1
|
Yehia HM, Mohamed NH, Korany SM, Aloufi AS, El-Khadragy MF, Alzahrani A, Al-Dagal MM. Prevalence of Flesh-Eating Bacteria ( Vibrio Vulnificus) Type A (Environmental) and Type B (Clinical) in Tilapia Fish Samples: Phenotypic and Molecular Characterizations. Foodborne Pathog Dis 2025. [PMID: 40151886 DOI: 10.1089/fpd.2024.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Vibrio vulnificus, both types A and B, in tilapia fish causes several diseases in humans-septicemia, gastroenteritis, and wound infection-that primarily occur due to the consumption of raw or undercooked fish. Using fresh tilapia fish samples collected from Riyadh market in Saudi Arabia, this study attempted to phenotypically detect V. vulnificus using specific media, such as thiosulphate citrate bile salt sucrose agar, CHROMagar™ Vibrio, and cellobiose polymyxin colistin agar, while Api 20NE was employed. Molecular detection was conducted using 16S rRNA gene sequencing, to characterize the clinical (genotype B) and environmental strains (genotype A) of V. vulnificus. Virulence genes, such as hemolysin A (VvhA) and ViuB which encodes vulnibactin siderophores, were employed to detect both strains, in addition to capsular polysaccharide (CPS) and allele 1 genes. Virulence-correlated (vcg) genes vcgC and vcgE were also considered. The multidrug resistance of both strains to different antibiotics was tested, while whole-cell protein profiles were used to examine their differences based on Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis. The tilapia fish contained type A and B of V. vulnificus at a ratio of 12% and 4%, respectively. Generation times of the clinical and environmental strains were 14.45 min and 12.04 min, respectively. Analysis of the 16S rRNA, VvhA, CPS, ViuB, vcgC, and vcgE in type A and B revealed that both strains comprised all virulent genes in different ratios. Raw tilapia fish contained V. vulnificus type A and B, so care in handling is essential or during cooking these kinds of fish.
Collapse
Affiliation(s)
- Hany M Yehia
- Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
- Department of Food Science and Nutrition, Faculty of Home Economics, Helwan University, Helwan, Egypt
| | - Nourhan H Mohamed
- Scientific Research Program (Research Accessibility Team), Faculty of Medicine, New Giza University, Giza, Egypt
| | - Shereen M Korany
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Abeer S Aloufi
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manl F El-Khadragy
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdulhakeem Alzahrani
- Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Mosffer M Al-Dagal
- Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Marques PH, Rodrigues TCV, Santos EH, Bleicher L, Aburjaile FF, Martins FS, Oliveira CJF, Azevedo V, Tiwari S, Soares S. Design of a multi-epitope vaccine (vme-VAC/MST-1) against cholera and vibriosis based on reverse vaccinology and immunoinformatics approaches. J Biomol Struct Dyn 2025; 43:1788-1803. [PMID: 38112302 DOI: 10.1080/07391102.2023.2293256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Vibriosis and cholera are serious diseases distributed worldwide and caused by six marine bacteria of the Vibrio genus. Thousands of deaths occur each year due to these illnesses, necessitating the development of new preventive measures. Presently, the existing cholera vaccine demonstrates an effectiveness of approximately 60%. Here we describe a new multi-epitope vaccine, 'vme-VAC/MST-1' based on vaccine targets identified by reverse vaccinology and epitopes predicted by immunoinformatics, two currently effective tools for predicting new vaccines for bacterial pathogens. The vaccine was designed to combat vibriosis and cholera by incorporating epitopes predicted for CTL, HTL, and B cells. These epitopes were identified from six vaccine targets revealed through subtractive genomics, combined with reverse vaccinology, and were further filtered using immunoinformatics approaches based on their predicted immunogenicity. To construct the vaccine, 28 epitopes (24 CTL/B and 4 HTL/B) were linked to the sequence of the cholera toxin B subunit adjuvant. In silico analyses indicate that the resulting immunogen is stable, soluble, non-toxic, and non-allergenic. Furthermore, it exhibits no homology to the host and demonstrates a strong capacity to elicit innate, B-cell, and T-cell immune responses. Our analysis suggests that it is likely to elicit immune reactions mediated through the TLR5 pathway, as evidenced by the molecular docking of the vaccine with the receptor, which revealed high affinity and a favorable reaction. Thus, vme-VAC/MST-1 is predicted to be a safe and effective solution against pathogenic Vibrio spp. However, further experimental analyses are required to measure the vaccine's effects In vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pedro Henrique Marques
- Institute of Biological Sciences, Post-graduate Interunits Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thais Cristina Vilela Rodrigues
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo Horta Santos
- Institute of Biological Sciences, Post-graduate Interunits Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Bleicher
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flavia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlo Jose Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Siomar Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
3
|
Torok VA, Mahbub KR, Grey PA, Fletcher GC, Turnbull AR. Survey of foodborne pathogenic Vibrio species in commercial Tasmanian bivalve shellfish and predictors of risk at harvest. Int J Food Microbiol 2025; 430:111033. [PMID: 39764871 DOI: 10.1016/j.ijfoodmicro.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
There has been an increase in foodborne vibriosis outbreaks globally, with Vibrio parahaemolyticus emerging as a foodborne issue in temperate commercial shellfish growing regions, including southern Australia. The food safety concerns associated with these microorganisms have led to the need for specific guidance on potential risk management strategies for their control. This is the first Australian multi-seasonal survey of V. parahaemolyticus and Vibrio vulnificus in commercial shellfish growing areas aimed at understanding their occurrence and regional environmental drivers of risk at harvest. Eleven commercial Tasmanian shellfish (oyster and mussel) growing areas were surveyed for the prevalence and levels of V. parahaemolyticus, including presence of pathogenicity associated tdh and trh genes, and V. vulnificus at harvest between 2020 and 2022. Vibrio parahaemolyticus was detected in all surveyed growing areas during the three summer/autumn sampling periods, with a prevalence of 8-100 %. Prevalence was generally higher in the north (north-west, Moulting Bay and upper east coast) as compared with the mid-east coast and south-east and Bruny regions. Vibrio parahaemolyticus was only detected in five of the eleven growing areas during the two surveyed winter/spring seasons: Duck Bay, Moulting Bay, Great Swanport, Little Swanport and Boomer Bay East. Where it was detected, the prevalence was much lower in the winter/spring seasons (17-33 %). Levels of V. parahaemolyticus detected during the survey were generally low (<10 MPN/g) for most growing areas. Some higher levels (100-1100 MPN/g) were observed in Duck Bay, Moulting Bay, Great Swanport and Little Swanport. Only one sample from Great Swanport had a level of over 1000 MPN/g (1,100 MPN/g). The higher levels were only observed in the summer/autumn sampling periods. Vibrio parahaemolyticus tdh, trh or tdh/trh gene detections only occurred in the summer/autumn months with a prevalence of 0-21 %, 0-18 % or 0-7 %, respectively, depending on the growing area surveyed. Despite low levels of V. parahaemolyticus being detected in southern commercial growing areas, five sporadic cases of vibriosis associated with oysters from southern Tasmania were reported during the survey period, predominantly from oysters harvested recreationally. Levels of V. vulnificus detected were generally very low in most Tasmanian growing areas (<1 MPN/g). However, levels of 35-460 MPN/g were detected in shellfish at harvest in one area (Great Swanport). Predictive models for V. parahaemolyticus at harvest were developed from survey data which were area specific. Water temperature was the sole or primary driver in most areas. Predictive models for V. vulnificus at harvest were developed for Great Swanport and were driven by river flow and rainfall.
Collapse
Affiliation(s)
- Valeria Anna Torok
- South Australian Research and Development Institute, Food Sciences, GPO Box 397, Urrbrae, South Australia 5064, Australia; University of Adelaide, School of Animal and Veterinary Sciences, Roseworthy Campus, South Australia, Australia.
| | - Khandaker Rayhan Mahbub
- South Australian Research and Development Institute, Food Sciences, GPO Box 397, Urrbrae, South Australia 5064, Australia
| | - Paul A Grey
- Public Health Laboratory, Department of Health, 18 Johns Avenue, New Town, Tasmania 7008, Australia
| | - Graham Clive Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Alison R Turnbull
- Institute for Marine and Antarctic Studies, University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania 7053, Australia
| |
Collapse
|
4
|
Wei W, Li X, Hou N, Xie A, Liang H, Gao T, Jing X, Li L, Hao J, Xu X. Novel inhibitors of the (VIBVN) NAT protein identified through pharmacophore modeling. Sci Rep 2025; 15:2898. [PMID: 39843504 PMCID: PMC11754874 DOI: 10.1038/s41598-025-85869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Arylamine N-acetyltransferases (NATs, E.C. 2.3.1.5) constitute a family of phase II drug metabolizing enzymes. These enzymes catalyze the transfer of acetyl groups from acetyl-CoA to a variety of substrates including arylamines, arylhydrazines, and N-hydroxyarylamines. By facilitating these reactions, NATs play a pivotal role in the detoxification and metabolic processing of a wide range of drugs and carcinogens. NAT in marine V. vulnificus plays a role in the metabolism of drugs, leading to the development of drug resistance in marine V. vulnificus. However, inhibitors targeted marine V. vulnificus NAT [(VIBVN)NAT] remain unclear. Therefore, our research aimed to identify potential hit compounds that target (VIBVN)NAT. We integrated multiple computational approaches to screen for effective inhibitors. From this process, we identified two hit compounds, AK-968-11563024 and AG-205-36710025, with IC50 values of 18.86 µM and 33.27 µM, respectively. Molecular dynamics simulations further elucidated the binding mechanism between (VIBVN)NAT and AK-968-11563024. Our study revealed that AK-968-11563024 forms stable interactions with PHE124, HIS167, and TRP230, which may contribute to its biological activity. Our findings provide a valuable foundation for the future development of drugs targeted therapeutics against (VIBVN)NAT.
Collapse
Affiliation(s)
- Wei Wei
- Affiliated Huzhou Hospital, The Key Laboratory of Molecular Medicine, Zhejiang University School of Medicine, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Xionghao Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266071, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
- Network and Information Center, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ning Hou
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266071, China
| | - Aowei Xie
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266071, China
| | - Huicong Liang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266071, China
| | - Ting Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266071, China
| | - Xiaoli Jing
- Network and Information Center, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Liqin Li
- Affiliated Huzhou Hospital, The Key Laboratory of Molecular Medicine, Zhejiang University School of Medicine, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, China
- TCM Key Laboratory Cultivation Base of Zhe jiang Province for the Development and Clinical Transformation of Immunomodulatory drugs, Huzhou Central Hospital, Huzhou, 313000, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266071, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ministry of Education, Ocean University of China, Qingdao, 266071, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
- Network and Information Center, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
5
|
Candelli M, Sacco Fernandez M, Triunfo C, Piccioni A, Ojetti V, Franceschi F, Pignataro G. Vibrio vulnificus-A Review with a Special Focus on Sepsis. Microorganisms 2025; 13:128. [PMID: 39858896 PMCID: PMC11768060 DOI: 10.3390/microorganisms13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Vibrio vulnificus (V. vulnificus) is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats. High-risk populations include individuals with underlying conditions such as chronic liver disease, diabetes, or immunosuppression, which heighten susceptibility to severe outcomes. The pathogenicity of V. vulnificus is mediated by an array of virulence factors, including hemolysins, proteases, and capsular polysaccharides, as well as mechanisms facilitating iron acquisition and immune system evasion. Clinical manifestations range from localized gastrointestinal symptoms to life-threatening systemic infections such as septicemia. Rare but severe complications, including pneumonia and meningitis, have also been reported. Treatment typically involves the use of doxycycline in combination with third-generation cephalosporins, although the emergence of multidrug-resistant strains is an escalating concern. Alternative therapeutic approaches under investigation include natural compounds such as resveratrol and the application of antimicrobial blue light. For necrotizing infections, prompt and aggressive surgical intervention remains essential to improving patient outcomes. As global temperatures continue to rise, understanding the epidemiology of V. vulnificus and developing innovative therapeutic strategies are critical to mitigating its growing public health impact.
