1
|
Kim YI, Ko I, Yi EJ, Kim J, Hong YR, Lee W, Chang SY. NAD + modulation of intestinal macrophages renders anti-inflammatory functionality and ameliorates gut inflammation. Biomed Pharmacother 2025; 185:117938. [PMID: 40022994 DOI: 10.1016/j.biopha.2025.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Macrophages can maintain gut immune homeostasis by driving clearance of infection, but also can prevent chronic inflammation and induce tissue repair. Reduced nicotinamide adenine dinucleotide (NAD+) levels in macrophages have been reported to be associated with the onset of severe colitis. Given that dysregulation of gut macrophages plays a significant role in inflammatory bowel disease (IBD), they represent a potential target for novel therapies. Here we show an IBD therapeutic candidate LMT503, a substrate that modulates NADH quinone oxidoreductase (NQO1), which induces anti-inflammatory macrophage polarization by NAD+ enhancement. To determine the anti-inflammatory effect of LMT503, a dextran sulfate sodium (DSS)-induced colitis mouse model was used in this study. Treatment of bone marrow-derived macrophages (BMDMs) with LMT503 increased IL-10 and Arg1 levels but decreased levels of TNF-α, iNOS, and IL-6. LMT503 also increased levels of SIRT1, SIRT3, and SIRT6, suggesting that macrophages were driven to an anti-inflammatory character. In a murine DSS-induced colitis model, oral treatment with LMT503 ameliorated colonic inflammation and decreased infiltrating monocytes and neutrophils. Although NAD+ enhancement did not alter CX3CR1intCD206- or CX3CR1hiCD206+ colon macrophage population, it decreased levels of TNF-α and iNOS and increased IL-10 level, with colonic macrophages showing an anti-inflammatory character shift. Depletion of CX3CR1 expressing gut resident macrophages abrogated the immune regulatory effect of LMT503 in the colon. These data suggest that LMT503 is a therapeutic candidate that can target macrophages to drive polarization with an immunosuppressive character and ameliorate IBD.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Korea Initiative for fostering University of Research and Innovation (KIURI) Program, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Inseok Ko
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea; Department of Chemistry Education, Graduate Department of Chemical Materials, Pusan National University, Busan, Republic of Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Jusik Kim
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Yong Rae Hong
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Wheeseong Lee
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
2
|
Ijaz F, Sameeullah M, Farid A, Malik MS, Batool N, Mirza B, Timko MP, Liu H, Lössl AG, Waheed MT. In silico designing and characterization of outer membrane protein (OmpC) gene from Salmonella enterica and its expression in Nicotiana tabacum for developing a plant-based vaccine against salmonellosis. Microb Pathog 2025; 199:107225. [PMID: 39675439 DOI: 10.1016/j.micpath.2024.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Salmonella, a gram-negative bacteria, is the leading cause of foodborne illness globally. Two serovars of Salmonella, S. enteritidis and S. typhimurium are responsible for the majority of human salmonellosis. Prolonged salmonellosis caused by Salmonella species leads to the development of colon cancer, which is 3rd most common cancer in the world. Porins in the outer membrane of Salmonella can be used to elicit immune response. The production of plant-based vaccine against salmonellosis and the subsequent colon cancer using outer membrane proteins can be helpful for the people of developing countries. In this study, OmpC protein from Salmonella enteritidis was subjected to various bioinformatics tools which exhibited OmpC vaccine construct to be sufficiently immunogenic, non-allergenic, non-toxic and non-homologous to human proteins. Docking analysis showed strong interaction of OmpC vaccine model with TLR-4. After in silico analysis, this vaccine construct was expressed in tobacco plants via Agrobacterium-mediated transformation. Gateway® cloning was used to clone OmpC gene. Transformation and integration of transgene within tobacco plants was confirmed through conventional PCR. qRT-PCR was done for expression analysis and copy number calculated was 2. The expressed OmpC protein accumulated up to 0.42 % of total soluble protein. Immunization of mice with total soluble protein (TSP) and purified OmpC protein generated significant level of anti-OmpC antibodies. The vaccine candidate also demonstrated significant protective effect in mice upon challenging with Salmonella typhimurium. To the best of our knowledge, this is the first study reporting the expression of OmpC antigen in plants for potential use as vaccine against salmonellosis.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University, Golkoy Campus, Bolu, Turkey; Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, 14030, Türkiye
| | | | - Muhammad Suleman Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Neelam Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Michael P Timko
- Department of Biology, University of Virginia, Virginia, USA
| | - Hai Liu
- Department of Biology, University of Virginia, Virginia, USA
| | | | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
3
|
Anisimov AP, Vagaiskaya AS, Trunyakova AS, Dentovskaya SV. Live Plague Vaccine Development: Past, Present, and Future. Vaccines (Basel) 2025; 13:66. [PMID: 39852845 PMCID: PMC11768842 DOI: 10.3390/vaccines13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
During the last 100 years, vaccine development has evolved from an empirical approach to one of the more rational vaccine designs where the careful selection of antigens and adjuvants is key to the desired efficacy for challenging pathogens and/or challenging populations. To improve immunogenicity while maintaining a favorable reactogenicity and safety profile, modern vaccine design must consider factors beyond the choice of target antigen alone. With new vaccine technologies currently emerging, it will be possible to custom-design vaccines for optimal efficacy in groups of people with different responses to vaccination. It should be noted that after a fairly long period of overwhelming dominance of papers devoted to subunit plague vaccines, materials devoted to the development of live plague vaccines have increasingly been published. In this review, we present our opinion on reasonable tactics for the development and application of live, safe, and protective human plague vaccines causing an enhanced duration of protection and breadth of action against various virulent strains in vaccination studies representing different ages, genders, and nucleotide polymorphisms of the genes responsible for immune response.
Collapse
Affiliation(s)
- Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (A.S.T.); (S.V.D.)
| | | | | | | |
Collapse
|
4
|
Lloren KKS, Senevirathne A, Lee JH. Advancing vaccine technology through the manipulation of pathogenic and commensal bacteria. Mater Today Bio 2024; 29:101349. [PMID: 39850273 PMCID: PMC11754135 DOI: 10.1016/j.mtbio.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025] Open
Abstract
Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision. Concurrently, commensal bacteria, which coexist harmlessly with their hosts and contribute to immune system regulation, are also being explored as novel delivery systems and in microbiome-based therapy. These bacteria can modulate immune responses, offering a promising avenue for developing effective and personalized vaccines. Integrating the distinctive characteristics of pathogenic and commensal bacteria with advanced bacterial engineering techniques paves the way for innovative vaccine and therapeutic platforms that could address a wide range of infectious diseases and potentially non-infectious conditions. This holistic approach signifies a paradigm shift in vaccine development and immunotherapy, emphasizing the intricate interplay between the bacteria and the immune systems to achieve optimal immunological outcomes.
Collapse
Affiliation(s)
- Khristine Kaith S. Lloren
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| |
Collapse
|
5
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
6
|
Ma J, Xu S, Li Z, Li YA, Wang S, Shi H. Enhancement of protective efficacy of recombinant attenuated Salmonella typhimurium delivering H9N2 avian influenza virus hemagglutinins(HA) antigen vaccine candidate strains by C-C motif chemokine ligand 5 in chickens(chCCL5). Vet Microbiol 2024; 298:110264. [PMID: 39395372 DOI: 10.1016/j.vetmic.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The H9N2 inactivated avian influenza vaccine cannot induce cellular and mucosal immune responses, while the attenuated Salmonella vector as an intracellular bacterium can induce dominant cellular and mucosal immune responses. However, it provides low protection against the virus when delivering viral antigens and needs further optimization. Chicken C-C motif chemokine ligand 5 (chCCL5) is an important CC chemokine associated with immune cell chemotaxis, migration, and viral infection. This study connected the sequence of chCCL5 (CCL5) with the hemagglutinin sequence of the H9N2 avian influenza virus (yH9HA), utilizing the attenuated Salmonella typhimurium vector containing the delayed lysis system MazE/F regulated by arabinose as a carrier. A vaccine strain of recombinant attenuated Salmonella typhimurium and H9N2 avian influenza virus HA, rSC0130 (pS0017-yH9HA-CCL5), was successfully constructed. The experimental results indicate that yH9HA-CCL5 can be expressed in 293 T cells; compared to the strain without CCL5, rSC0130 (pS0017-yH9HA-CCL5) can induce significantly increased cellular immune responses and provide better protective effects in H9N2 virus challenge experiments. The above results indicate that chCCL5 can significantly enhance the protective effect of Salmonella delivering H9N2 avian influenza virus HA protein vaccine against H9N2 avian influenza virus infection, providing valuable theoretical support for further improving the protective efficiency of recombinant attenuated Salmonella vectors for delivering viral antigens.
