1
|
Freville A, Stewart LB, Tetteh KKA, Treeck M, Cortes A, Voss TS, Tarr SJ, Baker DA, Conway DJ. Expression of the MSPDBL2 antigen in a discrete subset of Plasmodium falciparum schizonts is regulated by GDV1 but may not be linked to sexual commitment. mBio 2024; 15:e0314023. [PMID: 38530030 PMCID: PMC11077968 DOI: 10.1128/mbio.03140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
The Plasmodium falciparum merozoite surface protein MSPDBL2 is a polymorphic antigen targeted by acquired immune responses, and normally expressed in only a minority of mature schizonts. The potential relationship of MSPDBL2 to sexual commitment is examined, as variable mspdbl2 transcript levels and proportions of MSPDBL2-positive mature schizonts in clinical isolates have previously correlated with levels of many sexual stage parasite gene transcripts, although not with the master regulator ap2-g. It is demonstrated that conditional overexpression of the gametocyte development protein GDV1, which promotes sexual commitment, also substantially increases the proportion of MSPDBL2-positive schizonts in culture. Conversely, truncation of the gdv1 gene is shown to prevent any expression of MSPDBL2. However, across diverse P. falciparum cultured lines, the variable proportions of MSPDBL2 positivity in schizonts do not correlate significantly with variable gametocyte conversion rates, indicating it is not involved in sexual commitment. Confirming this, examining a line with endogenous hemagglutinin-tagged AP2-G showed that the individual schizonts expressing MSPDBL2 are mostly different from those expressing AP2-G. Using a selection-linked integration system, modified P. falciparum lines were engineered to express an intact or disrupted version of MSPDBL2, showing the protein is not required for sexual commitment or early gametocyte development. Asexual parasite multiplication rates were also not affected by expression of either intact or disrupted MSPDBL2 in a majority of schizonts. Occurring alongside sexual commitment, the role of the discrete MSPDBL2-positive schizont subpopulation requires further investigation in natural infections where it is under immune selection. IMPORTANCE Malaria parasites in the blood are remarkably variable, able to switch antigenic targets so they may survive within humans who have already developed specific immune responses. This is one of the challenges in developing vaccines against malaria. MSPDBL2 is a target of naturally acquired immunity expressed in minority proportions of schizonts, the end stages of each 2-day replication cycle in red blood cells which contain merozoites prepared to invade new red blood cells. Results show that the proportion of schizonts expressing MSPDBL2 is positively controlled by the expression of the regulatory gametocyte development protein GDV1. It was previously known that expression of GDV1 leads to increased expression of AP2-G which causes parasites to switch to sexual development, so a surprising finding here is that MSPDBL2-positive parasites are mostly distinct from those that express AP2-G. This discrete antigenic subpopulation of mostly asexual parasites is regulated alongside sexually committed parasites, potentially enabling survival under stress conditions.
Collapse
Affiliation(s)
- Aline Freville
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Lindsay B. Stewart
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Alfred Cortes
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah J. Tarr
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A. Baker
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David J. Conway
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Highly Variable Expression of Merozoite Surface Protein MSPDBL2 in Diverse Plasmodium falciparum Clinical Isolates and Transcriptome Scans for Correlating Genes. mBio 2022; 13:e0194822. [PMID: 35950755 PMCID: PMC9426457 DOI: 10.1128/mbio.01948-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The merozoite surface protein MSPDBL2 of Plasmodium falciparum is under strong balancing selection and is a target of naturally acquired antibodies. Remarkably, MSPDBL2 is expressed in only a minority of mature schizonts of any cultured parasite line, and mspdbl2 gene transcription increases in response to overexpression of the gametocyte development inducer GDV1, so it is important to understand its natural expression. Here, MSPDBL2 in mature schizonts was analyzed in the first ex vivo culture cycle of 96 clinical isolates from 4 populations with various levels of infection endemicity in different West African countries, by immunofluorescence microscopy with antibodies against a conserved region of the protein. In most isolates, less than 1% of mature schizonts were positive for MSPDBL2, but the frequency distribution was highly skewed, as nine isolates had more than 3% schizonts positive and one had 73% positive. To investigate whether the expression of other gene loci correlated with MSPDBL2 expression, whole-transcriptome sequencing was performed on schizont-enriched material from 17 of the isolates with a wide range of proportions of schizonts positive. Transcripts of particular genes were highly significantly positively correlated with MSPDBL2 positivity in schizonts as well as with mspdbl2 gene transcript levels, showing overrepresentation of genes implicated previously as involved in gametocytogenesis but not including the gametocytogenesis master regulator ap2-g. Single-cell transcriptome analysis of a laboratory-adapted clone showed that most individual parasites expressing mspdbl2 did not express ap2-g, consistent with MSPDBL2 marking a developmental subpopulation that is distinct but likely to co-occur alongside sexual commitment. IMPORTANCE These findings contribute to understanding malaria parasite antigenic and developmental variation, focusing on the merozoite surface protein encoded by the single locus under strongest balancing selection. Analyzing the initial ex vivo generation of parasites grown from a wide sample of clinical infections, we show a unique and highly skewed pattern of natural expression frequencies of MSPDBL2, distinct from that of any other antigen. Bulk transcriptome analysis of a range of clinical isolates showed significant overrepresentation of sexual development genes among those positively correlated with MSPDBL2 protein and mspdbl2 gene expression, indicating the MSPDBL2-positive subpopulation to be often coincident with parasites developing sexually in preparation for transmission. Single-cell transcriptome data confirm the absence of a direct correlation with the ap2-g master regulator of sexual development, indicating that the MSPDBL2-positive subpopulation has a separate function in asexual survival and replication under conditions that promote terminal sexual differentiation.
