1
|
Cui N, Feng X, Zhang Y, Zhang L, Wang J. Serum β2-microglobulin as an independent risk factor for mortality in patients with acute respiratory distress syndrome caused by bacterial infection. Sci Rep 2024; 14:22999. [PMID: 39362918 PMCID: PMC11450057 DOI: 10.1038/s41598-024-73922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous disease with extremely high mortality. We hypothesized that the serum β2-microglobulin (β2MG) level would be elevated and be an independent risk factor for 28-day mortality in patients with ARDS caused by bacterial infection. We retrospectively enrolled 257 patients with ARDS caused by bacterial infection from January 1, 2015 to February 28, 2021. Patients were followed for up to 28 days and were divided into a survival group and non-survival group according to their clinical outcomes. The serum β2MG levels and other clinical data were collected. The relationship between β2MG levels and 28-day mortality was explored by performing a Cox regression analysis adjusted for age, updated Charlson comorbidity index, disorders of consciousness, septic shock, albumin level, cardiac troponin I level, procalcitonin level, lactic acid level, prothrombin time, partial pressure of arterial oxygen/fraction of inspired oxygen ratio, estimated glomerular filtration rate and Sequential Organ Failure Assessment. In this cohort, 96 patients died in 28 days, yielding a 28-day mortality of 37.4%. The median level of serum β2MG for all enrolled patients was 4.7 (interquartile range [IQR]: 2.9-8.5) mg/L. Higher β2MG levels were significantly associated with 28-day mortality when the β2MG level was analysed as a continuous variable (hazard ratio [HR]: 1.053; 95% confidence interval [CI] 1.004-1.104; P = 0.032) and when it was categorized into tertiles (HR: 3.241; 95% CI 1.180-8.905; P = 0.023). The β2MG level exhibited a high diagnostic accuracy for predicting 28-day mortality (area under the curve [AUC] = 0.732; 95% CI 0.673-0.785; sensitivity: 74.0%; specificity: 64.0%; P < 0.001). The level of serum β2MG is elevated and is an independent risk factor of 28-day mortality in patients with ARDS caused by bacterial infection.
Collapse
Affiliation(s)
- Na Cui
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Lhasa People's Hospital, Lhasa, Tibet, People's Republic of China
| | - Xiaokai Feng
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuntao Zhang
- Department of Respiratory and Critical Care Medicine, Lhasa People's Hospital, Lhasa, Tibet, People's Republic of China
| | - Liming Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Sonowal J, Lal Patel C, Dev K, Singh R, Barkathullah N, Akram Malla W, Kumar Gandham R, Kant Agarwal R, Kumar D, Saxena S, Kalaiselvan E, Dubey A, Bharali K, Ishaq Nabi Khan R, Mishra BP, Mishra B. Selection and validation of suitable reference gene for qPCR gene expression analysis in lamb testis cells under Sheep pox virus infection. Gene 2022; 831:146561. [PMID: 35561845 DOI: 10.1016/j.gene.2022.146561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
Virus infection alters host gene expression, therefore ideal and stable reference housekeeping genes are required to normalise the expression of other expressed host genes in quantitative real-time PCR (qRT-PCR). The suitable reference gene may vary in response to different viral infections in different hosts or cells. In the present study, we cultured primary lamb testis cells (LTC) and assessed the expression stability of seven widely used housekeeping genes (B2M, HMBS, HPRT1, HSP-90, POLR2A, 18s_RNA, GAPDH) as reference genes in Sheeppox virus (SPPV) infected and control (uninfected-0h) LTC at 0.5h, 4.0h, 8.0h, and 12.0h post-infection) using NormFinder, Bestkeeper, geNorm, and the comparative ΔCT method in RefFinder based on their expression levels. Analysis revealed that HSP90, 18s_RNA, HPRT, POLR2A, and B2M were the most stable genes from the panel in the individual analysis group in 0h, 0.5h, 4.0h, 8.0h, and 12.0h, respectively. Furthermore, B2M was shown to be the most stable reference gene in the combined control with the respective and overall infected groups, except the control group of 4.0hpi of SPPV infection. In this study, we selected the most suitable reference genes in LTC for particular time points of SPPV infection. The identified most suitable housekeeping gene can be used during normalization of expression of other targeted genes at aspecific time point of SPPV infection.