Collapse
Affiliation(s)
- Jingwen Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shunshun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
7
|
Huang X, Yang S, Zhao J, Yang J, Jiang H, Li S, Wang C, Liu G. Generation and evaluation of Salmonella entericaserovar Choleraesuis mutant strains as a potential live-attenuated vaccine. Vaccine 2024; 42:126262. [PMID: 39197218 DOI: 10.1016/j.vaccine.2024.126262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Salmonella entericaserovar Choleraesuis (S.C) is a swine enteric pathogen causing paratyphoid fever, enterocolitis, and septicemia in piglets. S. C is mainly transmitted through the fecal-oral route. Vaccination is an effective strategy for preventing and controlling Salmonella infection. RESULTS Herein, we used CRISPR-Cas9 technology to knockout the virulence regulatory genes, rpoS, and slyA of S. C and constructed the ∆rpoS, ∆slyA, and ∆rpoS ∆slyA strains. The phenotypic characteristics of the mutant strains remained unchanged compared with the parental wild-type strain. In vivo study, unlike the wild-type strain, the ∆slyA and ∆rpoS ∆slyA strains alleviated splenomegaly, colon atrophy, and lower bacterial loads in the spleen, liver, ileum, and colon. These mutant strains survived in Peyer's patches (PPs) and mesenteric lymph nodes (MLN) for up to 15 days post-infection. Furthermore, the immunization of the ∆rpoS ∆slyA strain induced robust humoral and cellular immune responses. CONCLUSIONS Consequently, vaccination with ∆rpoS ∆slyA conferred a high percentage of protection against lethal invasive Salmonella, specifically S. C, in mice. This study provided novel insights into the development of live-attenuated vaccines against the infection of S. C.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanshan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Belgium
| | - Huazheng Jiang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuxian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
8
|
Bian X, Liu Q, Chen Y, Zhang W, Li M, Zhang X, Yang L, Liao Y, Kong Q. Immunogenicity and cross-protective efficacy induced by delayed attenuated Salmonella with regulated length of lipopolysaccharide in mice. Gut Microbes 2024; 16:2424983. [PMID: 39529227 PMCID: PMC11559367 DOI: 10.1080/19490976.2024.2424983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Non-typhoidal Salmonella enterica (NTS) is a major global foodborne pathogen that poses a major public health concern worldwide, and no vaccines are available for protecting against infection of multiple Salmonella serotypes, therefore, the development of Salmonella vaccines to provide broad protection is valuable. In this work, we aimed to regulate lipopolysaccharide (LPS) synthesis of live Salmonella in vivo for exposing conserved protein antigens on the outer membrane while maintaining smooth LPS patterns in vitro to keep their original ability to invade host cells for inducing cross-protection against infection of multiple Salmonella serotypes. We generated a series of mutants defective in genes to affect the length of LPS. These mutants exhibit in vivo regulated-delayed attenuation and altered length of LPS, and all these mutants were derived from SW067 (ΔpagL7 ΔpagP81::Plpp lpxE ΔlpxR9 Δfur9) containing ∆pagP81::Plpp lpxE mutation to reduce their endotoxic activity. Animal experiments demonstrated that all regulated delayed attenuated mutants exhibited reduced ability to colonize the organs of the mice, and SW114 (waaI), SW116 (waaJ), SW118 (waaL), and SW120 (wbaP) induced a significant production of IgG and IgA against OMPs isolated from S. Typhimurium, S. Enteritidis, and S. Choleraesuis. SW114 (waaI), SW116 (waaJ), and SW118 (waaL) were capable of conferring significant protection against infection of wild-type S. Enteritidis and S. Choleraesuis, with SW118 (waaL) triggering significant CD4+ T-cell responses as well as the B220low IgG+ BM cell. In conclusion, regulated delayed attenuated Salmonella vaccines with the whole core oligosaccharides of LPS showed a goo.d ability to expose conserved outer antigens and to trigger strong cross-immune responses against both homologous and heterologous Salmonella infections. These results give new insight into the development of the Salmonella vaccine against multiple serotypes of Salmonella.
Collapse
Affiliation(s)
- Xiaoping Bian
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
- Yibin Academy of Southwest University, Yibin, Sichuan, China
| | - Qing Liu
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
- Yibin Academy of Southwest University, Yibin, Sichuan, China
| | - Yaolin Chen
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Wenjin Zhang
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Mengru Li
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Xiaofen Zhang
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Liu Yang
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing, China
| | - Yonghong Liao
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
- Yibin Academy of Southwest University, Yibin, Sichuan, China
| |
Collapse
|
9
|
Abstract
This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.
Collapse
Affiliation(s)
- Roy Curtiss
- College of Veterinary Medicine, University of Florida, Gainesville, Florida,
| |
Collapse
|
10
|
Hajra D, Nair AV, Chakravortty D. Decoding the invasive nature of a tropical pathogen of concern: The invasive non-Typhoidal Salmonella strains causing host-restricted extraintestinal infections worldwide. Microbiol Res 2023; 277:127488. [PMID: 37716125 DOI: 10.1016/j.micres.2023.127488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Invasive-Non-Typhoidal Salmonella (iNTS) are the major cause of health concern in the low-income, under-developed nations in Africa and Asia that lack proper sanitation facilities. Around 5% of the NTS cases give rise to invasive, extraintestinal diseases leading to focal infections like osteomyelitis, meningitis, osteoarthritis, endocarditis and neonatal sepsis. iNTS serovars like S. Typhimurium, S. Enteritidis, S. Dublin, S. Choleraesuis show a greater propensity to become invasive than others which hints at the genetic basis of their emergence. The major risk factors attributing to the invasive diseases include immune-compromised individuals having co-infection with malaria or HIV, or suffering from malnutrition. The rampant use of antibiotics leading to the emergence of multi-drug resistant strains poses a great challenge in disease management. An extensive understanding of the iNTS pathogenesis and its epidemiology will open up avenues for the development of new vaccination and therapeutic strategies to restrict the spread of this neglected disease.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
11
|
Zhang G, Fu Y, Li Y, Li Q, Wang S, Shi H. Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the FedF Antigens Protects Mice against the Shiga-Toxin-Producing Escherichia coli Challenge. Biomolecules 2023; 13:1726. [PMID: 38136597 PMCID: PMC10741478 DOI: 10.3390/biom13121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Edema disease (ED) is a severe and lethal infectious ailment in swine, stemming from Shiga-toxin-producing Escherichia coli (STEC). An efficient, user-friendly, and safe vaccine against ED is urgently required to improve animal welfare and decrease antibiotic consumption. Recombinant attenuated Salmonella vaccines (RASV) administered orally induce both humoral and mucosal immune responses to the immunizing antigen. Their potential for inducing protective immunity against ED is significant through the delivery of STEC antigens. rSC0016 represents an enhanced recombinant attenuated vaccine vector designed for Salmonella enterica serotype Choleraesuis. It combines sopB mutations with a regulated delay system to strike a well-balanced equilibrium between host safety and immunogenicity. We generated recombinant vaccine strains, namely rSC0016 (pS-FedF) and rSC0016 (pS-rStx2eA), and assessed their safety and immunogenicity in vivo. The findings demonstrated that the mouse models immunized with rSC0016 (pS-FedF) and rSC0016 (pS-rStx2eA) generated substantial IgG antibody responses to FedF and rStx2eA, while also provoking robust mucosal and cellular immune responses against both FedF and rStx2eA. The protective impact of rSC0016 (pS-FedF) against Shiga-toxin-producing Escherichia coli surpassed that of rSC0016 (pS-rStx2eA), with percentages of 83.3%. These findings underscore that FedF has greater suitability for vaccine delivery via recombinant attenuated Salmonella vaccines (RASVs). Overall, this study provides a promising candidate vaccine for infection with STEC.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yang Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu’an Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA;
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (G.Z.); (Y.F.); (Q.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou 225009, China
| |
Collapse
|
12
|
Li Y, Sun Y, Zhang Y, Li Q, Wang S, Curtiss R, Shi H. A Bacterial mRNA-Lysis-Mediated Cargo Release Vaccine System for Regulated Cytosolic Surveillance and Optimized Antigen Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303568. [PMID: 37867213 PMCID: PMC10667801 DOI: 10.1002/advs.202303568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Engineered vector-based in vivo protein delivery platforms have made significant progress for both prophylactic and therapeutic applications. However, the lack of effective release strategies results in foreign cargo being trapped within the vector, restricting the provision of significant performance benefits and enhanced therapeutic results compared to traditional vaccines. Herein, the development of a Salmonella mRNA interferase regulation vector (SIRV) system is reported to overcome this challenge. The genetic circuits are engineered that (1) induce self-lysis to release foreign antigens into target cells and (2) activate the cytosolic surveillance cGAS-STING axis by releasing DNA into the cytoplasm. Delayed synthesis of the MazF interferase regulates differential mRNA cleavage, resulting in a 36-fold increase in the delivery of foreign antigens and modest activation of the inflammasome, which collectively contribute to the marked maturation of antigen-presenting cells (APCs). Bacteria delivering the protective antigen SaoA exhibits excellent immunogenicity and safety in mouse and pig models, significantly improving the survival rate of animals challenged with multiple serotypes of Streptococcus suis. Thus, the SIRV system enables the effective integration of various modular components and antigen cargos, allowing for the generation of an extensive range of intracellular protein delivery systems using multiple bacterial species in a highly efficient manner.
Collapse
Affiliation(s)
- Yu‐an Li
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Yanni Sun
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Yuqin Zhang
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Quan Li
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
| | - Shifeng Wang
- Department of Infectious Diseases and ImmunologyCollege of Veterinary MedicineUniversity of FloridaGainesvilleFL32611‐0880USA
| | - Roy Curtiss
- Department of Infectious Diseases and ImmunologyCollege of Veterinary MedicineUniversity of FloridaGainesvilleFL32611‐0880USA
| | - Huoying Shi
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225000China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225000China
- Joint International Research Laboratory of Agriculture and Agri‐Product SafetyYangzhou University (JIRLAAPS)Yangzhou225000China
| |
Collapse
|
13
|
Liu G, Li C, Liao S, Guo A, Wu B, Chen H. C500 variants conveying complete mucosal immunity against fatal infections of pigs with Salmonella enterica serovar Choleraesuis C78-1 or F18+ Shiga toxin-producing Escherichia coli. Front Microbiol 2023; 14:1210358. [PMID: 37779705 PMCID: PMC10536267 DOI: 10.3389/fmicb.2023.1210358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) C500 strain is a live, attenuated vaccine strain that has been used in China for over 40 years to prevent piglet paratyphoid. However, this vaccine is limited by its toxicity and does not offer protection against diseases caused by F18+ Shiga toxin-producing Escherichia coli (STEC), which accounts for substantial economic losses in the swine industry. We recently generated a less toxic derivative of C500 strain with both asd and crp deletion (S. Choleraesuis C520) and assessed its efficacy in mice. In addition, we demonstrate that C520 is also less toxic in pigs and is effective in protecting pigs against S. Choleraesuis when administered orally. To develop a vaccine with a broader range of protection, we prepared a variant of C520 (S. Choleraesuis C522), which expresses rSF, a fusion protein comprised of the fimbriae adhesin domain FedF and the Shiga toxin-producing IIe B domain antigen. For comparison, we also prepared a control vector strain (S. Choleraesuis C521). After oral vaccination of pigs, these strains contributed to persistent colonization of the intestinal mucosa and lymphoid tissues and elicited both cytokine expression and humoral immune responses. Furthermore, oral immunization with C522 elicited both S. Choleraesuis and rSF-specific immunoglobulin G (IgG) and IgA antibodies in the sera and gut mucosa, respectively. To further evaluate the feasibility and efficacy of these strains as mucosal delivery vectors via oral vaccination, we evaluated their protective efficacy against fatal infection with S. Choleraesuis C78-1, as well as the F18+ Shiga toxin-producing Escherichia coli field strain Ee, which elicits acute edema disease. C521 conferred complete protection against fatal infection with C78-1; and C522 conferred complete protection against fatal infection with both C78-1 and Ee. Our results suggest that C520, C521, and C522 are competent to provide complete mucosal immune protection against fatal infection with S. Choleraesuis in swine and that C522 equally qualifies as an oral vaccine vector for protection against F18+ Shiga toxin-producing Escherichia coli.
