1
|
Santos RA, Cerqueira DM, Zamboni DS, Oliveira SC. Caspase-8 but not caspase-7 influences inflammasome activation to act in control of Brucella abortus infection. Front Microbiol 2022; 13:1086925. [PMID: 36532444 PMCID: PMC9751037 DOI: 10.3389/fmicb.2022.1086925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Programmed cell death (PCD) is an important mechanism of innate immunity against bacterial pathogens. The innate immune PCD pathway involves the molecules caspase-7 and caspase-8, among others. Brucella abortus is a gram-negative bacterium that causes a zoonotic disease termed brucellosis. The innate immune response against this pathogen involves activation of inflammasome components and induction of pyroptosis. However, no studies so far have revealed the role of caspase-7 or caspase-8 during this bacterial infection. Herein, we demonstrate that caspase-7 is dispensable for caspase-1 processing, IL-1β secretion and cell death in macrophages. Additionally, caspase-7 deficient animals control B. abortus infection as well as the wild type mice. Furthermore, we addressed the role of caspase-8 in inflammasome activation and pyroptosis during this bacterial infection. Macrophages deficient in caspase-8 secreted reduced amounts of IL-1β that parallels with diminished caspase-1 activity when compared to wild type cells. Additionally, caspase-8 KO macrophages showed reduced LDH release when compared to wild type, suggesting that caspase-8 may play an important role in pyroptosis in response to B. abortus. Finally, caspase-8 KO animals were more susceptible to Brucella infection when compared to wild type mice. Overall, this study contributes to a better understanding of the involvement of caspase-7 and caspase-8 in innate immunity against B. abortus infection.
Collapse
Affiliation(s)
- Raiany A. Santos
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daiane M. Cerqueira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dario S. Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sergio C. Oliveira
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil,*Correspondence: Sergio C. Oliveira,
| |
Collapse
|
2
|
Caspase-2 does not play a critical role in cell death induction and bacterial clearance during Salmonella infection. Cell Death Differ 2021; 28:3371-3373. [PMID: 34671106 DOI: 10.1038/s41418-021-00893-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022] Open
|
3
|
Thomas CN, Bernardo-Colón A, Courtie E, Essex G, Rex TS, Blanch RJ, Ahmed Z. Effects of intravitreal injection of siRNA against caspase-2 on retinal and optic nerve degeneration in air blast induced ocular trauma. Sci Rep 2021; 11:16839. [PMID: 34413361 PMCID: PMC8377143 DOI: 10.1038/s41598-021-96107-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/05/2021] [Indexed: 11/11/2022] Open
Abstract
Ocular repeated air blast injuries occur from low overpressure blast wave exposure, which are often repeated and in quick succession. We have shown that caspase-2 caused the death of retinal ganglion cells (RGC) after blunt ocular trauma. Here, we investigated if caspase-2 also mediates RGC apoptosis in a mouse model of air blast induced indirect traumatic optic neuropathy (b-ITON). C57BL/6 mice were exposed to repeated blasts of overpressure air (3 × 2 × 15 psi) and intravitreal injections of siRNA against caspase-2 (siCASP2) or against a control enhanced green fluorescent protein (siEGFP) at either 5 h after the first 2 × 15 psi ("post-blast") or 48 h before the first blast exposure ("pre-blast") and repeated every 7 days. RGC counts were unaffected by the b-ITON or intravitreal injections, despite increased degenerating ON axons, even in siCASP2 "post-blast" injection groups. Degenerating ON axons remained at sham levels after b-ITON and intravitreal siCASP2 "pre-blast" injections, but with less degenerating axons in siCASP2 compared to siEGFP-treated eyes. Intravitreal injections "post-blast" caused greater vitreous inflammation, potentiated by siCASP2, with less in "pre-blast" injected eyes, which was abrogated by siCASP2. We conclude that intravitreal injection timing after ocular trauma induced variable retinal and ON pathology, undermining our candidate neuroprotective therapy, siCASP2.
Collapse
Affiliation(s)
- Chloe N Thomas
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Ella Courtie
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gareth Essex
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tonia S Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
A rough Brucella mutant induced macrophage death depends on secretion activity of T4SS, but not on cellular Txnip- and Caspase-2-mediated signaling pathway. Vet Microbiol 2020; 244:108648. [PMID: 32402333 DOI: 10.1016/j.vetmic.2020.108648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022]
Abstract
Brucella is a facultative intracellular bacterium, dividing into smooth- and rough-type Brucella. Smooth-type Brucella can dissociate into rough mutants with cytotoxicity for macrophages during infection, which is critical for Brucella egress and dissemination. However, the mechanism of cytotoxicity infected by rough Brucella is incomplete. In this study, we verified that a rough-type Brucella (RB14 strain) was cytotoxic for macrophages dependent on Type IV secretion system (T4SS). Two specific T4SS VirB4 and VirB11 mutants were constructed, which affect the secretion of T4SS effectors, but not the expression of T4SS components. Cytotoxicity analysis showed that RB14- induced macrophages death depends on T4SS secretion activity. In a further study, 15 reported T4SS effectors were evaluated in inducing macrophage death using over-expression and transfection methods, the results showed that 15 recombinant strains with over-expression of respective effector were not cytotoxicity. In addition, 10 effectors transfected individually, or co-transfected with five effectors barely induced macrophage death, suggesting that all 15 effectors were not associated with macrophage death. Besides, we also evaluated endoplasmic reticulum (ER) stress, Txnip- or Caspase-2 roles in RB14-induced macrophages death. The results showed that inhibition of ER stress, Caspase or Caspase-2 activation was not associated with RB14-infected macrophages death. The casp2 and txnip knockout cells also showed death when infected by the RB14 strain. In all, the RB14-induced macrophage death depends on the secretion activity of T4SS, but not on ER stress, Txnip- or Caspase-2 signal pathway. This study provides a deep insight for rough Brucella-induced macrophage death, which favors for elucidating Brucella infection lifecycle.
Collapse
|
5
|
Imre G. The involvement of regulated cell death forms in modulating the bacterial and viral pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:211-253. [PMID: 32381176 PMCID: PMC7102569 DOI: 10.1016/bs.ircmb.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis, necroptosis and pyroptosis represent three distinct types of regulated cell death forms, which play significant roles in response to viral and bacterial infections. Whereas apoptosis is characterized by cell shrinkage, nuclear condensation, bleb formation and retained membrane integrity, necroptosis and pyroptosis exhibit osmotic imbalance driven cytoplasmic swelling and early membrane damage. These three cell death forms exert distinct immune stimulatory potential. The caspase driven apoptotic cell demise is considered in many circumstances as anti-inflammatory, whereas the two lytic cell death modalities can efficiently trigger immune response by releasing damage associated molecular patterns to the extracellular space. The relevance of these cell death modalities in infections can be best demonstrated by the presence of viral proteins that directly interfere with cell death pathways. Conversely, some pathogens hijack the cell death signaling routes to initiate a targeted attack against the immune cells of the host, and extracellular bacteria can benefit from the destruction of intact extracellular barriers upon cell death induction. The complexity and the crosstalk between these cell death modalities reflect a continuous evolutionary race between pathogens and host. This chapter discusses the current advances in the research of cell death signaling with regard to viral and bacterial infections and describes the network of the cell death initiating molecular mechanisms that selectively recognize pathogen associated molecular patterns.