Collapse
Affiliation(s)
- Marcello Candelli
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Marta Sacco Fernandez
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Cristina Triunfo
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Veronica Ojetti
- Department of Internal Medicine, UniCamillus International Medical University of Rome, 00131 Rome, Italy;
| | - Francesco Franceschi
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| | - Giulia Pignataro
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (M.C.); (M.S.F.); (C.T.); (A.P.); (F.F.)
| |
Collapse
|
6
|
Guerrero A, Galindo-Sánchez CE, Martínez-Vázquez AV, Lizárraga-Partida ML. Phylogenetic Characterization of Vibrio vulnificus Strains from Oysters and its Comparison with Clinical vcgE Genotype Strain. Foodborne Pathog Dis 2025; 22:31-38. [PMID: 39588926 PMCID: PMC11839520 DOI: 10.1089/fpd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Twenty-one environmental Vibrio vulnificus strains from the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) bacteria collection, 20 of them isolated from oyster samples and 1 from a reported clinical case, were sequenced to analyze the genomic divergence between 2 genotypes, E-genotype and C-genotype, proposed by various groups to distinguish clinical (C) from environmental (E) V. vulnificus strains. As indicated in previous analyses of PFGE, MLST, and rtxA, 9 of the CICESE isolates were identified as vcgE, compared with 12 as vcgC. Separation of the genotypes into these 2 groups was confirmed in this study, based on the presence of certain genes in the 21 genomes, the presence of virulence factors, and rtxA sequencing. Most genomes from oyster isolates expressed rtxA-C type, with the exception being rtxA-M type detected in CICESE-594 a vcgE strain isolated from a clinical case. Although several genetic approaches clearly indicate differences between the C- and E-genotypes, none of them, including those in this study, can highlight a single factor that could be used to indicate the potential pathogenicity of V. vulnificus isolated from oysters.
Collapse
Affiliation(s)
- Abraham Guerrero
- CONAHCyT-CIAD, Food Research and Development Center A.C. Mazatlán Unit (Centro de Investigación Alimentación y Desarrollo, A.C. Unidad Mazatlán), Mazatlán, México
| | | | | | | |
Collapse
|
7
|
Williams MR, Telli AE, Telli N, Islam DT, Hashsham SA. Direct or DNA Extraction-Free Amplification and Quantification of Foodborne Pathogens. Methods Mol Biol 2025; 2852:3-17. [PMID: 39235733 DOI: 10.1007/978-1-0716-4100-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The use of direct nucleic acid amplification of pathogens from food matrices has the potential to reduce time to results over DNA extraction-based approaches as well as traditional culture-based approaches. Here we describe protocols for assay design and experiments for direct amplification of foodborne pathogens in food sample matrices using loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). The examples provided include the detection of Escherichia coli in milk samples and Salmonella in pork meat samples. This protocol includes relevant reagents and methods including obtaining target sequences, assay design, sample processing, and amplification. These methods, though used for specific example matrices, could be applied to many other foodborne pathogens and sample types.
Collapse
Affiliation(s)
- Maggie R Williams
- School of Engineering & Technology, Institute for Great Lakes Research, Central Michigan University, Mt Pleasant, MI, USA
| | - Arife Ezgi Telli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Nihat Telli
- Department of Food Technology, Vocational School of Technical Sciences, Konya Technical University, Konya, Turkey
| | - Dar Tafazul Islam
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Utama GL, Sahab NRM, Nurmilah S, Yarlina VP, Subroto E, Balia RL. Unveiling microbial dynamics in terasi spontaneous fermentation: Insights into glutamate and GABA production. Curr Res Food Sci 2024; 10:100950. [PMID: 39760015 PMCID: PMC11699049 DOI: 10.1016/j.crfs.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Terasi, a traditional Indonesian seafood product made from shrimp, undergoes fermentation facilitated by a consortium of microorganisms, including Lactic Acid Bacteria (LAB) and yeast, which contribute to its distinctive umami flavor. This study investigates the microbial dynamics and production of key metabolites, including γ-aminobutyric acid (GABA), during terasi fermentation. Total Plate Count (TPC) and High-Performance Liquid Chromatography (HPLC) were used to monitor changes in glutamate and GABA levels, with glutamate increasing from 105.18 mg/mL on day 3-139.19 mg/mL on day 14, and GABA rising from 90.49 mg/mL to 106.98 mg/mL over the same period. Metagenomic analysis using high-throughput sequencing of bacterial 16 S rRNA identified Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidota as dominant phyla. While LAB populations remained relatively stable, yeast became detectable from day 4. Notably, core bacterial genera such as Vibrio, Macrococcus, Staphylococcus, Exiguobacterium, Jeotgalicoccus, Prevotella, Salinicoccus, Bacillus, Pseudarthrobacter, and Vagococcus were highly abundant and played significant roles in GABA production, likely due to their glutamate decarboxylase activity. These findings reveal a clear correlation between microbial succession and metabolite production, offering valuable insights into the fermentation process of terasi. This study enhances the understanding of traditional food fermentation and presents opportunities to optimize beneficial compounds in terasi products.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Centre for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Siti Nurmilah
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Vira Putri Yarlina
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Edy Subroto
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Roostita L. Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
9
|
Phurahong T, Soonson P, Thawonsuwan J, Tanasomwang V, Areechon N, E-kobon T, Unajak S. Comparative Genome Analysis of Piscine Vibrio vulnificus: Virulence-Associated Metabolic Pathways. Microorganisms 2024; 12:2518. [PMID: 39770721 PMCID: PMC11676643 DOI: 10.3390/microorganisms12122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Vibriosis caused by Vibrio vulnificus is a major problem in aquatic animals, particularly brown marble groupers (Epinephelus fuscoguttatus). V. vulnificus biotype I has recently been isolated and classified into subgroups SUKU_G1, SUKU_G2, and SUKU_G3 according to the different types of virulence genes. In a previous study, we have shown that biotype I V. vulnificus strains were classified into three subgroups according to the different types of virulence genes, which exhibited different phenotypes in terms of growth rate and virulence. To gain insight into the different genetic features revealed by the potential virulence mechanisms of V. vulnificus in relation to a spectrum of pathogenesis, comparative genomic analyses of three biotype I V. vulnificus strains belonging to different subgroups (SUKU_G1, SUKU_G2, and SUKU_G3) were performed. The V. vulnificus genome is composed of two circular chromosomes with average sizes of 3 Mbp and 1.7 Mbp that are evolutionarily related based on the analysis of orthologous genes. A comparative genome analysis of V. vulnificus revealed 5200 coding sequences, of which 3887 represented the core genome and the remaining 1313 constituted the dispensable genome. The most virulent isolate (SUKU_G1) carries unique enzymes that are important for lipopolysaccharide (LPS) and capsular polysaccharide (CPS) synthesis, as well as flagellar glycosylation, and harbors another type of repeat in toxin (RTX) and bacterial defense mechanisms. The less virulent isolate (SUKU_G2) shares enzymes related to CPS biosynthesis or flagellar glycosylation, while the avirulent isolate (SUKU_G3) and a less virulent isolate (SUKU_G2) share enzymes related to the production of rare sugars. Interestingly, the isolates from the three subgroups containing specific CMP-N-acetylneuraminate-producing enzymes that are correlated with their growth abilities. Collectively, these observations provide an understanding of the molecular mechanisms underlying disease pathogenesis and support the development of strategies for bacterial disease prevention and control.
Collapse
Affiliation(s)
- Thararat Phurahong
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Patcharee Soonson
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Jumroensri Thawonsuwan
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Varin Tanasomwang
- Coastal Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand; (P.S.); (J.T.); (V.T.)
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand;
| | - Teerasak E-kobon
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Jayakumar JM, Martinez-Urtaza J, Brumfield KD, Jutla AS, Colwell RR, Cordero OX, Almagro-Moreno S. Climate change and Vibrio vulnificus dynamics: A blueprint for infectious diseases. PLoS Pathog 2024; 20:e1012767. [PMID: 39680617 DOI: 10.1371/journal.ppat.1012767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Climate change is having increasingly profound effects on human health, notably those associated with the occurrence, distribution, and transmission of infectious diseases. The number of disparate ecological parameters and pathogens affected by climate change are vast and expansive. Disentangling the complex relationship between these variables is critical for the development of effective countermeasures against its effects. The pathogen Vibrio vulnificus, a naturally occurring aquatic bacterium that causes fulminant septicemia, represents a quintessential climate-sensitive organism. In this review, we use V. vulnificus as a model organism to elucidate the intricate network of interactions between climatic factors and pathogens, with the objective of identifying common patterns by which climate change is affecting their disease burden. Recent findings indicate that in regions native to V. vulnificus or related pathogens, climate-driven natural disasters are the chief contributors to their disease outbreaks. Concurrently, climate change is increasing the environmental suitability of areas non-endemic to their diseases, promoting a surge in their natural populations and transmission dynamics, thus elevating the risk of new outbreaks. We highlight potential risk factors and climatic drivers aggravating the threat of V. vulnificus transmission under both scenarios and propose potential measures for mitigating its impact. By defining the mechanisms by which climate change influences V. vulnificus disease burden, we aim to shed light on the transmission dynamics of related disease-causing agents, thereby laying the groundwork for early warning systems and broadly applicable control measures.
Collapse
Affiliation(s)
- Jane M Jayakumar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando Florida, United States of America
| | - Jaime Martinez-Urtaza
- Department de Genetica I de Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Barcelona Spain
| | - Kyle D Brumfield
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park Maryland United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental engineering Sciences, University of Florida, Gainesville Florida United States of America
| | - Rita R Colwell
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park Maryland United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America
- Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland United States of America
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge Maryland United States of America
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando Florida, United States of America
| |
Collapse
|
11
|
Mishra A, Kim HS, Kumar R, Srivastava V. Advances in Vibrio-related infection management: an integrated technology approach for aquaculture and human health. Crit Rev Biotechnol 2024; 44:1610-1637. [PMID: 38705837 DOI: 10.1080/07388551.2024.2336526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 05/07/2024]
Abstract
Vibrio species pose significant threats worldwide, causing mortalities in aquaculture and infections in humans. Global warming and the emergence of worldwide strains of Vibrio diseases are increasing day by day. Control of Vibrio species requires effective monitoring, diagnosis, and treatment strategies at the global scale. Despite current efforts based on chemical, biological, and mechanical means, Vibrio control management faces limitations due to complicated implementation processes. This review explores the intricacies and challenges of Vibrio-related diseases, including accurate and cost-effective diagnosis and effective control. The global burden due to emerging Vibrio species further complicates management strategies. We propose an innovative integrated technology model that harnesses cutting-edge technologies to address these obstacles. The proposed model incorporates advanced tools, such as biosensing technologies, the Internet of Things (IoT), remote sensing devices, cloud computing, and machine learning. This model offers invaluable insights and supports better decision-making by integrating real-time ecological data and biological phenotype signatures. A major advantage of our approach lies in leveraging cloud-based analytics programs, efficiently extracting meaningful information from vast and complex datasets. Collaborating with data and clinical professionals ensures logical and customized solutions tailored to each unique situation. Aquaculture biotechnology that prioritizes sustainability may have a large impact on human health and the seafood industry. Our review underscores the importance of adopting this model, revolutionizing the prognosis and management of Vibrio-related infections, even under complex circumstances. Furthermore, this model has promising implications for aquaculture and public health, addressing the United Nations Sustainable Development Goals and their development agenda.