Collapse
|
3
|
Wu L, Mwesigwa J, Affara M, Bah M, Correa S, Hall T, Singh SK, Beeson JG, Tetteh KKA, Kleinschmidt I, D'Alessandro U, Drakeley C. Antibody responses to a suite of novel serological markers for malaria surveillance demonstrate strong correlation with clinical and parasitological infection across seasons and transmission settings in The Gambia. BMC Med 2020; 18:304. [PMID: 32972398 PMCID: PMC7517687 DOI: 10.1186/s12916-020-01724-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND As malaria transmission declines, sensitive diagnostics are needed to evaluate interventions and monitor transmission. Serological assays measuring malaria antibody responses offer a cost-effective detection method to supplement existing surveillance tools. METHODS A prospective cohort study was conducted from 2013 to 2015 in 12 villages across five administrative regions in The Gambia. Serological analysis included samples from the West Coast Region at the start and end of the season (July and December 2013) and from the Upper River Region in July and December 2013 and April and December 2014. Antigen-specific antibody responses to eight Plasmodium falciparum (P. falciparum) antigens-Etramp5.Ag1, GEXP18, HSP40.Ag1, Rh2.2030, EBA175 RIII-V, PfMSP119, PfAMA1, and PfGLURP.R2-were quantified using a multiplexed bead-based assay. The association between antibody responses and clinical and parasitological endpoints was estimated at the individual, household, and population level. RESULTS Strong associations were observed between clinical malaria and concurrent sero-positivity to Etramp5.Ag1 (aOR 4.60 95% CI 2.98-7.12), PfMSP119 (aOR 4.09 95% CI 2.60-6.44), PfAMA1 (aOR 2.32 95% CI 1.40-3.85), and PfGLURP.R2 (aOR 3.12, 95% CI 2.92-4.95), while asymptomatic infection was associated with sero-positivity to all antigens. Village-level sero-prevalence amongst children 2-10 years against Etramp5.Ag1, HSP40.Ag1, and PfMSP119 showed the highest correlations with clinical and P. falciparum infection incidence rates. For all antigens, there were increased odds of asymptomatic P. falciparum infection in subjects residing in a compound with greater than 50% sero-prevalence, with a 2- to 3-fold increase in odds of infection associated with Etramp5.Ag1, GEXP18, Rh2.2030, PfMSP119, and PfAMA1. For individuals residing in sero-positive compounds, the odds of clinical malaria were reduced, suggesting a protective effect. CONCLUSIONS At low transmission, long-lived antibody responses could indicate foci of malaria transmission that have been ongoing for several seasons or years. In settings where sub-patent infections are prevalent and fluctuate below the detection limit of polymerase chain reaction (PCR), the presence of short-lived antibodies may indicate recent infectivity, particularly in the dry season when clinical cases are rare. Serological responses may reflect a persistent reservoir of infection, warranting community-targeted interventions if individuals are not clinically apparent but have the potential to transmit. Therefore, serological surveillance at the individual and household level may be used to target interventions where there are foci of asymptomatically infected individuals, such as by measuring the magnitude of age-stratified antibody levels or identifying areas with clustering of above-average antibody responses across a diverse range of serological markers.
Collapse
Affiliation(s)
- Lindsey Wu
- Faculty of Infectious Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - Julia Mwesigwa
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Muna Affara
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Arusha, Tanzania
| | - Mamadou Bah
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Simon Correa
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Tom Hall
- St. George's University of London (SGUL), London, UK
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin K A Tetteh
- Faculty of Infectious Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Immo Kleinschmidt
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.,School of Pathology, Wits Institute for Malaria Research, Faculty of Health Science, University of Witwatersrand, Johannesburg, South Africa
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Chris Drakeley
- Faculty of Infectious Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| |
Collapse
|
4
|
Wu L, Hall T, Ssewanyana I, Oulton T, Patterson C, Vasileva H, Singh S, Affara M, Mwesigwa J, Correa S, Bah M, D'Alessandro U, Sepúlveda N, Drakeley C, Tetteh KKA. Optimisation and standardisation of a multiplex immunoassay of diverse Plasmodium falciparum antigens to assess changes in malaria transmission using sero-epidemiology. Wellcome Open Res 2020; 4:26. [PMID: 32518839 PMCID: PMC7255915 DOI: 10.12688/wellcomeopenres.14950.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 09/12/2023] Open
Abstract
Background: Antibody responses have been used to characterise transmission and exposure history in malaria-endemic settings for over a decade. Such studies have typically been conducted on well-standardised enzyme-linked immunosorbent assays (ELISAs). However, recently developed quantitative suspension array technologies (qSAT) are now capable of high-throughput and multiplexed screening of up to hundreds of analytes at a time. This study presents a customised protocol for the Luminex MAGPIX © qSAT using a diverse set of malaria antigens. The aim is to develop a standardised assay for routine serological surveillance that is implementable across laboratories and epidemiological settings. Methods: A panel of eight Plasmodium falciparum recombinant antigens, associated with long- and short-lived antibody responses, was designed for the Luminex MAGPIX © platform. The assay was optimised for key steps in the protocol: antigen-bead coupling concentration, buffer composition, serum sample dilution, and bead storage conditions. Quality control procedures and data normalisation methods were developed to address high-throughput assay processing. Antigen-specific limits of quantification (LOQs) were also estimated using both in-house and WHO reference serum as positive controls. Results: Antigen-specific bead coupling was optimised across five serum dilutions and two positive controls, resulting in concentrations operational within stable analytical ranges. Coupled beads were stable after storage at room temperature (22⁰C) for up to eight weeks. High sensitivity and specificity for distinguishing positive and negative controls at serum sample dilutions of 1:500 (AUC 0.94 95%CI 0.91-0.96) and 1:1000 (AUC 0.96 95%CI 0.94-0.98) were observed. LOQs were also successfully estimated for all analytes but varied by antigen and positive control. Conclusions: This study demonstrates that developing a standardised malaria-specific qSAT protocol for a diverse set of antigens is achievable, though further optimisations may be required. Quality control and data standardisation methods may also be useful for future analysis of large sero-epidemiological surveys.