Collapse
Affiliation(s)
- Gergely Imre
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Visser JG, Van Staden ADP, Smith C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front Pharmacol 2019; 10:22. [PMID: 30740053 PMCID: PMC6355695 DOI: 10.3389/fphar.2019.00022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
With the effectiveness of therapeutic agents ever decreasing and the increased incidence of multi-drug resistant pathogens, there is a clear need for administration of more potent, potentially more toxic, drugs. Alternatively, biopharmaceuticals may hold potential but require specialized protection from premature in vivo degradation. Thus, a paralleled need for specialized drug delivery systems has arisen. Although cell-mediated drug delivery is not a completely novel concept, the few applications described to date are not yet ready for in vivo application, for various reasons such as drug-induced carrier cell death, limited control over the site and timing of drug release and/or drug degradation by the host immune system. Here, we present our hypothesis for a new drug delivery system, which aims to negate these limitations. We propose transport of nanoparticle-encapsulated drugs inside autologous macrophages polarized to M1 phenotype for high mobility and treated to induce transient phagosome maturation arrest. In addition, we propose a significant shift of existing paradigms in the study of host-microbe interactions, in order to study microbial host immune evasion and dissemination patterns for their therapeutic utilization in the context of drug delivery. We describe a system in which microbial strategies may be adopted to facilitate absolute control over drug delivery, and without sacrificing the host carrier cells. We provide a comprehensive summary of the lessons we can learn from microbes in the context of drug delivery and discuss their feasibility for in vivo therapeutic application. We then describe our proposed "synthetic microbe drug delivery system" in detail. In our opinion, this multidisciplinary approach may hold the solution to effective, controlled drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| | | | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
7
|
Cerqueira DM, Gomes MTR, Silva ALN, Rungue M, Assis NRG, Guimarães ES, Morais SB, Broz P, Zamboni DS, Oliveira SC. Guanylate-binding protein 5 licenses caspase-11 for Gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog 2018; 14:e1007519. [PMID: 30589883 PMCID: PMC6326519 DOI: 10.1371/journal.ppat.1007519] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 12/10/2018] [Indexed: 01/18/2023] Open
Abstract
Innate immune response against Brucella abortus involves activation of Toll-like receptors (TLRs) and NOD-like receptors (NLRs). Among the NLRs involved in the recognition of B. abortus are NLRP3 and AIM2. Here, we demonstrate that B. abortus triggers non-canonical inflammasome activation dependent on caspase-11 and gasdermin-D (GSDMD). Additionally, we identify that Brucella-LPS is the ligand for caspase-11 activation. Interestingly, we determine that B. abortus is able to trigger pyroptosis leading to pore formation and cell death, and this process is dependent on caspase-11 and GSDMD but independently of caspase-1 protease activity and NLRP3. Mice lacking either caspase-11 or GSDMD were significantly more susceptible to infection with B. abortus than caspase-1 knockout or wild-type animals. Additionally, guanylate-binding proteins (GBPs) present in mouse chromosome 3 participate in the recognition of LPS by caspase-11 contributing to non-canonical inflammasome activation as observed by the response of Gbpchr3-/- BMDMs to bacterial stimulation. We further determined by siRNA knockdown that among the GBPs contained in mouse chromosome 3, GBP5 is the most important for Brucella LPS to be recognized by caspase-11 triggering IL-1β secretion and LDH release. Additionally, we observed a reduction in neutrophil, dendritic cell and macrophage influx in spleens of Casp11-/- and Gsdmd-/- compared to wild-type mice, indicating that caspase-11 and GSDMD are implicated in the recruitment and activation of immune cells during Brucella infection. Finally, depletion of neutrophils renders wild-type mice more susceptible to Brucella infection. Taken together, these data suggest that caspase-11/GSDMD-dependent pyroptosis triggered by B. abortus is important to infection restriction in vivo and contributes to immune cell recruitment and activation. Brucella abortus is the causative agent of brucellosis, a zoonotic disease that affects both humans and cattle. In humans, it is characterized by undulant fever and chronic symptoms as arthritis, endocarditis, and meningitis, while in cattle it causes abortion and infertility. Due to its difficult diagnosis and treatment, it leads to severe economic losses and human suffering. Recently, a novel non-canonical inflammasome pathway was described that involves sensing of bacterial LPS by an intracellular receptor termed caspase-11 and leads to pyroptosis and non-canonical NLRP3 inflammasome activation. Here, we show that B. abortus or its purified LPS is able to activate the non-canonical inflammasome. In this process, activated caspase-11 leads to GSDMD-dependent pyroptosis. Moreover, this pathway was dependent of IFN-induced GBP proteins, mainly GBP5. To analyze the role of caspase-1, caspase-11 and GSDMD in controlling B. abortus infection, we infected knockout (KO) mice for these molecules and we observed that caspase-11 and GSDMD KO animals were more susceptible to infection compared to wild-type animals. Casp11-/- and Gsdmd-/- animals also recruited less immune cells in mouse spleens compared to wild-type animals in response to B. abortus. Thus, caspase-11 and GSDMD are major components of the innate immune system to restrict B. abortus in vivo. This pathway of bacterial sensing by the host immune system is important to future development of drugs and vaccines that may contribute to the control of brucellosis worldwide.
Collapse
Affiliation(s)
- Daiane M Cerqueira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Túlio R Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular, Universidade de São Paulo-Ribeirão Preto, Brazil
| | - Marcella Rungue
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natan R G Assis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erika S Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suellen B Morais
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Dario S Zamboni
- Departamento de Biologia Celular, Universidade de São Paulo-Ribeirão Preto, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação Salvador, Bahia, Brazil
| |
Collapse
|
8
|
Egorshina AY, Zamaraev AV, Lavrik IN, Zhivotovsky BD, Kopeina GS. Caspase-2 as an Oncosupressor and Metabolism Regulator: What Life Will Bring over the Long Run? Mol Biol 2018. [DOI: 10.1134/s0026893318050060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Costa Franco MMS, Marim FM, Alves-Silva J, Cerqueira D, Rungue M, Tavares IP, Oliveira SC. AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion, pyroptosis and resistance to bacterial infection in mice. Microbes Infect 2018; 21:85-93. [PMID: 30248400 DOI: 10.1016/j.micinf.2018.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
Abstract
Absent in melanoma 2 (AIM2) is a sensor of cytosolic dsDNA and is responsible for the activation of inflammatory and host immune responses to DNA viruses and intracellular bacteria. AIM2 is a member of the hematopoietic interferon-inducible nuclear proteins with a 200 amino-acid repeat (HIN200) family, containing a pyrin domain (PYD) at the N-terminus. Several studies have demonstrated that AIM2 is responsible for host defense against intracellular bacteria such as Francisella tularensis, Listeria monocytogenes and Mycobacerium tuberculosis. However, the role of AIM2 in host defenses against Brucella is poorly understood. In this study, we have shown that AIM2 senses Brucella DNA in dendritic cells to induce pyroptosis and regulates type I IFN. Confocal microscopy of infected cells revealed co-localization between Brucella DNA and endogenous AIM2. Dendritic cells from AIM2 KO mice infected with B. abortus showed impaired secretion of IL-1β as well as compromised caspase-1 cleavage. AIM2 KO mice displayed increased susceptibility to B. abortus infection in comparison to wild-type mice, and this susceptibility was associated with defective IL-1β production together with reduced IFN-γ responses. In summary, the increased bacterial burden observed in vivo in AIM2 KO animals confirmed that AIM2 is essential for an effective innate immune response against Brucella infection.
