1
|
Calreticulin as an Adjuvant In Vivo to Promote Dendritic Cell Maturation and Enhance Antigen-Specific T Lymphocyte Responses against Melanoma. J Immunol Res 2022; 2022:8802004. [PMID: 35983078 PMCID: PMC9381296 DOI: 10.1155/2022/8802004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
An endoplasmic reticulum resident protein, calreticulin (CRT), participates in many cellular processes. CRT is a tumor-associated antigen with an important role in antitumor immunity. Previously, we reported that the recombinant CRT fragment 39-272 (CRT/39-272) exhibited superior immunobiological activity, activating macrophages to release cytokines and promoting dendritic cell (DC) maturation. However, the effect of CRT/39-272 in vivo, especially its adjuvant effect on in vivo antitumor immune responses, was not fully investigated. In this study, we constructed a fusion protein linking CRT/39-272 to an ovalbumin (OVA) peptide (residues 182–297, OVAp) and used the fusion protein (OVAp-CRT) to examine the adjuvant effect of CRT. We investigated whether CRT/39-272 could induce bone marrow-derived DC maturation and strongly promote the proliferation of OVA-specific T cells in vitro. Compared with OVAp, OVAp-CRT induced stronger antigen-specific T lymphocyte responses, including antigen-specific T cell proliferation, interferon-γ secretion, and cytotoxic T lymphocyte responses. OVAp-CRT-immunized mice generated significantly increased OVAp-specific antibody and CD4+/CD8+ memory T cells, which mediated long-term protective effects. OVAp-CRT upregulated CD40, CD80, and CD86 expressions in splenic conventional DCs. Furthermore, OVAp-CRT protected immunized mice against OVA-expressing B16 melanoma cells in vivo. Moreover, mice that were adoptively transferred with OVAp-CRT-pulsed DCs showed inhibited tumor growth and prolonged mouse survival. Our results demonstrate that CRT/39-272 can be used as a potential new adjuvant for tumor vaccines, and this finding may be useful in tumor vaccine development.
Collapse
|
2
|
Kim NY, Son WR, Lee MH, Choi HS, Choi JY, Song YJ, Yu CH, Song DH, Hur GH, Jeong ST, Hong SY, Shin YK, Shin S. A multipathogen DNA vaccine elicits protective immune responses against two class A bioterrorism agents, anthrax and botulism. Appl Microbiol Biotechnol 2022; 106:1531-1542. [PMID: 35141866 PMCID: PMC8979915 DOI: 10.1007/s00253-022-11812-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/17/2022]
Abstract
Abstract
The potential use of biological agents has become a major public health concern worldwide. According to the CDC classification, Bacillus anthracis and Clostridium botulinum, the bacterial pathogens that cause anthrax and botulism, respectively, are considered to be the most dangerous potential biological agents. Currently, there is no licensed vaccine that is well suited for mass immunization in the event of an anthrax or botulism epidemic. In the present study, we developed a dual-expression system-based multipathogen DNA vaccine that encodes the PA-D4 gene of B. anthracis and the HCt gene of C. botulinum. When the multipathogen DNA vaccine was administered to mice and guinea pigs, high level antibody responses were elicited against both PA-D4 and HCt. Analysis of the serum IgG subtype implied a combined Th1/Th2 response to both antigens, but one that was Th2 skewed. In addition, immunization with the multipathogen DNA vaccine induced effective neutralizing antibody activity against both PA-D4 and HCt. Finally, the protection efficiency of the multipathogen DNA vaccine was determined by sequential challenge with 10 LD50 of B. anthracis spores and 10 LD50 of botulinum toxin, or vice versa, and the multipathogen DNA vaccine provided higher than 50% protection against lethal challenge with both high-risk biothreat agents. Our studies suggest the strategy used for this anthrax-botulinum multipathogen DNA vaccine as a prospective approach for developing emergency vaccines that can be immediately distributed on a massive scale in response to a biothreat emergency or infectious disease outbreak.
Key points • A novel multipathogen DNA vaccine was constructed against anthrax and botulism. • Robust immune responses were induced following vaccination. • Suggests a potential vaccine development strategy against biothreat agents. |
Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11812-6.
Collapse
Affiliation(s)
- Na Young Kim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Won Rak Son
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Min Hoon Lee
- R&D Center, ABION Inc., Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | | | | | - Young Jo Song
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Chi Ho Yu
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Gyeung Haeng Hur
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Seong Tae Jeong
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Sung Youl Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungho Shin
- Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Kondakova OA, Nikitin NA, Evtushenko EA, Ryabchevskaya EM, Atabekov JG, Karpova OV. Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Rev Vaccines 2019; 18:813-828. [PMID: 31298973 DOI: 10.1080/14760584.2019.1643242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Anthrax is a dangerous bio-terror agent because Bacillus anthracis spores are highly resilient and can be easily aerosolized and disseminated. There is a threat of deliberate use of anthrax spores aerosol that could lead to serious fatal diseases outbreaks. Existing control measures against inhalation form of the disease are limited. All of this has provided an impetus to the development of new generation vaccines. Areas сovered: This review is devoted to challenges and achievements in the design of vaccines based on the anthrax recombinant protective antigen (rPA). Scientific databases have been searched, focusing on causes of PA instability and solutions to this problem, including new approaches of rPA expression, novel rPA-based vaccines formulations as well as the simultaneous usage of PA with other anthrax antigens. Expert opinion: PA is a central anthrax toxin component, playing a key role in the defense against encapsulated and unencapsulated strains. Subunit rPA-based vaccines have a good safety and protective profile. However, there are problems of PA instability that are greatly enhanced when using aluminum adjuvants. New adjuvant compositions, dry formulations and resistant to proteolysis and deamidation mutant PA forms can help to handle this issue. Devising a modern anthrax vaccine requires huge efforts.
