMID: 15813678 DOI: 10.1016/s1130-1406(05)70001-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus causes a wide range of diseases that include mycotoxicosis, allergic reactions and systemic diseases (invasive aspergillosis) with high mortality rates. Pathogenicity depends on immune status of patients and fungal strain. There is no unique essential virulence factor for development of this fungus in the patient and its virulence appears to be under polygenetic control. The group of molecules and genes associated with the virulence of this fungus includes many cell wall components, such as beta-(1-3)-glucan, galactomannan, galactomannanproteins (Afmp1 and Afmp2), and the chitin synthetases (Chs; chsE and chsG), as well as others. Some genes and molecules have been implicated in evasion from the immune response, such as the rodlets layer (rodA/hyp1 gene) and the conidial melanin-DHN (pksP/alb1 gene). The detoxifying systems for Reactive Oxygen Species (ROS) by catalases (Cat1p and Cat2p) and superoxide dismutases (MnSOD and Cu, ZnSOD), had also been pointed out as essential for virulence. In addition, this fungus produces toxins (14 kDa diffusible substance from conidia, fumigaclavin C, aurasperon C, gliotoxin, helvolic acid, fumagilin, Asp-hemolysin, and ribotoxin Asp fI/mitogilin F/restrictocin), allergens (Asp f1 to Asp f23), and enzymatic proteins as alkaline serin proteases (Alp and Alp2), metalloproteases (Mep), aspartic proteases (Pep and Pep2), dipeptidyl-peptidases (DppIV and DppV), phospholipase C and phospholipase B (Plb1 and Plb2). These toxic substances and enzymes seems to be additive and/or synergistic, decreasing the survival rates of the infected animals due to their direct action on cells or supporting microbial invasion during infection. Adaptation ability to different trophic situations is an essential attribute of most pathogens. To maintain its virulence attributes A. fumigatus requires iron obtaining by hydroxamate type siderophores (ornitin monooxigenase/SidA), phosphorous obtaining (fos1, fos2, and fos3), signal transductional falls that regulate morphogenesis and/or usage of nutrients as nitrogen (rasA, rasB, rhbA), mitogen activated kinases (sakA codified MAP-kinase), AMPc-Pka signal transductional route, as well as others. In addition, they seem to be essential in this field the amino acid biosynthesis (cpcA and homoaconitase/lysF), the activation and expression of some genes at 37 degrees C (Hsp1/Asp f12, cgrA), some molecules and genes that maintain cellular viability (smcA, Prp8, anexins), etc. Conversely, knowledge about relationship between pathogen and immune response of the host has been improved, opening new research possibilities. The involvement of non-professional cells (endothelial, and tracheal and alveolar epithelial cells) and professional cells (natural killer or NK, and dendritic cells) in infection has been also observed. Pathogen Associated Molecular Patterns (PAMP) and Patterns Recognizing Receptors (PRR; as Toll like receptors TLR-2 and TLR-4) could influence inflammatory response and dominant cytokine profile, and consequently Th response to infec tion. Superficial components of fungus and host cell surface receptors driving these phenomena are still unknown, although some molecules already associated with its virulence could also be involved. Sequencing of A. fumigatus genome and study of gene expression during their infective process by using DNA microarray and biochips, promises to improve the knowledge of virulence of this fungus.
Collapse
Affiliation(s)
- Aitor Rementeria
- Departamento Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Spain.
| | | | | | | | | | | | | |
Collapse
|
45
|
Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 2005; 48:1-17. [PMID: 15889258 DOI: 10.1007/s00294-005-0578-0] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/10/2005] [Accepted: 03/26/2005] [Indexed: 11/27/2022]
Abstract
In the era of functional genomics, the need for tools to perform large-scale targeted and random mutagenesis is increasing. A potential tool is Agrobacterium-mediated fungal transformation. A. tumefaciens is able to transfer a part of its DNA (transferred DNA; T-DNA) to a wide variety of fungi and the number of fungi that can be transformed by Agrobacterium-mediated transformation (AMT) is still increasing. AMT has especially opened the field of molecular genetics for fungi that were difficult to transform with traditional methods or for which the traditional protocols failed to yield stable DNA integration. Because of the simplicity and efficiency of transformation via A. tumefaciens, it is relatively easy to generate a large number of stable transformants. In combination with the finding that the T-DNA integrates randomly and predominantly as a single copy, AMT is well suited to perform insertional mutagenesis in fungi. In addition, in various gene-targeting experiments, high homologous recombination frequencies were obtained, indicating that the T-DNA is also a useful substrate for targeted mutagenesis. In this review, we discuss the potential of the Agrobacterium DNA transfer system to be used as a tool for targeted and random mutagenesis in fungi.