Collapse
Affiliation(s)
- Miriam Maria Silva Costa Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Martins Marim
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Alves-Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daiane Cerqueira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M Rungue
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação Salvador, Bahia, Brazil.
| |
Collapse
|
10
|
Hop HT, Arayan LT, Huy TXN, Reyes AWB, Vu SH, Min W, Lee HJ, Rhee MH, Chang HH, Kim S. The Key Role of c-Fos for Immune Regulation and Bacterial Dissemination in Brucella Infected Macrophage. Front Cell Infect Microbiol 2018; 8:287. [PMID: 30186773 PMCID: PMC6110913 DOI: 10.3389/fcimb.2018.00287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
The cellular oncogene c-Fos (c-Fos) is a component of activator protein 1 (AP1), a master transcriptional regulator of cells. The suppression of c-Fos signaling by siRNA treatment resulted in significant induction of TLR4, which subsequently activates p38 and ERK1/2 mitogen-activated protein kinases (MAPKs) and enhances F-actin polymerization, leading to an increase in B. abortus phagocytosis. During B. abortus infection, c-Fos signaling is induced, which activates the downstream innate-immunity signaling cascade for bacterial clearance. The inhibition of c-Fos signaling led to increased production of interleukin 10 (IL-10), which partially suppressed lysosome-mediated killing, resulting in increased survival of B. abortus inside macrophages. We present evidence of the regulatory role played by the c-Fos pathway in proliferation during B. abortus infection; however, this was independent of the anti-Brucella effect of this pathway. Another finding is the essential contribution of c-Fos/TRAIL to infected-cell necrosis, which is a key event in bacterial dissemination. These data provide the mechanism via which c-Fos participates in host defense mechanisms against Brucella infection and in bacterial dissemination by macrophages.
Collapse
Affiliation(s)
- Huynh T Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Lauren T Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Tran X N Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Alisha W B Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Son H Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Hu J Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Man H Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hong H Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
11
|
Jung M, Shim S, Im YB, Park WB, Yoo HS. Global gene-expression profiles of intracellular survival of the BruAb2_1031 gene mutated Brucella abortus in professional phagocytes, RAW 264.7 cells. BMC Microbiol 2018; 18:82. [PMID: 30064361 PMCID: PMC6069796 DOI: 10.1186/s12866-018-1223-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/19/2018] [Indexed: 01/18/2023] Open
Abstract
Background Since recognizing the interaction between Brucella and host cells is crucial to the elucidation of the infectious process, Brucella researches have prioritized the investigation of genes related to pathogenicity. To demonstrate the roles of Brucella genes, RAW 264.7 cells were infected with the Brucella abortus wild-type and mutant strains (generated using transposon mutagenesis), after which the different transcriptional responses of the infected cells were determined using microarray. Results Following infection, enhanced strategies for intracellular survival, such as down-regulation of genes associated with cytokine responses and apoptosis, were observed in RAW 264.7 cells infected with C3 mutant strain when compared to the transcriptional responses of wild-type infected cells. Using sequence analysis, we determined the mutation site of a C3 mutant strain as the ATP-binding cassette transporter permease (BruAb2_1031). These results were evidenced by an increased level of intracellular survival of the C3 mutant strain. Conclusions Characteristics of each mutant strain including bacterial growth rate, abilities to induce cytokine production in macrophages after infection, internalization, and levels of intracellular survival and replication, were investigated by performing RAW 264.7 cell infection experiments. Our results indicate that the BruAb2_1031 gene might be closely related with intracellular survival of B. abortus in RAW 264.7 cells. Electronic supplementary material The online version of this article (10.1186/s12866-018-1223-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Present address: Department of Microbiology, Research Institute of Life Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea. .,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea.
| |
Collapse
|
12
|
Fleischer LM, Somaiya RD, Miller GM. Review and Meta-Analyses of TAAR1 Expression in the Immune System and Cancers. Front Pharmacol 2018; 9:683. [PMID: 29997511 PMCID: PMC6029583 DOI: 10.3389/fphar.2018.00683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
Since its discovery in 2001, the major focus of TAAR1 research has been on its role in monoaminergic regulation, drug-induced reward and psychiatric conditions. More recently, TAAR1 expression and functionality in immune system regulation and immune cell activation has become a topic of emerging interest. Here, we review the immunologically-relevant TAAR1 literature and incorporate open-source expression and cancer survival data meta-analyses. We provide strong evidence for TAAR1 expression in the immune system and cancers revealed through NCBI GEO datamining and discuss its regulation in a spectrum of immune cell types as well as in numerous cancers. We discuss connections and logical directions for further study of TAAR1 in immunological function, and its potential role as a mediator or modulator of immune dysregulation, immunological effects of psychostimulant drugs of abuse, and cancer progression.
Collapse
Affiliation(s)
- Lisa M Fleischer
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Rachana D Somaiya
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Center for Drug Discovery, Northeastern University, Boston, MA, United States
| |
Collapse
|
13
|
Lou L, Bao W, Liu X, Song H, Wang Y, Zhang K, Gao W, Li H, Tu Z, Wang S. An Autoimmune Disease-Associated Risk Variant in the TNFAIP3 Gene Plays a Protective Role in Brucellosis That Is Mediated by the NF-κB Signaling Pathway. J Clin Microbiol 2018; 56:e01363-17. [PMID: 29343543 PMCID: PMC5869838 DOI: 10.1128/jcm.01363-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Naturally occurring functional variants (rs148314165 and rs200820567, collectively referred to as TT>A) reduce the expression of the tumor necrosis factor alpha-induced protein 3 (TNFAIP3) gene, a negative regulator of NF-κB signaling, and predispose individuals to autoimmune disease. In this analysis, we conducted a genetic association study of the TT>A variants in 1,209 controls and 150 patients with brucellosis, an infectious disease, and further assessed the role of the variants in brucellosis. Our data demonstrated that the TT>A variants were correlated with cases of brucellosis (P = 0.002; odds ratio [OR] = 0.34) and with individuals who had a positive serum agglutination test (SAT) result (titer of >1/160) (P = 4.2 × 10-6; OR = 0.23). A functional study demonstrated that brucellosis patients carrying the protective allele (A) showed significantly lower expression levels of the TNFAIP3 gene in their peripheral blood mononuclear cells and showed increased NF-κB signaling. Monocytes from individuals carrying the A allele that were stimulated with Brucella abortus had lower mRNA levels of TNFAIP3 and produced more interleukin-10 (IL-10), IL-6, and IL-1β than those from TT allele carriers. These data showed that autoimmune disease-associated risk variants, TT>A, of the TNFAIP3 locus play a protective role in the pathogenesis of brucellosis. Our findings suggest that a disruption of the normal function of the TNFAIP3 gene might serve as a therapeutic target for the treatment of brucellosis.