Collapse
Affiliation(s)
- Anshuman Mishra
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| |
Collapse
|
12
|
Xu H, Liu Y, Niu H, Cai X, Zhan F. Characteristics, symptoms, and outcomes of patients with Vibrio vulnificus infection in Hainan, China: A retrospective study. Medicine (Baltimore) 2024; 103:e40706. [PMID: 39809157 PMCID: PMC11596693 DOI: 10.1097/md.0000000000040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
With global temperatures on the rise and an expanding seafood trade, infections by Vibrio vulnificus, particularly in warm coastal areas like Hainan, China, are increasingly prevalent. These bacteria are notorious for causing grave infections with a high fatality rate. This study aims to dissect the clinical features, laboratory findings, treatment modalities, and patient outcomes associated with V vulnificus infections in Hainan Province. The medical records and clinical data of intensive care unit patients from Hainan General Hospital were retrospectively analyzed. Conventional sequencing and metagenomic sequencing were used to identify V vulnificus. The study involved 10 patients (9 males and 1 female) with a median age of 60.5 years, predominantly fishermen, with infections mainly occurring between May and October. Of note, 2 cases were linked to plant-related injuries. The typical manifestations included fever, pain, swelling, hemorrhagic vesicles, septic shock, and multi-organ dysfunction. It was found that delayed hospital admissions were associated with elevated Sequential Organ Failure Assessment and Acute Physiology and Chronic Health Evaluation II scores and increased mortality. Laboratory results indicated a robust inflammatory response, and interventions comprised antibiotic therapy and surgical procedures. A mortality rate of 50% was recorded. Vigilance for V vulnificus infections is crucial in coastal locales. The study endorses immediate and assertive treatment strategies, including the use of targeted antibiotics and surgical interventions, to enhance patient survival rates. A call for heightened awareness, intensified surveillance, and expanded research is essential to combat this life-threatening condition.
Collapse
Affiliation(s)
- Heping Xu
- Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Yiqiao Liu
- Department of Emergency Medicine, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Huan Niu
- Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Xiongwei Cai
- Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Feng Zhan
- Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| |
Collapse
|
13
|
Ma LC, Li M, Chen YM, Chen WY, Chen YW, Cheng ZL, Zhu YZ, Zhang Y, Guo XK, Liu C. Genomic Insight into Zoonotic and Environmental Vibrio vulnificus: Strains with T3SS2 as a Novel Threat to Public Health. Microorganisms 2024; 12:2375. [PMID: 39597763 PMCID: PMC11596471 DOI: 10.3390/microorganisms12112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Vibrio vulnificus is a significant opportunistic pathogen with the highest fatality rate among foodborne microbes. However, due to a lack of comprehensive surveillance, the characteristics of isolates in China remain poorly understood. This study analyzed 60 strains of V. vulnificus isolated from diverse sources in Shanghai, including shellfish, crabs, shrimps, throat swabs of migratory birds, as well as seafood farming water and seawater. Identification of the genotypes was performed using PCR, and cytotoxicity was determined using an LDH assay. DNA was sequenced using Illumina NovaSeq followed by a bioinformatic analysis. The results demonstrated that a majority of the strains belonged to the 16S rRNA B-vcgC genotype. All strains carried five antibiotic resistance genes (ARGs), with some strains carrying over ten ARGs, mediating resistance to multiple antibiotics. Five strains possessed a highly abundant effector delivery system, which further investigations revealed to be a type III secretion system II (T3SS2), marking the first description of T3SS2 in V. vulnificus. Phylogenetic analysis indicated that it belonged to a different genetic lineage from T3SS2α and T3SS2β of V. parahaemolyticus. Bacteria with T3SS2 sequences were concentrated in coastal areas and mostly within the genus Vibrio in the global prevalence survey. Our study provides essential baseline information for non-clinical V. vulnificus and discovers the existence of T3SS2 in several strains which may be more virulent, thereby posing a new threat to human health.
Collapse
Affiliation(s)
- Ling-Chao Ma
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Yi-Ming Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Ye Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Wen Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zi-Le Cheng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong-Zhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Xiao-Kui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Radeva S, Vergiev S, Georgiev G, Niyazi D. Emerging Vibrio vulnificus-Associated Infections After Seawater Exposure-Cases from the Bulgarian Black Sea Coast. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1748. [PMID: 39596933 PMCID: PMC11595927 DOI: 10.3390/medicina60111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Objectives: The aim of the current report is to present three cases of necrotizing fasciitis and sepsis caused by Vibrio vulnificus on the Bulgarian Black Sea coast. Materials and Methods: Two of the patients are males, 70 and 86 years of age, respectively, and one is an 86-year-old female. Data were collected from the patients' examination records. V. vulnificus was isolated on 5% sheep blood agar from wound and blood samples and identified by the automated system Phoenix M50 (BD, Franklin Lakes, NJ, USA). Antimicrobial susceptibility was tested with two well-known methods (disk diffusion and broth microdilution). Results: All of the patients were admitted to our hospital due to pain, swelling, ulceration, and bullae on the legs and were febrile. They underwent surgery and received intensive care support. One of the patients developed septicemia and septic shock; one of his legs was amputated, but the outcome was fatal. The other patient received immediate approptiate antibiotic and surgical treatment, and the outcome was favorable. The third patient underwent emergency fasciotomy but died a few hours after admission. Conclusions: Global climate change is affecting the distribution of Vibrio spp., and their incidence is expected to increase. It is important to highlight the need for awareness among immunocompromised and elderly patients of the potential threat posed by V. vulnificus infections.
Collapse
Affiliation(s)
- Stephanie Radeva
- Microbiology Laboratory, Multidisciplinary Hospital for Active Treatment “Heart and Brain”, 8000 Burgas, Bulgaria
- Department of Microbiology and Virology, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Stoyan Vergiev
- Department of Ecology and Environmental Protection, Technical University of Varna, 9010 Varna, Bulgaria;
| | - Georgi Georgiev
- Anesthesiology and Intensive Care Ward, Multidisciplinary Hospital for Active Treatment “Heart and Brain”, 8000 Burgas, Bulgaria;
| | - Denis Niyazi
- Department of Microbiology and Virology, Medical University of Varna, 9002 Varna, Bulgaria;
- Microbiology Laboratory, University Multidisciplinary Hospital for Active Treatment “St. Marina”, 9010 Varna, Bulgaria
| |
Collapse
|
15
|
Xu X, Liang S, Li X, Hu W, Li X, Lei L, Lin H. Antibiotic resistance and virulence characteristics of Vibrio vulnificus isolated from Ningbo, China. Front Microbiol 2024; 15:1459466. [PMID: 39161608 PMCID: PMC11330838 DOI: 10.3389/fmicb.2024.1459466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Background Vibrio vulnificus (V. vulnificus) is a deadly opportunistic human pathogen with high mortality worldwide. Notably, climate warming is likely to expand its geographical range and increase the infection risk for individuals in coastal regions. However, due to the absence of comprehensive surveillance systems, the emergence and characteristics of clinical V. vulnificus isolates remain poorly understood in China. Methods In this study, we investigate antibiotic resistance, virulence including serum resistance, and hemolytic ability, as well as molecular characteristics of 21 V. vulnificus isolates collected from patients in Ningbo, China. Results and discussion The results indicate that all isolates have been identified as potential virulent vcg C type, with the majority (16 of 21) classified as 16S rRNA B type. Furthermore, these isolates exhibit a high level of antibiotic resistance, with 66.7% resistance to more than three antibiotics and 61.9% possessing a multiple antibiotic resistance (MAR) index exceeding 0.2. In terms of virulence, most isolates were categorized as grade 1 in serum resistance, with one strain, S12, demonstrating intermediate sensitivity in serum resistance, belonging to grade 3. Whole genome analysis disclosed the profiles of antibiotic resistance genes (ARGs) and virulence factors (VFs) in these strains. The strains share substantial VF genes associated with adherence, iron uptake, antiphagocytosis, toxin, and motility. In particular, key VFs such as capsule (CPS), lipopolysaccharide (LPS), and multifunctional autoprocessing repeats-in-toxin (MARTX) are prevalent in all isolates. Specifically, S12 possesses a notably high number of VF genes (672), which potentially explains its higher virulence. Additionally, these strains shared six ARGs, namely, PBP3, adeF, varG, parE, and CRP, which likely determine their antibiotic resistance phenotype. Conclusion Overall, our study provides valuable baseline information for clinical tracking, prevention, control, and treatment of V. vulnificus infections.
Collapse
Affiliation(s)
- Xiaomin Xu
- Department of Hospital Infection Management, Ningbo No.2 Hospital, Ningbo, China
| | - Shanyan Liang
- Department of Hospital Infection Management, Ningbo No.2 Hospital, Ningbo, China
| | - Xin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
| |
Collapse
|
16
|
Chen L, Khan H, Tan L, Li X, Zhang G, Im YJ. Structural basis of the activation of MARTX cysteine protease domain from Vibrio vulnificus. PLoS One 2024; 19:e0307512. [PMID: 39093838 PMCID: PMC11296635 DOI: 10.1371/journal.pone.0307512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The multifunctional autoprocessing repeat-in-toxin (MARTX) toxin is the primary virulence factor of Vibrio vulnificus displaying cytotoxic and hemolytic properties. The cysteine protease domain (CPD) is responsible for activating the MARTX toxin by cleaving the toxin precursor and releasing the mature toxin fragments. To investigate the structural determinants for inositol hexakisphosphate (InsP6)-mediated activation of the CPD, we determined the crystal structures of unprocessed and β-flap truncated MARTX CPDs of Vibrio vulnificus strain MO6-24/O in complex with InsP6 at 1.3 and 2.2Å resolution, respectively. The CPD displays a conserved domain with a central seven-stranded β-sheet flanked by three α-helices. The scissile bond Leu3587-Ala3588 is bound in the catalytic site of the InsP6-loaded form of the Cys3727Ala mutant. InsP6 interacts with the conserved basic cleft and the β-flap inducing the active conformation of catalytic residues. The β-flap of the post-CPD is flexible in the InsP6-unbound state. The structure of the CPD Δβ-flap showed an inactive conformation of the catalytic residues due to the absence of interaction between the active site and the β-flap. This study confirms the InsP6-mediated activation of the MARTX CPDs in which InsP6-binding induces conformational changes of the catalytic residues and the β-flap that holds the N terminus of the CPD in the active site, facilitating hydrolysis of the scissile bond.