Collapse
Affiliation(s)
- Caroline B Michielse
- Institute of Biology, Clusius Laboratory, Fungal Genetics Research Group, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
| | | | | | | |
Collapse
|
46
|
Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, Evans-Holm M, Hiesinger PR, Schulze KL, Rubin GM, Hoskins RA, Spradling AC. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 2005; 167:761-81. [PMID: 15238527 PMCID: PMC1470905 DOI: 10.1534/genetics.104.026427] [Citation(s) in RCA: 708] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Berkeley Drosophila Genome Project (BDGP) strives to disrupt each Drosophila gene by the insertion of a single transposable element. As part of this effort, transposons in >30,000 fly strains were localized and analyzed relative to predicted Drosophila gene structures. Approximately 6300 lines that maximize genomic coverage were selected to be sent to the Bloomington Stock Center for public distribution, bringing the size of the BDGP gene disruption collection to 7140 lines. It now includes individual lines predicted to disrupt 5362 of the 13,666 currently annotated Drosophila genes (39%). Other lines contain an insertion at least 2 kb from others in the collection and likely mutate additional incompletely annotated or uncharacterized genes and chromosomal regulatory elements. The remaining strains contain insertions likely to disrupt alternative gene promoters or to allow gene misexpression. The expanded BDGP gene disruption collection provides a public resource that will facilitate the application of Drosophila genetics to diverse biological problems. Finally, the project reveals new insight into how transposons interact with a eukaryotic genome and helps define optimal strategies for using insertional mutagenesis as a genomic tool.
Collapse
Affiliation(s)
- Hugo J Bellen
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Veneault-Fourrey C, Talbot NJ. Moving Toward a Systems Biology Approach to the Study of Fungal Pathogenesis in the Rice Blast Fungus Magnaporthe grisea. ADVANCES IN APPLIED MICROBIOLOGY 2005; 57:177-215. [PMID: 16002013 DOI: 10.1016/s0065-2164(05)57006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Claire Veneault-Fourrey
- School of Biological Sciences, Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG, United Kingdom
| | | |
Collapse
|
48
|
Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and Biotechnology of Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:1-75. [PMID: 16543029 DOI: 10.1016/s0065-2164(05)58001-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
49
|
Xue T, Nguyen CK, Romans A, Kontoyiannis DP, May GS. Isogenic auxotrophic mutant strains in the Aspergillus fumigatus genome reference strain AF293. Arch Microbiol 2004; 182:346-53. [PMID: 15365692 DOI: 10.1007/s00203-004-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/28/2004] [Accepted: 07/02/2004] [Indexed: 11/25/2022]
Abstract
Aspergillus fumigatus is a ubiquitous fungus that is a frequent opportunistic pathogen in immunosuppressed patients. Because of its role as a pathogen, it is of considerable experimental interest. A set of auxotrophic isogenic strains in the A. fumigatus genome reference strain AF293 has been developed. Using molecular genetic methods, arginine and lysine auxotrophs were made by deletion of argB and lysB, respectively. Transformation of these auxotrophic strains with plasmids carrying argB or lysB, respectively, results in efficient integration at these loci. Finally, these strains are able to form stable diploids, which should further facilitate analysis of gene functions in this fungus. Furthermore, the development of this isogenic set of auxotrophic strains in the AF293 background will enable investigators to study this important opportunistic human pathogen with greater facility.
Collapse
Affiliation(s)
- Tao Xue
- The Genes and Development Graduate Program, Division of Pathology and Laboratory Medicine, The University of Texas Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
The past 10 years have been productive in the characterization of fungal transposable elements (TEs). All eukaryotic TEs described are found including an extraordinary prevalence of active members of the pogo family. The role of TEs in mutation and genome organization is well documented, leading to significant advances in our perception of the mechanisms underlying genetic changes in these organisms. TE-mediated changes, associated with transposition and recombination, provide a broad range of genetic variation, which is useful for natural populations in their adaptation to environmental constraints, especially for those lacking the sexual stage. Interestingly, some fungal species have evolved distinct silencing mechanisms that are regarded as host defense systems against TEs. The examination of forces acting on the evolutionary dynamics of TEs should provide important insights into the interactions between TEs and the fungal genome. Another issue of major significance is the practical applications of TEs in gene tagging and population analysis, which will undoubtedly facilitate research in systematic biology and functional genomics.
Collapse
Affiliation(s)
- Marie-Josée Daboussi
- Institut de Génétique et Microbiologie, Université Paris-Sud, F-91405 Orsay cedex, France.
| | | |
Collapse
|