1
|
Chanda A, Song Y, Nazir J, Lin C, Cheng A, Sargent J, Sikora AE. Bridging Gaps in Antibody Responses and Animal Welfare: Assessing Blood Collection Methods and Vaginal Immunity in Mice Immunized with Intranasal Gonococcal Vaccines. RESEARCH SQUARE 2025:rs.3.rs-6241509. [PMID: 40313749 PMCID: PMC12045373 DOI: 10.21203/rs.3.rs-6241509/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Assessing antibody titers and functional responses is essential for evaluating vaccine efficacy, yet the impact of blood collection methods on these immunological assessments remains unclear. Retro-orbital (RO) blood collection is commonly used but significant complications can occur. Increasingly, investigators have adopted alternative blood collection approaches, such as saphenous vein (SV) sampling to improve laboratory animal welfare. This study compared RO and SV sampling in the development of a Neisseria gonorrhoeae (Ng) vaccine, evaluating Adhesin Complex Protein (ACP) and multiple transferable resistance (Mtr) E protein (MtrE) as antigen candidates. Epitope mapping revealed that ACP and MtrE possess multiple, highly accessible B-cell and T-cell epitope clusters, reinforcing their immunological potential. Following intranasal immunization with rACP, rACP+CpG, and rMtrE+CpG, we assessed the specificity, magnitude, kinetics, and functional quality of immune responses elicited by the immunization regimens. Out of 45 comparisons, only eight significant differences were detected in antibody titers, while the human serum bactericidal assays revealed no differences between RO and SV in antigen-immunized groups. However, antibodies elicited by rACP alone or ACP+CpG in SV samples restored 30.05% and 75.2% of human lysozyme hydrolytic activity compared to 19.3 and 59.9 % in RO, respectively suggesting that SV sampling may be more reliable for assessing functional antibody responses. Beyond its immunological advantages, SV sampling reduces stress, minimizes ocular trauma, and improves animal welfare, making it a viable alternative to RO collection. Given its widespread use in vaccine research, standardizing SV sampling could improve data reliability, ethical compliance, and translational relevance in preclinical studies.
Collapse
Affiliation(s)
- Abhishek Chanda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330, United States
| | - Yujuan Song
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330, United States
| | - Junaid Nazir
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara Punjab, India
| | - Chenwei Lin
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Alicia Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330, United States
| | - Jennifer Sargent
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97330, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330, United States
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States
| |
Collapse
|
2
|
Chanda A, Song Y, Nazir J, Lin C, Cheng A, Sargent J, Sikora AE. Bridging Gaps in Antibody Responses and Animal Welfare: Assessing Blood Collection Methods and Vaginal Immunity in Mice Immunized with Intranasal Gonococcal Vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639724. [PMID: 40027683 PMCID: PMC11870632 DOI: 10.1101/2025.02.23.639724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Assessing antibody titers and functional responses is essential for evaluating vaccine efficacy, yet the impact of blood collection methods on these immunological assessments remains unclear. Retro-orbital (RO) blood collection is commonly used but significant complications can occur. Increasingly, investigators have adopted alternative blood collection approaches, such as saphenous vein (SV) sampling to improve laboratory animal welfare. This study compared RO and SV sampling in the development of a Neisseria gonorrhoeae (Ng) vaccine, evaluating Adhesin Complex Protein (ACP) and multiple transferable resistance (Mtr) E protein (MtrE) as antigen candidates. Epitope mapping revealed that ACP and MtrE possess multiple, highly accessible B-cell and T-cell epitope clusters, reinforcing their immunological potential. Following intranasal immunization with rACP, rACP+CpG, and rMtrE+CpG, we assessed the specificity, magnitude, kinetics, and functional quality of immune responses elicited by the immunization regimens. Out of 45 comparisons, only eight significant differences were detected in antibody titers, while the human serum bactericidal assays revealed no differences between RO and SV in antigen-immunized groups. However, antibodies elicited by rACP alone or ACP+CpG in SV samples restored 30.05% and 75.2% of human lysozyme hydrolytic activity compared to 19.3 and 59.9 % in RO, respectively suggesting that SV sampling may be more reliable for assessing functional antibody responses. Beyond its immunological advantages, SV sampling reduces stress, minimizes ocular trauma, and improves animal welfare, making it a viable alternative to RO collection. Given its widespread use in vaccine research, standardizing SV sampling could improve data reliability, ethical compliance, and translational relevance in preclinical studies.