Collapse
Affiliation(s)
- Olga A Kondakova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Nikolai A Nikitin
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina A Evtushenko
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina M Ryabchevskaya
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Joseph G Atabekov
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Olga V Karpova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
4
|
Endharti AT, Baskoro AD, Norahmawati E. Therapeutic effect of soluble worm protein acting as immune regulatory on colitis. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
5
|
Kim TK, Ibelli AMG, Mulenga A. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade. Ticks Tick Borne Dis 2016; 6:91-101. [PMID: 25454607 DOI: 10.1016/j.ttbdis.2014.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 10/13/2014] [Indexed: 01/02/2023]
Abstract
In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it's plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it's current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation. We discuss our findings in the context of tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, United States
| | | | | |
Collapse
|
6
|
Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge. PLoS One 2015; 10:e0139671. [PMID: 26430894 PMCID: PMC4591996 DOI: 10.1371/journal.pone.0139671] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022] Open
Abstract
Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2) type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ). The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats.
Collapse
|
7
|
Williamson ED, Dyson EH. Anthrax prophylaxis: recent advances and future directions. Front Microbiol 2015; 6:1009. [PMID: 26441934 PMCID: PMC4585224 DOI: 10.3389/fmicb.2015.01009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Anthrax is a serious, potentially fatal disease that can present in four distinct clinical patterns depending on the route of infection (cutaneous, gastrointestinal, pneumonic, or injectional); effective strategies for prophylaxis and therapy are therefore required. This review addresses the complex mechanisms of pathogenesis employed by the bacterium and describes how, as understanding of these has developed over many years, so too have current strategies for vaccination and therapy. It covers the clinical and veterinary use of live attenuated strains of anthrax and the subsequent identification of protein sub-units for incorporation into vaccines, as well as combinations of protein sub-units with spore or other components. It also addresses the application of these vaccines for conventional prophylactic use, as well as post-exposure use in conjunction with antibiotics. It describes the licensed acellular vaccines AVA and AVP and discusses the prospects for a next generation of recombinant sub-unit vaccines for anthrax, balancing the regulatory requirement and current drive for highly defined vaccines, against the risk of losing the “danger” signals required to induce protective immunity in the vaccinee. It considers novel approaches to reduce time to immunity by means of combining, for example, dendritic cell vaccination with conventional approaches and considers current opportunities for the immunotherapy of anthrax.
Collapse
Affiliation(s)
| | - Edward Hugh Dyson
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| |
Collapse
|
8
|
Devera TS, Prusator DK, Joshi SK, Ballard JD, Lang ML. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge. Toxins (Basel) 2015; 7:2371-84. [PMID: 26120785 PMCID: PMC4516918 DOI: 10.3390/toxins7072371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022] Open
Abstract
Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC) to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI), and hepatic alanine aminotransferase (ALT), and aspartate aminotransferase (AST), it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.
Collapse
Affiliation(s)
- T Scott Devera
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Dawn K Prusator
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Sunil K Joshi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
9
|
Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:553-60. [PMID: 25787135 DOI: 10.1128/cvi.00792-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022]
Abstract
The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design.
Collapse
|
10
|
Makam SS, Kingston JJ, Harischandra MS, Batra HV. Protective antigen and extractable antigen 1 based chimeric protein confers protection against Bacillus anthracis in mouse model. Mol Immunol 2014; 59:91-9. [PMID: 24513572 DOI: 10.1016/j.molimm.2014.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Recombinant bivalent chimeric protein was generated comprising of domain 4 of protective antigen (PA4) and carboxy terminal region of extractable antigen 1 (EA1C) by overlap extension PCR. The immunogenicity and protective efficacy of recombinant chimeric protein (PE) and protein mixture (PAEA) along with the individual components, PA4 and EA1C were evaluated in this study. We found that PE and PAEA exhibited higher endpoint titer and elevated IgG1 response. Compared to PA4 and EA1C, the chimeric protein PE and protein mixture PAEA exhibited 1.52 and 1.39 times more proliferative effect on lymphocytes in vitro. The spore uptake by anti-PE and anti-PAEA antibodies was significantly more than the individual components. We further evaluated the effects of antisera on the toxins in vitro and in vivo. Anti-PE and anti-PAEA antibodies displayed nearly 80% protection against crude toxin activity on RAW 264.7 cell lines. We further demonstrated that the anti-PE and anti-PAEA antibodies displayed better protection in controlling the edema induced by crude toxin. Passive immunization with anti-PE and anti-PAEA provided protection against toxin challenge in mice. The present study reveals that the chimeric protein consisting of heterologous regions of PA and EA1 can render better protection than PA4 or EA1C alone against toxins and bacilli.