Collapse
Affiliation(s)
- Joyshikh Sonowal
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Chhabi Lal Patel
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India.
| | - Kapil Dev
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Rohit Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - N Barkathullah
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Waseem Akram Malla
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Ravi Kumar Gandham
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Ravi Kant Agarwal
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Deepak Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Shikha Saxena
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - E Kalaiselvan
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Amitesh Dubey
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Krishna Bharali
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | | | - B P Mishra
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Bina Mishra
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India.
| |
Collapse
|
3
|
Emelianova AG, Petrova NV, Fremez C, Fontanié M, Tarasov SА, Epstein ОI. Therapeutic potential of highly diluted antibodies in antibiotic-resistant infection. Eur J Pharm Sci 2022; 173:106161. [DOI: 10.1016/j.ejps.2022.106161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
|
4
|
Floros J, Thorenoor N, Tsotakos N, Phelps DS. Human Surfactant Protein SP-A1 and SP-A2 Variants Differentially Affect the Alveolar Microenvironment, Surfactant Structure, Regulation and Function of the Alveolar Macrophage, and Animal and Human Survival Under Various Conditions. Front Immunol 2021; 12:681639. [PMID: 34484180 PMCID: PMC8415824 DOI: 10.3389/fimmu.2021.681639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The human innate host defense molecules, SP-A1 and SP-A2 variants, differentially affect survival after infection in mice and in lung transplant patients. SP-A interacts with the sentinel innate immune cell in the alveolus, the alveolar macrophage (AM), and modulates its function and regulation. SP-A also plays a role in pulmonary surfactant-related aspects, including surfactant structure and reorganization. For most (if not all) pulmonary diseases there is a dysregulation of host defense and inflammatory processes and/or surfactant dysfunction or deficiency. Because SP-A plays a role in both of these general processes where one or both may become aberrant in pulmonary disease, SP-A stands to be an important molecule in health and disease. In humans (unlike in rodents) SP-A is encoded by two genes (SFTPA1 and SFTPA2) and each has been identified with extensive genetic and epigenetic complexity. In this review, we focus on functional, structural, and regulatory differences between the two SP-A gene-specific products, SP-A1 and SP-A2, and among their corresponding variants. We discuss the differential impact of these variants on the surfactant structure, the alveolar microenvironment, the regulation of epithelial type II miRNome, the regulation and function of the AM, the overall survival of the organism after infection, and others. Although there have been a number of reviews on SP-A, this is the first review that provides such a comprehensive account of the differences between human SP-A1 and SP-A2.
Collapse
Affiliation(s)
- Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg, PA, United States
| | - David S Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Holch A, Bauer R, Olari LR, Rodriguez AA, Ständker L, Preising N, Karacan M, Wiese S, Walther P, Ruiz-Blanco YB, Sanchez-Garcia E, Schumann C, Münch J, Spellerberg B. Respiratory ß-2-Microglobulin exerts pH dependent antimicrobial activity. Virulence 2021; 11:1402-1414. [PMID: 33092477 PMCID: PMC7588194 DOI: 10.1080/21505594.2020.1831367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The respiratory tract is a major entry site for microbial pathogens. To combat bacterial infections, the immune system has various defense mechanisms at its disposal, including antimicrobial peptides (AMPs). To search for novel AMPs from the respiratory tract, a peptide library from human broncho-alveolar-lavage (BAL) fluid was screened for antimicrobial activity by radial diffusion assays allowing the efficient detection of antibacterial activity within a small sample size. After repeated testing-cycles and subsequent purification, we identified ß-2-microglobulin (B2M) in antibacterially active fractions. B2M belongs to the MHC-1 receptor complex present at the surface of nucleated cells. It is known to inhibit the growth of Listeria monocytogenes and Escherichia coli and to facilitate phagocytosis of Staphylococcus aureus. Using commercially available B2M we confirmed a dose-dependent inhibition of Pseudomonas aeruginosa and L. monocytogenes. To characterize AMP activity within the B2M sequence, peptide fragments of the molecule were tested for antimicrobial activity. Activity could be localized to the C-terminal part of B2M. Investigating pH dependency of the antimicrobial activity of B2M demonstrated an increased activity at pH values of 5.5 and below, a hallmark of infection and inflammation. Sytox green uptake into bacterial cells following the exposure to B2M was determined and revealed a pH-dependent loss of bacterial membrane integrity. TEM analysis showed areas of disrupted bacterial membranes in L. monocytogenes incubated with B2M and high amounts of lysed bacterial cells. In conclusion, B2M as part of a ubiquitous cell surface complex may represent a potent antimicrobial agent by interfering with bacterial membrane integrity.