Collapse
|
3
|
Chakraborty S, Dutta P, Pal A, Chakraborty S, Banik G, Halder P, Gope A, Miyoshi SI, Das S. Intranasal immunization of mice with chimera of Salmonella Typhi protein elicits protective intestinal immunity. NPJ Vaccines 2024; 9:24. [PMID: 38321067 PMCID: PMC10847434 DOI: 10.1038/s41541-024-00812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
Development of safe, highly effective and affordable enteric fever vaccines is a global health priority. Live, oral typhoid vaccines induce strong mucosal immunity and long-term protection, but safety remains a concern. In contrast, efficacy wears off rapidly for injectable, polysaccharide-based vaccines, which elicit poor mucosal response. We previously reported Salmonella Typhi outer membrane protein, T2544 as a potential candidate for bivalent (S. Typhi and S. Paratyphi A) vaccine development. Here, we show that intranasal immunization with a subunit vaccine (chimera of T2544 and cholera toxin B subunit) induced strong systemic and intestinal mucosal immunity and protection from S. Typhi challenge in a mouse model. CTB-T2544 augmented gut-homing receptor expression on lymphocytes that produced Th1 and Th17 cytokines, secretory IgA in stool that inhibited bacterial motility and epithelial attachment, antibody recall response and affinity maturation with increased number of follicular helper T cells and CD4+ central and effector memory cells.
Collapse
Affiliation(s)
- Suparna Chakraborty
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - Pujarini Dutta
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tuscon, AZ, USA
| | - Ananda Pal
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - Swarnali Chakraborty
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - George Banik
- BD Biosciences, INDIA, Smart works Business Center, Victoria Park, 37/2 GN Block, Sector 5, Saltlake City, Kolkata, 700091, India
| | - Prolay Halder
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Center of Okayama University for Infectious Diseases at Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India.
- ICMR-National Institute of Occupational Health, Meghaninagar, Ahmedabad, 3800016, Gujarat, India.
| |
Collapse
|
4
|
Yoshino N, Yokoyama T, Sakai H, Sugiyama I, Odagiri T, Kimura M, Hojo W, Saino T, Muraki Y. Suitability of Polymyxin B as a Mucosal Adjuvant for Intranasal Influenza and COVID-19 Vaccines. Vaccines (Basel) 2023; 11:1727. [PMID: 38006059 PMCID: PMC10675063 DOI: 10.3390/vaccines11111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Polymyxin B (PMB) is an antibiotic that exhibits mucosal adjuvanticity for ovalbumin (OVA), which enhances the immune response in the mucosal compartments of mice. Frequent breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants indicate that the IgA antibody levels elicited by the mRNA vaccines in the mucosal tissues were insufficient for the prophylaxis of this infection. It remains unknown whether PMB exhibits mucosal adjuvanticity for antigens other than OVA. This study investigated the adjuvanticity of PMB for the virus proteins, hemagglutinin (HA) of influenza A virus, and the S1 subunit and S protein of SARS-CoV-2. BALB/c mice immunized either intranasally or subcutaneously with these antigens alone or in combination with PMB were examined, and the antigen-specific antibodies were quantified. PMB substantially increased the production of antigen-specific IgA antibodies in mucosal secretions and IgG antibodies in plasma, indicating its adjuvanticity for both HA and S proteins. This study also revealed that the PMB-virus antigen complex diameter is crucial for the induction of mucosal immunity. No detrimental effects were observed on the nasal mucosa or olfactory bulb. These findings highlight the potential of PMB as a safe candidate for intranasal vaccination to induce mucosal IgA antibodies for prophylaxis against mucosally transmitted infections.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Iwate, Japan
| | - Hironori Sakai
- R&D, Cellspect Co., Ltd., 2-4-23 Kitaiioka, Morioka 020-0857, Iwate, Japan
| | - Ikumi Sugiyama
- Division of Advanced Pharmaceutics, Department of Clinical Pharmaceutical Science, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Masahiro Kimura
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Wataru Hojo
- R&D, Cellspect Co., Ltd., 2-4-23 Kitaiioka, Morioka 020-0857, Iwate, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| |
Collapse
|
5
|
Microencapsulated IL-12 Drives Genital Tract Immune Responses to Intranasal Gonococcal Outer Membrane Vesicle Vaccine and Induces Resistance to Vaginal Infection with Diverse Strains of Neisseria gonorrhoeae. mSphere 2023; 8:e0038822. [PMID: 36537786 PMCID: PMC9942569 DOI: 10.1128/msphere.00388-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