Collapse
Affiliation(s)
- Lixin Lou
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin, China
| | - Wanguo Bao
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin, China
| | - Xianjun Liu
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Jilin, China
| | - Hongxiao Song
- Department of Translational Medicine, The First Hospital, Jilin University, Jilin, China
| | - Yang Wang
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin, China
| | - Kaiyu Zhang
- Department of Infectious Diseases, The First Hospital of Jilin University, Jilin, China
| | - Wenjing Gao
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Jilin, China
| | - Haijun Li
- Department of Translational Medicine, The First Hospital, Jilin University, Jilin, China
| | - Zhengkun Tu
- Department of Translational Medicine, The First Hospital, Jilin University, Jilin, China
| | - Shaofeng Wang
- The Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
14
|
Hop HT, Arayan LT, Huy TXN, Reyes AWB, Baek EJ, Min W, Lee HJ, Rhee MH, Watanabe K, Chang HH, Kim S. Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages. Cell Microbiol 2017; 20. [PMID: 29168343 DOI: 10.1111/cmi.12813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/19/2023]
Abstract
Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti-inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2-induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro-inflammatory brucellacidal activity in murine macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | - Eun Jin Baek
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
15
|
Comparative Gene Expression Analysis within Mouse Macrophage for Identifying Critical Pathways in Macrophage and Brucella suis Interaction. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.59275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Li P, Tian M, Bao Y, Hu H, Liu J, Yin Y, Ding C, Wang S, Yu S. Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion. Front Cell Infect Microbiol 2017; 7:422. [PMID: 29021973 PMCID: PMC5623715 DOI: 10.3389/fcimb.2017.00422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
Brucella is a Gram-negative facultative intracellular pathogen that causes the worldwide zoonosis, known as brucellosis. Brucella virulence relies mostly on its ability to invade and replicate within phagocytic cells. The type IV secretion system (T4SS) and lipopolysaccharide are two major Brucella virulence factors. Brucella rough mutants reportedly induce the death of infected macrophages, which is T4SS dependent. However, the underlying molecular mechanism remains unclear. In this study, the T4SS secretion capacities of Brucella rough mutant and its smooth wild-type strain were comparatively investigated, by constructing the firefly luciferase fused T4SS effector, BPE123 and VceC. In addition, quantitative real-time PCR and western blotting were used to analyze the T4SS expression. The results showed that T4SS expression and secretion were enhanced significantly in the Brucella rough mutant. We also found that the activity of the T4SS virB operon promoter was notably increased in the Brucella rough mutant, which depends on quorum sensing-related regulators of VjbR upregulation. Cell infection and cell death assays revealed that deletion of vjbR in the Brucella rough mutant absolutely abolished cytotoxicity within macrophages by downregulating T4SS expression. This suggests that up-regulation of T4SS promoted by VjbR in rough mutant ΔrfbE contribute to macrophage death. In addition, we found that the Brucella rough mutant induce macrophage death via activating IRE1α pathway of endoplasmic reticulum stress. Taken together, our study provide evidence that in comparison to the Brucella smooth wild-type strain, VjbR upregulation in the Brucella rough mutant increases transcription of the virB operon, resulting in overexpression of the T4SS gene, accompanied by the over-secretion of effecter proteins, thereby causing the death of infected macrophages via activating IRE1α pathway of endoplasmic reticulum stress, suggesting novel insights into the molecular mechanisms associated with Brucella rough mutant-induced macrophage cytotoxicity.
Collapse
Affiliation(s)
- Peng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiameng Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| |
Collapse
|
17
|
Viana MVC, Figueiredo H, Ramos R, Guimarães LC, Pereira FL, Dorella FA, Selim SAK, Salaheldean M, Silva A, Wattam AR, Azevedo V. Comparative genomic analysis between Corynebacterium pseudotuberculosis strains isolated from buffalo. PLoS One 2017; 12:e0176347. [PMID: 28445543 PMCID: PMC5406005 DOI: 10.1371/journal.pone.0176347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, pleomorphic, facultative intracellular pathogen that causes Oedematous Skin Disease (OSD) in buffalo. To better understand the pathogenic mechanisms of OSD, we performed a comparative genomic analysis of 11 strains of C. pseudotuberculosis isolated from different buffalo found to be infected in Egypt during an outbreak that occurred in 2008. Sixteen previously described pathogenicity islands (PiCp) were present in all of the new buffalo strains, but one of them, PiCp12, had an insertion that contained both a corynephage and a diphtheria toxin gene, both of which may play a role in the adaptation of C. pseudotuberculosis to this new host. Synteny analysis showed variations in the site of insertion of the corynephage during the same outbreak. A gene functional comparison showed the presence of a nitrate reductase operon that included genes involved in molybdenum cofactor biosynthesis, which is necessary for a positive nitrate reductase phenotype and is a possible adaptation for intracellular survival. Genomes from the buffalo strains also had fusions in minor pilin genes in the spaA and spaD gene cluster (spaCX and spaYEF), which could suggest either an adaptation to this particular host, or mutation events in the immediate ancestor before this particular epidemic. A phylogenomic analysis confirmed a clear separation between the Ovis and Equi biovars, but also showed what appears to be a clustering by host species within the Equi strains.
Collapse
Affiliation(s)
- Marcus Vinicius Canário Viana
- Departament of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Henrique Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rommel Ramos
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Luis Carlos Guimarães
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Felipe Luiz Pereira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Alves Dorella
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mohammad Salaheldean
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Artur Silva
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Alice R. Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vasco Azevedo
- Departament of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
18
|
Macchioni L, Davidescu M, Fettucciari K, Petricciuolo M, Gatticchi L, Gioè D, Villanacci V, Bellini M, Marconi P, Roberti R, Bassotti G, Corazzi L. Enteric glial cells counteract Clostridium difficile Toxin B through a NADPH oxidase/ROS/JNK/caspase-3 axis, without involving mitochondrial pathways. Sci Rep 2017; 7:45569. [PMID: 28349972 PMCID: PMC5368562 DOI: 10.1038/srep45569] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Enteric glial cells (EGCs) are components of the intestinal epithelial barrier essential for regulating the enteric nervous system. Clostridium difficile is the most common cause of antibiotic-associated colitis, toxin B (TcdB) being the major virulence factor, due to its ability to breach the intestinal epithelial barrier and to act on other cell types. Here we investigated TcdB effects on EGCs and the activated molecular mechanisms. Already at 2 hours, TcdB triggered ROS formation originating from NADPH-oxidase, as demonstrated by their reduction in the presence of the NADPH-oxidase inhibitor ML171. Although EGCs mitochondria support almost completely the cellular ATP need, TcdB exerted weak effects on EGCs in terms of ATP and mitochondrial functionality, mitochondrial ROS production occurring as a late event. ROS activated the JNK signalling and overexpression of the proapoptotic Bim not followed by cytochrome c or AIF release to activate the downstream apoptotic cascade. EGCs underwent DNA fragmentation through activation of the ROS/JNK/caspase-3 axis, evidenced by the ability of ML171, N-acetylcysteine, and the JNK inhibitor SP600125 to inhibit caspase-3 or to contrast apoptosis. Therefore, TcdB aggressiveness towards EGCs is mainly restricted to the cytosolic compartment, which represents a peculiar feature, since TcdB primarily influences mitochondria in other cellular types.