Collapse
Affiliation(s)
- Shivakiran S Makam
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, Karnataka, India
| | - Joseph J Kingston
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, Karnataka, India
| | - Murali S Harischandra
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, Karnataka, India
| | - Harsh V Batra
- Microbiology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, Karnataka, India.
| |
Collapse
|
11
|
Haughney SL, Petersen LK, Schoofs AD, Ramer-Tait AE, King JD, Briles DE, Wannemuehler MJ, Narasimhan B. Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles. Acta Biomater 2013; 9:8262-71. [PMID: 23774257 DOI: 10.1016/j.actbio.2013.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 02/03/2023]
Abstract
Pneumococcal surface protein A (PspA) is a choline-binding protein which is a virulence factor found on the surface of all Streptococcus pneumoniae strains. Vaccination with PspA has been shown to be protective against a lethal challenge with S. pneumoniae, making it a promising immunogen for use in vaccines. Herein the design of a PspA-based subunit vaccine using polyanhydride nanoparticles as a delivery platform is described. Nanoparticles based on sebacic acid (SA), 1,6-bis-(p-carboxyphenoxy)hexane (CPH) and 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), specifically 50:50 CPTEG:CPH and 20:80 CPH:SA, were used to encapsulate and release PspA. The protein released from the nanoparticle formulations retained its primary and secondary structure as well as its antigenicity. The released PspA was also biologically functional based on its ability to bind to apolactoferrin and prevent its bactericidal activity against Escherichia coli. When the PspA nanoparticle formulations were administered subcutaneously to mice they elicited a high titer and high avidity anti-PspA antibody response. Together these studies provide a framework for the rational design of a vaccine against S. pneumoniae based on polyanhydride nanoparticles.
Collapse
|
12
|
Adjuvanticity of a recombinant calreticulin fragment in assisting anti-β-glucan IgG responses in T cell-deficient mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:582-9. [PMID: 23408527 DOI: 10.1128/cvi.00689-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polysaccharide-encapsulated fungi are the chief source of diseases in immunocompromised hosts such as those infected with human immunodeficiency virus or neutropenia patients. Currently available polysaccharide-protein conjugate vaccines are mainly T cell dependent and are usually ineffective in weakened immune systems. In this study, laminarin, a well-characterized β-1,3-glucan, was conjugated with a prokaryotically expressed recombinant fragment (amino acids [aa] 39 to 272) of calreticulin (rCRT/39-272), which exhibits extraordinarily potent immunogenicity and adjuvanticity in experimental animals. The resultant conjugate reserves the immunostimulatory effect of rCRT/39-272 on naïve murine B cells and is capable of eliciting anti-β-glucan IgG (mostly IgG1) responses in not only BALB/c mice but also athymic nude mice. Laminarin-CRT-induced mouse antibodies (Abs) are able to bind with Candida albicans and inhibit its growth in vitro. In addition, vaccination with laminarin-CRT partially protects mice from lethal C. albicans challenge. These results imply that rCRT/39-272 could be used as an ideal carrier or adjuvant for carbohydrate vaccines aimed at inducing or boosting IgG responses to fungal infections in immunodeficient hosts.
Collapse
|
13
|
Qiu X, Hong C, Li Y, Bao W, Gao XM. Calreticulin as a hydrophilic chimeric molecular adjuvant enhances IgG responses to the spike protein of severe acute respiratory syndrome coronavirus. Microbiol Immunol 2012; 56:554-61. [PMID: 22530918 PMCID: PMC7168421 DOI: 10.1111/j.1348-0421.2012.00467.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/15/2012] [Accepted: 04/09/2012] [Indexed: 12/02/2022]
Abstract
Fragment 450-650 of the spike (S) protein (S450-650) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) contains epitopes capable of being recognized by convalescent sera of SARS patients. Vaccination of mice with recombinant S450-650 (rS450-650) can induce Abs against SARS-CoV, although the titer is relatively low. In the present study, a fusion protein linking a fragment (residues 39-272) of murine calreticulin (CRT) to S450-650 in a prokaryotic expression system was created. Compared with target antigen alone, the recombinant fusion product (rS450-650-CRT) has much improved hydrophilicity and immunogenicity. The S450-650-specific IgG Abs of BALB/c mice subcutaneously immunized with rS450-650-CRT were in substantially higher titer (approximately fivefold more). Furthermore, the fusion protein, but not rS450-650 alone, was able to elicit S450-650-specific IgG responses in T cell deficient nude mice. Given that rCRT/39-272 can drive the maturation of bone-marrow-derived dendritic cells, directly activate macrophages and B cells, and also elicit helper T cell responses in vivo, we propose that fragment 39-272 of CRT is an effective molecular adjuvant capable of enhancing target Ag-specific humoral responses in both a T cell-dependent and independent manner. Fusion protein rS450-650-CRT is a potential candidate vaccine against SARS-CoV infection.
Collapse
Affiliation(s)
- Xiang Qiu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | | | | | | |
Collapse
|
14
|
Esparza-González SC, Troy A, Troudt J, Loera-Arias MJ, Villatoro-Hernández J, Torres-López E, Ancer-Rodríguez J, Gutiérrez-Puente Y, Muñoz-Maldonado G, Saucedo-Cárdenas O, Montes-de-Oca-Luna R, Izzo A. Recombinant adenovirus delivery of calreticulin-ESAT-6 produces an antigen-specific immune response but no protection against a Mycobacterium tuberculosis challenge. Scand J Immunol 2012; 75:259-65. [PMID: 22010821 DOI: 10.1111/j.1365-3083.2011.02655.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacillus Calmette-Guerin (BCG) has failed to efficaciously control the worldwide spread of the disease. New vaccine development targets virulence antigens of Mycobacterium tuberculosis that are deleted in Mycobacterium bovis BCG. Immunization with ESAT-6 and CFP10 provides protection against M. tuberculosis in a murine infection model. Further, previous studies have shown that calreticulin increases the cell-mediated immune responses to antigens. Therefore, to test whether calreticulin enhances the immune response against M. tuberculosis antigens, we fused ESAT-6 to calreticulin and constructed a recombinant replication-deficient adenovirus to express the resulting fusion protein (AdCRT-ESAT-6). The adjuvant effect of calreticulin was assayed by measuring cytokine responses specific to ESAT-6. Recombinant adenovirus expressing the fusion protein produced higher levels of interferon-γ and tumour necrosis factor-α in response to ESAT-6. This immune response was not improved by the addition of CFP-10 to the CRT-ESAT-6 fusion protein (AdCRT-ESAT-6-CFP10). Mice immunized with these recombinant adenoviruses did not decrease the mycobacterial burden after low-dose aerosol infection with M. tuberculosis. We conclude that calreticulin can be used as an adjuvant to enhance the immune response against mycobacterial antigens, but it is not enough to protect against tuberculosis.