Collapse
Affiliation(s)
- Armin Holch
- Institute of Medical Microbiology and Hygiene, University Hospital , Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital , Ulm, Germany
| | - Lia-Raluca Olari
- Institute of Molecular Virology, University Hospital , Ulm, Germany
| | - Armando A Rodriguez
- Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany.,Core Unit Mass Spectrometry and Proteomics, Ulm University , Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany
| | - Merve Karacan
- Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University , Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University Medical Center , Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen , Essen, Germany
| | - Christian Schumann
- Pneumology, Thoracic Oncology, Sleep and Respiratory Critical Care Medicine, Clinics Kempten-Allgäu, Kempten and Immenstadt , Germany
| | - Jan Münch
- Institute of Molecular Virology, University Hospital , Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University Medical Center , Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital , Ulm, Germany
| |
Collapse
|
6
|
Chiou SJ, Ko HJ, Hwang CC, Hong YR. The Double-Edged Sword of Beta2-Microglobulin in Antibacterial Properties and Amyloid Fibril-Mediated Cytotoxicity. Int J Mol Sci 2021; 22:ijms22126330. [PMID: 34199259 PMCID: PMC8231965 DOI: 10.3390/ijms22126330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Beta2-microglobulin (B2M) a key component of major histocompatibility complex class I molecules, which aid cytotoxic T-lymphocyte (CTL) immune response. However, the majority of studies of B2M have focused only on amyloid fibrils in pathogenesis to the neglect of its role of antimicrobial activity. Indeed, B2M also plays an important role in innate defense and does not only function as an adjuvant for CTL response. A previous study discovered that human aggregated B2M binds the surface protein structure in Streptococci, and a similar study revealed that sB2M-9, derived from native B2M, functions as an antibacterial chemokine that binds Staphylococcus aureus. An investigation of sB2M-9 exhibiting an early lymphocyte recruitment in the human respiratory epithelium with bacterial challenge may uncover previously unrecognized aspects of B2M in the body’s innate defense against Mycobactrium tuberculosis. B2M possesses antimicrobial activity that operates primarily under pH-dependent acidic conditions at which B2M and fragmented B2M may become a nucleus seed that triggers self-aggregation into distinct states, such as oligomers and amyloid fibrils. Modified B2M can act as an antimicrobial peptide (AMP) against a wide range of microbes. Specifically, these AMPs disrupt microbe membranes, a feature similar to that of amyloid fibril mediated cytotoxicity toward eukaryotes. This study investigated two similar but nonidentical effects of B2M: the physiological role of B2M, in which it potentially acts against microbes in innate defense and the role of B2M in amyloid fibrils, in which it disrupts the membrane of pathological cells. Moreover, we explored the pH-governing antibacterial activity of B2M and acidic pH mediated B2M amyloid fibrils underlying such cytotoxicity.
Collapse
Affiliation(s)
- Shean-Jaw Chiou
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (C.-C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (S.-J.C.); (Y.-R.H.)
| | - Huey-Jiun Ko
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (C.-C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chi-Ching Hwang
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (C.-C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (C.-C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Correspondence: (S.-J.C.); (Y.-R.H.)
| |
Collapse
|
7
|
Impact of Ozone, Sex, and Gonadal Hormones on Bronchoalveolar Lavage Characteristics and Survival in SP-A KO Mice Infected with Klebsiella pneumoniae. Microorganisms 2020; 8:microorganisms8091354. [PMID: 32899781 PMCID: PMC7563396 DOI: 10.3390/microorganisms8091354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 02/03/2023] Open
Abstract
Surfactant protein A (SP-A) plays an important role in innate immunity. The sex-dependent survival of infected SP-A knockout (KO) mice has been observed. Our goal was to study the impact of ozone (O3) and sex, as well as gonadal hormones, on the bronchoalveolar lavage (BAL) readouts and survival, respectively, of Klebsiella pneumoniae-infected SP-A KO mice. Male and female SP-A KO mice were exposed to O3 or filtered air and infected with K. pneumoniae. We studied markers of inflammation and tissue damage at 4, 24, and 48 h, as well as the survival over 14 days, of gonadectomized (Gx) mice implanted with control pellets (CoP) or hormone (5α-dihydrotestosterone (DHT) in female gonadectomized mice (GxF) or 17β-estradiol (E2) in male gonadectomized mice (GxM)). We observed: (1) an increase in neutrophil and macrophage inflammatory protein-2 levels as time progressed post-infection, and O3 exposure appeared to increase this response; (2) an increase in lactate dehydrogenase, total protein, oxidized protein, and phospholipids in response to O3 with no consistent sex differences in studied parameters; and (3) a reduction in survival of the GxM and CoP mice, the GxM and E2 mice, and the GxF and DHT mice but not for the GxF and CoP mice after O3. Without SP-A, (a) sex was found to have a minimal impact on BAL cellular composition and tissue damage markers, and (b) the impact of gonadal hormones on survival was found to involve different mechanisms than in the presence of SP-A.