An experimental gonococcal vaccine consisting of outer membrane vesicles (OMVs) and microsphere (ms)-encapsulated interleukin-12 (IL-12 ms) induces Th1-driven immunity, with circulating and genital antibodies to Neisseria gonorrhoeae, after intravaginal (i.vag.) administration in female mice, and generates resistance to vaginal challenge infection. Because i.vag. administration is inapplicable to males and may not be acceptable to women, we determined whether intranasal (i.n.) administration would generate protective immunity against N. gonorrhoeae. Female and male mice were immunized i.n. with gonococcal OMVs plus IL-12 ms or blank microspheres (blank ms). Responses to i.n. immunization were similar to those with i.vag. immunization, with serum IgG, salivary IgA, and vaginal IgG and IgA antigonococcal antibodies induced when OMVs were administered with IL-12 ms. Male mice responded with serum IgG and salivary IgA antibodies similarly to female mice. Gamma interferon (IFN-γ) production by CD4+ T cells from iliac lymph nodes was elevated after i.n. or i.vag. immunization with OMVs plus IL-12 ms. Female mice immunized with OMVs plus IL-12 ms by either route resisted challenge with N. gonorrhoeae to an equal extent, and resistance generated by i.n. immunization extended to heterologous strains of N. gonorrhoeae. Detergent-extracted OMVs, which have diminished lipooligosaccharide, generated protective immunity to challenge similar to native OMVs. OMVs from mutant N. gonorrhoeae, in which genes for Rmp and LpxL1 were deleted to eliminate the induction of blocking antibodies against Rmp and diminish lipooligosaccharide endotoxicity, also generated resistance to challenge infection similar to wild-type OMVs when administered i.n. with IL-12 ms. IMPORTANCE We previously demonstrated that female mice can be immunized intravaginally with gonococcal outer membrane vesicles (OMVs) plus microsphere (ms)-encapsulated interleukin-12 (IL-12 ms) to induce antigonococcal antibodies and resistance to genital tract challenge with live Neisseria gonorrhoeae. However, this route of vaccination may be impractical for human vaccine development and is inapplicable to males. Because intranasal immunization has previously been shown to induce antibody responses in both male and female genital tracts, we have evaluated this route of immunization with gonococcal OMVs plus IL-12 ms. In addition, we have refined the composition of gonococcal OMVs to reduce the endotoxicity of lipooligosaccharide and to eliminate the membrane protein Rmp, which induces countereffective blocking antibodies. The resulting vaccine may be more suitable for ultimate translation to human application against the sexually transmitted infection gonorrhea, which is becoming increasingly resistant to treatment with antibiotics.
Collapse
|
6
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
7
|
Clow F, Peterken K, Pearson V, Proft T, Radcliff FJ. PilVax, a novel Lactococcus lactis-based mucosal vaccine platform, stimulates systemic and mucosal immune responses to Staphylococcus aureus. Immunol Cell Biol 2020; 98:369-381. [PMID: 32150301 DOI: 10.1111/imcb.12325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/23/2020] [Accepted: 03/07/2020] [Indexed: 12/28/2022]
Abstract
Most pathogens initiate infection via the mucosa, therefore delivery of vaccines directly to the mucosa is likely to be advantageous for stimulating protective immunity at the site of entry. PilVax is a novel mucosal vaccine platform that harnesses Lactococcus lactis bacteria engineered to stably express multiple copies of vaccine peptide antigens within pili, hair-like structures which extend from the cell wall. This strategy elicited systemic and mucosal antibody responses to a model antigen after intranasal immunization, but has not been tested for its capacity to stimulate protective mucosal immunity. A well-characterized linear B-cell epitope, D3(22-33) , from the fibronectin-binding protein A of Staphylococcus aureus was successfully introduced into PilVax and delivered intranasally to mice. Specific antipeptide immunoglobulin (Ig) G and IgA antibodies were detected in the serum and respiratory mucosa of vaccinated mice. Responses to the major pilus backbone protein Spy0128 were also assessed; robust antibody responses to this antigen were generated both systemically and in the respiratory and intestinal mucosa. Mice were challenged intranasally with the mouse-adapted S. aureus JSNZ strain and the S. aureus load quantified 7 days after challenge. Unexpectedly, exposure to PilVax, irrespective of the presence of the peptide, resulted in a significant reduction in S. aureus load in both the intestine and nasal mucosa (both P < 0.05) when compared with unvaccinated control mice. The mechanism(s) of protection are unclear, but merit further investigation to determine whether PilVax is a suitable platform for delivery of vaccine candidate antigens to the mucosa.