Collapse
Affiliation(s)
- S C Esparza-González
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Monterrey N. L., México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chow SK, Casadevall A. Monoclonal antibodies and toxins--a perspective on function and isotype. Toxins (Basel) 2012; 4:430-54. [PMID: 22822456 PMCID: PMC3398419 DOI: 10.3390/toxins4060430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.
Collapse
Affiliation(s)
- Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-718-430-2811; Fax: +1-718-430-8711
| |
Collapse
|
16
|
Smith K, Crowe SR, Garman L, Guthridge CJ, Muther JJ, McKee E, Zheng NY, Farris AD, Guthridge JM, Wilson PC, James JA. Human monoclonal antibodies generated following vaccination with AVA provide neutralization by blocking furin cleavage but not by preventing oligomerization. Vaccine 2012; 30:4276-83. [PMID: 22425791 DOI: 10.1016/j.vaccine.2012.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/09/2012] [Accepted: 03/01/2012] [Indexed: 12/28/2022]
Abstract
In order to identify the combination of antibody-mediated mechanisms of neutralization that result from vaccination with anthrax vaccine adsorbed (AVA), we isolated antibody secreting cells from a single donor seven days after booster vaccination with AVA and generated nine fully human monoclonal antibodies (hmAb) with high specificity for protective antigen (PA). Two of the antibodies were able to neutralize lethal toxin in vitro at low concentrations (IC(50): p6C01, 0.12 μg/ml and p6F01, 0.45 μg/ml). Passive transfer of either of these hmAbs to A/J mice prior to challenge with lethal toxin conferred 80-90% protection. We demonstrate that hmAb p6C01 is neutralizing by preventing furin cleavage of PA in a dose-dependent manner, but the mechanism of p6F01 is unclear. Three additional antibodies were found to bind to domain 3 of PA and prevent oligomerization, although they did not confer significant protection in vivo and showed a significant prozone-like effect in vitro. These fully human antibodies provide insight into the neutralizing response to AVA for future subunit vaccine and passive immunotherapeutic cocktail design.
Collapse
Affiliation(s)
- Kenneth Smith
- Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thompson AL, Johnson BT, Sempowski GD, Gunn MD, Hou B, DeFranco AL, Staats HF. Maximal adjuvant activity of nasally delivered IL-1α requires adjuvant-responsive CD11c(+) cells and does not correlate with adjuvant-induced in vivo cytokine production. THE JOURNAL OF IMMUNOLOGY 2012; 188:2834-46. [PMID: 22345651 DOI: 10.4049/jimmunol.1100254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IL-1 has been shown to have strong mucosal adjuvant activities, but little is known about its mechanism of action. We vaccinated IL-1R1 bone marrow (BM) chimeric mice to determine whether IL-1R1 expression on stromal cells or hematopoietic cells was sufficient for the maximal adjuvant activity of nasally delivered IL-1α as determined by the acute induction of cytokine responses and induction of Bacillus anthracis lethal factor (LF)-specific adaptive immunity. Cytokine and chemokine responses induced by vaccination with IL-1α were predominantly derived from the stromal cell compartment and included G-CSF, IL-6, IL-13, MCP-1, and keratinocyte chemoattractant. Nasal vaccination of Il1r1(-/-) (knock-out [KO]) mice given wild-type (WT) BM (WT→KO) and WT→WT mice with LF + IL-1α induced maximal adaptive immune responses, whereas vaccination of WT mice given Il1r1(-/-) BM (KO→WT) resulted in significantly decreased production of LF-specific serum IgG, IgG subclasses, lethal toxin-neutralizing Abs, and mucosal IgA compared with WT→KO and WT→WT mice (p < 0.05). IL-1α adjuvant activity was not dependent on mast cells. However, the ability of IL-1α to induce serum LF-specific IgG2c and lethal toxin-neutralizing Abs was significantly impaired in CD11c-Myd88(-/-) mice when compared with WT mice (p < 0.05). Our results suggest that CD11c(+) cells must be directly activated by nasally administered IL-1α for maximal adjuvant activity and that, although stromal cells are required for maximal adjuvant-induced cytokine production, the adjuvant-induced stromal cell cytokine responses are not required for effective induction of adaptive immunity.