Collapse
Affiliation(s)
- Lindsey Wu
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Tom Hall
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Isaac Ssewanyana
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Infectious Diseases Research Collaboration (IDRC), Kampala, P O. Box 7475, Uganda
| | - Tate Oulton
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Catriona Patterson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Hristina Vasileva
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Susheel Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of International Health, University of Copenhagen, Copenhagen, Denmark
| | - Muna Affara
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20359, Germany
| | - Julia Mwesigwa
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Simon Correa
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mamadou Bah
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Umberto D'Alessandro
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
5
|
Wu L, Hall T, Ssewanyana I, Oulton T, Patterson C, Vasileva H, Singh S, Affara M, Mwesigwa J, Correa S, Bah M, D'Alessandro U, Sepúlveda N, Drakeley C, Tetteh KKA. Optimisation and standardisation of a multiplex immunoassay of diverse Plasmodium falciparum antigens to assess changes in malaria transmission using sero-epidemiology. Wellcome Open Res 2020; 4:26. [PMID: 32518839 PMCID: PMC7255915 DOI: 10.12688/wellcomeopenres.14950.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Antibody responses have been used to characterise transmission and exposure history in malaria-endemic settings for over a decade. Such studies have typically been conducted on well-standardised enzyme-linked immunosorbent assays (ELISAs). However, recently developed quantitative suspension array technologies (qSAT) are now capable of high-throughput and multiplexed screening of up to hundreds of analytes at a time. This study presents a customised protocol for the Luminex MAGPIX
© qSAT using a diverse set of malaria antigens. The aim is to develop a standardised assay for routine serological surveillance that is implementable across laboratories and epidemiological settings. Methods: A panel of eight
Plasmodium falciparum recombinant antigens, associated with long- and short-lived antibody responses, was designed for the Luminex MAGPIX
© platform. The assay was optimised for key steps in the protocol: antigen-bead coupling concentration, buffer composition, serum sample dilution, and bead storage conditions. Quality control procedures and data normalisation methods were developed to address high-throughput assay processing. Antigen-specific limits of quantification (LOQs) were also estimated using both in-house and WHO reference serum as positive controls. Results: Antigen-specific bead coupling was optimised across five serum dilutions and two positive controls, resulting in concentrations operational within stable analytical ranges. Coupled beads were stable after storage at room temperature (22⁰C) for up to eight weeks. High sensitivity and specificity for distinguishing positive and negative controls at serum sample dilutions of 1:500 (AUC 0.94 95%CI 0.91-0.96) and 1:1000 (AUC 0.96 95%CI 0.94-0.98) were observed. LOQs were also successfully estimated for all analytes but varied by antigen and positive control. Conclusions: This study demonstrates that developing a standardised malaria-specific qSAT protocol for a diverse set of antigens is achievable, though further optimisations may be required. Quality control and data standardisation methods may also be useful for future analysis of large sero-epidemiological surveys.
Collapse
Affiliation(s)
- Lindsey Wu
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Tom Hall
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Isaac Ssewanyana
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.,Infectious Diseases Research Collaboration (IDRC), Kampala, P O. Box 7475, Uganda
| | - Tate Oulton
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Catriona Patterson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Hristina Vasileva
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Susheel Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, University of Copenhagen, Copenhagen, Denmark
| | - Muna Affara
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20359, Germany
| | - Julia Mwesigwa
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Simon Correa
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mamadou Bah
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Umberto D'Alessandro
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
6
|
Aniweh Y, Nyarko PB, Charles-Chess E, Ansah F, Osier FHA, Quansah E, Thiam LG, Kamuyu G, Marsh K, Conway DJ, Tetteh KKA, Awandare GA. Plasmodium falciparum Merozoite Associated Armadillo Protein (PfMAAP) Is Apically Localized in Free Merozoites and Antibodies Are Associated With Reduced Risk of Malaria. Front Immunol 2020; 11:505. [PMID: 32318061 PMCID: PMC7155890 DOI: 10.3389/fimmu.2020.00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/05/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding the functional role of proteins expressed by Plasmodium falciparum is an important step toward unlocking potential targets for the development of therapeutic or diagnostic interventions. The armadillo (ARM) repeat protein superfamily is associated with varied functions across the eukaryotes. Therefore, it is important to understand the role of members of this protein family in Plasmodium biology. The Plasmodium falciparum armadillo repeats only (PfARO; Pf3D7_0414900) and P. falciparum merozoite organizing proteins (PfMOP; Pf3D7_0917000) are armadillo-repeat containing proteins previously characterized in P. falciparum. Here, we describe the characterization of another ARM repeat-containing protein in P. falciparum, which we have named the P. falciparum Merozoites-Associated Armadillo repeats protein (PfMAAP). Antibodies raised to three different synthetic peptides of PfMAAP show apical staining of free merozoites and those within the mature infected schizont. We also demonstrate that the antibodies raised to the PfMAAP peptides inhibited invasion of erythrocytes by merozoites from different parasite isolates. In addition, naturally acquired human antibodies to the N- and C- termini of PfMAAP are associated with a reduced risk of malaria in a prospective cohort analysis.