Collapse
Affiliation(s)
- Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kelly Peterken
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Victoria Pearson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Bai Y, Wang G, Qi H, Wang Y, Xu C, Yue L, Hou X, Yu L. Immunogenicity of 987P fimbriae of enterotoxigenic Escherichia coli surface-displayed on Lactobacillus casei. Res Vet Sci 2020; 128:308-314. [DOI: 10.1016/j.rvsc.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 12/27/2022]
|
9
|
Wang S, Geng N, Zhou D, Qu Y, Shi M, Xu Y, Liu K, Liu Y, Liu J. Oral Immunization of Chickens With Recombinant Lactobacillus plantarum Vaccine Against Early ALV-J Infection. Front Immunol 2019; 10:2299. [PMID: 31632395 PMCID: PMC6783503 DOI: 10.3389/fimmu.2019.02299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, a novel oral vaccine of recombinant Lactobacillus plantarum (L. plantarum) containing the gp85 protein was explored, and the effects of this vaccine on the prevention of subgroup J Avian Leukosis Virus (ALV-J) infection were assessed. In the current study, the gp85 protein of ALV-J was expressed on the surface of L. plantarum with the surface-display motif, pgsA, by constructing a shuttle vector pMG36e:pgsA:gp85. Surface localization of the fusion protein was verified by western blotting and flow cytometry. Subsequently, Specific Pathogen Free Hy-Line Brown layer chickens were orally vaccinated with the recombinant L. plantarum and presented with high levels of serum immunoglobulin G (IgG) and secretory immunoglobulin A (sIgA) titers in bile and duodenal-mucosal fluid. After challenged with ALV-J of a 3 × 103 50% tissue culture infective dose (TCID50), serum samples of the chickens were collected and viremia was analyzed. Results showed that, compared to the L. plantarum and PBS control group, the recombinant L. plantarum group showed a significant rise in antibody levels after inoculation, and provide improved protection against ALV-J according to viremia detection. These results indicate that oral immunization with the recombinant L. plantarum provided an effective means for eliciting protective immune response against early ALV-J infection.
Collapse
Affiliation(s)
- Shenghua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Na Geng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yi Qu
- Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, China
| | - Mengke Shi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuliang Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Kangping Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
10
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
11
|
Yoshino N, Takeshita R, Kawamura H, Murakami K, Sasaki Y, Sugiyama I, Sadzuka Y, Kagabu M, Sugiyama T, Muraki Y, Sato S. Critical micelle concentration and particle size determine adjuvanticity of cyclic lipopeptides. Scand J Immunol 2018; 88:e12698. [PMID: 29935085 DOI: 10.1111/sji.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Cyclic lipopeptides such as surfactin and polymyxin have potent mucosal adjuvant properties. Cyclic lipopeptides are tensioactive compounds, but the relationship between adjuvanticity and surface activity is unknown. Here, we show that the critical micelle concentration (cmc) of surfactant and particle size of the surfactant-protein complex are important determinants of cyclic lipopeptide adjuvanticity. We found that the diameter of cyclic lipopeptide-ovalbumin (OVA) complex particles was significantly larger than that in the solutions of OVA alone at cyclic lipopeptide concentrations above the cmc. OVA-specific antibody titres in mice immunized intranasally with OVA and a cyclic lipopeptide at concentrations above its cmc were significantly higher than those in mice immunized with OVA plus the same dose of the cyclic lipopeptide but administered with formulations in which cyclic lipopeptide concentration was below the cmc. Thus, the concentration of the cyclic lipopeptide in the formulation at immunization, but not its overall dose, was critical for its adjuvanticity. Furthermore, two types of aggregates, the cyclic lipopeptide simplex micelles and the cyclic lipopeptide-OVA complex micelles, were found in formulations with SF concentrations above its cmc. Degranulation of mast cells exposed to SF simplex micelles was more pronounced when SF concentration was above the cmc. In conclusion, our study showed that surface activity properties, such as the cmc and the size of surfactant-protein complex, contribute to the adjuvanticity of cyclic lipopeptides. Our study proposes a novel idea that cmc is a key parameter for tensioactive adjuvants.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba-cho, Japan
| | - Ryosuke Takeshita
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Hanae Kawamura
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Murakami
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba-cho, Japan