Collapse
Affiliation(s)
- Afton L Thompson
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Regulation of anthrax toxin-specific antibody titers by natural killer T cell-derived IL-4 and IFNγ. PLoS One 2011; 6:e23817. [PMID: 21858226 PMCID: PMC3157475 DOI: 10.1371/journal.pone.0023817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022] Open
Abstract
Activation of Natural Killer-like T cells (NKT) with the CD1d ligand α-GC leads to enhanced production of anthrax toxin protective Ag (PA)-neutralizing Abs, yet the underlying mechanism for this adjuvant effect is not known. In the current study we examined the role of Th1 and Th2 type responses in NKT-mediated enhancement of antibody responses to PA. First, the contribution of IL-4 and IFNγ to the production of PA-specific toxin-neutralizing Abs was examined. By immunizing C57Bl/6 controls IL-4−/− mice and IFNγ−/− mice and performing passive serum transfer experiments, it was observed that sera containing PA-specific IgG1, IgG2b and IgG2c neutralized toxin in vitro and conferred protection in vivo. Sera containing IgG2b and IgG2c neutralized toxin in vitro but were not sufficient for protection in vivo. Sera containing IgG1 and IgG2b neutralized toxin in vitro and conferred protection in vivo. IgG1 therefore emerged as a good correlate of protection. Next, C57Bl/6 mice were immunized with PA alone or PA plus a Th2-skewing α-GC derivative known as OCH. Neutralizing PA-specific IgG1 responses were modestly enhanced by OCH in C57Bl/6 mice. Conversely, IgG2b and IgG2c were considerably enhanced in PA/OCH-immunized IL-4−/− mice but did not confer protection. Finally, bone marrow chimeras were generated such that NKT cells were unable to express IL-4 or IFNγ. NKT-derived IL-4 was required for OCH-enhanced primary IgG1 responses but not recall responses. NKT-derived IL-4 and IFNγ also influenced primary and recall IgG2b and IgG2c titers. These data suggest targeted skewing of the Th2 response by α-GC derivatives can be exploited to optimize anthrax vaccination.
Collapse
|
19
|
Gorantala J, Grover S, Goel D, Rahi A, Jayadev Magani SK, Chandra S, Bhatnagar R. A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Vaccine 2011; 29:4521-33. [PMID: 21504775 DOI: 10.1016/j.vaccine.2011.03.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 12/29/2022]
Abstract
The currently available anthrax vaccines are limited by being incompletely characterized, potentially reactogenic and have an expanded dosage schedule. Plant based vaccines offer safe alternative for vaccine production. In the present study, we expressed domain IV of Bacillus anthracis protective antigen gene [PA(dIV)] in planta (by nuclear agrobacterium and chloroplast transformation) and E. coli [rPA(dIV)]. The presence of transgene and the expression of PA(dIV) in planta was confirmed by molecular analysis. Expression levels up to 5.3% of total soluble protein (TSP) were obtained with AT rich (71.8% AT content) PA(dIV) gene in transplastomic plants while 0.8% of TSP was obtained in nuclear transformants. Further, we investigated the protective response of plant and E. coli derived PA(dIV) in mice by intraperitoneal (i.p.) and oral immunizations with or without adjuvant. Antibody titers of >10(4) were induced upon i.p. and oral immunizations with plant derived PA(dIV) and oral immunization with E. coli derived PA(dIV). Intraperitoneal injections with adjuvanted E. coli derived PA(dIV), generated highest antibody titers of >10(5). All the immunized groups demonstrated predominant IgG1 titers over IgG2a indicating a polarized Th2 type response. We also evaluated the mucosal antibody response in orally immunized groups. When fecal extracts were analyzed, low sIgA titer was demonstrated in adjuvanted plant and E. coli derived PA(dIV) groups. Further, PA(dIV) antisera enhanced B. anthracis spore uptake by macrophages in vitro and also demonstrated an anti-germinating effect suggesting a potent role at mucosal surfaces. The antibodies from various groups were efficient in neutralizing the lethal toxin in vitro. When mice were challenged with B. anthracis, mice immunized with adjuvanted plant PA(dIV) imparted 60% and 40% protection while E. coli derived PA(dIV) conferred 100% and 80% protection upon i.p. and oral immunizations. Thus, our study is the first attempt in highlighting the efficacy of plant expressed PA(dIV) by oral immunization in murine model.
Collapse
MESH Headings
- Animals
- Anthrax/immunology
- Anthrax/prevention & control
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/genetics
- Anthrax Vaccines/immunology
- Anthrax Vaccines/metabolism
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacillus anthracis/immunology
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Immunity, Mucosal
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Plants, Genetically Modified
- Rhizobium/genetics
- Rhizobium/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/microbiology
- Transformation, Genetic
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
Collapse
Affiliation(s)
- Jyotsna Gorantala
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
20
|
A combination of the TLR4 agonist CIA05 and alum promotes the immune responses to Bacillus anthracis protective antigen in mice. Int Immunopharmacol 2011; 11:1195-204. [PMID: 21492746 DOI: 10.1016/j.intimp.2011.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/11/2011] [Accepted: 03/28/2011] [Indexed: 11/23/2022]
Abstract
Anthrax is an infectious disease caused by Bacillus anthracis. The currently licensed human anthrax vaccines contain protective antigen (PA) as a major protective component and alum as an adjuvant. In this study, we investigated whether CIA05, a TLR4 agonist, is able to promote the immune response to an anthrax vaccine adjuvanted with alum. BALB/c mice were immunized intraperitoneally three times at 2-week intervals with a recombinant B. anthracis PA alone or in combination with CIA05 in the absence or presence of alum, and immune responses were determined 2 or 3 weeks after the third immunization. The results showed that the combination of CIA05 and alum significantly increased both serum anti-PA IgG antibody and toxin-neutralizing antibody titers, and the adjuvant effects were greater when lower antigen doses were used for immunization. Both CIA05 and alum stimulated PA-specific splenocyte secretion of interleukin (IL)-4, IL-5, and IL-6. A combination of the two yielded synergistic effects on IL-4 secretion, but CIA05 tended to repress IL-5 and IL-6 secretions induced by alum. Co-administration of CIA05 and alum also increased GL7 expression in B220(+)CD24(+) splenic cells, indicating the ability to activate B cells. These data suggest that CIA05, combined with alum, could be used to achieve higher immune responses to PA, leading to the development of an effective anthrax vaccine.