Collapse
|
8
|
Hu FY, Wu J, Tang Q, Zhang J, Chen Z, Wang X, Liu Q, Wang J, Ge W, Qun S. Serum β2-Microglobulin Is Closely Associated With the Recurrence Risk and 3-Month Outcome of Acute Ischemic Stroke. Front Neurol 2020; 10:1334. [PMID: 31998209 PMCID: PMC6962192 DOI: 10.3389/fneur.2019.01334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose: Inflammation plays a significant role in the pathogenesis of acute ischemic stroke (AIS). The role of β2-microglobulin (β2M) as a potential initiator of the inflammatory response in AIS is unclear. The purpose of this study was to analyze the relationship of serum β2M with the recurrence risk and 3-month outcome of AIS. Methods: A total of 205 patients with AIS were recruited, and their clinical and biochemical characteristics were collected. All patients were followed up for 3 months after stroke onset, and the occurrence of death or major disability at 3 months after onset was the outcome of interest in this study. We evaluated the association of serum β2M levels with the National Institute of Health Stroke Scale (NIHSS) scores, modified Rankin Scale (mRS) scores, and Essen Stroke Risk Score (ESRS) values in patients with AIS. Then, we used receiver operating curve analysis to calculate the optimal cutoff value for discriminating outcomes in patients with AIS and a binary logistic regression model to evaluate the risk factors for a poor outcome after AIS. Results: Our results showed that serum β2M levels were significantly and positively correlated with ESRS values (r = 0.176, P < 0.001) and mRS scores (r = 0.402, P < 0.001), but the levels of β2M were not correlated with NIHSS scores (r = 0.080, P = 0.255) or with infarct volume (r = 0.013, P = 0.859). In a further study, we found that 121 patients (59.02%) had poor outcomes. The optimal β2M cutoff to predict the 3-month outcome of AIS in this study was 1.865 mg/l, and β2M was independently associated with a poor outcome at 3 months (OR = 3.325, 95% confidence interval: 1.089~10.148). Conclusions: In conclusion, we inferred that serum β2M was positively associated with the recurrence risk and 3-month outcome of AIS, but it did not appear to be directly related to the severity of AIS or the size of the infarct at admission.
Collapse
Affiliation(s)
- Fu-Yong Hu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Juncang Wu
- Department of Neurology, The No. 2 People's Hospital of Hefei, Hefei, China
| | - Qiqiang Tang
- Department of Neurology, The No. 2 People's Hospital of Hefei, Hefei, China
| | - Ji Zhang
- Department of Neurology, The No. 2 People's Hospital of Hefei, Hefei, China
| | - Zhengxu Chen
- Department of Neurology, The No. 2 People's Hospital of Hefei, Hefei, China
| | - Xiaoqiang Wang
- Department of Neurology, The No. 2 People's Hospital of Hefei, Hefei, China
| | - Qiuwan Liu
- Department of Neurology, The No. 2 People's Hospital of Hefei, Hefei, China
| | - Juan Wang
- Department of Neurology, The No. 2 People's Hospital of Hefei, Hefei, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Sen Qun
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Hartmann N, Harriff MJ, McMurtrey CP, Hildebrand WH, Lewinsohn DM, Kronenberg M. Role of MAIT cells in pulmonary bacterial infection. Mol Immunol 2018; 101:155-159. [PMID: 29940408 PMCID: PMC6138534 DOI: 10.1016/j.molimm.2018.06.270] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells represent a population of innate T cells that is highly abundant in humans. MAIT cells recognize metabolites of the microbial vitamin B pathway that are presented by the major histocompatibility complex (MHC) class I-related protein MR1. Upon bacterial infection, activated MAIT cells produce diverse cytokines and cytotoxic effector molecules and accumulate at the site of infection, thus, MAIT cells have been shown to be protective against various bacterial infections. Here, we summarize the current knowledge of the role of MAIT cells in bacterial pulmonary infection models.
Collapse
Affiliation(s)
- Nadine Hartmann
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States
| | - Melanie J Harriff
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, OR, 97239, United States; VA Portland Health Care System, Portland, OR, 97239, United States
| | - Curtis P McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73140, United States; Pure MHC, Oklahoma City, OK, 73104, United States
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73140, United States; Pure MHC, Oklahoma City, OK, 73104, United States
| | - David M Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, OR, 97239, United States; VA Portland Health Care System, Portland, OR, 97239, United States
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States; Division of Biology, University of California San Diego, La Jolla, CA, 92037, United States.
| |
Collapse
|
10
|
Gonçalves MC, Horewicz VV, Lückemeyer DD, Prudente AS, Assreuy J. Experimental Sepsis Severity Score Associated to Mortality and Bacterial Spreading is Related to Bacterial Load and Inflammatory Profile of Different Tissues. Inflammation 2018; 40:1553-1565. [PMID: 28567497 DOI: 10.1007/s10753-017-0596-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pneumonia-induced sepsis is responsible for about 50% of cases in the world. Patients who develop severe sepsis and septic shock present organ dysfunction and elevated plasma cytokine levels, which may lead to death. Clinical scores are important to evaluate the framework of septic patients and are used to predict the syndrome progress, prognostics, and mortality. The objective of the present study was to verify the applicability of a murine clinical score system to experimental sepsis (pneumonia-induced sepsis in male mice) and to correlate it with mortality and bacterial dissemination in different organs. Results demonstrated that animals which present higher clinical scores (>3) are more likely to die. Animals presenting high clinical scores exhibited transient bacteremia and displayed bacterial spreading to different organs such as heart, kidney, liver, and brain. There is a correlation between clinical score and bacterial dissemination and consequently greater risk of death. In addition, animals which showed bacterial dissemination in more than three organs and high clinical scores presented high levels of cytokines (TNF-α, MCP-1, IL-6, and IL-10) in plasma, lung, heart, liver, kidney, and brain. Therefore, our study suggests that (1) severity scores have predictive power in experimental models of sepsis and (2) high concentrations of tissue cytokines may contribute to localized inflammation and be one of the factors responsible for the systemic inflammatory syndrome of sepsis.