| | - Ikumi Sugiyama
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University, Yahaba-cho, Japan
| | - Yasuyuki Sadzuka
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University, Yahaba-cho, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba-cho, Japan
| | - Shigehiro Sato
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba-cho, Japan
| |
Collapse
|
12
|
Yoshino N, Takeshita R, Kawamura H, Sasaki Y, Kagabu M, Sugiyama T, Muraki Y, Sato S. Mast cells partially contribute to mucosal adjuvanticity of surfactin in mice. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:117-127. [PMID: 29105371 PMCID: PMC5818442 DOI: 10.1002/iid3.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022]
Abstract
Introduction Surfactin (SF) is a cyclic lipopeptide that has potent mucosal adjuvant properties. However, immunological mechanisms of SF adjuvant action have not yet been elucidated. As some cyclic lipopeptides, such as polymyxin, can stimulate histamine release from mast cells, we hypothesized that mast cell activation is critical for SF adjuvanticity. Methods/Results We observed that following intranasal immunization with ovalbumin (OVA) plus SF, the titers of the OVA‐specific antibody (Ab) in the mucosal secretions and plasma of mast cell‐deficient mice were significantly lower than those in congenic normal mice, although OVA‐specific Ab did not entirely disappear from mast cell‐deficient mice. SF induced degranulation of mast cells and release of histamine in vitro. To investigate whether SF stimulated mast cells in vivo, we measured body temperature of mice immunized intranasally with OVA plus SF because histamine level affects body temperature. Following immunizations, body temperature of immunized congenic normal mice transiently decreased, whereas body temperature of mast cell‐deficient mice did not change. Plasma levels of OVA‐specific IgE Ab were not significantly different in mast cell‐deficient and congenic normal mice. These findings suggest that SF directly affected mast cells in an IgE Ab‐independent fashion. Furthermore, we analyzed the effects of SF on MC/9 mast cells cultured in vitro. MC/9 cells stimulated by SF released not only histamine but also leukotriene B4 and prostaglandin D2. Moreover, SF up‐regulated mRNA expression levels of Tnf, Ccr5, and Il4 genes in mast cells. These cytokines may play a facilitating role in OVA‐specific immune responses in mice. Conclusion Overall, our results showed that mast cell activation partially mediated SF adjuvanticity.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Ryosuke Takeshita
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Hanae Kawamura
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Shigehiro Sato
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
13
|
Hajishengallis G, Arce S, Gockel CM, Connell TD, Russell MW. Immunomodulation with Enterotoxins for the Generation of Secretory Immunity or Tolerance: Applications for Oral Infections. J Dent Res 2016; 84:1104-16. [PMID: 16304439 DOI: 10.1177/154405910508401205] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The heat-labile enterotoxins, such as cholera toxin (CT), and the labile toxins types I and II (LT-I and LT-II) of Escherichia coli have been extensively studied for their immunomodulatory properties, which result in the enhancement of immune responses. Despite superficial similarity in structure, in which a toxic A subunit is coupled to a pentameric binding B subunit, different toxins have different immunological properties. Administration of appropriate antigens admixed with or coupled to these toxins by oral, intranasal, or other routes in experimental animals induces mucosal IgA and circulating IgG antibodies that have protective potential against a variety of enteric, respiratory, or genital infections. These include the generation of salivary antibodies that may protect against colonization with mutans streptococci and the development of dental caries. However, exploitation of these adjuvants for human use requires an understanding of their mode of action and the separation of their desirable immunomodulatory properties from their toxicity. Recent findings have revealed that adjuvant action is not critically dependent upon the enzymic activity of the A subunits, and that the isolated B subunits may exert different effects on cells of the immune system than do the intact toxins. Interaction of the toxins with immunocompetent cells is not exclusively dependent upon their conventional ganglioside receptors. Immunomodulatory effects have been observed on dendritic cells, macrophages, CD4+ and CD8+ T-cells, and B-cells. Numerous factors—including the precise form of the toxin adjuvant, properties of the antigen, whether and how they are coupled, route of administration, and species of animal model—affect the outcome, whether this is enhanced humoral and cellular immunity, or specific induced tolerance toward the antigen.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, Immunology, and Parasitology, and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