Collapse
|
21
|
Ulery BD, Kumar D, Ramer-Tait AE, Metzger DW, Wannemuehler MJ, Narasimhan B. Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS One 2011; 6:e17642. [PMID: 21408610 PMCID: PMC3048296 DOI: 10.1371/journal.pone.0017642] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/07/2011] [Indexed: 11/18/2022] Open
Abstract
Despite the successes provided by vaccination, many challenges still exist with respect to controlling new and re-emerging infectious diseases. Innovative vaccine platforms composed of adaptable adjuvants able to appropriately modulate immune responses, induce long-lived immunity in a single dose, and deliver immunogens in a safe and stable manner via multiple routes of administration are needed. This work describes the development of a novel biodegradable polyanhydride nanoparticle-based vaccine platform administered as a single intranasal dose that induced long-lived protective immunity against respiratory disease caused by Yesinia pestis, the causative agent of pneumonic plague. Relative to the responses induced by the recombinant protein F1-V alone and MPLA-adjuvanted F1-V, the nanoparticle-based vaccination regimen induced an immune response that was characterized by high titer and high avidity IgG1 anti-F1-V antibody that persisted for at least 23 weeks post-vaccination. After challenge, no Y. pestis were recovered from the lungs, livers, or spleens of mice vaccinated with the nanoparticle-based formulation and histopathological appearance of lung, liver, and splenic tissues from these mice post-vaccination was remarkably similar to uninfected control mice.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Devender Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Amanda E. Ramer-Tait
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kang TH, Kim KW, Bae HC, Seong SY, Kim TW. Enhancement of DNA vaccine potency by antigen linkage to IFN-γ-inducible protein-10. Int J Cancer 2011; 128:702-714. [PMID: 20473881 DOI: 10.1002/ijc.25391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA vaccines have emerged as an attractive approach to generate antigen-specific T-cell immune response. Nevertheless, the potency of DNA vaccines still needs to be improved for cancer immunotherapy. In this study, we explored whether functional linkage of a Th1-polarizing chemokine, IP-10, to a model tumor antigen, human papillomavirus type 16 (HPV-16) E7, enhanced DNA vaccine potency. IP-10 linkage changed the location of E7 from the nucleus to the endoplasmic reticulum and led to the secretion of functionally chemoattractive chimeric IP-10/E7 protein. In addition, this linkage drastically enhanced the endogenous processing of E7 antigen through MHC class I. More importantly, we found that C57BL/6 mice intradermally vaccinated with IP-10/E7 DNA exhibited a dramatic increase in the number of E7-specific CD4(+) Th1 T-cells and CD8(+) T-cells and, consequently, were strongly resistant over the long term to E7-expressing tumors compared to mice vaccinated with wild-type E7 DNA. Thus, because of the increase in tumor antigen-specific T-cell immune responses obtained through both enhanced antigen presentation and chemoattraction, vaccination with DNA encoding IP-10 linked to a tumor antigen holds great promise for treating tumors.
Collapse
Affiliation(s)
- Tae Heung Kang
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
23
|
Fonseca-Coronado S, Ruiz-Tovar K, Pérez-Tapia M, Mendlovic F, Flisser A. Taenia solium: Immune response against oral or systemic immunization with purified recombinant calreticulin in mice. Exp Parasitol 2011; 127:313-7. [DOI: 10.1016/j.exppara.2010.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/28/2010] [Accepted: 07/27/2010] [Indexed: 02/01/2023]
|
24
|
Distinct immune responses of recombinant plasmid DNA replicon vaccines expressing two types of antigens with or without signal sequences. Vaccine 2010; 28:7529-35. [DOI: 10.1016/j.vaccine.2010.08.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 07/12/2010] [Accepted: 08/13/2010] [Indexed: 11/19/2022]
|
25
|
Abstract
Prostate cancer is a significant public health problem, and the most commonly diagnosed cancer in the USA. The long natural history of prostate cancer, the presence of a serum biomarker that can be used to detect very early recurrences, and the previous identification of multiple potential tissue-specific target antigens are all features that make this disease suitable for the development of anti-tumor vaccines. To date, many anti-tumor vaccines have entered clinical testing for patients with prostate cancer, and some have demonstrated clinical benefit. DNA vaccines represent one vaccine approach that has been evaluated in multiple preclinical models and clinical trials. The safety, specificity for the target antigen, ease of manufacturing and ease of incorporating other immune-modulating approaches make DNA vaccines particularly relevant for future development. This article focuses on DNA vaccines specifically in the context of prostate cancer treatment, focusing on antigens targeted in preclinical models, recent clinical trials and efforts to improve the potency of these vaccines.