Collapse
Affiliation(s)
- Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Prince B. Nyarko
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Essel Charles-Chess
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Faith H. A. Osier
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Biochemistry, Pwani University, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Evelyn Quansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Laty Gaye Thiam
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gathoni Kamuyu
- Division of Medicine, Department of Respiratory Medicine, UCL, London, United Kingdom
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - David J. Conway
- Department of Infection Biology, London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Kamuyu G, Tuju J, Kimathi R, Mwai K, Mburu J, Kibinge N, Chong Kwan M, Hawkings S, Yaa R, Chepsat E, Njunge JM, Chege T, Guleid F, Rosenkranz M, Kariuki CK, Frank R, Kinyanjui SM, Murungi LM, Bejon P, Färnert A, Tetteh KKA, Beeson JG, Conway DJ, Marsh K, Rayner JC, Osier FHA. KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization. Front Immunol 2018; 9:2866. [PMID: 30619257 PMCID: PMC6298441 DOI: 10.3389/fimmu.2018.02866] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - James Tuju
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya
| | - Rinter Kimathi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James Mburu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Nelson Kibinge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Marisa Chong Kwan
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Sam Hawkings
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Reuben Yaa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Emily Chepsat
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James M Njunge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Timothy Chege
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Fatuma Guleid
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Micha Rosenkranz
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher K Kariuki
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya.,Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium
| | - Roland Frank
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samson M Kinyanjui
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Linda M Murungi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin K A Tetteh
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,African Academy of Sciences, Nairobi, Kenya
| | - Julian C Rayner
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Faith H A Osier
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Tarr SJ, Díaz-Ingelmo O, Stewart LB, Hocking SE, Murray L, Duffy CW, Otto TD, Chappell L, Rayner JC, Awandare GA, Conway DJ. Schizont transcriptome variation among clinical isolates and laboratory-adapted clones of the malaria parasite Plasmodium falciparum. BMC Genomics 2018; 19:894. [PMID: 30526479 PMCID: PMC6288915 DOI: 10.1186/s12864-018-5257-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria parasites are genetically polymorphic and phenotypically plastic. In studying transcriptome variation among parasites from different infections, it is challenging to overcome potentially confounding technical and biological variation between samples. We investigate variation in the major human parasite Plasmodium falciparum, generating RNA-seq data on multiple independent replicate sample preparations of merozoite-containing intra-erythrocytic schizonts from a panel of clinical isolates and from long-term laboratory-adapted clones, with a goal of robustly identifying differentially expressed genes. RESULTS Analysis of biological sample replicates shows that increased numbers improve the true discovery rate of differentially expressed genes, and that six independent replicates of each parasite line allowed identification of most differences that could be detected with larger numbers. For highly expressed genes, focusing on the top quartile at schizont stages, there was more power to detect differences. Comparing cultured clinical isolates and laboratory-adapted clones, genes more highly expressed in the laboratory-adapted clones include those encoding an AP2 transcription factor (PF3D7_0420300), a ubiquitin-binding protein and two putative methyl transferases. In contrast, higher expression in clinical isolates was seen for the merozoite surface protein gene dblmsp2, proposed to be a marker of schizonts forming merozoites committed to sexual differentiation. Variable expression was extremely strongly, but not exclusively, associated with genes known to be targeted by Heterochromatin Protein 1. Clinical isolates show variable expression of several known merozoite invasion ligands, as well as other genes for which new RT-qPCR assays validate the quantitation and allow characterisation in samples with more limited material. Expression levels of these genes vary among schizont preparations of different clinical isolates in the first ex vivo cycle in patient erythrocytes, but mean levels are similar to those in continuously cultured clinical isolates. CONCLUSIONS Analysis of multiple biological sample replicates greatly improves identification of genes variably expressed between different cultured parasite lines. Clinical isolates recently established in culture show differences from long-term adapted clones in transcript levels of particular genes, and are suitable for analyses requiring biological replicates to understand parasite phenotypes and variable expression likely to be relevant in nature.