Collapse
Affiliation(s)
- Lara Macchioni
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Magdalena Davidescu
- Scientific and educational center of Terni, University of Perugia, Perugia, Italy
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Maya Petricciuolo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Leonardo Gatticchi
- Scientific and educational center of Terni, University of Perugia, Perugia, Italy
| | - Davide Gioè
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Massimo Bellini
- Department of Gastroenterology, University of Pisa, Pisa, Italy
| | | | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Gabrio Bassotti
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Lanfranco Corazzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Lee KI, Whang J, Choi HG, Son YJ, Jeon HS, Back YW, Park HS, Paik S, Park JK, Choi CH, Kim HJ. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth. Sci Rep 2016; 6:37804. [PMID: 27901051 PMCID: PMC5129020 DOI: 10.1038/srep37804] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication.
Collapse
Affiliation(s)
- Kang-In Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jake Whang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yeo-Jin Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Haet Sal Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hye-Soo Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
20
|
Ye S, Gao Y, Wang S, Li Q, Li R, Li H. Characterization and expression analysis of a caspase-2 in an invertebrate echinoderm sea cumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2016; 48:266-272. [PMID: 26687532 DOI: 10.1016/j.fsi.2015.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/26/2015] [Accepted: 12/05/2015] [Indexed: 06/05/2023]
Abstract
Caspase-2 is the most evolutionarily conserved member of the caspase family which mediates the programmed cell death and plays crucial roles in key cellular processes. In this study, a caspase-2 homolog was identified and functionally characterized in sea cucumber Apostichopus japonicus, which we named AjCASP. The full-length cDNA consists of 2100 bp with an ORF encoding a protein of 378 amino acids. The deduced amino acid sequence shows that AjCASP consists of a conserved CARD-CASP2 domain and a CASs domain containing two active residues, two proteolytic cleavage residues, a substrate pocket and a dimer interface as well. In addition, a p20 large subunit with a characteristic five-peptide motif (QACRG) and a p10 small subunit in C-terminal were identified in CASs domain. Above data demonstrated that AjCASP is similar to CED-3 (the caspase-2 homolog of nematode Caenorhabditis elegans), which is further confirmed by phylogenetic tree analysis. AjCASP was ubiquitously expressed in sea cucumber and the obviously higher expression level was observed in coelomocyte, respiratory tree and intestine. Real-time PCR analyses further demonstrated that AjCASP was significantly induced by LPS. Taken together, these results strongly suggest that AjCASP is a caspase-2 homolog and it may be involved in invertebrate immune response, especially in eliminating and degrading invading pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Li
- Dalian Ocean University, China.
| |
Collapse
|
21
|
Lin Y, Xiang Z, He Y. Ontology-based representation and analysis of host-Brucella interactions. J Biomed Semantics 2015; 6:37. [PMID: 26445639 PMCID: PMC4594885 DOI: 10.1186/s13326-015-0036-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 09/23/2015] [Indexed: 11/26/2022] Open
Abstract
Background Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Results Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host-Brucella interactions and implemented in IDOBRU. Current IDOBRU includes 3611 ontology terms. SPARQL queries identified many results that are critical to the host-Brucella interactions. For example, out of 269 protein virulence factors related to macrophage-Brucella interactions, 81 are critical to Brucella intracellular replication inside macrophages. A SPARQL query also identified 11 biological processes important for Brucella virulence. Conclusions To systematically represent and analyze fundamental host-pathogen interaction mechanisms, we provided for the first time comprehensive ontological modeling of host-pathogen interactions using Brucella as the pathogen model. The methods and ontology representations used in our study are generic and can be broadened to study the interactions between hosts and other pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13326-015-0036-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Lin
- Unit of Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, 1150 W. Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Zuoshuang Xiang
- Unit of Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, 1150 W. Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Yongqun He
- Unit of Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, 1150 W. Medical Center Dr, Ann Arbor, MI 48109 USA
| |
Collapse
|
22
|
Xiang Z, Zheng J, Lin Y, He Y. Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns. J Biomed Semantics 2015; 6:4. [PMID: 25785185 PMCID: PMC4362828 DOI: 10.1186/2041-1480-6-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background It is time-consuming to build an ontology with many terms and axioms. Thus it is desired to automate the process of ontology development. Ontology Design Patterns (ODPs) provide a reusable solution to solve a recurrent modeling problem in the context of ontology engineering. Because ontology terms often follow specific ODPs, the Ontology for Biomedical Investigations (OBI) developers proposed a Quick Term Templates (QTTs) process targeted at generating new ontology classes following the same pattern, using term templates in a spreadsheet format. Results Inspired by the ODPs and QTTs, the Ontorat web application is developed to automatically generate new ontology terms, annotations of terms, and logical axioms based on a specific ODP(s). The inputs of an Ontorat execution include axiom expression settings, an input data file, ID generation settings, and a target ontology (optional). The axiom expression settings can be saved as a predesigned Ontorat setting format text file for reuse. The input data file is generated based on a template file created by a specific ODP (text or Excel format). Ontorat is an efficient tool for ontology expansion. Different use cases are described. For example, Ontorat was applied to automatically generate over 1,000 Japan RIKEN cell line cell terms with both logical axioms and rich annotation axioms in the Cell Line Ontology (CLO). Approximately 800 licensed animal vaccines were represented and annotated in the Vaccine Ontology (VO) by Ontorat. The OBI team used Ontorat to add assay and device terms required by ENCODE project. Ontorat was also used to add missing annotations to all existing Biobank specific terms in the Biobank Ontology. A collection of ODPs and templates with examples are provided on the Ontorat website and can be reused to facilitate ontology development. Conclusions With ever increasing ontology development and applications, Ontorat provides a timely platform for generating and annotating a large number of ontology terms by following design patterns. Availability: http://ontorat.hegroup.org/
Collapse
Affiliation(s)
| | - Jie Zheng
- University of Pennsylvania, Philadelphia, PA USA
| | - Yu Lin
- University of Michigan, Ann Arbor, MI USA
| | - Yongqun He
- University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
23
|
Wei P, Cui G, Lu Q, Yang L, Guan Z, Sun W, Zhao Y, Wang S, Peng Q. A20 promotes Brucella intracellular growth via inhibition of macrophage cell death and activation. Vet Microbiol 2015; 175:50-7. [DOI: 10.1016/j.vetmic.2014.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/01/2014] [Accepted: 11/03/2014] [Indexed: 01/22/2023]
|
24
|
Cui G, Wei P, Zhao Y, Guan Z, Yang L, Sun W, Wang S, Peng Q. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2. Vet Microbiol 2014; 174:195-205. [PMID: 25258171 DOI: 10.1016/j.vetmic.2014.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/08/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
Abstract
The calcium-dependent protease calpain2 is involved in macrophages apoptosis. Brucella infection-induced up-regulation of intracellular calcium level is an essential factor for the intracellular survival of Brucella within macrophages. Here, we hypothesize that calcium-dependent E3 ubiquitin ligase Nedd4 ubiquitinates calpain2 and inhibits Brucella infection-induced macrophage apoptosis via degradation of calpain2.Our results reveal that Brucella infection induces increases in Nedd4 activity in an intracellular calcium dependent manner. Furthermore, Brucella infection-induced degradation of calpain2 is mediated by Nedd4 ubiquitination of calpain2. Brucella infection-induced calpain2 degradation inhibited macrophages apoptosis. Treatment of Brucella infected macrophages with calcium chelator BAPTA or Nedd4 knock-down decreased Nedd4 activity, prevented calpain2 degradation, and resulted in macrophages apoptosis.