14
|
Wang HL, Wen LM, Pei YJ, Wang F, Yin LT, Bai JZ, Guo R, Wang CF, Yin GR. Recombinant Toxoplasma gondii phosphoglycerate mutase 2 confers protective immunity against toxoplasmosis in BALB/c mice. ACTA ACUST UNITED AC 2016; 23:12. [PMID: 26984115 PMCID: PMC4794628 DOI: 10.1051/parasite/2016012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/05/2016] [Indexed: 11/21/2022]
Abstract
Toxoplasmosis is one of the most widespread zoonoses worldwide. It has a high incidence and can result in severe disease in humans and livestock. Effective vaccines are needed to limit and prevent infection with Toxoplasma gondii. In this study, we evaluated the immuno-protective efficacy of a recombinant Toxoplasma gondii phosphoglycerate mutase 2 (rTgPGAM 2) against T. gondii infection in BALB/c mice. We report that the mice nasally immunised with rTgPGAM 2 displayed significantly higher levels of special IgG antibodies against rTgPGAM 2 (including IgG1, IgG2a and IgAs) and cytokines (including IFN-γ, IL-2 and IL-4) in their blood sera and supernatant of cultured spleen cells compared to those of control animals. In addition, an increased number of spleen lymphocytes and enhanced lymphocyte proliferative responses were observed in the rTgPGAM 2-immunised mice. After chronic infection and lethal challenge with the highly virulent T. gondii RH strain by oral gavage, the survival time of the rTgPGAM 2-immunised mice was longer (P < 0.01) and the survival rate (70%) was higher compared with the control mice (P < 0.01). The reduction rate of brain and liver tachyzoites in rTgPGAM 2-vaccinated mice reached approximately 57% and 69% compared with those of the control mice (P < 0.01). These results suggest that rTgPGAM 2 can generate protective immunity against T. gondii infection in BALB/c mice and may be a promising antigen in the further development of an effective vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Hai-Long Wang
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Li-Min Wen
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yan-Jiang Pei
- Department of General Surgery, Xi'an Red Cross Hospital, Xi'an, Shanxi 710000, PR China
| | - Fen Wang
- Department of Infection Control, The Central Hospital of Enshi Prefecture, Enshi, Hubei 445000, PR China
| | - Li-Tian Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92-019, Auckland 1142, New Zealand
| | - Rui Guo
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Chun-Fang Wang
- Laboratory Animal Center, Shanxi Medical University; Shanxi Key Laboratory of Laboratory Animals and Animal Models of Human Diseases, Taiyuan, Shanxi 030001, PR China
| | - Guo-Rong Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
15
|
Moldoveanu Z, Fujihashi K. Collection and Processing of External Secretions and Tissues of Mouse Origin. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.15002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Nashar TO. The Quest for an HIV-1 Vaccine Adjuvant: Bacterial Toxins as New Potential Platforms. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5. [PMID: 27375924 PMCID: PMC4929853 DOI: 10.4172/2155-9899.1000225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While tremendous efforts are undergoing towards finding an effective HIV-1 vaccine, the search for an HIV-1 vaccine adjuvant lags behind and is understudied. More recently, however, efforts have focused on testing adjuvant formulations that can boost the immune response and generate broadly neutralizing antibodies to HIV-1 ENV (gp160). Despite this, there remain a number of challenges towards achieving this goal. These include safety of adjuvant formulations; stability of the incorporated antigens; maintenance of ENV immunogenicity; optimal inoculation sites; the effective combination of adjuvants; stability of ENV neutralizing epitopes in some adjuvant formulations; mucosal immunity; and long-term maintenance of the immune response. A new class of adjuvants for HIV-1 proteins is suggested to overcome many of the limitations of some other adjuvants. Type 1 (LT-I) and type 2 (LT-II) human E. coli enterotoxins (HLTs) and their non-toxic B-subunits derivatives are strong systemic and mucosal adjuvants and effective carriers for other proteins and epitopes. Their stable molecular structure in the presence of fused proteins and epitopes, and their ability to target surface receptors on antigen presenting cells make them ideal for the delivery of HIV-1 ENV or HIV other proteins. Importantly, unlike some other adjuvants, HLTs and derivatives have well-defined modes of immune system activation. The challenges in finding optimal HIV-1 vaccine adjuvant formulation and the important properties of HLTs are discussed.