Collapse
Affiliation(s)
- Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Chunqi Li
- College of Animal Science, Yangtze University, Jingzhou, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Shengrong Liao
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Zhou G, Tian J, Tian Y, Ma Q, Li Q, Wang S, Shi H. Recombinant-attenuated Salmonella enterica serovar Choleraesuis vector expressing the PlpE protein of Pasteurella multocida protects mice from lethal challenge. BMC Vet Res 2023; 19:128. [PMID: 37598169 PMCID: PMC10439597 DOI: 10.1186/s12917-023-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Bacterial surface proteins play key roles in pathogenicity and often contribute to microbial adhesion and invasion. Pasteurella lipoprotein E (PlpE), a Pasteurella multocida (P. multocida) surface protein, has recently been identified as a potential vaccine candidate. Live attenuated Salmonella strains have a number of potential advantages as vaccine vectors, including immunization with live vector can mimic natural infections by organisms, lead to the induction of mucosal, humoral, and cellular immune responses. In this study, a previously constructed recombinant attenuated Salmonella Choleraesuis (S. Choleraesuis) vector rSC0016 was used to synthesize and secrete the surface protein PlpE of P. multocida to form the vaccine candidate rSC0016(pS-PlpE). Subsequently, the immunogenicity of S. Choleraesuis rSC0016(pS-PlpE) as an oral vaccine to induce protective immunity against P. multocida in mice was evaluated. RESULTS After immunization, the recombinant attenuated S. Choleraesuis vector can efficiently delivered P. multocida PlpE protein in vivo and induced a specific immune response against this heterologous antigen in mice. In addition, compared with the inactivated vaccine, empty vector (rSC0016(pYA3493)) and PBS immunized groups, the rSC0016(pS-PlpE) vaccine candidate group induced higher antigen-specific mucosal, humoral and mixed Th1/Th2 cellular immune responses. After intraperitoneal challenge, the rSC0016(pS-PlpE) immunized group had a markedly enhanced survival rate (80%), a better protection efficiency than 60% of the inactivated vaccine group, and significantly reduced tissue damage. CONCLUSIONS In conclusion, our study found that the rSC0016(pS-PlpE) vaccine candidate provided good protection against challenge with wild-type P. multocida serotype A in a mouse infection model, and may potentially be considered for use as a universal vaccine against multiple serotypes of P. multocida in livestock, including pigs.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiashuo Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
15
|
Wang Z, Zhang T, Jia F, Ge C, He Y, Tian Y, Wang W, Yang G, Huang H, Wang J, Shi C, Yang W, Cao X, Zeng Y, Wang N, Qian A, Wang C, Jiang Y. Homologous Sequential Immunization Using Salmonella Oral Administration Followed by an Intranasal Boost with Ferritin-Based Nanoparticles Enhanced the Humoral Immune Response against H1N1 Influenza Virus. Microbiol Spectr 2023; 11:e0010223. [PMID: 37154735 PMCID: PMC10269571 DOI: 10.1128/spectrum.00102-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The influenza virus continues to pose a great threat to public health due to the frequent variations in RNA viruses. Vaccines targeting conserved epitopes, such as the extracellular domain of the transmembrane protein M2 (M2e), a nucleoprotein, and the stem region of hemagglutinin proteins, have been developed, but more efficient strategies, such as nanoparticle-based vaccines, are still urgently needed. However, the labor-intensive in vitro purification of nanoparticles is still necessary, which could hinder the application of nanoparticles in the veterinary field in the future. To overcome this limitation, we used regulated lysis Salmonella as an oral vector with which to deliver three copies of M2e (3M2e-H1N1)-ferritin nanoparticles in situ and evaluated the immune response. Then, sequential immunization using Salmonella-delivered nanoparticles followed by an intranasal boost with purified nanoparticles was performed to further improve the efficiency. Compared with 3M2e monomer administration, Salmonella-delivered in situ nanoparticles significantly increased the cellular immune response. Additionally, the results of sequential immunization showed that the intranasal boost with purified nanoparticles dramatically stimulated the activation of lung CD11b dendritic cells (DCs) and elevated the levels of effector memory T (TEM) cells in both spleen and lung tissues as well as those of CD4 and CD8 tissue-resident memory T (TRM) cells in the lungs. The increased production of mucosal IgG and IgA antibody titers was also observed, resulting in further improvements to protection against a virus challenge, compared with the pure oral immunization group. Salmonella-delivered in situ nanoparticles efficiently increased the cellular immune response, compared with the monomer, and sequential immunization further improved the systemic immune response, as shown by the activation of DCs, the production of TEM cells and TRM cells, and the mucosal immune response, thereby providing us with a novel strategy by which to apply nanoparticle-based vaccines in the future. IMPORTANCE Salmonella-delivered in situ nanoparticle platforms may provide novel nanoparticle vaccines for oral administration, which would be beneficial for veterinary applications. The combination of administering Salmonella-vectored, self-assembled nanoparticles and an intranasal boost with purified nanoparticles significantly increased the production of effector memory T cells and lung resident memory T cells, thereby providing partial protection against an influenza virus challenge. This novel strategy could open a novel avenue for the application of nanoparticle vaccines for veterinary purposes.
Collapse
Affiliation(s)
- Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Ghasemi A, Wang S, Sahay B, Abbott JR, Curtiss R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front Immunol 2022; 13:1034683. [PMID: 36466847 PMCID: PMC9716130 DOI: 10.3389/fimmu.2022.1034683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Jeffrey R. Abbott
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| |
Collapse
|
17
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Multiple immunodominant O-epitopes co-expression in live attenuated Salmonella serovars induce cross-protective immune responses against S. Paratyphi A, S. Typhimurium and S. Enteritidis. PLoS Negl Trop Dis 2022; 16:e0010866. [PMID: 36228043 PMCID: PMC9595534 DOI: 10.1371/journal.pntd.0010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Salmonella enterica subsp. enterica (S. enterica) is a significant public health concern and is estimated to cause more than 300,000 deaths annually. Nowadays, the vaccines available for human Salmonellosis prevention are all targeting just one serovar, i.e., S. Typhi, leaving a huge potential risk of Salmonella disease epidemiology change. In this study, we explored the strategy of multiple immunodominant O-epitopes co-expression in S. enterica serovars and evaluated their immunogenicity to induce cross-immune responses and cross-protections against S. Paratyphi A, S. Typhimurium and S. Enteritidis. We found that nucleotide sugar precursors CDP-Abe and CDP-Par (or CDP-Tyv) could be utilized by S. enterica serovars simultaneously, exhibiting O2&O4 (or O4&O9) double immunodominant O-serotypes without obvious growth defects. More importantly, a triple immunodominant O2&O4&O9 O-serotypes could be achieved in S. Typhimurium by improving the substrate pool of CDP-Par, glycosyltransferase WbaV and flippase Wzx via a dual-plasmid overexpressing system. Through immunization in a murine model, we found that double or triple O-serotypes live attenuated vaccine candidates could induce significantly higher heterologous serovar-specific antibodies than their wild-type parent strain. Meanwhile, the bacterial agglutination, serum bactericidal assays and protection efficacy experiments had all shown that these elicited serum antibodies are cross-reactive and cross-protective. Our work highlights the potential of developing a new type of live attenuated Salmonella vaccines against S. Paratyphi A, S. Typhimurium and S. Enteritidis simultaneously.
Collapse
|
19
|
Attenuated Salmonella Typhimurium with truncated LPS and outer membrane-displayed RGD peptide for cancer therapy. Biomed Pharmacother 2022; 155:113682. [PMID: 36095964 DOI: 10.1016/j.biopha.2022.113682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Gram-negative, facultatively anaerobic bacteria Salmonella Typhimurium is a candidate agent or delivery vector for cancer therapy. Effective targeted therapies in addition to radiotherapy, chemotherapy and surgery have been urgently needed as an alternative or supplement. This study expected to further improve the tumor-targeting ability of Salmonella bacteria through genetic modifications. Based on an auxotrophic Salmonella bacterial strain (D2), we constructed Salmonella mutants with altered LPS length to facilitate displaying the RGD4C targeting peptide on the outer membrane surface of Salmonella. The expression of RGD4C peptide in fusion with OmpA was identified by outer membrane protein extraction and WB detection in different mutant strains. However, flow cytometry analysis following immunofluorescence staining demonstrated that the extracellular length of Salmonella LPS did affect the surface display of RGD4C peptide. The strain D2-RGD4C that synthesized intact LPS including lipid A, core oligosaccharides and O antigen polysaccharides could hardly display RGD4C peptide, showing the same fluorescence signal intensity as the strains not expressing RGD4C peptide. Among different strains, D2 ∆rfaJ-RGD4C that synthesized truncated LPS including lipid A and partial core oligosaccharides was capable of displaying RGD4C peptide most efficiently and showed the highest ability to target HUVECs expressing αV integrin and tumor tissue with abundant neovascularization. Animal experiments also demonstrated that this tumor-targeting attenuated Salmonella strain to simultaneously deliver endostatin and TRAIL, two agents with different anti-tumor activities, could significantly inhibit tumor growth and prolong mouse survival. Thus, our studies revealed that Salmonella could be genetically engineered to improve its tumor targeting via the truncation of LPS and surface display of targeting peptides, thereby eliciting superior anti-tumor effects through targeted delivery of drug molecules.