Collapse
Affiliation(s)
- Guimei Cui
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Pan Wei
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Yuxi Zhao
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Zhenhong Guan
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Li Yang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Wanchun Sun
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Shuangxi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan City 250012, Shandong, China
| | - Qisheng Peng
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| |
Collapse
|
25
|
Sarntivijai S, Lin Y, Xiang Z, Meehan TF, Diehl AD, Vempati UD, Schürer SC, Pang C, Malone J, Parkinson H, Liu Y, Takatsuki T, Saijo K, Masuya H, Nakamura Y, Brush MH, Haendel MA, Zheng J, Stoeckert CJ, Peters B, Mungall CJ, Carey TE, States DJ, Athey BD, He Y. CLO: The cell line ontology. J Biomed Semantics 2014; 5:37. [PMID: 25852852 PMCID: PMC4387853 DOI: 10.1186/2041-1480-5-37] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/24/2014] [Indexed: 01/07/2023] Open
Abstract
Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development.
Collapse
Affiliation(s)
- Sirarat Sarntivijai
- US Food and Drug Administration, Silver Spring, MD, USA ; University of Michigan, Ann Arbor, MI, USA
| | - Yu Lin
- University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Chao Pang
- University Medical Center Groningen, Groningen, Netherlands
| | - James Malone
- European Molecular Biology Laboratory, (EMBL-EBI), Hinxton, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, (EMBL-EBI), Hinxton, UK
| | - Yue Liu
- University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Jie Zheng
- University of Pennsylvania, Philadelphia, USA
| | | | - Bjoern Peters
- La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | | | | | | | | | - Yongqun He
- University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
He Y, Amer AO. Microbial modulation of host apoptosis and pyroptosis. Front Cell Infect Microbiol 2014; 4:83. [PMID: 24995165 PMCID: PMC4062964 DOI: 10.3389/fcimb.2014.00083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, Comprehensive Cancer Center, University of Michigan Medical School Ann Arbor, MI, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Department of Internal Medicine, Center for Microbial Interface Biology, Ohio State University Columbus, OH, USA
| |
Collapse
|
27
|
Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis. PLoS One 2014; 9:e91706. [PMID: 24643124 PMCID: PMC3958395 DOI: 10.1371/journal.pone.0091706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide the basis for novel ways of treating or diagnosing Brucellosis.
Collapse
|
28
|
Pei J, Kahl-McDonagh M, Ficht TA. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Front Cell Infect Microbiol 2014; 4:23. [PMID: 24634889 PMCID: PMC3942807 DOI: 10.3389/fcimb.2014.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022] Open
Abstract
It has long been observed that smooth Brucella can dissociate into rough mutants that are cytotoxic to macrophages. However, the in vivo biological significance and/or mechanistic details of Brucella dissociation and cytotoxicity remain incomplete. In the current report, a plaque assay was developed using Brucella strains exhibiting varying degrees of cytotoxicity. Infected monolayers were observed daily using phase contrast microscopy for plaque formation while Brucella uptake and replication were monitored using an immunofluorescence assay (IFA). Visible plaques were detected at 4-5 days post infection (p.i.) with cytotoxic Brucella 16MΔmanBA at an MOI of 0.1. IFA staining demonstrated that the plaques consisted of macrophages with replicating Brucella. Visible plaques were not detected in monolayers infected with non-cytotoxic 16MΔmanBAΔvirB2 at an MOI of 0.1. However, IFA staining did reveal small groups of macrophages (foci) with replicating Brucella in the monolayers infected with 16MΔmanBAΔvirB2. The size of the foci observed in macrophage monolayers infected with rough Brucella correlated directly with cytotoxicity measured in liquid culture, suggesting that cytotoxicity was essential for Brucella egress and dissemination. In monolayers infected with 16M, small and large foci were observed. Double antibody staining revealed spontaneous rough mutants within the large, but not the small foci in 16M infected monolayers. Furthermore, plaque formation was observed in the large foci derived from 16M infections. Finally, the addition of gentamicin to the culture medium inhibited plaque formation, suggesting that cell-to-cell spread occurred only following release of the organisms from the cells. Taken together, these results demonstrate that Brucella-induced cytotoxicity is critical for Brucella egress and dissemination.