Collapse
Affiliation(s)
- Sheeba Alam
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | | |
Collapse
|
26
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
27
|
CD1d-dependent B-cell help by NK-like T cells leads to enhanced and sustained production of Bacillus anthracis lethal toxin-neutralizing antibodies. Infect Immun 2010; 78:1610-7. [PMID: 20123711 DOI: 10.1128/iai.00002-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current Bacillus anthracis vaccine consists largely of protective antigen (PA), the protein of anthrax toxin that mediates entry of edema factor (EF) or lethal factor (LF) into cells. PA induces protective antibody (Ab)-mediated immunity against Bacillus anthracis but has limited efficacy and duration. We previously demonstrated that activation of CD1d-restricted natural killer-like T cells (NKT) with a CD1d-binding glycolipid led to enhanced Ab titers specific for foreign antigen (Ag). We therefore tested the hypothesis that activation of NKT cells with the CD1d ligand (alpha-galactosylceramide [alpha-GC]) at the time of immunization improves PA-specific Ab responses. We observed that alpha-GC enhanced PA-specific Ab titers in C57BL/6 mice. In CD1d(-/-) mice deficient in type I and type II NKT cells the anti-PA Ab response was diminished. In Jalpha281(-/-) mice expressing CD1d but lacking type I alpha-GC-reactive NKT cells, alpha-GC did not enhance the Ab response. In vitro neutralization assays were performed and showed that the Ab titers correlated with protection of macrophages against anthrax lethal toxin (LT). The neutralization capacity of the Ab was further tested in lethal challenge studies, which revealed that NKT activation leads to enhanced in vivo protection against LT. Anti-PA Ab titers, neutralization, and protection were then measured over a period of several months, and this revealed that NKT activation leads to a sustained protective Ab response. These results suggest that NKT-activating CD1d ligands could be exploited for the development of improved vaccines for Bacillus anthracis that increase not only neutralizing Ab titers but also the duration of the protection afforded by Ab.
Collapse
|
28
|
Loera-Arias MJ, Martínez-Pérez AG, Barrera-Hernández A, Ibarra-Obregón ER, González-Saldívar G, Martínez-Ortega JI, Rosas-Taraco A, Villanueva-Olivo A, Esparza-González SC, Villatoro-Hernandez J, Saucedo-Cárdenas O, Montes-de-Oca-Luna R. Targeting and retention of HPV16 E7 to the endoplasmic reticulum enhances immune tumour protection. J Cell Mol Med 2009; 14:890-4. [PMID: 19818090 PMCID: PMC3823120 DOI: 10.1111/j.1582-4934.2009.00934.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is where the major histocompatibility complex (MHC) class I molecules are loaded with epitopes to cause an immune cellular response. Most of the protein antigens are degraded in the cytoplasm to amino acids and few epitopes reach the ER. Antigen targeting of this organelle by Calreticulin (CRT) fusion avoids this degradation and enhances the immune response. We constructed a recombinant adenovirus to express the E7 antigen with an ER-targeting signal peptide (SP) plus an ER retention signal (KDEL sequence). In cell-culture experiments we demonstrated that this new E7 antigen, SP-E7-KDEL, targeted the ER. Infection of mice with this recombinant adenovirus that expresses SP-E7-KDEL showed interferon induction and tumour-protection response, similar to that provided by an adenovirus expressing the E7 antigen fused to CRT. This work demonstrated that just by adding a SP and the KDEL sequence, antigens can be targeted and retained in the ER with a consequent enhancement of immune response and tumour protection. These results will have significant clinical applications.
Collapse
Affiliation(s)
- M J Loera-Arias
- Departamento de Histología, Facultad de Medicina. Universidad Autónoma de Nuevo León, Monterrey, N.L., México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bouzianas DG. Medical countermeasures to protect humans from anthrax bioterrorism. Trends Microbiol 2009; 17:522-8. [PMID: 19781945 DOI: 10.1016/j.tim.2009.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/25/2009] [Accepted: 08/24/2009] [Indexed: 12/27/2022]
Abstract
The deliberate dissemination of Bacillus anthracis spores via the US mail system in 2001 confirmed their potential use as a biological weapon for mass human casualties. This dramatically highlighted the need for specific medical countermeasures to enable the authorities to protect individuals from a future bioterrorism attack. Although vaccination appears to be the most effective and economical form of mass protection, current vaccines have significant drawbacks that justify the immense research effort to develop improved treatment modalities. After eight years and an expenditure of more than $50 billion, only marginal progress has been made in developing effective therapeutics. This article summarizes the most important medical countermeasures that have mostly been developed since the 2001 events, and highlights current problems and possible avenues for future research.
Collapse
Affiliation(s)
- Dimitrios G Bouzianas
- Technological Educational Institute of Thessaloniki, Department of Medical Laboratories, Laboratory of Immunology and Microbiology, PO Box 145-61, Thessaloniki 541-01, Macedonia, Greece.
| |
Collapse
|
30
|
Kaur M, Chug H, Singh H, Chandra S, Mishra M, Sharma M, Bhatnagar R. Identification and characterization of immunodominant B-cell epitope of the C-terminus of protective antigen of Bacillus anthracis. Mol Immunol 2009; 46:2107-15. [PMID: 19356802 DOI: 10.1016/j.molimm.2008.12.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/26/2008] [Accepted: 12/30/2008] [Indexed: 11/15/2022]
Abstract
Bacillus anthracis is the etiological agent of anthrax. Protective antigen (PA) has been established as the key protective immunogen and is the major component of anthrax vaccine. Prior studies have indicated that C-terminus host cell receptor binding region contains dominant protective epitopes of PA. In the present study, we focused our attention on determining B-cell epitopes from this region, which could be employed as a vaccine. Using B-cell epitope prediction systems, three regions were identified; ID-I: 604-622, ID-II: 626-676 and ID-III: 707-723 aa residues. These epitopes elicited potent B-cell response in BALB/c mice. ID-II in particular was found to be highly immunogenic in terms of IgG antibody titre, with a predominantly IgG1/IgG2a subclass distribution indicating Th2 bias and high affinity/avidity index. Effective cellular immunity was additionally generated which also signified its Th2 bias. Further, ID-II induced high level of lethal toxin neutralizing antibodies and robust protective immunity (66%) against in vivo lethal toxin challenge. Thus, ID-II can be classified as an immunodominant B-cell epitope and may prove significant in the development of an effective immunoprophylactic strategy against anthrax.