Collapse
|
20
|
Li Q, Li Z, Fei X, Tian Y, Zhou G, Hu Y, Wang S, Shi H. The role of TolA, TolB, and TolR in cell morphology, OMVs production, and virulence of Salmonella Choleraesuis. AMB Express 2022; 12:5. [PMID: 35075554 PMCID: PMC8787014 DOI: 10.1186/s13568-022-01347-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/15/2022] [Indexed: 01/12/2023] Open
Abstract
The Tol–Pal system of Gram-negative bacteria is necessary for maintaining outer membrane integrity. It is a multiprotein complex of five envelope proteins, TolQ, TolR, TolA, TolB, and Pal. These proteins were first investigated in E. coli, and subsequently been identified in many other bacterial genera. However, the function of the Tol–Pal system in Salmonella Choleraesuis pathogenesis is still unclear. Here, we reported the role of three of these proteins in the phenotype and biology of S. Choleraesuis. We found that mutations in tolA, tolB, and tolR caused severe damage to the cell wall, which was supported by observing the microstructure of spherical forms, long chains, flagella defects, and membrane blebbing. We confirmed that all the mutants significantly decreased S. Choleraesuis survival when exposed to sodium deoxycholate and exhibited a high sensitivity to vancomycin, which may be explained by the disruption of envelope integrity. In addition, tolA, tolB, and tolR mutants displayed attenuated virulence in a mouse infection model. This could be interpreted as a series of defective phenotypes in the mutants, such as severe defects in envelope integrity, growth, and motility. Further investigation showed that all the genes participate in outer membrane vesicles (OMVs) biogenesis. Interestingly, immunization with OMVs from ΔtolB efficiently enhanced murine viability in contrast to OMVs from the wild-type S. Choleraesuis, suggesting its potential use in vaccination strategies. Collectively, this study provides an insight into the biological role of the S. Choleraesuis Tol–Pal system.
Collapse
|
21
|
Das S, Saqib M, Meng RC, Chittur SV, Guan Z, Wan F, Sun W. Hemochromatosis drives acute lethal intestinal responses to hyperyersiniabactin-producing Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 2022; 119:e2110166119. [PMID: 34969677 PMCID: PMC8764673 DOI: 10.1073/pnas.2110166119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Hemachromatosis (iron-overload) increases host susceptibility to siderophilic bacterial infections that cause serious complications, but the underlying mechanisms remain elusive. The present study demonstrates that oral infection with hyperyersiniabactin (Ybt) producing Yersinia pseudotuberculosis Δfur mutant (termed Δfur) results in severe systemic infection and acute mortality to hemochromatotic mice due to rapid disruption of the intestinal barrier. Transcriptome analysis of Δfur-infected intestine revealed up-regulation in cytokine-cytokine receptor interactions, the complement and coagulation cascade, the NF-κB signaling pathway, and chemokine signaling pathways, and down-regulation in cell-adhesion molecules and Toll-like receptor signaling pathways. Further studies indicate that dysregulated interleukin (IL)-1β signaling triggered in hemachromatotic mice infected with Δfur damages the intestinal barrier by activation of myosin light-chain kinases (MLCK) and excessive neutrophilia. Inhibiting MLCK activity or depleting neutrophil infiltration reduces barrier disruption, largely ameliorates immunopathology, and substantially rescues hemochromatotic mice from lethal Δfur infection. Moreover, early intervention of IL-1β overproduction can completely rescue hemochromatotic mice from the lethal infection.
Collapse
Affiliation(s)
- Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Ryan C Meng
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
22
|
Song Y, Xu G, Li C, Li Z, Lu C, Shen Y. Structural optimization of natural product fusaric acid to discover novel T3SS inhibitors of Salmonella. Biochem Biophys Res Commun 2021; 582:72-76. [PMID: 34695753 DOI: 10.1016/j.bbrc.2021.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
Type III secretion system (T3SS) plays a critical role in host cell invasion and pathogenesis of Salmonella. We recently identified the mycotoxin fusaric acid (FA) as a T3SS inhibitor of Salmonella. Herein, twenty-two diphenylsulfane derivatives were designed and synthesized using FA as a lead compound through scaffold hopping. Among them, SL-8 and SL-19 possessing strong anti-T3SS and anti-invasion activity were identified as T3SS inhibitors with improvement in potency as compared to FA. The inhibitory mechanisms on SPI-1 did not depend on the HilD-HilC-RtsA-HilA or PhoP-PhoQ pathway or the assembly of T3SS needle complex. Accordingly, we proposed that the inhibitory effects of SL-8 and SL-19 on SPI-1 probably influence the formation of SicA/InvF-effector complex or other related proteins.
Collapse
Affiliation(s)
- Yuliang Song
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangsen Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chaoqun Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhiying Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
23
|
A triple-sugar regulated Salmonella vaccine protects against Clostridium perfringens-induced necrotic enteritis in broiler chickens. Poult Sci 2021; 101:101592. [PMID: 34922043 PMCID: PMC8686071 DOI: 10.1016/j.psj.2021.101592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
Gram-positive Clostridium perfringens type G, the causative agent of necrotic enteritis (NE), has gained more attention in the poultry industry due to governmental restrictions on the use of growth-promoting antibiotics in poultry feed. Our previous work has proved that regulated delayed lysis Salmonella vaccines delivering a plasmid encoding an operon fusion of the nontoxic C-terminal adhesive part of alpha toxin and a GST-NetB toxin fusion were able to elicit significant protective immunity in broilers against C. perfringens challenge. We recently improved our S. Typhimurium antigen delivery vaccine strain by integrating a rhamnose-regulated O-antigen synthesis gene enabling a triple-sugar regulation system to control virulence, antigen-synthesis and lysis in vivo traits. The strain also includes a ΔsifA mutation that was previously shown to increase the immunogenicity of and level of protective immunity induced by Salmonella vectored influenza and Eimeria antigens. The new antigen-delivery vaccine vector system confers on the vaccine strain a safe profile and improved protection against C. perfringens challenge. The strain with the triple-sugar regulation system delivering a regulated lysis plasmid pG8R220 encoding the PlcC and GST-NetB antigens protected chickens at a similar level observed in antibiotic-treated chickens. Feed conversion and growth performance were also similar to antibiotic-treated chickens. These studies made use of a severe C. perfringens challenge with lesion formation and mortality enhanced by pre-exposure to Eimeria maxima oocysts. The vaccine achieved effectiveness through three different immunization routes, oral, spray and in drinking water. The vaccine has a potential for application in commercial hatcher and broiler-rearing conditions.
Collapse
|
24
|
Li Q, Hu Y, Fei X, Du Y, Guo W, Chu D, Wang X, Wang S, Shi H. OmpC, a novel factor H-binding surface protein, is dispensable for the adherence and virulence of Salmonella enterica serovar Typhimurium. Vet Microbiol 2021; 259:109157. [PMID: 34197978 DOI: 10.1016/j.vetmic.2021.109157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 11/24/2022]
Abstract
Salmonella enterica serovar Typhimurium utilizes a series of strategies to evade host innate immune defenses, including the serum complement system. Many microbial pathogens have evolved the ability to bind the complement regulatory protein factor H (FH) through their surface factor H-binding proteins (FHBPs) to circumvent the complement-mediated bactericidal effect. However, the roles of FHBPs in Salmonella pathogenesis are not well understood. In this study, we demonstrated that the survival of S. Typhimurium in human serum was decreased in a time and concentration dependent manner. Pre-incubation with FH attenuated the sensitivity of S. Typhimurium strain χ3761 to complement-mediated serum killing, suggesting FH binding enhance survival in serum. We aimed to identify novel S. Typhimurium FHBPs and characterize their biological functions. Here, six potential FHBPs were identified by two-dimensional (2D)-Far-western blot, and three of them were further confirmed to bind FH by Far-western blot and dot blot. We found that deletion of ompC (ΔompC) significantly inhibited the survival of S. Typhimurium strain χ3761 in human serum. Our results indicated that the ompC mutation does not affect χ3761 adhesion to HeLa cells. Furthermore, a mice infection model showed that deletion of ompC had no significant effect on the histopathological lesions or viability compared with the wild-type strain χ3761. In summary, these results suggested that OmpC is an important FHBP, but not a critical virulence factor of S. Typhimurium.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yuhan Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xia Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yuanzhao Du
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China.
| | - Weiwei Guo
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China.
| | - Dianfeng Chu
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China.
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| |
Collapse
|
25
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
26
|
Han Y, Luo P, Chen Y, Xu J, Sun J, Guan C, Wang P, Chen M, Zhang X, Zhu Y, Zhu T, Zhai R, Cheng C, Song H. Regulated delayed attenuation improves vaccine efficacy in preventing infection from avian pathogenic Escherichia coli O 78 and Salmonella typhimurium. Vet Microbiol 2021; 254:109012. [PMID: 33611126 DOI: 10.1016/j.vetmic.2021.109012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) O78 and Salmonella typhimurium (S. Typhimurium) are two leading bacterial pathogens that cause significant economic loss in the poultry industry. O-antigen is an important immunogen of these two bacteria to induce host protective immune responses during infection. To develop a bivalent vaccine against APEC O78 and S. Typhimurium, the attenuated Salmonella ST01 (Δasd ΔrfbP Δcrp) was genetically constructed to deliver APEC O78 O-antigen polysaccharide (OPS), which stably expresses OPS with asd+ balanced-lethal system in vitro and in vivo. After oral immunization, the recombinant attenuated Salmonella vaccine (RASV) strain ST01 (pSS26-O78) provided insufficient protection against the APEC O78 challenge. Therefore, the regulated delayed attenuation strain ST02 (Δasd ΔrfbP ΔPcrp::TTaraC PBADcrp) was further constructed by regulating cyclic AMP receptor protein (crp) with araC PBAD cassette to better present the heterologous O-antigen to the host immune system. The innovative recombinant strain ST02 (pSS26-O78) stimulated robust antibody responses against APEC O78 and S. Typhimurium OPS, with serum titers over 1:800 for both IgG and IgA, thereby providing the complement-mediated bactericidal activity and stronger protection against APEC O78 and S. Typhimurium infection. Collectively, this study demonstrates a biologically-conjugated polysaccharide vaccine candidate that can enhance homologous protection against APEC O78 and S. Typhimurium.
Collapse
Affiliation(s)
- Yue Han
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Ping Luo
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Yuji Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Jiali Xu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Jing Sun
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Chiyu Guan
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Pu Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Mianmian Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Yueyue Zhu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Tingting Zhu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Ruidong Zhai
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Changyong Cheng
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China.