Collapse
Affiliation(s)
- Muryel Carvalho Gonçalves
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Verônica Vargas Horewicz
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora Denardin Lückemeyer
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Silveira Prudente
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. .,Department of Pharmacology, Block D/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
11
|
Argyropoulos CP, Chen SS, Ng YH, Roumelioti ME, Shaffi K, Singh PP, Tzamaloukas AH. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front Med (Lausanne) 2017; 4:73. [PMID: 28664159 PMCID: PMC5471312 DOI: 10.3389/fmed.2017.00073] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022] Open
Abstract
There is currently an unmet need for better biomarkers across the spectrum of renal diseases. In this paper, we revisit the role of beta-2 microglobulin (β2M) as a biomarker in patients with chronic kidney disease and end-stage renal disease. Prior to reviewing the numerous clinical studies in the area, we describe the basic biology of β2M, focusing in particular on its role in maintaining the serum albumin levels and reclaiming the albumin in tubular fluid through the actions of the neonatal Fc receptor. Disorders of abnormal β2M function arise as a result of altered binding of β2M to its protein cofactors and the clinical manifestations are exemplified by rare human genetic conditions and mice knockouts. We highlight the utility of β2M as a predictor of renal function and clinical outcomes in recent large database studies against predictions made by recently developed whole body population kinetic models. Furthermore, we discuss recent animal data suggesting that contrary to textbook dogma urinary β2M may be a marker for glomerular rather than tubular pathology. We review the existing literature about β2M as a biomarker in patients receiving renal replacement therapy, with particular emphasis on large outcome trials. We note emerging proteomic data suggesting that β2M is a promising marker of chronic allograft nephropathy. Finally, we present data about the role of β2M as a biomarker in a number of non-renal diseases. The goal of this comprehensive review is to direct attention to the multifaceted role of β2M as a biomarker, and its exciting biology in order to propose the next steps required to bring this recently rediscovered biomarker into the twenty-first century.
Collapse
Affiliation(s)
- Christos P Argyropoulos
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Shan Shan Chen
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Yue-Harn Ng
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Maria-Eleni Roumelioti
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kamran Shaffi
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Pooja P Singh
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Antonios H Tzamaloukas
- Nephrology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States.,Raymond G. Murphy VA Medical Center Albuquerque, Albuquerque, NM, United States
| |
Collapse
|
12
|
Chiou SJ, Wang CC, Tseng YS, Lee YJ, Chen SC, Chou CH, Chuang LY, Hong YR, Lu CY, Chiu CC, Chignard M. A novel role for β2-microglobulin: a precursor of antibacterial chemokine in respiratory epithelial cells. Sci Rep 2016; 6:31035. [PMID: 27503241 PMCID: PMC4977529 DOI: 10.1038/srep31035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022] Open
Abstract
We analyzed a panel of cationic molecules secreted in the culture medium of human respiratory epithelial cells (REC) upon activation by IL-1β and different pathogen-associated molecular patterns. A 9 kDa fragment derived from β2-microglobulin (B2M) was identified and named shed 9 kDa B2M (sB2M-9). The primary structure of sB2M-9 was revealed to increase its pI value that potentially could play an important role in innate defense. sB2M-9 exhibits antibacterial activity against Gram positive Staphylococcus aureus (SA) but not against Gram negative Klebsiella pneumonia (KP). Upon its binding to SA, sB2M-9 induces clumps, a phenomenon not observed with B2M. Migration of THP-1 monocytes exposed to SA clumps was significantly greater than that to SA without clumps. sB2M-9 binds to SA, more likely as a chemokine, to facilitate THP-1 migration. As a whole, we demonstrated that REC release a novel chemokine with antibacterial activity that is shed from B2M to facilitate THP-1 migration.