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Genetic immunization with GPI-anchored anthrax protective antigen raises combined CD1d- and MHC II-restricted antibody responses by natural killer T cell-mediated help. Vaccine 2009; 27:1700-9. [DOI: 10.1016/j.vaccine.2009.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 01/02/2009] [Accepted: 01/14/2009] [Indexed: 11/21/2022]
|
32
|
Michalak M, Groenendyk J, Szabo E, Gold L, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 2009; 417:651-666. [DOI: 10.1042/bj20081847] [Citation(s) in RCA: 540] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Calreticulin is an ER (endoplasmic reticulum) luminal Ca2+-buffering chaperone. The protein is involved in regulation of intracellular Ca2+ homoeostasis and ER Ca2+ capacity. The protein impacts on store-operated Ca2+ influx and influences Ca2+-dependent transcriptional pathways during embryonic development. Calreticulin is also involved in the folding of newly synthesized proteins and glycoproteins and, together with calnexin (an integral ER membrane chaperone similar to calreticulin) and ERp57 [ER protein of 57 kDa; a PDI (protein disulfide-isomerase)-like ER-resident protein], constitutes the ‘calreticulin/calnexin cycle’ that is responsible for folding and quality control of newly synthesized glycoproteins. In recent years, calreticulin has been implicated to play a role in many biological systems, including functions inside and outside the ER, indicating that the protein is a multi-process molecule. Regulation of Ca2+ homoeostasis and ER Ca2+ buffering by calreticulin might be the key to explain its multi-process property.
Collapse
Affiliation(s)
- Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Eva Szabo
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Leslie I. Gold
- Departments of Medicine and Pathology, New York University School of Medicine, New York, NY 10016, U.S.A
| | - Michal Opas
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
33
|
Midha S, Bhatnagar R. Anthrax protective antigen administered by DNA vaccination to distinct subcellular locations potentiates humoral and cellular immune responses. Eur J Immunol 2009; 39:159-77. [PMID: 19130551 DOI: 10.1002/eji.200838058] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Based on the hypothesis that immune outcome can be influenced by the form of antigen administered and its ability to access various antigen-processing pathways, we targeted the 63 kDa fragment of protective antigen (PA) of Bacillus anthracis to various subcellular locations by DNA chimeras bearing a set of signal sequences. These targeting signals, namely, lysosome-associated membrane protein 1 (LAMP1), tissue plasminogen activator (TPA) and ubiquitin, encoded various forms of PA viz. lysosomal, secreted and cytosolic, respectively. Examination of IgG subclass distribution arising as a result of DNA vaccination indicated a higher IgG1:IgG2a ratio whenever the groups were immunized with chimeras bearing TPA, LAMP1 signals alone or when combined together. Importantly, high end-point titers of IgG antibodies were maintained until 24 wk. It was paralleled by high avidity toxin neutralizing antibodies (TNA) and effective cellular adaptive immunity in the systemic compartment. Anti-PA and TNA titers of approximately 10(5) and approximately 10(3), respectively, provided protection to approximately 90% of vaccinated animals in the group pTPA-PA63-LAMP1. A significant correlation was found between survival percentage and post-challenge anti-PA titers and TNA titers. Overall, immune kinetics pointed that differential processing through various compartments gave rise to qualitative differences in the immune response generated by various chimeras.
Collapse
Affiliation(s)
- Shuchi Midha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
34
|
Rzepecka J, Rausch S, Klotz C, Schnöller C, Kornprobst T, Hagen J, Ignatius R, Lucius R, Hartmann S. Calreticulin from the intestinal nematode Heligmosomoides polygyrus is a Th2-skewing protein and interacts with murine scavenger receptor-A. Mol Immunol 2008; 46:1109-19. [PMID: 19108896 DOI: 10.1016/j.molimm.2008.10.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 10/02/2008] [Accepted: 10/22/2008] [Indexed: 01/27/2023]
Abstract
Helminth infections are commonly associated with a Th2 immune response, yet only a few parasite molecules involved in triggering such immune responses have been identified. Here, we describe the Th2-skewing property of calreticulin of Heligmosomoides polygyrus (HpCRT). HpCRT is a secreted protein most abundantly expressed by tissue invasive larvae (L4). Native HpCRT purified from adult worm extract (nHpCRT) stimulated robust IL-4 release from CD4(+) T cells of H. polygyrus infected mice. Interestingly, CD4(+) T cells also produced significant amounts of IL-10 while IFN-gamma was not detectable. Likewise, immunization with recombinant HpCRT (rHpCRT) without extrinsic adjuvant led predominantly to a specific IL-4 production implying the innate ability of HpCRT to drive Th2 responses. The triggering of a Th2-skewed immune response to rHpCRT is corroborated by the induction of HpCRT-specific IgG1 and IgE antibodies. Furthermore, rHpCRT bound to scavenger receptor type A (SR-A) on dendritic cells, and interaction of HpCRT with SR-A led to internalization of HpCRT that could be partially blocked by competition with SR-A ligands as well as with an anti-SR-A monoclonal antibody. Hence, our data imply that nematode calreticulin interacts with a mammalian scavenger receptor and at the same time induces a Th2 response.
Collapse
Affiliation(s)
- Justyna Rzepecka
- Department of Molecular Parasitology, Humboldt-University, Philippstr. 13, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim SH, Park SA, Kim HK, Cho YJ, Kim KS, Kim YH, Chun JH, Lee NG. Enhancement of the immune responses of mice to Bacillus anthracis protective antigen by CIA07 combined with alum. Arch Pharm Res 2008; 31:1385-92. [DOI: 10.1007/s12272-001-2121-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 10/08/2008] [Indexed: 11/24/2022]
|