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China.
| |
Collapse
|
27
|
DAI LP, WANG ZS, WANG HX, LU CH, SHEN YM. Shunt products of aminoansamycins from aas1 overexpressed mutant strain of Streptomyces sp. S35. Chin J Nat Med 2020; 18:952-956. [DOI: 10.1016/s1875-5364(20)60039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/30/2022]
|
28
|
Swain B, Powell CT, Curtiss R. Pathogenicity and immunogenicity of Edwardsiella piscicida ferric uptake regulator (fur) mutations in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2020; 107:497-510. [PMID: 33176201 DOI: 10.1016/j.fsi.2020.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella piscicida is the etiological agent of edwardsiellosis in fish and causes severe economic losses in global aquaculture. Vaccination would be the most effective method to prevent infectious diseases and their associated economic losses. The ferric uptake regulator (Fur) is an important transcriptional global regulator of Gram-negative bacteria. In this study, we examined the regulatory function of Fur in E. piscicida. We designed a strain that displays features of the wild-type virulent strain of E. piscicida at the time of immunization to enable strains first to effectively colonize lymphoid tissues and then to exhibit a regulated delayed attenuation in vivo to preclude inducing disease symptoms. Regulated delayed attenuation in vivo is based on the substitution of a tightly regulated araC ParaBAD cassette for the promoter of the fur gene such that expression of this gene is dependent on arabinose provided during growth. Thus, following E. piscicida mutant colonization of lymphoid tissues, the Fur protein ceases to be synthesized due to the absence of arabinose such that attenuation is gradually manifest in vivo to preclude induction of diseases symptoms. We deleted the promoter, including all sequences that interact with activator or repressor proteins, for the fur gene, and substituted the improved araC ParaBAD cassette to yield an E. piscicida strain with the ΔPfur170:TT araC ParaBADfur deletion-insertion mutation (χ16012). Compared to the wild-type strain J118, χ16012 exhibited retarded growth and enhanced siderophore production in the absence of arabinose. mRNA levels of Fur-regulated genes were analyzed in iron deplete or replete condition in wild-type and fur mutant strains. We observed zebrafish immunized with χ16012 showed better colonization and protection compared to the Δfur (χ16001). Studies showed that E. piscicida strain χ16012 is attenuated and induces systemic and mucosal IgM titer in zebrafish. In addition, we found an increase in transcript levels of tnf-α, il-1β, il-8 and ifn-γ in different tissues of zebrafish immunized with χ16012 compared to the unimmunized group. We conclude that, E. piscicida with regulated delayed attenuation could be an effective immersion vaccine for the aquaculture industry.
Collapse
Affiliation(s)
- Banikalyan Swain
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA.
| | - Cole T Powell
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Roy Curtiss
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| |
Collapse
|
29
|
Chen B, Ye D, Luo L, Liu W, Peng K, Shu X, Gu W, Wang X, Xiang C, Jiang M. Adhesive Bacteria in the Terminal Ileum of Children Correlates With Increasing Th17 Cell Activation. Front Pharmacol 2020; 11:588560. [PMID: 33390964 PMCID: PMC7774322 DOI: 10.3389/fphar.2020.588560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Humans and symbiotic bacteria are interdependent and co-evolved for millions of years. These bacteria communicate with human hosts in the gut in a contact-independent metabolite. Because most intestinal bacteria are non-adhesive, they do not penetrate the mucus layer and are not directly in contact with epithelial cells (ECs). Here, we found that there are adhesive bacteria attached to the Children's terminal ileum. And we compared the immune factors of non-adhesive bacteria in the children ileum with adhesive bacteria as well. Stimulated Th17 cell associated with adherent bacteria in the ileum ECs. SIgA responses are similar to those roles in mouse experiments. Immunohistochemical analysis confirmed that the expression of SAA1, IL-2, IL-17A, foxp3, RORγt, TGFβ, and protein increased in Th17 cells. Finally, we used 16S rRNA genes 454 pyrosequencing to analyze the differences in bacterial communities between adhesive and non-adhesive bacteria in the ileum. Ileum with adherent bacteria demonstrated increased mucosa-related bacteria, such as Clostridium, Ruminococcus, Veillonella, Butyricimonas, and Prevotella. We believe that adhesive bacteria in children’s terminal ileum associated with an increased Th17 cell activation and luminal secretory IgA. Adhesive bacteria very closely adhere to terminal ileum of children. They may play important role in human gut immunity and Crohn’s disease.
Collapse
Affiliation(s)
- Bo Chen
- Gastrointestinal Lab, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child, National Children's Regional Medical Center, Hangzhou, China
| | - Diya Ye
- Gastrointestinal Lab, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child, National Children's Regional Medical Center, Hangzhou, China
| | - Lingling Luo
- Gastrointestinal Lab, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child, National Children's Regional Medical Center, Hangzhou, China
| | - Weirong Liu
- Gastrointestinal Lab, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child, National Children's Regional Medical Center, Hangzhou, China.,Shaoxing People's Hospital, Shaoxing, China
| | - Kerong Peng
- Gastrointestinal Lab, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child, National Children's Regional Medical Center, Hangzhou, China
| | - Xiaoli Shu
- Gastrointestinal Lab, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child, National Children's Regional Medical Center, Hangzhou, China
| | - Weizhong Gu
- Gastrointestinal Lab, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child, National Children's Regional Medical Center, Hangzhou, China
| | | | - Charlie Xiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mizu Jiang
- Gastrointestinal Lab, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
30
|
Troxell B, Mendoza M, Ali R, Koci M, Hassan H. Attenuated Salmonella enterica Serovar Typhimurium, Strain NC983, Is Immunogenic, and Protective against Virulent Typhimurium Challenges in Mice. Vaccines (Basel) 2020; 8:vaccines8040646. [PMID: 33153043 PMCID: PMC7711481 DOI: 10.3390/vaccines8040646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars are significant health burden worldwide. Although much effort has been devoted to developing typhoid-based vaccines for humans, currently there is no NTS vaccine available. Presented here is the efficacy of a live attenuated serovar Typhimurium strain (NC983). Oral delivery of strain NC983 was capable of fully protecting C57BL/6 and BALB/c mice against challenge with virulent Typhimurium. Strain NC983 was found to elicit an anti-Typhimurium IgG response following administration of vaccine and boosting doses. Furthermore, in competition experiments with virulent S. Typhimurium (ATCC 14028), NC983 was highly defective in colonization of the murine liver and spleen. Collectively, these results indicate that strain NC983 is a potential live attenuated vaccine strain that warrants further development.
Collapse
Affiliation(s)
- Bryan Troxell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Mary Mendoza
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Rizwana Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
- Microbiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: ; Tel.: +919-515-7081; Fax: +919-515-2625
| |
Collapse
|
31
|
Sousa Gerós A, Simmons A, Drakesmith H, Aulicino A, Frost JN. The battle for iron in enteric infections. Immunology 2020; 161:186-199. [PMID: 32639029 PMCID: PMC7576875 DOI: 10.1111/imm.13236] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for almost all living organisms, but can be extremely toxic in high concentrations. All organisms must therefore employ homeostatic mechanisms to finely regulate iron uptake, usage and storage in the face of dynamic environmental conditions. The critical step in mammalian systemic iron homeostasis is the fine regulation of dietary iron absorption. However, as the gastrointestinal system is also home to >1014 bacteria, all of which engage in their own programmes of iron homeostasis, the gut represents an anatomical location where the inter-kingdom fight for iron is never-ending. Here, we explore the molecular mechanisms of, and interactions between, host and bacterial iron homeostasis in the gastrointestinal tract. We first detail how mammalian systemic and cellular iron homeostasis influences gastrointestinal iron availability. We then focus on two important human pathogens, Salmonella and Clostridia; despite their differences, they exemplify how a bacterial pathogen must navigate and exploit this web of iron homeostasis interactions to avoid host nutritional immunity and replicate successfully. We then reciprocally explore how iron availability interacts with the gastrointestinal microbiota, and the consequences of this on mammalian physiology and pathogen iron acquisition. Finally, we address how understanding the battle for iron in the gastrointestinal tract might inform clinical practice and inspire new treatments for important diseases.
Collapse
Affiliation(s)
- Ana Sousa Gerós
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Alison Simmons
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Hal Drakesmith
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Anna Aulicino
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Joe N. Frost
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
32
|
Liang K, Liu Q, Kong Q. New technologies in developing recombinant-attenuated bacteria for cancer therapy. Biotechnol Bioeng 2020; 118:513-530. [PMID: 33038015 DOI: 10.1002/bit.27596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Cancer has always been a global problem, with more cases of cancer patients being diagnosed every year. Conventional cancer treatments, including radiotherapy, chemotherapy, and surgery, are still unable to bypass their obvious limitations, and developing effective targeted therapies is still required. More than one century ago, the doctor William B. Coley discovered that cancer patients had tumor regression by injection of Streptococcus bacteria. The studies of cancer therapy using bacterial microorganisms are now very widespread. In particular, the facultative anaerobic bacteria Salmonella typhimurium is widely investigated as it can selectively colonize different types of tumors, locally deliver various antitumor drugs, and inhibit tumor growth. The exciting antitumor efficacy and safety observed in animal tumor models prompted the well-known attenuated Salmonella bacterial strain VNP20009 to be tested in human clinical trials in the early 21st century. Regrettably, no patients showed significant therapeutic effects and even bacterial colonization in tumor tissue was undetectable in most patients. Salmonella bacteria are still considered as a promising agent or vehicle for cancer therapy. Recent efforts have been focused on the generation of attenuated bacterial strains with higher targeting for tumor tissue, and optimization of the delivery of therapeutic antitumor cargoes into the tumor microenvironment. This review will summarize new technologies or approaches that may improve bacteria-mediated cancer therapy.