Collapse
Affiliation(s)
- Lin Chen
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Haider Khan
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Lingchen Tan
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Xiaojie Li
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Gongchun Zhang
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Park JE, Yun JH, Lee W, Lee JS. C-ter100 peptide derived from Vibrio vEP-45 protease acts as a pathogen-associated molecular pattern to induce inflammation and innate immunity. PLoS Pathog 2024; 20:e1012474. [PMID: 39186780 PMCID: PMC11379387 DOI: 10.1371/journal.ppat.1012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/06/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
The bacterium Vibrio vulnificus causes fatal septicemia in humans. Previously, we reported that an extracellular metalloprotease, vEP-45, secreted by V. vulnificus, undergoes self-proteolysis to generate a 34 kDa protease (vEP-34) by losing its C-terminal domain to produce the C-ter100 peptide. Moreover, we revealed that vEP-45 and vEP-34 proteases induce blood coagulation and activate the kallikrein/kinin system. However, the role of the C-ter100 peptide fragment released from vEP-45 in inducing inflammation is still unclear. Here, we elucidate, for the first time, the effects of C-ter100 on inducing inflammation and activating host innate immunity. Our results showed that C-ter100 could activate NF-κB by binding to the receptor TLR4, thereby promoting the secretion of inflammatory cytokines and molecules, such as TNF-α and nitric oxide (NO). Furthermore, C-ter100 could prime and activate the NLRP3 inflammasome (NLRP3, ASC, and caspase 1), causing IL-1β secretion. In mice, C-ter100 induced the recruitment of immune cells, such as neutrophils and monocytes, along with histamine release into the plasma. Furthermore, the inflammatory response induced by C-ter100 could be effectively neutralized by an anti-C-ter100 monoclonal antibody (C-ter100Mab). These results demonstrate that C-ter100 can be a pathogen-associated molecular pattern (PAMP) that activates an innate immune response during Vibrio infection and could be a target for the development of antibiotics.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, Republic of Korea
- BK21-Four Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung Sup Lee
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, Republic of Korea
- BK21-Four Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Pipes SE, Lovell CR, Kathrein KL. In vivo examination of pathogenicity and virulence in environmentally isolated Vibrio vulnificus. Microbiologyopen 2024; 13:e1427. [PMID: 39041461 PMCID: PMC11264103 DOI: 10.1002/mbo3.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Human exposure to Vibrio vulnificus, a gram-negative, halophilic environmental pathogen, is increasing. Despite this, the mechanisms of its pathogenicity and virulence remain largely unknown. Each year, hundreds of infections related to V. vulnificus occur, leading to hospitalization in 92% of cases and a mortality rate of 35%. The infection is severe, typically contracted through the consumption of contaminated food or exposure of an open wound to contaminated water. This can result in necrotizing fasciitis and the need for amputation of the infected tissue. Although several genes (rtxA1, vvpE, and vvhA) have been implicated in the pathogenicity of this organism, a defined mechanism has not been discovered. In this study, we examine environmentally isolated V. vulnificus strains using a zebrafish model (Danio rerio) to investigate their virulence capabilities. We found significant variation in virulence between individual strains. The commonly used marker gene of disease-causing strains, vcgC, did not accurately predict the more virulent strains. Notably, the least virulent strain in the study, V. vulnificus Sept WR1-BW6, which tested positive for vcgC, vvhA, and rtxA1, did not cause severe disease in the fish and was the only strain that did not result in any mortality. Our study demonstrates that virulence varies greatly among different environmental strains and cannot be accurately predicted based solely on genotype.
Collapse
Affiliation(s)
- Shannon E. Pipes
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Charles R. Lovell
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Katie L. Kathrein
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
19
|
Singh B, Jaiswal S, Kodgire P. Outer membrane proteins and vesicles as promising vaccine candidates against Vibrio spp. infections. Crit Rev Microbiol 2024; 50:417-433. [PMID: 37272649 DOI: 10.1080/1040841x.2023.2212072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
Indiscriminate use of antibiotics to treat bacterial infections has brought unmanageable antibiotic-resistant strains into existence. Vibrio spp. represents one such gram-negative enteric pathogenic group with more than 100 species, infecting humans and fish. The Vibrio spp. is demarcated into two groups, one that causes cholera and the other producing non-cholera or vibriosis infections. People who encounter contaminated water are at risk, but young children and pregnant women are the most vulnerable. Though controllable, Vibrio infection still necessitates the development of preventative measures, such as vaccinations, that can lessen the severity of the infection and reduce reliance on antibiotic use. With emerging multi-drug resistant strains, efforts are needed to develop newer vaccines, such as subunit-based or outer membrane vesicle-based. Thus, this review strives to bring together available information about Vibrio spp. outer membrane proteins and vesicles, encompassing their structure, function, and immunoprotective role.
Collapse
Affiliation(s)
- Brijeshwar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
20
|
Choi S, Lee Y, Park S, Jang SY, Park J, Oh DW, Kim SM, Kim TH, Lee GS, Cho C, Kim BS, Lee D, Kim EH, Cheong HK, Moon JH, Song JJ, Hwang J, Kim MH. Dissemination of pathogenic bacteria is reinforced by a MARTX toxin effector duet. Nat Commun 2024; 15:6218. [PMID: 39043696 PMCID: PMC11266601 DOI: 10.1038/s41467-024-50650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Multiple bacterial genera take advantage of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin to invade host cells. Secretion of the MARTX toxin by Vibrio vulnificus, a deadly opportunistic pathogen that causes primary septicemia, the precursor of sepsis, is a major driver of infection; however, the molecular mechanism via which the toxin contributes to septicemia remains unclear. Here, we report the crystal and cryo-electron microscopy (EM) structures of a toxin effector duet comprising the domain of unknown function in the first position (DUF1)/Rho inactivation domain (RID) complexed with human targets. These structures reveal how the duet is used by bacteria as a potent weapon. The data show that DUF1 acts as a RID-dependent transforming NADase domain (RDTND) that disrupts NAD+ homeostasis by hijacking calmodulin. The cryo-EM structure of the RDTND-RID duet complexed with calmodulin and Rac1, together with immunological analyses in vitro and in mice, provide mechanistic insight into how V. vulnificus uses the duet to suppress ROS generation by depleting NAD(P)+ and modifying Rac1 in a mutually-reinforcing manner that ultimately paralyzes first line immune responses, promotes dissemination of invaders, and induces sepsis. These data may allow development of tools or strategies to combat MARTX toxin-related human diseases.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Song Yee Jang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Jongbin Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Do Won Oh
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Su-Man Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biology Education, Chonnam National University, Gwangju, 61186, Korea
| | - Tae-Hwan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Changyi Cho
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Donghan Lee
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Eun-Hee Kim
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Hae-Kap Cheong
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| |
Collapse
|
21
|
Naknaen A, Surachat K, Manit J, Jetwanna KWN, Thawonsuwan J, Pomwised R. Virulent properties and genomic diversity of Vibrio vulnificus isolated from environment, human, diseased fish. Microbiol Spectr 2024; 12:e0007924. [PMID: 38860819 PMCID: PMC11218479 DOI: 10.1128/spectrum.00079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
The incidence of Vibrio vulnificus infections, with high mortality rates in humans and aquatic animals, has escalated, highlighting a significant public health challenge. Currently, reliable markers to identify strains with high virulence potential are lacking, and the understanding of evolutionary drivers behind the emergence of pathogenic strains is limited. In this study, we analyzed the distribution of virulent genotypes and phenotypes to discern the infectious potential of V. vulnificus strains isolated from three distinct sources. Most isolates, traditionally classified as biotype 1, possessed the virulence-correlated gene-C type. Environmental isolates predominantly exhibited YJ-like alleles, while clinical and diseased fish isolates were significantly associated with the nanA gene and pathogenicity region XII. Hemolytic activity was primarily observed in the culture supernatants of clinical and diseased fish isolates. Genetic relationships, as determined by multiple-locus variable-number tandem repeat analysis, suggested that strains originating from the same source tended to cluster together. However, multilocus sequence typing revealed considerable genetic diversity across clusters and sources. A phylogenetic analysis using single nucleotide polymorphisms of diseased fish strains alongside publicly available genomes demonstrated a high degree of evolutionary relatedness within and across different isolation sources. Notably, our findings reveal no direct correlation between phylogenetic patterns, isolation sources, and virulence capabilities. This underscores the necessity for proactive risk management strategies to address pathogenic V. vulnificus strains emerging from environmental reservoirs.IMPORTANCEAs the global incidence of Vibrio vulnificus infections rises, impacting human health and marine aquacultures, understanding the pathogenicity of environmental strains remains critical yet underexplored. This study addresses this gap by evaluating the virulence potential and genetic relatedness of V. vulnificus strains, focusing on environmental origins. We conduct an extensive genotypic analysis and phenotypic assessment, including virulence testing in a wax moth model. Our findings aim to uncover genetic and evolutionary factors that drive pathogenic strain emergence in the environment. This research advances our ability to identify reliable virulence markers and understand the distribution of pathogenic strains, offering significant insights for public health and environmental risk management.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jutamas Manit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Jumroensri Thawonsuwan
- Department of Fisheries, Aquatic Animal Health Research and Development Division, Songkhla Aquatic Animal Health Research Center, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
22
|
Baker-Austin C, Lake I, Archer E, Hartnell R, Trinanes J, Martinez-Urtaza J. Stemming the rising tide of Vibrio disease. Lancet Planet Health 2024; 8:e515-e520. [PMID: 38969478 DOI: 10.1016/s2542-5196(24)00124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 07/07/2024]
Abstract
Globally, the diverse bacterial genus Vibrio is the most important group of bacterial pathogens found in marine and coastal waters. These bacteria can cause an array of human infections via direct exposure to seawater or through the consumption of seafoods grown and cultivated in coastal and estuarine settings. Crucially, we appear to be on the cusp of an alarming global increase in Vibrio disease. A worldwide increase in seafood consumption, the globalisation of the seafood trade, the more frequent use of coastal waters for recreational activities, and climate change all contribute to greatly increased human health risks associated with Vibrio bacteria. Coupled with a population that is increasingly susceptible to more serious infections, we are likely to see a marked increase in both reported cases and fatalities in the near future. In this Personal View, we discuss and frame this important and emerging public health issue, and provide various contemporary case studies to illustrate how the risk profiles of pathogenic Vibrio bacteria have transformed in the past two decades-particularly in response to changing climatological and meteorological drivers such as marine coastal warming and extreme weather events such as heatwaves and storms. We share various approaches to help better understand and manage risks associated with these bacteria, ranging from risk mitigation strategies to enhanced epidemiological monitoring and surveillance approaches.