Collapse
Affiliation(s)
- Sarah J Tarr
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK.
| | - Ofelia Díaz-Ingelmo
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Lindsay B Stewart
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Suzanne E Hocking
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Scotland, UK.,Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Lia Chappell
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
9
|
Abstract
Eukaryotic pathogens must survive in different hosts, respond to changing environments, and exploit specialized niches to propagate. Plasmodium parasites cause human malaria during bloodstream infections, where they must persist long enough to be transmitted. Parasites have evolved diverse strategies of variant gene expression that control critical biological processes of blood-stage infections, including antigenic variation, erythrocyte invasion, innate immune evasion, and nutrient acquisition, as well as life-cycle transitions. Epigenetic mechanisms within the parasite are being elucidated, with discovery of epigenomic marks associated with gene silencing and activation, and the identification of epigenetic regulators and chromatin proteins that are required for the switching and maintenance of gene expression. Here, we review the key epigenetic processes that facilitate transition through the parasite life cycle and epigenetic regulatory mechanisms utilized by Plasmodium parasites to survive changing environments and consider epigenetic switching in the context of the outcome of human infections.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| | - Kristen M Skillman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
10
|
Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, Moon RW, Blackman MJ, Drakeley CJ, Tetteh KKA. Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. PLoS Negl Trop Dis 2018; 12:e0006457. [PMID: 29902183 PMCID: PMC6001954 DOI: 10.1371/journal.pntd.0006457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease. METHODOLOGY/PRINCIPAL FINDINGS Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses. CONCLUSIONS/SIGNIFICANCE The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.
Collapse
Affiliation(s)
- Lou S. Herman
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jody Phelan
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia
| | - Robert W. Moon
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J. Blackman
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Chris J. Drakeley
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Tuju J, Kamuyu G, Murungi LM, Osier FHA. Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017; 152:195-206. [PMID: 28646586 PMCID: PMC5588761 DOI: 10.1111/imm.12780] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines.
Collapse
Affiliation(s)
- James Tuju
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Department of BiochemistryPwani UniversityKilifiKenya
| | - Gathoni Kamuyu
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Linda M. Murungi
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Faith H. A. Osier
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Centre for Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- Department of Biomedical SciencesPwani UniversityKilifiKenya
| |
Collapse
|
12
|
Offeddu V, Olotu A, Osier F, Marsh K, Matuschewski K, Thathy V. High Sporozoite Antibody Titers in Conjunction with Microscopically Detectable Blood Infection Display Signatures of Protection from Clinical Malaria. Front Immunol 2017; 8:488. [PMID: 28533773 PMCID: PMC5421148 DOI: 10.3389/fimmu.2017.00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/07/2017] [Indexed: 11/18/2022] Open
Abstract
Immunoepidemiological studies typically reveal slow, age-dependent acquisition of immune responses against Plasmodium falciparum sporozoites. Naturally acquired immunity against preerythrocytic stages is considered inadequate to confer protection against clinical malaria. To explore previously unrecognized antisporozoite responses, we measured serum levels of naturally acquired antibodies to whole Plasmodium falciparum sporozoites (Pfspz) and the immunodominant (NANP)5 repeats of the major sporozoite surface protein, circumsporozoite protein, in a well-characterized Kenyan cohort. Sera were sampled at the start of the malaria transmission season, and all subjects were prospectively monitored for uncomplicated clinical malaria in the ensuing 6 months. We used Kaplan–Meier analysis and multivariable regression to investigate the association of antisporozoite immunity with incidence of clinical malaria. Although naturally acquired humoral responses against Pfspz and (NANP)5 were strongly correlated (p < 0.0001), 37% of Pfspz responders did not recognize (NANP)5. The prevalence and magnitude of antisporozoite responses increased with age, although some high Pfspz responders were identified among children. Survival analysis revealed a reduced risk of and increased time to first or only episode of clinical malaria among Pfspz or (NANP)5 responders carrying microscopically detectable Plasmodium falciparum (Pf) parasitemia at the start of the transmission season (p < 0.03). Our Cox regression interaction models indicated a potentially protective interaction between high anti-Pfspz (p = 0.002) or anti-(NANP)5 (p = 0.001) antibody levels and microscopically detectable Pf parasitemia on the risk of subsequent clinical malaria. Our findings indicate that robust antisporozoite immune responses can be naturally acquired already at an early age. A potentially protective role of high levels of anti-Pfspz antibodies against clinical episodes of uncomplicated malaria was detected, suggesting that antibody-mediated preerythrocytic immunity might indeed contribute to protection in nature.
Collapse
Affiliation(s)
- Vittoria Offeddu
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ally Olotu
- Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
| | - Faith Osier
- Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
| | - Kevin Marsh
- Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Vandana Thathy
- Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya
| |
Collapse
|
13
|
Ssewanyana I, Arinaitwe E, Nankabirwa JI, Yeka A, Sullivan R, Kamya MR, Rosenthal PJ, Dorsey G, Mayanja-Kizza H, Drakeley C, Greenhouse B, Tetteh KKA. Avidity of anti-malarial antibodies inversely related to transmission intensity at three sites in Uganda. Malar J 2017; 16:67. [PMID: 28183299 PMCID: PMC5301436 DOI: 10.1186/s12936-017-1721-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background People living in malaria endemic areas acquire protection from severe malaria quickly, but protection from clinical disease and control of parasitaemia is acquired only after many years of repeated infections. Antibodies play a central role in protection from clinical disease; however, protective antibodies are slow to develop. This study sought to investigate the influence of Plasmodium falciparum exposure on the acquisition of high-avidity antibodies to P. falciparum antigens, which may be associated with protection. Methods Cross-sectional surveys were performed in children and adults at three sites in Uganda with varied P. falciparum transmission intensity (entomological inoculation rates; 3.8, 26.6, and 125 infectious bites per person per year). Sandwich ELISA was used to measure antibody responses to two P. falciparum merozoite surface antigens: merozoite surface protein 1-19 (MSP1-19) and apical membrane antigen 1 (AMA1). In individuals with detectable antibody levels, guanidine hydrochloride (GuHCl) was added to measure the relative avidity of antibody responses by ELISA. Results Within a site, there were no significant differences in median antibody levels between the three age groups. Between sites, median antibody levels were generally higher in the higher transmission sites, with differences more apparent for AMA-1 and in ≥5 year group. Similarly, median avidity index (proportion of high avidity antibodies) showed no significant increase with increasing age but was significantly lower at sites of higher transmission amongst participants ≥5 years of age. Using 5 M GuHCl, the median avidity indices in the ≥5 year group at the highest and lowest transmission sites were 19.9 and 26.8, respectively (p = 0.0002) for MSP1-19 and 12.2 and 17.2 (p = 0.0007) for AMA1. Conclusion Avidity to two different P. falciparum antigens was lower in areas of high transmission intensity compared to areas with lower transmission. Appreciation of the mechanisms behind these findings as well as their clinical consequences will require additional investigation, ideally utilizing longitudinal data and investigation of a broader array of responses.