Collapse
Affiliation(s)
| | | | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University and Texas Agricultural Experiment StationCollege Station, TX, USA
| |
Collapse
|
29
|
Bronner DN, O'Riordan MXD, He Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front Cell Infect Microbiol 2013; 3:83. [PMID: 24350060 PMCID: PMC3842122 DOI: 10.3389/fcimb.2013.00083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/30/2013] [Indexed: 01/08/2023] Open
Abstract
Programmed cell death (PCD) can play a crucial role in tuning the immune response to microbial infection. Although PCD can occur in different forms, all are mediated by a family of proteases called caspases. Caspase-2 is the most conserved caspase, however, its function in cell death is ill-defined. Previously we demonstrated that live attenuated cattle vaccine strain Brucella abortus RB51 induces caspase-2-mediated and caspase-1-independent PCD of infected macrophages. We also discovered that rough attenuated B. suis strain VTRS1 induces a caspase-2-mediated and caspase-1-independent proinflammatory cell death in infected macrophages, which was tentatively coined "caspase-2-mediated pyroptosis". However, the mechanism of caspase-2-mediated cell death pathway remained unclear. In this study, we found that caspase-2 mediated proinflammatory cell death of RB51-infected macrophages and regulated many genes in different PCD pathways. We show that the activation of proapoptotic caspases-3 and -8 was dependent upon caspase-2. Caspase-2 regulated mitochondrial cytochrome c release and TNFα production, both of which are known to activate caspase-3 and caspase-8, respectively. In addition to TNFα, RB51-induced caspase-1 and IL-1β production was also driven by caspase-2-mediated mitochondrial dysfunction. Interestingly, pore formation, a phenomenon commonly associated with caspase-1-mediated pyroptosis, occurred; however, unlike its role in S. typhimurium-induced pyroptosis, pore formation did not contribute to RB51-induced proinflammatory cell death. Our data suggest that caspase-2 acts as an initiator caspase that mediates a novel RB51-induced hybrid cell death that simulates but differs from typical non-proinflammatory apoptosis and caspase-1-mediated proinflammatory pyroptosis. The initiator role of the caspase-2-mediated cell death was also conserved in cellular stress-induced cell death of macrophages treated with etoposide, naphthalene, or anti-Fas. Caspase-2 also regulated caspase-3 and -8 activation, as well as cell death in macrophages treated with each of the three reagents. Taken together, our data has demonstrated that caspase-2 can play an important role in mediating a proinflammatory response and a hybrid cell death that demonstrates features of both apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Denise N Bronner
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Yongqun He
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA ; Unit for Laboratory Animal Medicine, University of Michigan Medical School Ann Arbor, MI, USA ; Comprehensive Cancer Center, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
30
|
Gomes MTR, Campos PC, Oliveira FS, Corsetti PP, Bortoluci KR, Cunha LD, Zamboni DS, Oliveira SC. Critical Role of ASC Inflammasomes and Bacterial Type IV Secretion System in Caspase-1 Activation and Host Innate Resistance toBrucella abortusInfection. THE JOURNAL OF IMMUNOLOGY 2013; 190:3629-38. [DOI: 10.4049/jimmunol.1202817] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Hur J, Ozgür A, Xiang Z, He Y. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining. J Biomed Semantics 2012; 3:18. [PMID: 23256563 PMCID: PMC3599673 DOI: 10.1186/2041-1480-3-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 12/03/2022] Open
Abstract
Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since multiple TLRs were found in the generic fever network, it is reasonable to hypothesize that vaccine-TLR interactions may play an important role in inducing fever response, which deserves a further investigation. Conclusions This study demonstrated that ontology-based literature mining is a powerful method for analyzing gene interaction networks and generating new scientific hypotheses.
Collapse
Affiliation(s)
- Junguk Hur
- Unit for Laboratory Animal Medicine, University of Michigan, 48109, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Luca L. Fava
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria
| | - Florian J. Bock
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, BIOCENTER, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Gomes MTR, Campos PC, de Almeida LA, Oliveira FS, Costa MMS, Marim FM, Pereira GSM, Oliveira SC. The role of innate immune signals in immunity to Brucella abortus. Front Cell Infect Microbiol 2012; 2:130. [PMID: 23112959 PMCID: PMC3480720 DOI: 10.3389/fcimb.2012.00130] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/04/2012] [Indexed: 01/18/2023] Open
Abstract
Innate immunity serves as the first line of defense against infectious agents such as intracellular bacteria. The innate immune platform includes Toll-like receptors (TLRs), retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, nucleotide-binding and oligomerization domain-like receptors, adaptors, kinases and other signaling molecules that are required to elicit effective responses against different pathogens. Our research group has been using the Gram-negative bacteria Brucella abortus as a model of pathogen. We have demonstrated that B. abortus triggers MAPK and NF-κB signaling pathways in macrophages in a MyD88 and IRAK-4-dependent manner. Furthermore, we claimed that so far TLR9 is the most important single TLR during Brucella infection. The identification of host receptors that recognize pathogen-derived nucleic acids has revealed an essential role for nucleic acid sensing in the triggering of immunity to intracellular pathogens. Besides TLRs, herein we describe recent advances in NOD1, NOD2, and type I IFN receptors in innate immune pathways during B. abortus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Li X, He Y. Caspase-2-dependent dendritic cell death, maturation, and priming of T cells in response to Brucella abortus infection. PLoS One 2012; 7:e43512. [PMID: 22927979 PMCID: PMC3425542 DOI: 10.1371/journal.pone.0043512] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/23/2012] [Indexed: 01/18/2023] Open
Abstract
Smooth virulent Brucella abortus strain 2308 (S2308) causes zoonotic brucellosis in cattle and humans. Rough B. abortus strain RB51, derived from S2308, is a live attenuated cattle vaccine strain licensed in the USA and many other countries. Our previous report indicated that RB51, but not S2308, induces a caspase-2-dependent apoptotic and necrotic macrophage cell death. Dendritic cells (DCs) are professional antigen presenting cells critical for bridging innate and adaptive immune responses. In contrast to Brucella-infected macrophages, here we report that S2308 induced higher levels of apoptotic and necrotic cell death in wild type bone marrow-derived DCs (WT BMDCs) than RB51. The RB51 and S2308-induced BMDC cell death was regulated by caspase-2, indicated by the minimal cell death in RB51 and S2308-infected BMDCs isolated from caspase-2 knockout mice (Casp2KO BMDCs). More S2308 bacteria were taken up by Casp2KO BMDCs than wild type BMDCs. Higher levels of S2308 and RB51 cells were found in infected Casp2KO BMDCs compared to infected WT BMDCs at different time points. RB51-infected wild type BMDCs were mature and activated as shown by significantly up-regulated expression of CD40, CD80, CD86, MHC-I, and MHC-II. RB51 induced the production of cytokines TNF-α, IL-6, IFN-γ and IL12/IL23p40 in infected BMDCs. RB51-infected WT BMDCs also stimulated the proliferation of CD4+ and CD8+ T cells compared to uninfected WT BMDCs. However, the maturation, activation, and cytokine secretion are significantly impaired in Casp2KO BMDCs infected with RB51 or Salmonella (control). S2308-infected WT and Casp2KO BMDCs were not activated and could not induce cytokine production. These results demonstrated that virulent smooth strain S2308 induced more apoptotic and necrotic dendritic cell death than live attenuated rough vaccine strain RB51; however, RB51, but not its parent strain S2308, induced caspase-2-mediated DC maturation, cytokine production, antigen presentation, and T cell priming.
Collapse
Affiliation(s)
- Xinna Li
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yongqun He
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
35
|
von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev 2012; 36:533-62. [PMID: 22373010 DOI: 10.1111/j.1574-6976.2012.00334.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/10/2012] [Accepted: 02/16/2012] [Indexed: 01/18/2023] Open
Abstract
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.