Collapse
Affiliation(s)
- Craig Baker-Austin
- International Centre of Excellence for Seafood Safety, Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK.
| | - Iain Lake
- Department of Environmental Science, University of East Anglia, Norwich, UK
| | - Elizabeth Archer
- Department of Environmental Science, University of East Anglia, Norwich, UK; School of Life Sciences, University of Essex, Colchester, UK
| | - Rachel Hartnell
- International Centre of Excellence for Seafood Safety, Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Joaquin Trinanes
- Laboratory of Systems, Technological Research Institute, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
24
|
Au-Yeung C, Lam KL, Choi MH, Chan KW, Cheung YS, Tsui YL, Mo WY. Impact of Prophylactic Antibiotic Use in Ornamental Fish Tanks on Microbial Communities and Pathogen Selection in Carriage Water in Hong Kong Retail Shops. Microorganisms 2024; 12:1184. [PMID: 38930567 PMCID: PMC11205468 DOI: 10.3390/microorganisms12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotics are routinely added to ornamental fish tanks for treating bacterial infection or as a prophylactic measure. However, the overuse or subtherapeutical application of antibiotics could potentially facilitate the selection of antibiotic resistance in bacteria, yet no studies have investigated antibiotic use in the retail ornamental fish sector and its impact on microbial communities. The present study analyzed the concentrations of twenty antibiotics in the carriage water (which also originates from fish tanks in retail shops) collected monthly from ten local ornamental fish shops over a duration of three months. The antibiotic concentrations were correlated with the sequenced microbial community composition, and the risk of resistance selection in bacteria was assessed. Results revealed that the detected concentrations of tetracyclines were the highest among samples, followed by fluoroquinolones and macrolides. The concentrations of oxytetracycline (44.3 to 2,262,064.2 ng L-1) detected across three months demonstrated a high risk for resistance selection at most of the sampled shops. Zoonotic pathogens (species of Rhodococcus, Legionella, and Citrobacter) were positively correlated with the concentrations of oxytetracycline, tetracycline, chlortetracycline, and enrofloxacin. This suggests that antibiotic use in retail shops may increase the likelihood of selecting for zoonotic pathogens. These findings shed light on the potential for ornamental fish retail shops to create a favorable environment for the selection of pathogens with antibiotics, thereby highlighting the urgent need for enhanced antibiotic stewardship within the industry.
Collapse
Affiliation(s)
- Chun Au-Yeung
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;
| | - Kit-Ling Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Man-Hay Choi
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Ka-Wai Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Yu-Sum Cheung
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;
| | - Yat-Lai Tsui
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Wing-Yin Mo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| |
Collapse
|
25
|
Correa Velez KE, Alam M, Baalousha MA, Norman RS. Wildfire Ashes from the Wildland-Urban Interface Alter Vibrio vulnificus Growth and Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8169-8181. [PMID: 38690750 DOI: 10.1021/acs.est.3c08658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Climate change-induced stressors are contributing to the emergence of infectious diseases, including those caused by marine bacterial pathogens such as Vibrio spp. These stressors alter Vibrio temporal and geographical distribution, resulting in increased spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Concurrently, wildfires are increasing in size, severity, frequency, and spread in the built environment due to climate change, resulting in the emission of contaminants of emerging concern. This study aimed to understand the potential effects of urban interface wildfire ashes on Vibrio vulnificus (V. vulnificus) growth and gene expression using transcriptomic approaches. V. vulnificus was exposed to structural and vegetation ashes and analyzed to identify differentially expressed genes using the HTSeq-DESeq2 strategy. Exposure to wildfire ash altered V. vulnificus growth and gene expression, depending on the trace metal composition of the ash. The high Fe content of the vegetation ash enhanced bacterial growth, while the high Cu, As, and Cr content of the structural ash suppressed growth. Additionally, the overall pattern of upregulated genes and pathways suggests increased virulence potential due to the selection of metal- and antibiotic-resistant strains. Therefore, mixed fire ashes transported and deposited into coastal zones may lead to the selection of environmental reservoirs of Vibrio strains with enhanced antibiotic resistance profiles, increasing public health risk.
Collapse
Affiliation(s)
- Karlen Enid Correa Velez
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - Mahbub Alam
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - Mohammed A Baalousha
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - R Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| |
Collapse
|
26
|
Hu P, Liu G, Xu H, Su Y. Finger Necrotizing Fasciitis and Septicemia Caused by Vibrio vulnificus. Surg Infect (Larchmt) 2024; 25:329-331. [PMID: 38608243 DOI: 10.1089/sur.2023.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Background: Vibrio vulnificus infections develop rapidly and have high mortality and disability rates. Vibrio vulnificus can cause local wound infection, gastroenteritis, or septicemia. Case Presentation: In this case, an 86-year-old male was accidentally stabbed in the middle of his right thumb while cleaning whitewater fish and came to the emergency department with high fever and painful swelling of the right hand. Physical examination revealed hemorrhagic bullae in the right hand. Emergency surgery and bacterial culture were performed. Because of timely antibiotic use and surgical treatment, the patient eventually recovered and was discharged from the hospital. Conclusions: This case suggests that the possibility of Vibrio vulnificus should be considered in cases of severe infection of the extremities, even without a history of seafood consumption or seawater exposure. Early recognition, rational choice of antibiotic agents, and timely wound debridement can substantially improve the prognosis of patients and reduce mortality.
Collapse
Affiliation(s)
- Pengfei Hu
- Department of General Surgery, Huadong Hospital, Fudan University, Jing'an District, Shanghai, China
- Department of Emergency Surgery, Huadong Hospital, Fudan University, Jing'an District, Shanghai, China
| | - Guanya Liu
- Department of General Surgery, Huadong Hospital, Fudan University, Jing'an District, Shanghai, China
- Department of Emergency Surgery, Huadong Hospital, Fudan University, Jing'an District, Shanghai, China
| | - Huaihong Xu
- Department of General Surgery, Huadong Hospital, Fudan University, Jing'an District, Shanghai, China
- Department of Emergency Surgery, Huadong Hospital, Fudan University, Jing'an District, Shanghai, China
| | - Yuantao Su
- Department of General Surgery, Huadong Hospital, Fudan University, Jing'an District, Shanghai, China
- Department of Emergency Surgery, Huadong Hospital, Fudan University, Jing'an District, Shanghai, China
| |
Collapse
|
27
|
Chen T, Wang J, Peng S, Li L, An C, Li J, He W. Vibrio vulnificus infection from tilapia sting wounds in an inland city: A case report. Heliyon 2024; 10:e28012. [PMID: 38533013 PMCID: PMC10963329 DOI: 10.1016/j.heliyon.2024.e28012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Vibrio vulnificus is a pathogen that can cause serious and fatal infections, primarily associated with a history of contact with the sea or aquatic organisms or products. However, with global climate change and increased global seafood trade, V. vulnificus infections are also occurring in non-coastal areas. In this report, we present the successful diagnosis and treatment of a case of necrotizing wound caused by V. vulnificus infection in an inland city in southwest China. In addition, we review the epidemiology and distribution of V. vulnificus in China and related vaccine research, which may provide a reference for the clinical diagnosis and treatment of V. vulnificus infection.
Collapse
Affiliation(s)
- Taigui Chen
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Jun Wang
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Shijie Peng
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Lianbao Li
- Panzhihua Central Hospital, Panzhihua, China
| | - Changxue An
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Jun Li
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Wei He
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| |
Collapse
|
28
|
Tanveer M, Ntakiyisumba E, Won G. Prevalence and risk factors of seafood-borne Vibrio vulnificus in Asia: a systematic review with meta-analysis and meta-regression. Front Microbiol 2024; 15:1363560. [PMID: 38511007 PMCID: PMC10951106 DOI: 10.3389/fmicb.2024.1363560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Vibrio vulnificus is a free-living marine bacterium associated with the contamination of fish and shellfish-the most consumed seafood in Asia. Owing to its potentially lethal clinical consequences, the consumption of seafood contaminated with V. vulnificus has become a growing public health concern. This systematic review with meta-analysis and meta-regression aimed to integrate data on the prevalence of seafood-borne V. vulnificus specifically in Asia and assess the potential risk factors that can influence the outcomes. A comprehensive literature search of four electronic databases yielded 279 relevant studies, among which 38 fulfilled the inclusion criteria. These selected studies were subjected to risk-of-bias assessment and data extraction by three independent researchers. A meta-analysis of the eligible studies estimated the overall prevalence of seafood-borne V. vulnificus in Asia to be 10.47% [95% confidence interval (CI): 6.8-15.8%], with bivalve shellfish, such as oysters, mussels, clams, and cockles being the most contaminated seafood. The highest prevalence was reported in Japan, where 47.6% of the seafood samples tested positive for V. vulnificus. The subgroup and meta-regression analyses identified three potential covariates-detection method, publication year, and country-associated with between-study heterogeneity. Furthermore, data visualization displayed the variations in V. vulnificus prevalence across the studies, associated with differences in sample type, sample size, and sampling stage. This study provides valuable insights into the prevalence of V. vulnificus in fish and shellfish across the entire Asian continent and highlights the potential factors that cause variation in the prevalence rates among the studies. These findings underscore the importance of enhancing hygiene measures throughout the seafood supply chain to mitigate V. vulnificus infection risks and ensure the safety of consumers.
Collapse
Affiliation(s)
| | | | - Gayeon Won
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
29
|
Fung BL, Esin JJ, Visick KL. Vibrio fischeri: a model for host-associated biofilm formation. J Bacteriol 2024; 206:e0037023. [PMID: 38270381 PMCID: PMC10882983 DOI: 10.1128/jb.00370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Multicellular communities of adherent bacteria known as biofilms are often detrimental in the context of a human host, making it important to study their formation and dispersal, especially in animal models. One such model is the symbiosis between the squid Euprymna scolopes and the bacterium Vibrio fischeri. Juvenile squid hatch aposymbiotically and selectively acquire their symbiont from natural seawater containing diverse environmental microbes. Successful pairing is facilitated by ciliary movements that direct bacteria to quiet zones on the surface of the squid's symbiotic light organ where V. fischeri forms a small aggregate or biofilm. Subsequently, the bacteria disperse from that aggregate to enter the organ, ultimately reaching and colonizing deep crypt spaces. Although transient, aggregate formation is critical for optimal colonization and is tightly controlled. In vitro studies have identified a variety of polysaccharides and proteins that comprise the extracellular matrix. Some of the most well-characterized matrix factors include the symbiosis polysaccharide (SYP), cellulose polysaccharide, and LapV adhesin. In this review, we discuss these components, their regulation, and other less understood V. fischeri biofilm contributors. We also highlight what is currently known about dispersal from these aggregates and host cues that may promote it. Finally, we briefly describe discoveries gleaned from the study of other V. fischeri isolates. By unraveling the complexities involved in V. fischeri's control over matrix components, we may begin to understand how the host environment triggers transient biofilm formation and dispersal to promote this unique symbiotic relationship.
Collapse
Affiliation(s)
- Brittany L Fung
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jeremy J Esin
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
30
|
Liu Y. [Several issues that need attention to improve the diagnosis and treatment level of infectious wounds]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:119-124. [PMID: 38418172 DOI: 10.3760/cma.j.cn501225-20231018-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Wound infection is an inflammatory response of the host to pathogenic microorganisms. It is a complex pathological process that may manifest either as a rapid onset acute wound infection, or as a prolonged chronic wound infection. Infectious wounds refer to acute or chronic wounds where infection has occurred, and their diagnosis and treatment involve many links, any loopholes in any aspect can lead to treatment failure. How to improve the diagnosis and treatment level of infectious wounds? This article proposed and discussed several issues, such as biofilm and drug resistance of bacteria, new materials and new-type dressings, special types of infectious wounds, and the combined application of various treatment techniques that need attention, and intended to attract the attention of peers. At the same time, it advocated for full attention to research results in the relevant fields and continuously emerging new technologies, concepts, materials, and methods, and applying them to the diagnosis and treatment of infectious wounds to benefit the majority of patients.