Collapse
Affiliation(s)
- Shean-Jaw Chiou
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chan-Chi Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Shen Tseng
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Jung Lee
- Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Chieh Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Hsien Chou
- Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lea-Yea Chuang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michel Chignard
- Unité de Défense Innée et Inflammation, Inserm U874, Institut Pasteur, Paris, France.,Centre de Recherche Saint-Antoine, UMR_S 938 - UPMC/Inserm, France
| |
Collapse
|
13
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
14
|
Abstract
Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Collapse
|
15
|
β2-Microglobulin is an appropriate reference gene for RT-PCR-based gene expression analysis of hematopoietic stem cells. Regen Ther 2015; 1:91-97. [PMID: 31245448 PMCID: PMC6581808 DOI: 10.1016/j.reth.2015.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 01/30/2023] Open
Abstract
Real-time reverse transcription polymerase chain reaction (RT-PCR) is regarded as one of the most useful and powerful tools for characterizing hematopoietic stem cells (HSCs), because samples of extremely small cell numbers can be analyzed. The expression levels determined by RT-PCR are based on relative quantification; therefore, the selection of an appropriate reference gene with a relatively stable expression level under most conditions is crucial. Here, we determined that beta2-microglobulin (B2m) is an appropriate reference gene for analyzing mouse HSCs by a novel method using single-cell RT-PCR. Clonally sorted HSCs were subjected to RT reactions with exogenous RNA fragments and then to real-time PCR. Next, the relative gene expression levels of 4 well-known housekeeping genes were quantified in each single cell sample based on the threshold cycle of exogenous RNA. The analysis revealed that B2m expression was reproducibly detected in almost all HSCs and that B2m had the most stable expression level among the compared genes, even after the cells had been cultured under various conditions. Thus, our results indicate that B2m can reliably be used as a reference gene for the relative quantification of expression levels in HSCs across various conditions. Furthermore, our work proposes a novel method for the selection of appropriate reference genes.
Collapse
Key Words
- Actb, beta-actin
- B2m, beta2-microglobulin
- Beta2-microglobulin
- Ct, threshold cycles
- ERCC, External RNA Controls Consortium
- Gapdh, glyceraldehyde-3-phosphate dehydrogenase
- HKGs, housekeeping genes
- HSCs, hematopoietic stem cells
- Hematopoietic stem cells
- Hprt, hypoxanthine phosphoribosyl transferase
- MHC, major histocompatibility complex
- MPPs, multi-potential progenitors
- RT-PCR, reverse-transcription polymerase chain reaction
- Reference gene
- SCF, stem cell factor
- Single-cell RT-PCR
- TPO, Thrombopoietin
Collapse
|
16
|
Hassan MA, Butty V, Jensen KDC, Saeij JPJ. The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages. Genome Res 2013; 24:377-89. [PMID: 24249727 PMCID: PMC3941103 DOI: 10.1101/gr.166033.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and contributes to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in mRNA editing and the genetic transmissibility of mRNA editing are equivocal. Here, we have used linkage analysis to show that both mRNA editing and alternative splicing are regulated by the macrophage genetic background and environmental cues. We show that distinct loci, potentially harboring variable splice factors, regulate the splicing of multiple transcripts. Additionally, we show that individual genetic variability at the Apobec1 locus results in differential rates of C-to-U(T) editing in murine macrophages; with mouse strains expressing mostly a truncated alternative transcript isoform of Apobec1 exhibiting lower rates of editing. As a proof of concept, we have used linkage analysis to identify 36 high-confidence novel edited sites. These results provide a novel and complementary method that can be used to identify C-to-U editing sites in individuals segregating at specific loci and show that, beyond DNA sequence and structural changes, differential isoform usage and mRNA editing can contribute to intra-species genomic and phenotypic diversity.
Collapse
Affiliation(s)
- Musa A Hassan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
17
|
Sordi R, Menezes-de-Lima O, Della-Justina AM, Rezende E, Assreuy J. Pneumonia-induced sepsis in mice: temporal study of inflammatory and cardiovascular parameters. Int J Exp Pathol 2013; 94:144-55. [PMID: 23441627 DOI: 10.1111/iep.12016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 12/15/2012] [Indexed: 01/09/2023] Open
Abstract
The aim of the present work is to provide a better comprehension of the pneumonia-induced sepsis model through temporal evaluation of several parameters, and thus identify the main factors that determine mortality in this model. Klebsiella pneumoniae was inoculated intratracheally in anesthetized Swiss male mice. Inflammatory and cardiovascular parameters were evaluated 6, 24 and 48 h after the insult. The results show that severity of infection and the mortality correlated with the amount of bacteria. Six, 24 and 48 h after inoculation, animals presented pathological changes in lungs, increase in cell number in the bronchoalveolar lavage, leukopenia, increase in TNF-α and IL-1β levels, hypotension and hyporesponsiveness to vasoconstrictors, the two latter characteristics of severe sepsis and septic shock. Significant numbers of bacteria in spleen and heart homogenates indicated infection spreading. Interestingly, NOS-2 expression appeared late after bacteria inoculation, whereas levels of NOS-1 and NOS-3 were unchanged. The high NOS-2 expression coincided with an exacerbated NO production in the infection focus and in plasma, as judging by nitrate + nitrite levels. This study shows that K. pneumoniae inoculation induces a systemic inflammatory response and cardiovascular alterations, which endures at least until 48 h. K. pneumoniae-induced lung infection is a clinically relevant animal model of sepsis and a better understanding of this model may help to increase the knowledge about sepsis pathophysiology.