Collapse
Affiliation(s)
- Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda. .,London School of Hygiene and Tropical Medicine, London, UK.
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,London School of Hygiene and Tropical Medicine, London, UK
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Adoke Yeka
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Richard Sullivan
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Harriet Mayanja-Kizza
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | | |
Collapse
|
14
|
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 2016; 47:87-97. [PMID: 27381764 DOI: 10.1016/j.ijpara.2016.05.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Crosnier C, Iqbal Z, Knuepfer E, Maciuca S, Perrin AJ, Kamuyu G, Goulding D, Bustamante LY, Miles A, Moore SC, Dougan G, Holder AA, Kwiatkowski DP, Rayner JC, Pleass RJ, Wright GJ. Binding of Plasmodium falciparum Merozoite Surface Proteins DBLMSP and DBLMSP2 to Human Immunoglobulin M Is Conserved among Broadly Diverged Sequence Variants. J Biol Chem 2016; 291:14285-14299. [PMID: 27226583 PMCID: PMC4933183 DOI: 10.1074/jbc.m116.722074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 11/17/2022] Open
Abstract
Diversity at pathogen genetic loci can be driven by host adaptive immune selection pressure and may reveal proteins important for parasite biology. Population-based genome sequencing of Plasmodium falciparum, the parasite responsible for the most severe form of malaria, has highlighted two related polymorphic genes called dblmsp and dblmsp2, which encode Duffy binding-like (DBL) domain-containing proteins located on the merozoite surface but whose function remains unknown. Using recombinant proteins and transgenic parasites, we show that DBLMSP and DBLMSP2 directly and avidly bind human IgM via their DBL domains. We used whole genome sequence data from over 400 African and Asian P. falciparum isolates to show that dblmsp and dblmsp2 exhibit extreme protein polymorphism in their DBL domain, with multiple variants of two major allelic classes present in every population tested. Despite this variability, the IgM binding function was retained across diverse sequence representatives. Although this interaction did not seem to have an effect on the ability of the parasite to invade red blood cells, binding of DBLMSP and DBLMSP2 to IgM inhibited the overall immunoreactivity of these proteins to IgG from patients who had been exposed to the parasite. This suggests that IgM binding might mask these proteins from the host humoral immune system.
Collapse
Affiliation(s)
- Cécile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Ellen Knuepfer
- Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Sorina Maciuca
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Abigail J Perrin
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Gathoni Kamuyu
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - David Goulding
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Leyla Y Bustamante
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Alistair Miles
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Shona C Moore
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gordon Dougan
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Anthony A Holder
- Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Dominic P Kwiatkowski
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Richard J Pleass
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. RECENT FINDINGS Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. SUMMARY New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism, and indicate opportunities for malaria control.
Collapse
|
17
|
Chiu CYH, Hodder AN, Lin CS, Hill DL, Li Wai Suen CSN, Schofield L, Siba PM, Mueller I, Cowman AF, Hansen DS. Antibodies to the Plasmodium falciparum Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria. J Infect Dis 2015; 212:406-15. [PMID: 25646353 DOI: 10.1093/infdis/jiv057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates.
Collapse
Affiliation(s)
- Chris Y H Chiu
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Anthony N Hodder
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Clara S Lin
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Danika L Hill
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | | | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
| | - Peter M Siba
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Eastern Highlands Province, Goroka
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research Barcelona Center for International Health, University of Barcelona, Spain
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| |
Collapse
|
18
|
Conway DJ. Paths to a malaria vaccine illuminated by parasite genomics. Trends Genet 2015; 31:97-107. [PMID: 25620796 PMCID: PMC4359294 DOI: 10.1016/j.tig.2014.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
Discovery of vaccine candidate antigens by parasite genome sequence analyses. Genetic crosses, linkage group selection, and functional studies on parasites. Characterizing developmental and epigenetic variation alongside allelic polymorphism. Selection by naturally acquired immune responses helps to focus vaccine design.
More human death and disease is caused by malaria parasites than by all other eukaryotic pathogens combined. As early as the sequencing of the first human genome, malaria parasite genomics was prioritized to fuel the discovery of vaccine candidate antigens. This stimulated increased research on malaria, generating new understanding of the cellular and molecular mechanisms of infection and immunity. This review of recent developments illustrates how new approaches in parasite genomics, and increasingly large amounts of data from population studies, are helping to identify antigens that are promising lead targets. Although these results have been encouraging, effective discovery and characterization need to be coupled with more innovation and funding to translate findings into newly designed vaccine products for clinical trials.