Collapse
Affiliation(s)
- Y Liu
- Department of Burns and Plastic Surgery & Wound Repair Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
31
|
Rasal TA, Mallery CP, Brockley MW, Brown LC, Paczkowski JE, van Kessel JC. Ligand binding determines proteolytic stability of Vibrio LuxR/HapR quorum sensing transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580527. [PMID: 38405947 PMCID: PMC10888775 DOI: 10.1101/2024.02.15.580527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In Vibrio species, quorum sensing signaling culminates in the production of a TetR-type master transcription factor collectively called the LuxR/HapR family, which regulates genes required for colonization and infection of host organisms. These proteins possess a solvent accessible putative ligand binding pocket. However, a native ligand has not been identified, and the role of ligand binding in LuxR/HapR function in Vibrionaceae is unknown. To probe the role of the ligand binding pocket, we utilize the small molecule thiophenesulfonamide inhibitor PTSP (3- p henyl-1-( t hiophen-2-yl s ulfonyl)-1 H - p yrazole) that we previously showed targets LuxR/HapR proteins. Amino acid conservation in the ligand binding pocket determines the specificity and efficacy of PTSP inhibition across Vibrio species. Here, we used structure-function analyses to identify PTSP-interacting residues in the ligand binding pocket of SmcR - the Vibrio vulnificus LuxR/HapR homolog - that are required for PTSP inhibition of SmcR activity in vivo . Forward genetic screening combined with X-ray crystallography structural determination of SmcR bound to PTSP identified substitutions at eight residues that were sufficient to reduce or eliminate PTSP-mediated SmcR inhibition. Small-angle X-ray scattering and computational modeling determined that PTSP drives allosteric unfolding at the N-terminal DNA binding domain. We discovered that SmcR is degraded by the ClpAP protease in the presence of PTSP in vivo ; substitution of key PTSP-interacting residues stabilized or increased SmcR levels in the cell. This mechanism of inhibition is observed for all thiophenesulfonamide compounds tested and against other Vibrio species. We conclude that thiophenesulfonamides specifically bind in the ligand binding pocket of LuxR/HapR proteins, promoting protein degradation and thereby suppressing downstream gene expression, implicating ligand binding as a mediator of LuxR/HapR protein stability and function to govern virulence gene expression in Vibrio pathogens. SIGNIFICANCE LuxR/HapR proteins were discovered in the 1990s as central regulators of quorum sensing gene expression and later discovered to be conserved in all studied Vibrio species. LuxR/HapR homologs regulate a wide range of genes involved in pathogenesis, including but not limited to genes involved in biofilm production and toxin secretion. As archetypal members of the broad class of TetR-type transcription factors, each LuxR/HapR protein has a predicted ligand binding pocket. However, no ligand has been identified for LuxR/HapR proteins that control their function as regulators. Here, we used LuxR/HapR-specific chemical inhibitors to determine that ligand binding drives proteolytic degradation in vivo , the first demonstration of LuxR/HapR function connected to ligand binding for this historical protein family.
Collapse
|
32
|
Kawase T, Debnath A, Okamoto K. Regulatory role of VvsB protein on serine protease activity of VvsA in Vibrio vulnificus. FEMS Microbiol Lett 2024; 371:fnae053. [PMID: 39020255 PMCID: PMC11272048 DOI: 10.1093/femsle/fnae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Vibrio vulnificus NCIMB2137, a Gram-negative, metalloprotease negative estuarine strain was isolated from a diseased eel. A 45 kDa chymotrypsin-like alkaline serine protease known as VvsA has been recently reported as one of the major virulence factor responsible for the pathogenesis of this strain. The vvsA gene along with a downstream gene vvsB, whose function is still unknown constitute an operon designated as vvsAB. OBJECTIVE This study examines the contribution of VvsB to the functionality of VvsA. METHOD In this study, VvsB was individually expressed using Rapid Translation System (RTS system), followed by an analysis of its role in regulating the serine protease activity of VvsA. RESULT The proteolytic activity of VvsA increased upon the addition of purified VvsB to the culture supernatant of V. vulnificus. However, the attempts of protein expression using an E. coli system revealed a noteworthy observation that protein expression from the vvsA gene exhibited higher protease activity compared to that from the vvsAB gene within the cytoplasmic fraction. These findings suggest an intricate interplay between VvsB and VvsA, where VvsB potentially interacts with VvsA inside the bacterium and suppress the proteolytic activity. While outside the bacterial milieu, VvsB appears to stimulate the activation of inactive VvsA. CONCLUSION The findings suggest that Vibrio vulnificus regulates VvsA activity through the action of VvsB, both intracellularly and extracellularly, to ensure its survival.
Collapse
Affiliation(s)
- Tomoka Kawase
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700–8530, Japan
| | - Anusuya Debnath
- Department of Biotechnology, Brainware University, Kolkata Barasat, West Bengal 700125, India
| | - Keinosuke Okamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700–8530, Japan
| |
Collapse
|
33
|
Raptová P, Skočková V, Babica P, Sovadinová I, Sychrová E, Vídeňská P, Šplíchalová P, Vašíček O, Šindlerová L. Cyanobacterial bloom-associated lipopolysaccharides induce pro-inflammatory processes in keratinocytes in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104342. [PMID: 38092246 DOI: 10.1016/j.etap.2023.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Our previous studies have shown that CyanoHAB LPS (lipopolysaccharides) and LPS from cyanobacterial cultures induce pro-inflammatory effects on intestinal epithelial and immune cells in vitro. To expand our understanding, we investigated their impact on human keratinocytes, which are targeted during water recreational activities. LPS samples were isolated from CyanoHAB biomasses dominated by Microcystis, Aphanizomenon, Planktothrix, and Dolichospermum, or from axenic cultures of these genera. We identified two CyanoHAB biomasses containing a high proportion of Gram-negative bacteria, including potentially pathogenic genera. These biomasses showed the highest induction of interleukin (IL) 8, IL-6, C-C motif chemokine ligand (CCL) 2 (also known as MCP-1), and CCL20 production by HaCaT cells. Interestingly, all CyanoHAB-derived LPS and LPS from axenic cultures (except for Microcystis) accelerated cell proliferation and migration. Our findings highlight the role of G- bacteria composition and LPS structural disparities in influencing these effects, with implications for skin health during recreational activities.
Collapse
Affiliation(s)
- P Raptová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno 61200, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - V Skočková
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno 61200, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - P Babica
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the Czech Academy of Sciences, Brno 60200, Czech Republic.
| | - I Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - E Sychrová
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - P Vídeňská
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - P Šplíchalová
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - O Vašíček
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno 61200, Czech Republic.
| | - L Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno 61200, Czech Republic.
| |
Collapse
|
34
|
Wang H, Shi C, Yang B, Li Q, Liu S. Characterization of the genome and cell invasive phenotype of Vibrio diabolicus Cg5 isolated from mass mortality of Pacific oyster, Crassostrea gigas. Microb Pathog 2024; 186:106466. [PMID: 38036108 DOI: 10.1016/j.micpath.2023.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Vibrio is an important group of aquatic animal pathogens, which has been identified as the main pathogenic factor causing mass summer mortality of Crassostrea gigas in northern China. This study aims to investigate the potential pathogenic mechanisms of Vibrio Cg5 isolate in C. gigas. We sequenced and annotated the genome of Vibrio Cg5 to analyze potential virulence factors. The gentamicin protection assays were performed with C. gigas primary cells to reveal the cell-invasive behavior of Cg5. The genome analysis showed that Cg5 was a strain of human disease-associated pathogen with multiple antibiotic resistance, and four virulence factors associated with intracellular survival were present in the genome. The gentamicin protection assays showed that Cg5 could potentially invade the cells of C. gigas, indicating that Cg5 could be a facultative intracellular pathogen of C. gigas. These results provide insights into the pathogenic mechanism of V. diabolicus, an emerging pathogenic Vibrio on aquatic animals, which would be valuable in preventing and controlling diseases in oysters.
Collapse
Affiliation(s)
- Hebing Wang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenyu Shi
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
35
|
Wang Y, Chen X, Xu X, Yang J, Liu X, Sun G, Li Z. Weighted Gene Co-Expression Network Analysis Based on Stimulation by Lipopolysaccharides and Polyinosinic:polycytidylic Acid Provides a Core Set of Genes for Understanding Hemolymph Immune Response Mechanisms of Amphioctopus fangsiao. Animals (Basel) 2023; 14:80. [PMID: 38200810 PMCID: PMC10778463 DOI: 10.3390/ani14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The primary influencer of aquaculture quality in Amphioctopus fangsiao is pathogen infection. Both lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (Poly I:C) are recognized by the pattern recognition receptor (PRR) within immune cells, a system that frequently serves to emulate pathogen invasion. Hemolymph, which functions as a transport mechanism for immune cells, offers vital transcriptome information when A. fangsiao is exposed to pathogens, thereby contributing to our comprehension of the species' immune biological mechanisms. In this study, we conducted analyses of transcript profiles under the influence of LPS and Poly I:C within a 24 h period. Concurrently, we developed a Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules and genes. Further, we carried out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the primary modular functions. Co-expression network analyses unveiled a series of immune response processes following pathogen stress, identifying several key modules and hub genes, including PKMYT1 and NAMPT. The invaluable genetic resources provided by our results aid our understanding of the immune response in A. fangsiao hemolymph and will further our exploration of the molecular mechanisms of pathogen infection in mollusks.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
36
|
Han G, Lee DG. Urechistachykinin I induced ferroptosis by accumulating reactive oxygen species in Vibrio vulnificus. Appl Microbiol Biotechnol 2023; 107:7571-7580. [PMID: 37796305 DOI: 10.1007/s00253-023-12802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Antimicrobial peptides (AMPs), such as urechistachykinin I (LRQSQFVGSR-NH2), derived from urechis unicinctus, have demonstrated antimicrobial activities. It exhibits low cytotoxicity and selectivity between microbial and mammalian cells suggesting its potent antimicrobial ability. However, the underlying antimicrobial mechanisms remain unknown. Herein, we elucidated the antibacterial action against Vibrio vulnificus, focusing on the reactive oxygen species (ROS). ROS is crucial for antibiotic-mediated killing and oxidative stress. After treatment with urechistachykinin I, superoxide anions and hydroxyl radicals increase, and the overproduction of ROS leads to oxidative damage and destruction of the redox system. Oxidation of the defense system like glutathione or glutathione peroxidase 4 illustrates the dysfunction of cellular metabolism and induces lipid peroxidation attributed to depolarization and integrity brokerage. Cell death demonstrated these properties, and additional experiments, including iron accumulation, liperfluo, and DNA fragmentation, were promoted. The results demonstrated that urechistachykinin I-induced ferroptosis-like death in Vibrio vulnificus is dependent on ROS production. KEY POINTS: • Urechistachykinin I induce reactive oxygen species production • Urechistachykinin I cause oxidative damaged on the V. vulnificus • Urechistachykinin I ferroptosis-like death in V. vulnificus.
Collapse
Affiliation(s)
- Giyeol Han
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
37
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
38
|
Xu S, Wu J, Jin Y, Ji L, Zou X, Hu Q, Feng T, Wu S, Jiang Y, Chen Q, Lu H, Qiu S, Chen H, Jiang M, Cai R, Qiu Y, Shi X. Pathogenetic detection, retrospective and pathogenicity analysis of a fatal case of Vibrio vulnificus in Shenzhen, China. Gut Pathog 2023; 15:57. [PMID: 38007445 PMCID: PMC10675978 DOI: 10.1186/s13099-023-00580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/28/2023] [Indexed: 11/27/2023] Open
Abstract
We report a 36-year-old male patient died of V. vulnificus-induced septicaemia and multiple organ failure syndrome after oyster consumption at a restaurant. We isolated and identified V. vulnificus vv16015 from the patient's blood sample and antibiotic susceptibility tests indicated sensitivity to all 21 antibiotics. Oyster samples were subsequently collected from the restaurant's supplier and three strains of V. vulnificus were isolated. Whole genome sequencing and analysis revealed vv16015 to be distantly related to these strains and confirmed that V. vulnificus contamination was present in the seafood of the restaurant and supplier. Using a Galleria mellonella larvae infection model, the virulence of vv16015 was determined to be higher than that of comparison strains isolated from a surviving patient (vv15018) and an oyster (vv220015). The human and environment distribution of V. vulnificus in Shenzhen is sporadic and heterogeneous, and vv16015 is highly virulent compared to other strains.