Collapse
Affiliation(s)
- Kristine von Bargen
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
| | | | | |
Collapse
|
36
|
He Y. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics. Front Cell Infect Microbiol 2012; 2:2. [PMID: 22919594 PMCID: PMC3417401 DOI: 10.3389/fcimb.2012.00002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/12/2012] [Indexed: 12/20/2022] Open
Abstract
Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Wang F, Hu S, Liu W, Qiao Z, Gao Y, Bu Z. Deep-sequencing analysis of the mouse transcriptome response to infection with Brucella melitensis strains of differing virulence. PLoS One 2011; 6:e28485. [PMID: 22216095 PMCID: PMC3247208 DOI: 10.1371/journal.pone.0028485] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 11/09/2011] [Indexed: 01/18/2023] Open
Abstract
Brucella melitensis is an important zoonotic pathogen that causes brucellosis, a disease that affects sheep, cattle and occasionally humans. B. melitensis strain M5-90, a live attenuated vaccine cultured from B. melitensis strain M28, has been used as an effective tool in the control of brucellosis in goats and sheep in China. However, the molecular changes leading to attenuated virulence and pathogenicity in B. melitensis remain poorly understood. In this study we employed the Illumina Genome Analyzer platform to perform genome-wide digital gene expression (DGE) analysis of mouse peritoneal macrophage responses to B. melitensis infection. Many parallel changes in gene expression profiles were observed in M28- and M5-90-infected macrophages, suggesting that they employ similar survival strategies, notably the induction of anti-inflammatory and antiapoptotic factors. Moreover, 1019 differentially expressed macrophage transcripts were identified 4 h after infection with the different B. melitensis strains, and these differential transcripts notably identified genes involved in the lysosome and mitogen-activated protein kinase (MAPK) pathways. Further analysis employed gene ontology (GO) analysis: high-enrichment GOs identified endocytosis, inflammatory, apoptosis, and transport pathways. Path-Net and Signal-Net analysis highlighted the MAPK pathway as the key regulatory pathway. Moreover, the key differentially expressed genes of the significant pathways were apoptosis-related. These findings demonstrate previously unrecognized changes in gene transcription that are associated with B. melitensis infection of macrophages, and the central signaling pathways identified here merit further investigation. Our data provide new insights into the molecular attenuation mechanism of strain M5-90 and will facilitate the generation of new attenuated vaccine strains with enhanced efficacy.
Collapse
Affiliation(s)
- Fangkun Wang
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai An, Shandong, People's Republic of China
| | - Sen Hu
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Wenxing Liu
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Zujian Qiao
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Yuzhe Gao
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
- * E-mail:
| |
Collapse
|
38
|
Zhu J, Larson CB, Ramaker MA, Quandt K, Wendte JM, Ku KP, Chen F, Jourdian GW, Vemulapalli R, Schurig GG, He Y. Characterization of recombinant B. abortus strain RB51SOD toward understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51. Front Cell Infect Microbiol 2011; 1:10. [PMID: 22919576 PMCID: PMC3417361 DOI: 10.3389/fcimb.2011.00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/09/2011] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS). Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Apoptosis
- Bacterial Proteins/genetics
- Brucella Vaccine/genetics
- Brucella Vaccine/immunology
- Brucella abortus/enzymology
- Brucella abortus/genetics
- Brucella abortus/immunology
- Brucella abortus/pathogenicity
- Brucellosis/immunology
- Brucellosis/prevention & control
- Cattle
- Cell Membrane/ultrastructure
- Detergents/pharmacology
- Disease Models, Animal
- Drug Resistance, Bacterial
- Humans
- Immunity, Innate
- Macrophages/immunology
- Macrophages/microbiology
- Mice
- Microscopy, Electron, Transmission
- Polymyxin B/pharmacology
- Recombination, Genetic
- Superoxide Dismutase/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/microbiology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Jianguo Zhu
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
- School of Agriculture and Biology, Shanghai Jiaotong UniversityShanghai, China
| | - Charles B. Larson
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Megan Ann Ramaker
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI, USA
| | - Kimberly Quandt
- College of Veterinary Medicine, Michigan State UniversityEast Lansing, MI, USA
| | - Jered M. Wendte
- Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| | - Kimberly P. Ku
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Fang Chen
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - George W. Jourdian
- Department of Internal Medicine and Department of Biological Chemistry, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue UniversityWest Lafayette, IN, USA
| | - Gerhardt G. Schurig
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
39
|
Janssens S, Tinel A. The PIDDosome, DNA-damage-induced apoptosis and beyond. Cell Death Differ 2011; 19:13-20. [PMID: 22095286 DOI: 10.1038/cdd.2011.162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P53-induced protein with a death domain (PIDD) was cloned as a death domain (DD)-containing protein whose expression is induced by p53. It was later described as the core of a molecular platform-activating caspase-2, named the PIDDosome. These first results pointed towards a role for PIDD in apoptosis, in response to DNA damage. Identification of new PIDDosome complexes involved in DNA repair and nuclear factor-κB signaling challenged this early concept. PIDD functions are growing as new complexes and new interaction partners are being discovered, and as additional functions are being revealed. A fascinating feature of PIDD lies within its complex and tight regulation mechanisms, which allow the molecule to fine-tune its different functions: from transcriptional regulation to the expression of different isoforms, and from the interaction with regulatory proteins to an ingenious post-translational cleavage mechanism generating various active fragments with specific functions. Further studies still need to be carried out to provide answers to many unresolved issues and to reconcile conflicting results. This review aims at providing an overview of the current PIDD knowledge status.
Collapse
Affiliation(s)
- S Janssens
- GROUP-ID Consortium, Department of Pulmonary Medicine, University Hospital of Ghent, Ghent, Belgium.
| | | |
Collapse
|
40
|
Lin Y, Xiang Z, He Y. Brucellosis Ontology (IDOBRU) as an extension of the Infectious Disease Ontology. J Biomed Semantics 2011; 2:9. [PMID: 22041276 PMCID: PMC3217896 DOI: 10.1186/2041-1480-2-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022] Open
Abstract
Background Caused by intracellular Gram-negative bacteria Brucella spp., brucellosis is the most common bacterial zoonotic disease. Extensive studies in brucellosis have yielded a large number of publications and data covering various topics ranging from basic Brucella genetic study to vaccine clinical trials. To support data interoperability and reasoning, a community-based brucellosis-specific biomedical ontology is needed. Results The Brucellosis Ontology (IDOBRU: http://sourceforge.net/projects/idobru), a biomedical ontology in the brucellosis domain, is an extension ontology of the core Infectious Disease Ontology (IDO-core) and follows OBO Foundry principles. Currently IDOBRU contains 1503 ontology terms, which includes 739 Brucella-specific terms, 414 IDO-core terms, and 350 terms imported from 10 existing ontologies. IDOBRU has been used to model different aspects of brucellosis, including host infection, zoonotic disease transmission, symptoms, virulence factors and pathogenesis, diagnosis, intentional release, vaccine prevention, and treatment. Case studies are typically used in our IDOBRU modeling. For example, diurnal temperature variation in Brucella patients, a Brucella-specific PCR method, and a WHO-recommended brucellosis treatment were selected as use cases to model brucellosis symptom, diagnosis, and treatment, respectively. Developed using OWL, IDOBRU supports OWL-based ontological reasoning. For example, by performing a Description Logic (DL) query in the OWL editor Protégé 4 or a SPARQL query in an IDOBRU SPARQL server, a check of Brucella virulence factors showed that eight of them are known protective antigens based on the biological knowledge captured within the ontology. Conclusions IDOBRU is the first reported bacterial infectious disease ontology developed to represent different disease aspects in a formal logical format. It serves as a brucellosis knowledgebase and supports brucellosis data integration and automated reasoning.
Collapse
Affiliation(s)
- Yu Lin
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|