Collapse
Affiliation(s)
- Regina Sordi
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | | | | | | | | |
Collapse
|
18
|
Karasawa K, Sugiura Y, Kojima M, Uzuhashi Y, Otani H. Fermented soybean powder with rice mold in the absence of salt stimulates the cellular immune system and suppresses the humoral immune response in mice. J Nutr Sci Vitaminol (Tokyo) 2013; 59:564-9. [PMID: 24477255 DOI: 10.3177/jnsv.59.564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The immunomodulatory effect of fermented non-salty soybean powder (NSBP) was investigated in C3H/HeN mice. The number of splenic CD11b(+), CD49b(+), and interferon (IFN)-γ(+)CD4(+) cells increased significantly, while that of interleukin (IL)-4(+)CD4(+) and CD19(+) cells decreased significantly in cultures containing NSBP. Similarly, in the spleen and Peyer's patches of mice fed a diet containing NSBP, the number of IL-12(+)CD11b(+), CD49b(+), and IFN-γ(+)CD4(+) cells increased noticeably, whereas the number of splenic IL-4(+)CD4(+) and CD19b(+) cells was lower compared to mice fed an NSBP-free diet. Superoxide production by peritoneal macrophages was significantly higher in mice fed an NSBP-containing diet. Both intestinal total IgA and serum total IgG levels declined in mice fed the NSBP-containing diet. Microarray analysis of mRNAs extracted from Peyer's patch cells of mice fed the NSBP-containing diet indicated an increase in the expression of several genes related to cellular immune responses, while the expression of genes related to immunoglobulin production decreased. These results indicate that NSBP stimulates the cellular immune response, but suppresses the acquired humoral immune response in C3H/HeN mice.
Collapse
|
19
|
Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect Immun 2012; 80:3256-67. [PMID: 22778103 DOI: 10.1128/iai.00279-12] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a unique population of αβ T cells in mammals that reside preferentially in mucosal tissues and express an invariant Vα paired with limited Vβ T-cell receptor (TCR) chains. Furthermore, MAIT cell development is dependent upon the expression of the evolutionarily conserved major histocompatibility complex (MHC) class Ib molecule MR1. Using in vitro assays, recent studies have shown that mouse and human MAIT cells are activated by antigen-presenting cells (APCs) infected with diverse microbes, including numerous bacterial strains and yeasts, but not viral pathogens. However, whether MAIT cells play an important, and perhaps unique, role in controlling microbial infection has remained unclear. To probe MAIT cell function, we show here that purified polyclonal MAIT cells potently inhibit intracellular bacterial growth of Mycobacterium bovis BCG in macrophages (MΦ) in coculture assays, and this inhibitory activity was dependent upon MAIT cell selection by MR1, secretion of gamma interferon (IFN-γ), and an innate interleukin 12 (IL-12) signal from infected MΦ. Surprisingly, however, the cognate recognition of MR1 by MAIT cells on the infected MΦ was found to play only a minor role in MAIT cell effector function. We also report that MAIT cell-deficient mice had higher bacterial loads at early times after infection compared to wild-type (WT) mice, demonstrating that MAIT cells play a unique role among innate lymphocytes in protective immunity against bacterial infection.
Collapse
|
20
|
Georgel P, Radosavljevic M, Macquin C, Bahram S. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol Immunol 2010; 48:769-75. [PMID: 21190736 DOI: 10.1016/j.molimm.2010.12.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/04/2010] [Accepted: 12/06/2010] [Indexed: 01/10/2023]
Abstract
As opposed to the well established role of MHC-linked, polymorphic, class I (MHC-I) genes in adaptive immunity, a universal role for non-conventional MHC-I is unknown, thus requiring a case-by-case study. The MHC unlinked, monomorphic, but β₂microglobulin (β₂m)-associated "MHC class I related" MR1 molecule interacts with a semi-invariant TCR. The pathophysiology of this interaction or more importantly of this peculiar MHC-I remains mostly unknown. Recently it was shown that β₂m deficient mice were more susceptible to infection by Klebsiella pneumoniae, a widely spread Gram-negative bacteria that causes diverse and often severe ailments in man. Here we demonstrate, using both an in vivo imaging system and survival tests, the increased susceptibility to K. pneumoniae (but not to several other Gram negative bacteria) of MR1 deficient mice. This is accompanied by a consequent change in body temperature and systemic cytokine profile. Hence MR1 controls K. pneumoniae infection in vivo.