Collapse
Affiliation(s)
- David J Conway
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
19
|
Ndour PA, Lopera-Mesa TM, Diakité SAS, Chiang S, Mouri O, Roussel C, Jauréguiberry S, Biligui S, Kendjo E, Claessens A, Ciceron L, Mazier D, Thellier M, Diakité M, Fairhurst RM, Buffet PA. Plasmodium falciparum clearance is rapid and pitting independent in immune Malian children treated with artesunate for malaria. J Infect Dis 2014; 211:290-7. [PMID: 25183768 DOI: 10.1093/infdis/jiu427] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In Plasmodium falciparum-infected patients treated with artemisinins, parasitemia declines through so-called pitting, an innate splenic process that transforms infected red blood cells (iRBCs) into once-infected RBCs (O-iRBCs). METHODS We measured pitting in 83 French travelers and 42 Malian children treated for malaria with artesunate. RESULTS In travelers, O-iRBCs peaked at 107.7% initial parasitemia. In Malian children aged 1.5-4 years, O-iRBCs peaked at higher concentrations than in children aged 9-13 years (91.60% vs 31.95%; P = .0097). The parasite clearance time in older children was shorter than in younger children (P = .0001), and the decline in parasitemia in children aged 1.5-4 years often started 6 hours after treatment initiation, a lag phase generally absent in infants and older children. A 6-hour lag phase in artificial pitting of artesunate-exposed iRBCs was also observed in vitro. The proportion of iRBCs recognized by autologous immunoglobulin G (IgG) correlated with the parasite clearance time (r = -0.501; P = .0006) and peak O-iRBC concentration (r = -0.420; P = .0033). CONCLUSIONS Antimalarial immunity correlates with fast artemisinin-induced parasite clearance and low pitting rates. In nonimmune populations, artemisinin-induced P. falciparum clearance is related to pitting and starts after a 6-hour lag phase. In immune populations, passively and naturally acquired immune mechanisms operating faster than pitting may exist. This mechanism may mitigate the emergence of artemisinin-resistant P. falciparum in Africa.
Collapse
Affiliation(s)
- Papa Alioune Ndour
- Centre d'Immunologie et des Maladies Infectieuses de Paris, INSERM U1135, UPMC CR7, CNRS ERL 8255 Centre National de Référence du Paludisme site Pitié-Salpêtrière Laboratory of Excellence GR-Ex
| | - Tatiana M Lopera-Mesa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Seidina A S Diakité
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Mali
| | - Serena Chiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Oussama Mouri
- AP-HP, Hôpital Pitié-Salpêtrière, Service de Parasitologie-Mycologie et Service des Maladies Infectieuses et Tropicales, Paris, France
| | - Camille Roussel
- Centre d'Immunologie et des Maladies Infectieuses de Paris, INSERM U1135, UPMC CR7, CNRS ERL 8255
| | - Stéphane Jauréguiberry
- Centre National de Référence du Paludisme site Pitié-Salpêtrière AP-HP, Hôpital Pitié-Salpêtrière, Service de Parasitologie-Mycologie et Service des Maladies Infectieuses et Tropicales, Paris, France
| | - Sylvestre Biligui
- Centre d'Immunologie et des Maladies Infectieuses de Paris, INSERM U1135, UPMC CR7, CNRS ERL 8255 Centre National de Référence du Paludisme site Pitié-Salpêtrière
| | - Eric Kendjo
- Centre d'Immunologie et des Maladies Infectieuses de Paris, INSERM U1135, UPMC CR7, CNRS ERL 8255 Centre National de Référence du Paludisme site Pitié-Salpêtrière
| | - Antoine Claessens
- Centre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
| | - Liliane Ciceron
- Centre d'Immunologie et des Maladies Infectieuses de Paris, INSERM U1135, UPMC CR7, CNRS ERL 8255 Centre National de Référence du Paludisme site Pitié-Salpêtrière
| | - Dominique Mazier
- Centre d'Immunologie et des Maladies Infectieuses de Paris, INSERM U1135, UPMC CR7, CNRS ERL 8255 Centre National de Référence du Paludisme site Pitié-Salpêtrière AP-HP, Hôpital Pitié-Salpêtrière, Service de Parasitologie-Mycologie et Service des Maladies Infectieuses et Tropicales, Paris, France
| | - Marc Thellier
- Centre d'Immunologie et des Maladies Infectieuses de Paris, INSERM U1135, UPMC CR7, CNRS ERL 8255 Centre National de Référence du Paludisme site Pitié-Salpêtrière AP-HP, Hôpital Pitié-Salpêtrière, Service de Parasitologie-Mycologie et Service des Maladies Infectieuses et Tropicales, Paris, France
| | - Mahamadou Diakité
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Mali
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Pierre A Buffet
- Centre d'Immunologie et des Maladies Infectieuses de Paris, INSERM U1135, UPMC CR7, CNRS ERL 8255 Centre National de Référence du Paludisme site Pitié-Salpêtrière Laboratory of Excellence GR-Ex AP-HP, Hôpital Pitié-Salpêtrière, Service de Parasitologie-Mycologie et Service des Maladies Infectieuses et Tropicales, Paris, France
| |
Collapse
|
20
|
Osier FH, Mackinnon MJ, Crosnier C, Fegan G, Kamuyu G, Wanaguru M, Ogada E, McDade B, Rayner JC, Wright GJ, Marsh K. New antigens for a multicomponent blood-stage malaria vaccine. Sci Transl Med 2014; 6:247ra102. [PMID: 25080477 PMCID: PMC4856877 DOI: 10.1126/scitranslmed.3008705] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An effective blood-stage vaccine against Plasmodium falciparum remains a research priority, but the number of antigens that have been translated into multicomponent vaccines for testing in clinical trials remains limited. Investigating the large number of potential targets found in the parasite proteome has been constrained by an inability to produce natively folded recombinant antigens for immunological studies. We overcame these constraints by generating a large library of biochemically active merozoite surface and secreted full-length ectodomain proteins. We then systematically examined the antibody reactivity against these proteins in a cohort of Kenyan children (n = 286) who were sampled at the start of a malaria transmission season and prospectively monitored for clinical episodes of malaria over the ensuing 6 months. We found that antibodies to previously untested or little-studied proteins had superior or equivalent potential protective efficacy to the handful of current leading malaria vaccine candidates. Moreover, cumulative responses to combinations comprising 5 of the 10 top-ranked antigens, including PF3D7_1136200, MSP2, RhopH3, P41, MSP11, MSP3, PF3D7_0606800, AMA1, Pf113, and MSRP1, were associated with 100% protection against clinical episodes of malaria. These data suggest not only that there are many more potential antigen candidates for the malaria vaccine development pipeline but also that effective vaccination may be achieved by combining a selection of these antigens.