Collapse
Affiliation(s)
- Shiqin Xu
- School of Public Health, Shanxi Medical University, 030001, Taiyuan, China
| | - Jinsong Wu
- Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Ying Jin
- Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, 518105, China
| | - Liyin Ji
- School of Public Health, Shanxi Medical University, 030001, Taiyuan, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tiejian Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Huiqun Lu
- School of Public Health, University of South China, 421001, Hengyang, China
| | - Shuxiang Qiu
- School of Public Health, University of South China, 421001, Hengyang, China
| | | | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaolu Shi
- School of Public Health, Shanxi Medical University, 030001, Taiyuan, China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen, China.
| |
Collapse
|
39
|
Li X, Wang C, Guo Z, Xiao T, Ji Y, Ma Y, Li M, Xia J, Liu X. Enhancing Vibrio vulnificus infection diagnosis for negative culture patients with metagenomic next-generation sequencing. Front Cell Infect Microbiol 2023; 13:1210919. [PMID: 38035326 PMCID: PMC10687401 DOI: 10.3389/fcimb.2023.1210919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Objective To evaluate the diagnostic value of metagenomic next-generation sequencing (mNGS) in Vibrio vulnificus (V. vulnificus) infection. Methods A retrospective analysis of patients with V. vulnificus infection at the Fifth Affiliated Hospital of Sun Yat-Sen University from January 1, 2020 to April 23, 2023 was conducted. 14 enrolled patients were diagnosed by culture or mNGS. The corresponding medical records were reviewed, and the clinical data analyzed included demographics, epidemiology laboratory findings, physical examination, symptoms at presentation, antibiotic and surgical treatment, and outcome. Results In this study, 78.6% (11/14) patients had a history of marine trauma (including fish stab, shrimp stab, crab splints and fish hook wounds), 7.1% (1/14) had eaten seafood, and the remaining 14.3% (2/14) had no definite cause. Isolation of V. vulnificus from clinical samples including blood, tissue, fester and secreta. 9 cases were positive for culture, 5 cases were detected synchronously by mNGS and got positive for V. vulnificus. 85.7% (12/14) cases accepted surgical treatment, with 1 patient suffering finger amputated. 14 enrolled patients received appropriate antibiotic therapy, and all of them had recovered and discharged. 9 strains V. vulnificus isolated in this study were sensitive to most beta-lactam antibiotics, aminoglycosides, quinolones, etc. Conclusion Vibrio vulnificus infection is a common water-exposed disease in Zhuhai, which requires identification of a number of pathogens. Of severe infections with unknown pathogen, mNGS can be used simultaneously, and the potential to detect multiple pathogens is of great help in guiding treatment.
Collapse
Affiliation(s)
- Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Chengzhuo Wang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Zhaowang Guo
- Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Tongyang Xiao
- Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuxin Ji
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Yongguang Ma
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Meiyi Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| |
Collapse
|
40
|
Nuttall RA, Moisander PH. Vibrio cyclitrophicus population-specific biofilm formation and epibiotic growth on marine copepods. Environ Microbiol 2023; 25:2534-2548. [PMID: 37612139 DOI: 10.1111/1462-2920.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Vibrio spp. form a part of the microbiome of copepods-an abundant component of marine mesozooplankton. The biological mechanisms of the Vibrio-copepod association are largely unknown. In this study we compared biofilm formation of V. cyclitrophicus isolated from copepods (L-strains related to other particle-associated strains) and closely related strains originating from seawater (S-strains), and visualized and quantified their attachment and growth on copepods. The S- and L-strains formed similar biofilms in the presence of complete sea salts, suggesting previously unknown biofilm mechanisms in the S-strains. No biofilms formed if sodium chloride was present as the only salt but added calcium significantly enhanced biofilms in the L-strains. GFP-L-strain cells attached to live copepods at higher numbers than the S-strains, suggesting distinct mechanisms, potentially including calcium, support their colonization of copepods. The cells grew on live copepods after attachment, demonstrating that copepods sustain epibiotic V. cyclitrophicus growth in situ. The results demonstrate that in spite of their 99.1% average nucleotide identity, these V. cyclitrophicus strains have a differential capacity to colonize marine copepods. The introduced V. cyclitrophicus-A. tonsa model could be informative in future studies on Vibrio-copepod association.
Collapse
Affiliation(s)
- Ryan A Nuttall
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| |
Collapse
|
41
|
Wu F, Zhang T, Wu Q, Li X, Zhang M, Luo X, Zhang Y, Lu R. Complete genome sequence and comparative analysis of a Vibrio vulnificus strain isolated from a clinical patient. Front Microbiol 2023; 14:1240835. [PMID: 38029170 PMCID: PMC10644004 DOI: 10.3389/fmicb.2023.1240835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Vibrio vulnificus is an opportunistic, global pathogen that naturally inhabits sea water and is responsible for most vibriosis-related deaths. We investigated the genetic characteristics of V. vulnificus isolated from the clinical blood culture specimen of a patient with hepatitis B virus cirrhosis in 2018 (named as V. vulnificus VV2018) by whole genome sequencing (WGS). VV2018 belonged to a novel sequencing type 620 (ST620) and comprised two circular chromosomes, containing 4,389 potential coding sequences (CDSs) and 152 RNA genes. The phylogenetic tree of single nucleotide polymorphisms (SNPs) using 26 representative genomes revealed that VV2108 grouped with two other V. vulnificus strains isolated from humans. The pan-genome of V. vulnificus was constructed using 26 representative genomes to elucidate their genetic diversity, evolutionary characteristics, and virulence and antibiotic resistance profiles. The pan-genome analysis revealed that VV2018 shared a total of 3,016 core genes (≥99% presence), including 115 core virulence factors (VFs) and 5 core antibiotic resistance-related genes, and 309 soft core genes (≥95 and <99% presence) with 25 other V. vulnificus strains. The varG gene might account for the cefazolin resistance, and comparative analysis of the genetic context of varG revealed that two genes upstream and downstream of varG were conserved. The glycosylation (pgl) like genes were found in VV2018 compared with Pgl-related proteins in Neisseria that might affect the adherence of the strain in hosts. The comparative analysis of VV2018 would contribute to a better understanding of the virulence and antibiotic resistance profiles of V. vulnificus. Meanwhile much work remains to be done to better understand the function of pgl-like genes in V. vulnificus.
Collapse
Affiliation(s)
- Fei Wu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
42
|
Falco A, Villaquirán-Muriel MÁ, Gallo Pérez JD, Mondragón-Quiguanas A, Aranaga C, Correa A. Identification of Vibrio metschnikovii and Vibrio injensis Isolated from Leachate Ponds: Characterization of Their Antibiotic Resistance and Virulence-Associated Genes. Antibiotics (Basel) 2023; 12:1571. [PMID: 37998773 PMCID: PMC10668802 DOI: 10.3390/antibiotics12111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to evaluate the antibiotic resistance of 22 environmental Vibrio metschnikovii isolates and 1 Vibrio injensis isolate from landfill leachates in southwestern Colombia. Isolates were identified by Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF), and 16S ribosomal RNA gene sequencing. Analysis of the susceptibility to six antibacterial agents by the Kirby-Bauer method showed susceptibility of all the isolates to ciprofloxacin and imipenem. We recorded resistance to beta-lactams and aminoglycosides, but no multidrug resistance was observed. The genome of one of the isolates was sequenced to determine the pathogenic potential of V. injensis. Genes associated with virulence were identified, including for flagellar synthesis, biofilm formation, and hemolysins, among others. These results demonstrate that landfill leachates are potential reservoirs of antibiotic-resistant and pathogenic bacteria and highlight the importance of monitoring Vibrio species in different aquatic environments.
Collapse
Affiliation(s)
- Aura Falco
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Miguel Ángel Villaquirán-Muriel
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - José David Gallo Pérez
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Alejandra Mondragón-Quiguanas
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Carlos Aranaga
- Chemistry and Biotechnology Research Group (QUIBIO), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia;
| | - Adriana Correa
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| |
Collapse
|
43
|
Ghosh A, Kulkarni SS. Total Synthesis of a Linear Tetrasaccharide Repeating Unit of Vibrio vulnificus MO6-24. Org Lett 2023; 25:7242-7246. [PMID: 37756139 DOI: 10.1021/acs.orglett.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Herein, we report the total synthesis of a linear, conjugation-ready, tetrasaccharide repeating unit of Vibrio vulnificus MO6-24, which is composed of rare amino sugars such as l-quinovosamine and d-galactosamine uronic acid. The key challenges addressed here are the synthesis of rare deoxy amino sugars, installation of consecutive 1,2-cis glycosidic linkages, and late-stage oxidation. Total synthesis of the target molecule was completed via a longest linear sequence of 29 steps in an overall yield of 0.7% starting from l-rhamnose.
Collapse
Affiliation(s)
- Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
44
|
Leighton RE, Xiong L, Anderson GK, Astarita GM, Cai G, Norman RS, Decho AW. Vibrio parahaemolyticus and Vibrio vulnificus in vitro biofilm dispersal from microplastics influenced by simulated human environment. Front Microbiol 2023; 14:1236471. [PMID: 37854331 PMCID: PMC10579612 DOI: 10.3389/fmicb.2023.1236471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Growing concerns exist regarding human ingestion of contaminated seafood that contains Vibrio biofilms on microplastics (MPs). One of the mechanisms enhancing biofilm related infections in humans is due to biofilm dispersion, a process that triggers release of bacteria from biofilms into the surrounding environment, such as the gastrointestinal tract of human hosts. Dispersal of cells from biofilms can occur in response to environmental conditions such as sudden changes in temperature, pH and nutrient conditions, as the bacteria leave the biofilm to find a more stable environment to colonize. This study evaluated how brief exposures to nutrient starvation, elevated temperature, different pH levels and simulated human media affect Vibrio parahaemolyticus and Vibrio vulnificus biofilm dispersal and processes on and from low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) MPs. Both species were able to adequately disperse from all types of plastics under most exposure conditions. V. parahaemolyticus was able to tolerate and survive the low pH that resembles the gastric environment compared to V. vulnificus. pH had a significantly (p ≤ 0.05) positive effect on overall V. parahaemolyticus biofilm biomass in microplates and cell colonization from PP and PS. pH also had a positive effect on V. vulnificus cell colonization from LDPE and PP. However, most biofilm biomass, biofilm cell and dispersal cell densities of both species greatly varied after exposure to elevated temperature, pH, and nutrient starvation. It was also found that certain exposures to simulated human media affected both V. parahaemolyticus and V. vulnificus biofilm biomass and biofilm cell densities on LDPE, PP and PS compared to exposure to traditional media of similar pH. Cyclic-di-GMP was higher in biofilm cells compared to dispersal cells, but exposure to more stressful conditions significantly increased signal concentrations in both biofilm and dispersal states. Taken together, this study suggests that human pathogenic strains of V. parahaemolyticus and V. vulnificus can rapidly disperse with high cell densities from different plastic types in vitro. However, the biofilm dispersal process is highly variable, species specific and dependent on plastic type, especially under different human body related environmental exposures.