Collapse
Affiliation(s)
- Kang Liang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Wu Y, Yang X, Zhang D, Lu C. Myricanol Inhibits the Type III Secretion System of Salmonella enterica Serovar Typhimurium by Interfering With the DNA-Binding Activity of HilD. Front Microbiol 2020; 11:571217. [PMID: 33101243 PMCID: PMC7546796 DOI: 10.3389/fmicb.2020.571217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system (T3SS) consists of a syringe-like export machine injecting effectors from the bacterial cytosol directly into host cells to establish infection. This mechanism is widely distributed in gram-negative bacteria and can be targeted as an innovative strategy for the developing of anti-virulence drugs. In this study, we present an effective T3SS inhibitor, myricanol, inspired by the use of folk medicinal plants traditionally used against infections. Myricanol is a cyclic diarylheptanoid isolated from the medicinal plant Myrica nagi, which is found in South and East Asia. Bioassay-guided fractionation revealed that myricanol inhibited not only the secretion of type III effector proteins of Salmonella enterica serovar Typhimurium UK-1 χ8956 (S. Typhimurium) but also the invasion of S. Typhimurium into mammalian cells, but showed no toxicity to bacterial growth or the host cells. RNA-Seq data analysis showed that the transcription of the pathogenesis-related SPI-1 gene was significantly inhibited by myricanol. Further study demonstrated that myricanol binds physically to HilD and interferes with its DNA-binding activity to the promoters of the hilA and invF genes. In conclusion, we propose that myricanol is responsible for the anti-infectious properties of M. nagi and is a novel T3SS inhibitor of S. Typhimurium through a previously unappreciated mechanism of action.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dongdong Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
34
|
Li Q, Lv Y, Li YA, Du Y, Guo W, Chu D, Wang X, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vector delivering a conserved surface protein enolase induces high and broad protection against Streptococcus suis serotypes 2, 7, and 9 in mice. Vaccine 2020; 38:6904-6913. [PMID: 32907758 DOI: 10.1016/j.vaccine.2020.08.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023]
Abstract
Streptococcus suis, a major zoonotic pathogen in swine, can be classified into 35 serotypes. However, no universal vaccine against the multiple serotypes of S. suis is available, though some studies have shown homologous protection. Hence, developing an effective universal vaccine to protect pigs against multiple S. suis serotypes is necessary, or at the very least, to protect pigs against diseases caused by the dominant pathogenic serotypes. Enolase, a highly conserved surface protein, is present in all of the described S. suis serotypes. rSC0016 is an improved recombinant attenuated S. Choleraesuis vaccine vector, combining a sopB mutation with regulated delayed systems, achieving an adequate balance between host safety and immunogenicity. In order to develop a universal vaccine against the multiple serotypes of S. suis, a novel recombinant vaccine strain rSC0016 that carries a heterologous antigen enolase was developed in this study. According, it was found that the recombinant vaccine strain rSC0016(pS-Enolase) exhibited better colonization compared to the vaccine control strain rSC0018(pYA3493). In addition, a mouse model immunized with the strain rSC0016(pS-Enolase) elicited significant IgG antibody responses against both enolase and Salmonella antigens, while inducing good mucosal, humoral, and cellular immune responses against enolase. Finally, immunization with rSC0016(pS-Enolase) was shown to confer 100%, 80%, and 100% protection against the serotypes of SS2, SS7, and SS9, respectively, and significantly reduced histopathological lesions in mice. Overall, this study provides a promising universal vaccine candidate for use against the multiple serotypes of S. suis.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yifan Lv
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yuanzhao Du
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China
| | - Weiwei Guo
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China
| | - Dianfeng Chu
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China.
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| |
Collapse
|
35
|
Ye F, Shi Y, Zhao S, Li Z, Wang H, Lu C, Shen Y. 8-Deoxy-Rifamycin Derivatives from Amycolatopsis mediterranei S699 ΔrifT Strain. Biomolecules 2020; 10:biom10091265. [PMID: 32887371 PMCID: PMC7563148 DOI: 10.3390/biom10091265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 02/03/2023] Open
Abstract
Proansamycin X, a hypothetical earliest macrocyclic precursor in the biosynthesis of rifamycin, had never been isolated and identified. According to bioinformatics analysis, it was proposed that RifT (a putative NADH-dependent dehydrogenase) may be a candidate target responsible for the dehydrogenation of proansamycin X. In this study, the mutant strain Amycolatopsis mediterranei S699 ΔrifT was constructed by deleting the rifT gene. From this strain, eleven 8-deoxy-rifamycin derivatives (1–11) and seven known analogues (12–18) were isolated. Their structures were elucidated by extensive analysis of 1D and 2D NMR spectroscopic data and high-resolution ESI mass spectra. Compound 1 is a novel amide N-glycoside of seco-rifamycin. Compounds 2 and 3 feature conserved 11,12-seco-rifamycin W skeleton. The diverse post-modifications in the polyketide chain led to the production of 4–11. Compounds 2, 3, 5, 6, 13 and 15 exhibited antibacterial activity against Staphylococcus aureus (MIC (minimal inhibitory concentration) values of 10, 20, 20, 20, 40 and 20 μg/mL, respectively). Compounds 14, 15, 16, 17 and 18 showed potent antiproliferative activity against KG1 cells with IC50 (half maximal inhibitory concentration) values of 14.91, 44.78, 2.16, 18.67 and 8.07 μM, respectively.
Collapse
Affiliation(s)
- Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Shengliang Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Zhiying Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
- Correspondence: ; Tel.: +86-531-8838-2108
| |
Collapse
|
36
|
Kong W, Wang X, Fields E, Okon B, Jenkins MC, Wilkins G, Brovold M, Golding T, Gonzales A, Golden G, Clark-Curtiss J, Curtiss R. Mucosal Delivery of a Self-destructing Salmonella-Based Vaccine Inducing Immunity Against Eimeria. Avian Dis 2020; 64:254-268. [PMID: 33112952 DOI: 10.1637/aviandiseases-d-19-00159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2019] [Indexed: 11/05/2022]
Abstract
A programmed self-destructive Salmonella vaccine delivery system was developed to facilitate efficient colonization in host tissues that allows release of the bacterial cell contents after lysis to stimulate mucosal, systemic, and cellular immunities against a diversity of pathogens. Adoption and modification of these technological improvements could form part of an integrated strategy for cost-effective control and prevention of infectious diseases, including those caused by parasitic pathogens. Avian coccidiosis is a common poultry disease caused by Eimeria. Coccidiosis has been controlled by medicating feed with anticoccidial drugs or administering vaccines containing low doses of virulent or attenuated Eimeria oocysts. Problems of drug resistance and nonuniform administration of these Eimeria resulting in variable immunity are prompting efforts to develop recombinant Eimeria vaccines. In this study, we designed, constructed, and evaluated a self-destructing recombinant attenuated Salmonella vaccine (RASV) lysis strain synthesizing the Eimeria tenella SO7 antigen. We showed that the RASV lysis strain χ11791(pYA5293) with a ΔsifA mutation enabling escape from the Salmonella-containing vesicle (or endosome) successfully colonized chicken lymphoid tissues and induced strong mucosal and cell-mediated immunities, which are critically important for protection against Eimeria challenge. The results from animal clinical trials show that this vaccine strain significantly increased food conversion efficiency and protection against weight gain depression after challenge with 105E. tenella oocysts with concomitant decreased oocyst output. More importantly, the programmed regulated lysis feature designed into this RASV strain promotes bacterial self-clearance from the host, lessening persistence of vaccine strains in vivo and survival if excreted, which is a critically important advantage in a vaccine for livestock animals. Our approach should provide a safe, cost-effective, and efficacious vaccine to control coccidiosis upon addition of additional protective Eimeria antigens. These improved RASVs can also be modified for use to control other parasitic diseases infecting other animal species.
Collapse
Affiliation(s)
- Wei Kong
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Xiao Wang
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Emilia Fields
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Blessing Okon
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Mark C Jenkins
- Animal Parasitic Diseases Laboratory, the Agricultural Research Service, USDA, Beltsville, MD 20705-2359
| | - Gary Wilkins
- Animal Parasitic Diseases Laboratory, the Agricultural Research Service, USDA, Beltsville, MD 20705-2359
| | - Matthew Brovold
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Tiana Golding
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Amanda Gonzales
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Greg Golden
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Josephine Clark-Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
37
|
Liu W, Ruan T, Ji X, Ran D, Sun J, Shi H, Prinz RA, Sun J, Pan Z, Jiao X, Xu X. The Gli1-Snail axis contributes to Salmonella Typhimurium-induced disruption of intercellular junctions of intestinal epithelial cells. Cell Microbiol 2020; 22:e13211. [PMID: 32329192 DOI: 10.1111/cmi.13211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that damages gastrointestinal tissue and causes severe diarrhoea. The mechanisms by which Salmonella disrupts epithelial barrier and increases the paracellular permeability are incompletely understood. Our present study aims to determine the role of Gli1, a transcription factor activated in the sonic hedgehog (Shh) pathway, in decreasing the levels of apical junction proteins in a Salmonella-infected human colonic epithelial cancer cell line, Caco-2, and in the intestinal tissue of Salmonella-infected mice. Here, we report that S. Typhimurium increased the mRNA and protein levels of Gli1 and Snail, a downstream transcription factor that plays an important role in the epithelial-to-mesenchymal transition (EMT). S. Typhimurium also decreased the levels of E-cadherin and three tight junction proteins (ZO-1, claudin-1, and occludin). Gli1 siRNA and GANT61, a Gli1-specific inhibitor, blocked S. Typhimurium-induced Snail expression, restored the levels of E-cadherin and tight junction proteins, and prevented S. Typhimurium-increased paracellular permeability. Further study showed that Gli1 was cross-activated by the MAP and PI-3 kinase pathways. S. Typhimurium devoid of sopB, an effector of the Type 3 secretion system (T3SS) responsible for AKT activation, was unable to induce Snail expression and to decrease the expression of apical junction proteins. Our study uncovered a novel role of Gli1 in mediating the Salmonella-induced disruption of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Ruan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoyue Ji
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Di Ran
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huoying Shi
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, Illinois, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
38
|