Collapse
MESH Headings
- Age Factors
- Antibodies, Protozoan/blood
- Antigens, Protozoan/immunology
- Biomarkers/blood
- Child
- Child, Preschool
- Humans
- Infant
- Infant, Newborn
- Kenya/epidemiology
- Malaria Vaccines/immunology
- Malaria, Falciparum/blood
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Merozoites/immunology
- Peptide Fragments/immunology
- Plasmodium falciparum/immunology
- Prospective Studies
- Protozoan Proteins/immunology
- Seroepidemiologic Studies
- Time Factors
Collapse
Affiliation(s)
- Faith H Osier
- Pathogen Vector and Human Biology Department, Kenya Medical Research Institute Centre for Geographical Medicine Research, Coast, P. O. Box 230, 80108 Kilifi, Kenya
| | - Margaret J Mackinnon
- Pathogen Vector and Human Biology Department, Kenya Medical Research Institute Centre for Geographical Medicine Research, Coast, P. O. Box 230, 80108 Kilifi, Kenya
| | - Cécile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Gregory Fegan
- Pathogen Vector and Human Biology Department, Kenya Medical Research Institute Centre for Geographical Medicine Research, Coast, P. O. Box 230, 80108 Kilifi, Kenya
| | - Gathoni Kamuyu
- Pathogen Vector and Human Biology Department, Kenya Medical Research Institute Centre for Geographical Medicine Research, Coast, P. O. Box 230, 80108 Kilifi, Kenya
| | - Madushi Wanaguru
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Edna Ogada
- Pathogen Vector and Human Biology Department, Kenya Medical Research Institute Centre for Geographical Medicine Research, Coast, P. O. Box 230, 80108 Kilifi, Kenya
| | - Brian McDade
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Kevin Marsh
- Pathogen Vector and Human Biology Department, Kenya Medical Research Institute Centre for Geographical Medicine Research, Coast, P. O. Box 230, 80108 Kilifi, Kenya.
| |
Collapse
|
21
|
Lin CS, Uboldi AD, Marapana D, Czabotar PE, Epp C, Bujard H, Taylor NL, Perugini MA, Hodder AN, Cowman AF. The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem 2014; 289:25655-69. [PMID: 25074930 DOI: 10.1074/jbc.m114.586495] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum is the causative agent of the most severe form of malaria in humans. The merozoite, an extracellular stage of the parasite lifecycle, invades erythrocytes in which they develop. The most abundant protein on the surface of merozoites is merozoite surface protein 1 (MSP1), which consists of four processed fragments. Studies indicate that MSP1 interacts with other peripheral merozoite surface proteins to form a large complex. Successful invasion of merozoites into host erythrocytes is dependent on this protein complex; however, the identity of all components and its function remain largely unknown. We have shown that the peripheral merozoite surface proteins MSPDBL1 and MSPDBL2 are part of the large MSP1 complex. Using surface plasmon resonance, we determined the binding affinities of MSPDBL1 and MSPDBL2 to MSP1 to be in the range of 2-4 × 10(-7) m. Both proteins bound to three of the four proteolytically cleaved fragments of MSP1 (p42, p38, and p83). In addition, MSPDBL1 and MSPDBL2, but not MSP1, bound directly to human erythrocytes. This demonstrates that the MSP1 complex acts as a platform for display of MSPDBL1 and MSPDBL2 on the merozoite surface for binding to receptors on the erythrocyte and invasion.
Collapse
Affiliation(s)
- Clara S Lin
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Alessandro D Uboldi
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
| | - Danushka Marapana
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Peter E Czabotar
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Christian Epp
- Department of Infectious Diseases, Parasitology, Universität Heidelberg, INF 324, D-69120 Heidelberg, Germany
| | - Hermann Bujard
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), INF 282, D-69120 Heidelberg, Germany, and
| | - Nicole L Taylor
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3082, Australia
| | - Matthew A Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3082, Australia
| | - Anthony N Hodder
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia,
| | - Alan F Cowman
- From the The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia, Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia,
| |
Collapse
|