Collapse
Affiliation(s)
- Ryan E. Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Environmental Health Sciences, NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Liyan Xiong
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Gracie K. Anderson
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Grace M. Astarita
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Guoshuai Cai
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Robert Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Environmental Health Sciences, NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Environmental Health Sciences, NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
45
|
Cutugno L, O'Byrne C, Pané‐Farré J, Boyd A. Rifampicin-resistant RpoB S522L Vibrio vulnificus exhibits disturbed stress response and hypervirulence traits. Microbiologyopen 2023; 12:e1379. [PMID: 37877661 PMCID: PMC10493491 DOI: 10.1002/mbo3.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
Rifampicin resistance, which is genetically linked to mutations in the RNA polymerase β-subunit gene rpoB, has a global impact on bacterial transcription and cell physiology. Previously, we identified a substitution of serine 522 in RpoB (i.e., RpoBS522L ) conferring rifampicin resistance to Vibrio vulnificus, a human food-borne and wound-infecting pathogen associated with a high mortality rate. Transcriptional and physiological analysis of V. vulnificus expressing RpoBS522L showed increased basal transcription of stress-related genes and global virulence regulators. Phenotypically these transcriptional changes manifest as disturbed osmo-stress responses and toxin-associated hypervirulence as shown by reduced hypoosmotic-stress resistance and enhanced cytotoxicity of the RpoBS522L strain. These results suggest that RpoB-linked rifampicin resistance has a significant impact on V. vulnificus survival in the environment and during infection.
Collapse
Affiliation(s)
- Laura Cutugno
- School of Natural SciencesUniversity of GalwayGalwayIreland
| | - Conor O'Byrne
- School of Biological and Chemical SciencesUniversity of GalwayGalwayIreland
| | - Jan Pané‐Farré
- Centre for Synthetic Microbiology (SYNMIKRO) & Department of ChemistryPhilipps‐University MarburgMarburgGermany
| | - Aoife Boyd
- School of Natural SciencesUniversity of GalwayGalwayIreland
| |
Collapse
|
46
|
Liu W, Zhang G, Xu D, Ye J, Lu Y. A Novel RAA Combined Test Strip Method Based on Dual Gene Targets for Pathogenic Vibrio vulnificus in Aquatic Products. Foods 2023; 12:3605. [PMID: 37835259 PMCID: PMC10572794 DOI: 10.3390/foods12193605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Vibrio vulnificus can cause disease in aquatic animals and humans, therefore, rapid and simple field detection of pathogenic V. vulnificus is important for early disease prevention. In this study, a novel recombinase-aided amplification (RAA) combined test strip with double T-lines (RAA-TS-DTL) was developed for the rapid detection of V. vulnificus in aquatic products. Pathogenic V. vulnificus was detected using the virulence vvhA gene and the housekeeping gene gyrB gene as the dual target of the test strip. The RAA-TS-DTL method showed 100% specificity for V. vulnificus, and no cross-reaction was observed with Vibrio spp. or other bacteria (n = 14). Furthermore, sensitive detection of V. vulnificus in oysters was achieved. The LODs of the gyrB and vvhA genes were 6 CFU/mL and 23 CFU/mL, respectively, which was about five times higher than that of the commercial test strip. The method was validated with spiked samples (n = 60) of fish, shrimp and oyster. The consistency between RAA-TS-DTL and the traditional culture method was 97.9%. In addition, the entire process of detection, including preparation of the sample, could be completed within 50 min. Our results indicated that the developed RAA-TS-DTL was a reliable and useful tool for rapid screening or on-site detection of pathogenic V. vulnificus in aquatic products and aquaculture water.
Collapse
Affiliation(s)
- Wenyue Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (G.Z.); (D.X.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Guangying Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (G.Z.); (D.X.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Di Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (G.Z.); (D.X.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China;
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (G.Z.); (D.X.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| |
Collapse
|
47
|
Zhang C, Qi Y, Guo Y, Zhang S, Xiong G, Wang K, Zhang Z. Anti-marine biofouling adhesion performance and mechanism of PDMS fouling-release coating containing PS-PEG hydrogel. MARINE POLLUTION BULLETIN 2023; 194:115345. [PMID: 37531797 DOI: 10.1016/j.marpolbul.2023.115345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Polystyrene microspheres compounded with polyethylene glycol-based hydrogel (PS-PEG)/polydimethylsiloxane (PDMS) coatings were prepared using the physical blending method. The chemical structure, surface and interface properties, interlayer adhesion, and tensile properties were tested in this paper. Furthermore, the antifouling performance was evaluated through bovine serum albumin fluorescent protein adsorption testing, marine bacteria adhesion testing, and benthic diatom adhesion testing. The results showed that the coating performance was best when 20 wt% PS-PEG hydrogel was added. Its surface energy was only 19.21 mJ/m2, the maximum breaking strength was 1.24 MPa, the maximum elongation rate was 675 %, the elastic modulus was 2.53 MPa, and the anti-stripping rate was 100 %. In addition, the coating with added 20 wt% PS-PEG hydrogel bacterial adherence rate was 5.36 % and 2.45 % after rinsing and washing, respectively, and the removal rate was 54.29 %. In the benthic diatom adhesion test, the chlorophyll concentration a-value was only 0.0017 mg/L after washing with added 20 wt% hydrogel, and the protein desorption rate was 84.19 % higher than PDMS in the fluorescent protein adsorption test. This coating has the 'low adhesion' and 'desorption' characteristics in the three growth stages of biofouling. Meanwhile, the low surface energy of the silicone is stable, and the hydrogel also dynamically migrates to the surface to gradually form a hydration layer, both are synergistic. When 20 wt% PS-PEG hydrogel was added, the coating demonstrated excellent antifouling performance due to its high hydration layer, low surface energy, high elasticity, and high interlayer adhesion. This research is expected to contribute to the practical applications of hydrogel coatings in marine antifouling.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yuhong Qi
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yarui Guo
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Shukun Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Gang Xiong
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Kaixuan Wang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zhanping Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
48
|
Zhang JX, Yuan Y, Hu QH, Jin DZ, Bai Y, Xin WW, Kang L, Wang JL. Identification of potential pathogenic targets and survival strategies of Vibrio vulnificus through population genomics. Front Cell Infect Microbiol 2023; 13:1254379. [PMID: 37692161 PMCID: PMC10485832 DOI: 10.3389/fcimb.2023.1254379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
Vibrio vulnificus, a foodborne pathogen, has a high mortality rate. Despite its relevance to public health, the identification of virulence genes associated with the pathogenicity of currently known clinical isolates of V. vulnificus is incomplete and its synergistic pathogenesis remains unclear. Here, we integrate whole genome sequencing (WGS), genome-wide association studies (GWAS), and genome-wide epistasis studies (GWES), along with phenotype characterization to investigate the pathogenesis and survival strategies of V. vulnificus. GWAS and GWES identified a total of six genes (purH, gmr, yiaV, dsbD, ramA, and wbpA) associated with the pathogenicity of clinical isolates related to nucleotide/amino acid transport and metabolism, cell membrane biogenesis, signal transduction mechanisms, and protein turnover. Of these, five were newly discovered potential specific virulence genes of V. vulnificus in this study. Furthermore, GWES combined with phenotype experiments indicated that V. vulnificus isolates were clustered into two ecological groups (EGs) that shared distinct biotic and abiotic factors, and ecological strategies. Our study reveals pathogenic mechanisms and their evolution in V. vulnificus to provide a solid foundation for designing new vaccines and therapeutic targets.
Collapse
Affiliation(s)
- Jia-Xin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Qing-hua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Da-zhi Jin
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yao Bai
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wen-Wen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
49
|
Roig Molina FJ, Amaro González C, Alcaine Otín A, Carro Fernández J. Vibrio vulnificus mutation rate: an in vitro approach. Front Microbiol 2023; 14:1223293. [PMID: 37621400 PMCID: PMC10445137 DOI: 10.3389/fmicb.2023.1223293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Vibrio vulnificus is a multi-host pathogenic species currently subdivided into five phylogenetic lineages (L) plus one pathovar with the ability to infect fish due to a transmissible virulence plasmid. This plasmid (or a fragment of it) has been transmitted between lineages within the species, contributing to the evolution of V. vulnificus. This study aimed to provide an experimental approximation to the V. vulnificus mutation rate by determining spontaneous mutation rates from bacterial cultures of representants of the different lineages by whole-genome sequencing. To this purpose, synonymous SNP differences, i.e., spontaneous mutation not subjected to the evolutive forces, between initial and final culture after serial growth were evaluated and used for mutation rate calculation.
Collapse
Affiliation(s)
- Francisco Jose Roig Molina
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Carmen Amaro González
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain
| | - Alejandro Alcaine Otín
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Jesús Carro Fernández
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| |
Collapse
|
50
|
Cutugno L, Mc Cafferty J, Pané-Farré J, O'Byrne C, Boyd A. The Vibrio vulnificus stressosome is dispensable in nutrient-rich media. Access Microbiol 2023; 5:acmi000523.v4. [PMID: 37601438 PMCID: PMC10436020 DOI: 10.1099/acmi.0.000523.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/27/2023] [Indexed: 08/22/2023] Open
Abstract
The stressosome is a protein complex that senses environmental stresses and mediates the stress response in several Gram-positive bacteria through the activation of the alternative sigma factor SigB. The stressosome locus is found in 44 % of Gram-negative Vibrio vulnificus isolates. However, V. vulnificus does not possess SigB. Nonetheless, in nutrient-limited media, the stressosome modulates gene transcription and bacterial behaviour. In this work, the expression of the stressosome genes was proven during stationary phase in nutrient-rich media and co-transcription as one operonic unit of the stressosome locus and its putative downstream regulatory locus was demonstrated. The construction of a stressosome mutant lacking the genes encoding the four proteins constituting the stressosome complex (VvRsbR, VvRsbS, VvRsbT, VvRsbX) allowed us to examine the role of this complex in vivo. Extensive phenotypic characterization of the ΔRSTX mutant in nutrient-rich media showed that the stressosome does not contribute to growth of V. vulnificus . Moreover, the stressosome did not modulate the tolerance or survival response of V. vulnificus to the range of stresses tested, which included ethanol, hyperosmolarity, hypoxia, high temperature, acidity and oxidative stress. Furthermore, the stressosome was dispensable for motility and exoenzyme production of V. vulnificus in nutrient-rich media. Therefore, in conclusion, although stressosome gene transcription occurs in nutrient-rich media, the stressosome neither has an essential role in stress responses of V. vulnificus nor does it seem to modulate these activities in these conditions. We hypothesise that the stressosome is expressed in nutrient-rich conditions as a sensor complex, but that activation of the complex does not occur in this environment.
Collapse
Affiliation(s)
- Laura Cutugno
- School of Natural Sciences, University of Galway, Galway, Ireland
| | | | - Jan Pané-Farré
- Centre for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Conor O'Byrne
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Aoife Boyd
- School of Natural Sciences, University of Galway, Galway, Ireland
| |
Collapse
|