Collapse
Affiliation(s)
- Toufic O Nashar
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
17
|
Identification and characterization of intestinal antigen-presenting cells involved in uptake and processing of a nontoxic recombinant chimeric mucosal immunogen based on cholera toxin using imaging flow cytometry. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:74-84. [PMID: 24197893 DOI: 10.1128/cvi.00452-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intragastric immunization with recombinant chimeric immunogen, SBR-CTA2/B, constructed from the saliva-binding region (SBR) of Streptococcus mutans antigen AgI/II and the A2/B subunits of cholera toxin (CT) induces salivary and circulating antibodies against S. mutans that protect against dental caries. We previously found that SBR-CTA2/B activated dendritic cells (DC) in the Peyer's patches (PP) and mesenteric lymph nodes (MLN). To identify the cells involved in the intestinal uptake of SBR-CTA2/B and the initiation of immune responses, mice were immunized intragastrically with fluorescein-labeled SBR-CTA2/B or SBR, and intestinal cells were examined by imaging flow cytometry after fluorescent staining for cell surface markers. SBR-CTA2/B was preferentially taken up by CD103(+) DC in the PP and by both CD103(+) and CD11c(+) DC in intestinal lamina propria (LP), whereas SBR was taken up to a lesser extent by PP CD11c(+) DC, within 2 to 16 h. By 16 h, CD103(+) and CD11c(+) DC containing fluorescein-labeled SBR-CTA2/B were found in MLN and showed upregulation of the chemokine receptor CCR7. Large numbers of SBR-CTA2/B-containing DC were found interacting with CD4(+) (T helper) cells, which costained for nuclear transcription factors T-bet or RORγt, identifying them as Th1 or Th17 cells. In contrast, SBR-containing CD11c(+) DC interacted preferentially with GATA3(+) (Th2) cells. No SBR- or SBR-CTA2/B-containing DC were found interacting with Foxp3(+) (T regulatory) cells. We conclude that the coupling of SBR to CTA2/B enhances its immunogenicity by promoting uptake by DC in both PP and LP and that these antigen-containing DC migrated to MLN and interacted preferentially with Th1 and Th17 cells to induce active immune responses.
Collapse
|
18
|
Jerse AE, Bash MC, Russell MW. Vaccines against gonorrhea: current status and future challenges. Vaccine 2013; 32:1579-87. [PMID: 24016806 DOI: 10.1016/j.vaccine.2013.08.067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/10/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023]
Abstract
Gonorrhea occurs at high incidence throughout the world and significantly impacts reproductive health and the spread of human immunodeficiency virus. Current control measures are inadequate and seriously threatened by the rapid emergence of antibiotic resistance. Progress on gonorrhea vaccines has been slow; however, recent advances justify significant effort in this area. Conserved vaccine antigens have been identified that elicit bactericidal antibodies and, or play key roles in pathogenesis that could be targeted by a vaccine-induced response. A murine genital tract infection model is available for systematic testing of antigens, immunization routes and adjuvants, and transgenic mice exist to relieve some host restrictions. Furthermore, mechanisms by which Neisseria gonorrhoeae avoids inducing a protective adaptive response are being elucidated using human cells and the mouse model. Induction of a Th1 response in mice clears infection and induces a memory response, which suggests Th1-inducing adjuvants may be key in vaccine-induced protection. Continued research in this area should include human testing and clinical studies to confirm or negate findings from experimental systems and to define protective host factors.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebért School of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | - Margaret C Bash
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1400 Rockville Pike, Bethesda, MD 20814, USA.
| | - Michael W Russell
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-3000, USA.