Li YA, Chen Y, Du YZ, Guo W, Chu D, Fan J, Wang X, Bellefleur M, Wang S, Shi H. Live-attenuated Salmonella enterica serotype Choleraesuis vaccine with regulated delayed fur mutation confer protection against Streptococcus suis in mice. BMC Vet Res 2020; 16:129. [PMID: 32381017 PMCID: PMC7203871 DOI: 10.1186/s12917-020-02340-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Recombinant Salmonella enterica serotype Choleraesuis (S. Choleraesuis) vaccine vector could be used to deliver heterologous antigens to prevent and control pig diseases. We have previously shown that a live-attenuated S. Choleraesuis vaccine candidate strain rSC0011 (ΔPcrp527::TT araC PBADcrp Δpmi-2426 ΔrelA199::araC PBADlacI TT ΔasdA33, Δ, deletion, TT, terminator) delivering SaoA, a conserved surface protein in most of S. suis serotypes, provided excellent protection against S. suis challenge, but occasionally lead to morbidity (enteritidis) in vaccinated mice (approximately 1 in every 10 mice). Thus, alternated attenuation method was sought to reduce the reactogenicity of strain rSC0011. Herein, we described another recombinant attenuated S. Choleraesuis vector, rSC0012 (ΔPfur88:: TT araC PBADfur Δpmi-2426 ΔrelA199:: araC PBADlacI TT ΔasdA33) with regulated delayed fur mutation to avoid inducing disease symptoms while exhibiting a high degree of immunogenicity. Results The strain rSC0012 strain with the ΔPfur88::TT araC PBADfur mutation induced less production of inflammatory cytokines than strain rSC0011 with the ΔPcrp527::TT araC PBADcrp mutation in mice. When delivering the same pS-SaoA plasmid, the intraperitoneal LD50 of rSC0012 was 18.2 times higher than that of rSC0011 in 3-week-old BALB/C mice. rSC0012 with either pS-SaoA or pYA3493 was cleared from spleen and liver tissues 7 days earlier than rSC0011 with same vectors after oral inoculation. The strain rSC0012 synthesizing SaoA induced high titers of anti-SaoA antibodies in both systemic (IgG in serum) and mucosal (IgA in vaginal washes) sites, as well as increased level of IL-4, the facilitator of Th2-type T cell immune response in mice. The recombinant vaccine rSC0012(pS-SaoA) conferred high percentage of protection against S. suis or S. Choleraesuis challenge in BALB/C mice. Conclusions The live-attenuated Salmonella enterica serotype Choleraesuis vaccine rSC0012(pS-SaoA) with regulated delayed fur mutation provides a foundation for the development of a safe and effective vaccine against S. Choleraesuis and S. suis.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yunyun Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Zhao Du
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China
| | - Weiwei Guo
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China
| | - Dianfeng Chu
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao, 266114, China
| | - Juan Fan
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, 225000, Jiangsu, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Matthew Bellefleur
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, Yangzhou, China. .,Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
39
|
Singh AK, Wang X, Sun W. Oral vaccination with live attenuated Yersinia pseudotuberculosis strains delivering a FliC180-LcrV fusion antigen confers protection against pulmonary Y. Pestis infection. Vaccine 2020; 38:3720-3728. [PMID: 32278523 PMCID: PMC7285849 DOI: 10.1016/j.vaccine.2020.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
We incorporated the ΔPfur::TT araC PBADfur deletion-insertion mutation on top of a previous Yersinia pseudotuberculosis mutant (Δasd ΔyopJ ΔyopK) to construct a new mutant designated as Yptb5, which manifests the arabinose-dependent regulated delayed fur (encoding ferric uptake regulator) shut-off. The Yptb5 strain was used to deliver an adjuvanted fusion protein, FliC180-LcrV. Levels of FliC180-LcrV synthesis were same in Yptb5 either harboring pSMV4, a p15A ori plasmid or pSMV8, a pSC101 ori plasmid containing the fliC180-lcrV fusion gene driven by Ptrc promoter. Tissue burdens of both Yptb5(pSMV4) and Yptb5(pSMV8) in mice had similar patterns. Mice vaccinated orally with 5 × 108 CFU of either Yptb5(pSMV4) or Yptb5(pSMV8) strain were primed high antibody titers with a balanced Th1/Th2 response, also developed potent T-cell responses with significant productions of IFN-γ, IL-17A and TNF-α. Immunization with each mutant strain conferred complete protection against pulmonary challenge with 5.5 × 103 CFU (55 LD50) of Y. pestis, but partial protection (50% survival) against 100 LD50 of Y. pestis. Our results demonstrate that arabinose-dependent regulated delayed fur shut-off is an effective strategy to develop live attenuated bacterial vaccines while retaining strong immunogenicity.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
40
|
Zhang X, Gao R, Liu Y, Cong Y, Zhang D, Zhang Y, Yang X, Lu C, Shen Y. Anti-virulence activities of biflavonoids from Mesua ferrea L. flower. Drug Discov Ther 2019; 13:222-227. [PMID: 31534074 DOI: 10.5582/ddt.2019.01053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Based on the anti-virulence activity on Salmonella, the ethyl acetate extract (EAE) of Mesua ferrea flower was investigated for its chemical constituents. Ten purified compounds were identified and assayed for their inhibitory activity against Type III secretion system (T3SS) by polyacrylamide gel electrophoresis (SDS-PAGE) and Western blots experiments. We found the biflavonoids, rhusflavanone and mesuaferrone B, exhibited inhibitory effects on the secretion of Salmonella pathogenicity island 1 (SPI-1) effector proteins (SipA, B, C and D) without effecting the bacterial growth. In addition, 5, 6, 6'-trihydroxy-[1,1'-biphenyl]-3,3'-dicarboxylic acid (6) is a new natural product from M. ferrea flower.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Rongrong Gao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Yan Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Yuhe Cong
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Dongdong Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Yu Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
41
|
Kamble NM, Senevirathne A, Koh HB, Lee JI, Lee JH. Self-destructing Salmonella via temperature induced gene E of phage PhiX174 improves influenza HA DNA vaccine immune protection against H1N1 infection in mice model. J Immunol Methods 2019; 472:7-15. [PMID: 31175847 DOI: 10.1016/j.jim.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
The delivery of DNA vaccines is the principle impediment for implementation of DNA vaccination on a mass scale. In this study, we report a temperature induced conditionally expressed phage PhiX174 gene E mediated lysis of Salmonella under in vivo conditions that can increase the immunogenicity of a DNA vaccine delivered via Salmonella carrier system. We electroporated gene E encoding lysis plasmid pJHL187 along with the pcDNA-HA plasmid encoding H1N1 HA into attenuated Salmonella Typhimurium, strain JOL1893. Using C57BL/6 mice as the model, we showed that the mice intragastrically vaccinated with JOL1893 induced significant production of HA-specific humoral and cell mediated immune responses compared to the JOL1837, which carry pcDNA-HA plasmid alone. Furthermore, mice vaccinated with JOL1893 vaccine were fully protected against the lethal H1N1 challenge compared to the JOL1837 strain, which showed 90% protection only. However, none of the animals survived treated with either the PBS or the Salmonella carrying empty vector. Taken together, our results indicate that mucosal immunization with conditional lysis enabled live attenuated S. Typhimurium as a DNA vaccine carrier can induce efficient systemic and mucosal immune responses, and improves immune protection against a highly pathogenic H1N1 infection in mice model.
Collapse
Affiliation(s)
- Nitin Machindra Kamble
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Hong Bum Koh
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Il Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
42
|
Liu Q, Hu Y, Li P, Kong Q. Identification of Fur in Pasteurella multocida and the Potential of Its Mutant as an Attenuated Live Vaccine. Front Vet Sci 2019; 6:5. [PMID: 30778390 PMCID: PMC6369157 DOI: 10.3389/fvets.2019.00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Pasteurella multocida is a pathogenic microorganism that causes a variety of serious diseases in humans and animals worldwide. The global regulator gene, fur, plays an important role in pathogenesis and regulates the virulence of many bacteria. Here, we identified a fur gene in P. multocida by complementing a Salmonella Choleraesuis Δfur mutant, and characterized a fur mutant strain of P. multocida. The P. multocida Δfur mutant strain exhibited no significant differences in growth and outer membrane protein (OMP) profiles when the complemented strain was compared to the parent. Ducks were used as the model organism to determine the virulence and protection efficacy induced by Δfur mutant strain. Animal experiments showed that colonization by the mutant was decreased by oral infection of live Δfur mutant strain. The LD50 of the ducks infected with the Δfur mutant was 146-fold higher than that of the ducks infected with the wild-type strain when administered through the oral route. Evaluation of the immunogenicity and protective efficacy of the Δfur mutant of P. multocida revealed strong serum IgY and bile IgA immune responses following oral inoculation with the Δfur strain. Ducks that were orally inoculated with the Δfur mutant strain demonstrated 62% protection efficacy against severe lethal challenge with the wild-type P. multocida. This study provides new insights into P. multocida virulence and the potential use of an attenuated vaccine against P. multocida.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunlong Hu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
43
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
44
|
Li T, Zhang D, Oo TN, San MM, Mon AM, Hein PP, Wang Y, Lu C, Yang X. Investigation on the Antibacterial and Anti-T3SS Activity of Traditional Myanmar Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:2812908. [PMID: 30402120 PMCID: PMC6198585 DOI: 10.1155/2018/2812908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/27/2018] [Indexed: 01/18/2023]
Abstract
Myanmar has a rich pool of, but less known, medicinal plants with traditional knowledge. In this study, we aimed to investigate the inhibitory activity of traditional Myanmar medicinal plants against the type III secretion system (T3SS) of Salmonella enterica serovar Typhimurium UK-1 χ8956 and the intestinal disease-caused by microbes including S. enterica serovar Typhimurium UK-1 χ8956, Proteusbacillus vulgaris CPCC 160013, Escherichia coli CICC 10003, and Staphylococcus aureus ATCC 25923. The EtOH extracts of 93 samples were used to screen the inhibitory activities against the secretion of T3SS effector proteins SipA/B/C/D of S. enterica and the antibacterial activity against S. enterica, P. vulgaris, E. coli, and S. aureus. Out of 71 crude drugs traditionally used, 18 were proofed to be effective either on the growth inhibition of tested bacteria and/or as inhibitors for the T3SS. The EtOH extracts of five plants, Luvunga scandens (Roxb.) Buch.-Ham. ex Wight & Arn. (My7), Myrica nagi Thunb. (My11), Terminalia citrina Roxb. ex Fleming (My21), Thymus vulgaris L. (My49), and Cinnamomum bejolghota (Buch.-Ham.) Sweet (My104), showed potent inhibitory activities against the secretion of T3SS proteins SipA/B/C/D of S. enterica serovar Typhimurium UK-1 χ 8956. Mansonia gagei J.R.Drumm (My3) and Mesua ferrea (Roxb.) L. (My10) showed strong antibacterial activities against P. vulgaris and S. aureus. This study provided the first scientific evidence of T3SS prohibiting and antibacterial properties for the traditional knowledge in Myanmar of using plants as medicines for treating infections and gastrointestinal disease. Further researches are proposed to discover the active chemical compounds and mechanism of L. scandens (Roxb.) Buch.-Ham. ex Wight & Arn, M. nagi Thunb., T. citrina Roxb. ex Fleming, T. vulgaris L., and C. bejolghota (Buch.-Ham.) Sweet as antivirulence drugs and the potential of M. gagei J.R.Drumm and M. ferrea L. as new broad spectrum plant antibiotics.