Collapse
Affiliation(s)
- Philippe Georgel
- Laboratoire d'Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
21
|
Ali M, Umstead TM, Haque R, Mikerov AN, Freeman WM, Floros J, Phelps DS. Differences in the BAL proteome after Klebsiella pneumoniae infection in wild type and SP-A-/- mice. Proteome Sci 2010; 8:34. [PMID: 20565803 PMCID: PMC2911411 DOI: 10.1186/1477-5956-8-34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/17/2010] [Indexed: 01/16/2023] Open
Abstract
Background Surfactant protein-A (SP-A) has been shown to play a variety of roles related to lung host defense function. Mice lacking SP-A are more susceptible to infection than wild type C57BL/6 mice. We studied bronchoalveolar lavage (BAL) protein expression in wild type and SP-A-/- mice infected with Klebsiella pneumoniae by 2D-DIGE. Methods Mice were infected intratracheally with K. pneumoniae and after 4 and 24 hours they were subject to BAL. Cell-free BAL was analyzed by 2D-DIGE on two-dimensional gels with pH ranges of 4-7 and 7-11. Under baseline conditions and at 4 and 24 hr post-infection BAL was compared between untreated and infected wild type and SP-A-/- mice. Sixty proteins identified by mass spectrometry were categorized as host defense, redox regulation, and protein metabolism/modification. Results We found: 1) ~75% of 32 host defense proteins were lower in uninfected SP-A-/- vs wild type, suggesting increased susceptibility to infection or oxidative injury; 2) At 4 hr post-infection > 2/3 of identified proteins were higher in SP-A-/- than wild type mice, almost the exact opposite of untreated mice; 3) At 24 hr post-infection some proteins continued increasing, but many returned to baseline; 4) In infected wild type mice significant changes occurred in 13 of 60 proteins, with 12 of 13 increasing, vs on 4 significant changes in SP-A-/- mice. Infection response patterns between strains demonstrated both commonalities and differences. In several cases changes between 4 and 24 hr followed different patterns between strains. Conclusions These indicate that SP-A plays a key role in regulating the BAL proteome, functioning indirectly to regulate lung host defense function, possibly via the macrophage. In the absence of SP-A baseline levels of many host defense molecules are lower. However, many of these indirect deficits in SP-A-/- mice are rapidly compensated for during infection, indicating that SP-A also has a direct role on host defense against K. pneumoniae that may be instrumental in determining clinical course.
Collapse
Affiliation(s)
- Mehboob Ali
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Hershey, PA 17033, USA.,Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Todd M Umstead
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Hershey, PA 17033, USA.,Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Rizwanul Haque
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Hershey, PA 17033, USA.,Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Anatoly N Mikerov
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Hershey, PA 17033, USA.,Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Willard M Freeman
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Joanna Floros
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Hershey, PA 17033, USA.,Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - David S Phelps
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Hershey, PA 17033, USA.,Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
22
|
Bergman MA, Loomis WP, Mecsas J, Starnbach MN, Isberg RR. CD8(+) T cells restrict Yersinia pseudotuberculosis infection: bypass of anti-phagocytosis by targeting antigen-presenting cells. PLoS Pathog 2009; 5:e1000573. [PMID: 19730693 PMCID: PMC2731216 DOI: 10.1371/journal.ppat.1000573] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 08/10/2009] [Indexed: 12/12/2022] Open
Abstract
All Yersinia species target and bind to phagocytic cells, but uptake and destruction of bacteria are prevented by injection of anti-phagocytic Yop proteins into the host cell. Here we provide evidence that CD8+ T cells, which canonically eliminate intracellular pathogens, are important for restricting Yersinia, even though bacteria are primarily found in an extracellular locale during the course of disease. In a model of infection with attenuated Y. pseudotuberculosis, mice deficient for CD8+ T cells were more susceptible to infection than immunocompetent mice. Although exposure to attenuated Y. pseudotuberculosis generated TH1-type antibody responses and conferred protection against challenge with fully virulent bacteria, depletion of CD8+ T cells during challenge severely compromised protective immunity. Strikingly, mice lacking the T cell effector molecule perforin also succumbed to Y. pseudotuberculosis infection. Given that the function of perforin is to kill antigen-presenting cells, we reasoned that cell death marks bacteria-associated host cells for internalization by neighboring phagocytes, thus allowing ingestion and clearance of the attached bacteria. Supportive of this model, cytolytic T cell killing of Y. pseudotuberculosis–associated host cells results in engulfment by neighboring phagocytes of both bacteria and target cells, bypassing anti-phagocytosis. Our findings are consistent with a novel function for cell-mediated immune responses protecting against extracellular pathogens like Yersinia: perforin and CD8+ T cells are critical for hosts to overcome the anti-phagocytic action of Yops. Pathogenic Yersinia are bacteria that cause diverse diseases such as gastroenteritis and plague. Yersinia binds to specialized immune cells called macrophages, which attempt to engulf and destroy the bacteria. The bacteria resist destruction by injecting proteins called Yops into macrophages, which stops the engulfment process. Yersinia thus survives as attached but extracellular bacteria to cause disease. Yersinia disease can be prevented by immunization. In this study, we identified one mechanism of protective immunity—that host cells called CD8+ T lymphocytes are important to restrict Yersinia infection. This observation is unusual because CD8+ T cells generally protect against intracellular pathogens: T cells destroy the host cell harboring the pathogen, thus preventing the pathogen's replication. We present data consistent with the model that CD8+ T cells can also restrict extracellular bacteria by showing that T cells target host cells with extracellularly attached Yersinia, thus allowing the host cells and associated bacteria to be engulfed and removed by neighboring macrophages.
Collapse
Affiliation(s)
- Molly A. Bergman
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Wendy P. Loomis
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael N. Starnbach
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|