Collapse
Affiliation(s)
- Tianhong Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Dongdong Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Thaung Naing Oo
- Forest Research Institute, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Myint Myint San
- Forest Research Institute, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Aye Mya Mon
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Pyae Phyo Hein
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| |
Collapse
|
45
|
Sanapala S, Mosca L, Wang S, Curtiss R. Comparative evaluation of Salmonella Typhimurium vaccines derived from UK-1 and 14028S: Importance of inherent virulence. PLoS One 2018; 13:e0203526. [PMID: 30192849 PMCID: PMC6130210 DOI: 10.1371/journal.pone.0203526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/22/2018] [Indexed: 11/18/2022] Open
Abstract
The initial virulence and invasiveness of a bacterial strain may play an important role in leading to a maximally efficacious attenuated live vaccine. Here we show that χ9909, derived from Salmonella Typhimurium UK-1 χ3761 (the most virulent S. Typhimurium strain known to us), is effective in protecting mice against lethal UK-1 and 14028S (less virulent S. Typhimurium strain) challenge. As opposed to this, 14028S-derived vaccine χ12359 induces suboptimal levels of protection, with survival percentages that are significantly lower when challenged with lethal UK-1 challenge doses. T-cell assays have revealed that significantly greater levels of Th1 cytokines IFN-γ and TNF-α were secreted by stimulated T-lymphocytes obtained from UK-1(ΔaroA) immunized mice than those from mice immunized with 14028S(ΔaroA). In addition, UK-1(ΔaroA) showed markedly higher colonizing ability in the spleen, liver, and cecum when compared to 14028S(ΔaroA). Enumeration of bacteria in fecal pellets has also revealed that UK-1(ΔaroA) can persist in the host for over 10 days whereas 14028S(ΔaroA) titers dropped significantly by day 10. Moreover, co-infection of parent strains UK-1 and 14028S resulted in considerably greater recovery of the former in multiple mucosal and gut associated lymphatic tissues. Mice immunized with UK-1(ΔaroA) were also able to clear UK-1 infection remarkably more efficiently from the target organs than 14028S(ΔaroA). Together, these results provide ample evidence to support the hypothesis that attenuated derivatives of parent strains with higher initial virulence make better vaccines.
Collapse
Affiliation(s)
- Shilpa Sanapala
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Leandra Mosca
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Shifeng Wang
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Roy Curtiss
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
46
|
Zhao X, Liang S, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Yang Q, Wu Y, Zhang S, Zhang L, Liu Y, Yu Y, Cheng A. Regulated delayed attenuation enhances the immunogenicity and protection provided by recombinant Salmonellaenterica serovar Typhimurium vaccines expressing serovar Choleraesuis O-polysaccharides. Vaccine 2018; 36:5010-5019. [DOI: 10.1016/j.vaccine.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/27/2022]
|
47
|
Chen S, Liao C, Zhang C, Cheng X. Roles of the crp and sipB genes of Salmonella enterica serovar Typhimurium in protective efficacy and immune responses to vaccination in mice. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2018; 82:102-105. [PMID: 29755189 PMCID: PMC5914075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/01/2017] [Indexed: 06/08/2023]
Abstract
Salmonella enterica serovar Typhimurium has a wide host range and is capable of causing infections ranging from severe gastroenteritis to systemic infection in humans. To determine if attenuated S. Typhimurium strains can serve as safe and effective oral vaccines to prevent typhoid fever, the biologic characteristics of crp and sipB deletion mutants were evaluated. Previous studies had found that the crp and sipB genes are related to Salmonella pathogenicity. In this study, cytotoxicity, protective efficacy, and immune responses of the host were analyzed. Our previous data had shown a significance decrease in virulence for the crp and sipB mutants compared with a wild-type strain. The current study confirmed this finding in HeLa cells and showed that the crp mutant was significantly less cytotoxic (P < 0.05) than the sipB mutant. Mice vaccinated with the crp mutant showed significantly better protection after challenge with the wild-type strain (P < 0.05) and significantly greater responses in serum IgG (P < 0.01) and secretory IgA (P < 0.05) compared with the mice vaccinated with the sipB mutant (P < 0.05). Our results indicate that the crp mutant has the potential to be a vaccine candidate and is safe in mice.
Collapse
Affiliation(s)
- Songbiao Chen
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China (Chen, Liao, Zhang, Cheng); Luoyang Key Lab of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China (Chen, Liao, Zhang, Cheng); College of Veterinary Medicine, Northwest A&F University, Yangling, China (Chen)
| | - Chengshui Liao
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China (Chen, Liao, Zhang, Cheng); Luoyang Key Lab of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China (Chen, Liao, Zhang, Cheng); College of Veterinary Medicine, Northwest A&F University, Yangling, China (Chen)
| | - Chunjie Zhang
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China (Chen, Liao, Zhang, Cheng); Luoyang Key Lab of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China (Chen, Liao, Zhang, Cheng); College of Veterinary Medicine, Northwest A&F University, Yangling, China (Chen)
| | - Xiangchao Cheng
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China (Chen, Liao, Zhang, Cheng); Luoyang Key Lab of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China (Chen, Liao, Zhang, Cheng); College of Veterinary Medicine, Northwest A&F University, Yangling, China (Chen)
| |
Collapse
|
48
|
Clark-Curtiss JE, Curtiss R. Salmonella Vaccines: Conduits for Protective Antigens. THE JOURNAL OF IMMUNOLOGY 2018; 200:39-48. [PMID: 29255088 DOI: 10.4049/jimmunol.1600608] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Vaccines afford a better and more cost-effective approach to combatting infectious diseases than continued reliance on antibiotics or antiviral or antiparasite drugs in the current era of increasing incidences of diseases caused by drug-resistant pathogens. Recombinant attenuated Salmonella vaccines (RASVs) have been significantly improved to exhibit the same or better attributes than wild-type parental strains to colonize internal lymphoid tissues and persist there to serve as factories to continuously synthesize and deliver rAgs. Encoded by codon-optimized pathogen genes, Ags are selected to induce protective immunity to infection by that pathogen. After immunization through a mucosal surface, the RASV attributes maximize their abilities to elicit mucosal and systemic Ab responses and cell-mediated immune responses. This article summarizes many of the numerous innovative technologies and discoveries that have resulted in RASV platforms that will enable development of safe efficacious RASVs to protect animals and humans against a diversity of infectious disease agents.
Collapse
Affiliation(s)
- Josephine E Clark-Curtiss
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and .,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
49
|
Burda WN, Brenneman KE, Gonzales A, Curtiss R. Conversion of RpoS - Attenuated Salmonella enterica Serovar Typhi Vaccine Strains to RpoS + Improves Their Resistance to Host Defense Barriers. mSphere 2018; 3:e00006-18. [PMID: 29507892 PMCID: PMC5830471 DOI: 10.1128/msphere.00006-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The vast majority of live attenuated typhoid vaccines are constructed from the Salmonella enterica serovar Typhi strain Ty2, which is devoid of a functioning alternative sigma factor, RpoS, due to the presence of a frameshift mutation. RpoS is a specialized sigma factor that plays an important role in the general stress response of a number of Gram-negative organisms, including Salmonella. Previous studies have demonstrated that this sigma factor is necessary for survival following exposure to acid, hydrogen peroxide, nutrient-limiting conditions, and starvation. In addition, studies with Salmonella enterica serovar Typhimurium and the mouse model of typhoid fever have shown that RpoS is important in colonization and survival within the infected murine host. We converted 4 clinically studied candidate typhoid vaccine strains derived from Ty2 [CVD908-htrA, Ty800, and χ9639(pYA3493)] and the licensed live typhoid vaccine Ty21a (also derived from Ty2) to RpoS+ and compared their abilities to withstand environmental stresses that may be encountered within the host to those of the RpoS- parent strains. The results of our study indicate that strains that contain a functional RpoS were better able to survive following stress and that they would be ideal for further development as safe, effective vaccines to prevent S. Typhi infections or as vectors in recombinant attenuated Salmonella vaccines (RASVs) designed to protect against other infectious disease agents in humans. The S. Typhi strains constructed and described here will be made freely available upon request, as will the suicide vector used to convert rpoS mutants to RpoS+. IMPORTANCE Recombinant attenuated Salmonella vaccines (RASVs) represent a unique prevention strategy to combating infectious disease because they utilize the ability of Salmonella to invade and colonize deep effector lymphoid tissues and deliver hetero- and homologous derived antigens at the lowest immunizing dose. Our recent clinical trial in human volunteers indicated that an RpoS+ derivative of Ty2 was better at inducing immune responses than its RpoS- counterpart. In this study, we demonstrate that a functional RpoS allele is beneficial for developing effective live attenuated vaccines against S. Typhi or in using S. Typhi as a recombinant attenuated vaccine vector to deliver other protective antigens.
Collapse
Affiliation(s)
- Whittney N. Burda
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Karen E. Brenneman
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Amanda Gonzales
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Roy Curtiss
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
50
|
Li YA, Ji Z, Wang X, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector delivering SaoA antigen confers protection against Streptococcus suis serotypes 2 and 7 in mice and pigs. Vet Res 2017; 48:89. [PMID: 29268787 PMCID: PMC5740921 DOI: 10.1186/s13567-017-0494-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis is one of the major pathogens that cause economic losses in the swine industry worldwide. However, current bacterins only provide limited prophylactic protection in the field. An ideal vaccine against S. suis should protect pigs against the clinical diseases caused by multiple serotypes, or at least protect against the dominant serotype in a given geographic region. A new recombinant Salmonella enterica serotype Choleraesuis vaccine vector, rSC0011, that is based on the regulated delayed attenuation system and regulated delayed antigen synthesis system, was developed recently. In this study, an improved recombinant attenuated Salmonella Choleraesuis vector, rSC0016, was developed by incorporating a sopB mutation to ensure adequate safety and maximal immunogenicity. In the spleens of mice, rSC0016 colonized less than rSC0011. rSC0016 and rSC0011 colonized similarly in Peyer's patches of mice. The recombinant vaccine rSC0016(pS-SaoA) induced stronger cellular, humoral, and mucosal immune responses in mice and swine against SaoA, a conserved surface protein that is present in many S. suis serotypes, than did rSC0011(pS-SaoA) without sopB or rSC0018(pS-SaoA), which is an avirulent, chemically attenuated vaccine strain. rSC0016(pS-SaoA) provided 100% protection against S. suis serotype 2 in mice and pigs, and full cross-protection against SS7 in pigs. This new vaccine vector provides a foundation for the development of a universal vaccine against multiple serotypes of S. suis in pigs.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhenying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|