| |
Collapse
|
19
|
Yoshino N, Endo M, Kanno H, Matsukawa N, Tsutsumi R, Takeshita R, Sato S. Polymyxins as novel and safe mucosal adjuvants to induce humoral immune responses in mice. PLoS One 2013; 8:e61643. [PMID: 23593492 PMCID: PMC3623863 DOI: 10.1371/journal.pone.0061643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/12/2013] [Indexed: 11/21/2022] Open
Abstract
There is currently an urgent need to develop safe and effective adjuvants for enhancing vaccine-induced antigen-specific immune responses. We demonstrate here that intranasal immunization with clinically used polypeptide antibiotics, polymyxin B (PMB) and colistin (CL), along with ovalbumin (OVA), increases OVA-specific humoral immune responses in a dose-dependently manner at both mucosal and systemic compartments. Enhanced immunity by boosting was found to persist during 8 months of observation. Moreover, mice intranasally immunized with OVA plus various doses of PMB or CL showed neither inflammatory responses in the nasal cavity and olfactory bulbs nor renal damages, compared to those given OVA alone. These data suggest that polymyxins may serve as novel and safe mucosal adjuvants to induce humoral immune responses. The polymyxin adjuvanticity was found to be independent of endotoxins liberated by its bactericidal activity, as indicated by similar enhancing effects of PMB in lipopolysaccharide (LPS)-hyporesponsive and LPS-susceptible mice. However, despite the presence of preexisting anti-PMB antibodies, we observed no reduction in the adjuvant function of polymyxins when they were given intranasally. Furthermore, the titers of OVA-specific Abs in mice intranasally immunized with OVA plus PMB or CL were significantly higher than those in mice administered with polymyxin analogues, such as polymyxin B nonapeptide and colistin methanesulfonate. The levels of released β-hexosaminidase and histamine in mast cell culture supernatants stimulated by PMB or CL were also significantly higher than those stimulated by their analogues. These results suggest that both the hydrophobic carbon chain and hydrophilic cationic cyclic peptide contribute to the mucosal adjuvanticity of PMB and CL.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kaparakis-Liaskos M, Tate MD, Price JD, Pearse M, Wijburg OLC. Increased antigen specific T cell numbers in the absence of altered migration or division rates as a result of mucosal cholera toxin administration. PLoS One 2013; 8:e59934. [PMID: 23544110 PMCID: PMC3609821 DOI: 10.1371/journal.pone.0059934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
Cholera toxin (CT) is a mucosal adjuvant capable of inducing strong immune responses to co-administered antigens following oral or intranasal immunization of mice. To date, the direct effect of CT on antigen-specific CD4(+) T cell migration and proliferation profiles in vivo is not well characterized. In this study, the effect of CT on the migration pattern and proliferative responses of adoptively transferred, CD4(+) TCR transgenic T cells in orally or intranasally vaccinated mice, was analyzed by flow cytometry. GFP-expressing or CFSE-labeled OT-II lymphocytes were adoptively transferred to naïve C57BL/6 mice, and mice were subsequently vaccinated with OVA with or without CT via the oral or intranasal route. CT did not alter the migration pattern of antigen-specific T cells, regardless of the route of immunization, but increased the number of transgenic CD4(+) T cells in draining lymphoid tissue. This increase in the number of transgenic CD4(+) T cells was not due to cells undergoing more rounds of cellular division in vivo, suggesting that CT may exert an indirect adjuvant effect on CD4(+) T cells. The findings reported here suggest that CT functions as a mucosal adjuvant by increasing the number of antigen specific CD4(+) T cells independent of their migration pattern or kinetics of cellular division.
Collapse
Affiliation(s)
- Maria Kaparakis-Liaskos
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Michelle D. Tate
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Jason D. Price
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Odilia L. C. Wijburg
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Dang Z, Yagi K, Oku Y, Kouguchi H, Kajino K, Matsumoto J, Nakao R, Wakaguri H, Toyoda A, Yin H, Sugimoto C. A pilot study on developing mucosal vaccine against alveolar echinococcosis (AE) using recombinant tetraspanin 3: Vaccine efficacy and immunology. PLoS Negl Trop Dis 2012; 6:e1570. [PMID: 22479658 PMCID: PMC3313938 DOI: 10.1371/journal.pntd.0001570] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/05/2012] [Indexed: 12/13/2022] Open
Abstract
Background We have previously evaluated the vaccine efficacies of seven tetraspanins of Echinococcus multilocularis (Em-TSP1–7) against alveolar echinococcosis (AE) by subcutaneous (s.c.) administration with Freund's adjuvant. Over 85% of liver cyst lesion number reductions (CLNR) were achieved by recombinant Em-TSP1 (rEm-TSP1) and -TSP3 (rEm-TSP3). However, to develop an efficient and safe human vaccine, the efficacy of TSP mucosal vaccines must be thoroughly evaluated. Methodology/Principal Findings rEm-TSP1 and -TSP3 along with nontoxic CpG ODN (CpG oligodeoxynucleotides) adjuvant were intranasally (i.n.) immunized to BALB/c mice and their vaccine efficacies were evaluated by counting liver CLNR (experiment I). 37.1% (p<0.05) and 62.1% (p<0.001) of CLNR were achieved by these two proteins, respectively. To study the protection-associated immune responses induced by rEm-TSP3 via different immunization routes (i.n. administration with CpG or s.c. immunization with Freund's adjuvant), the systemic and mucosal antibody responses were detected by ELISA (experiment II). S.c. and i.n. administration of rEm-TSP3 achieved 81.9% (p<0.001) and 62.8% (p<0.01) CLNR in the liver, respectively. Both the immunization routes evoked strong serum IgG, IgG1 and IgG2α responses; i.n. immunization induced significantly higher IgA responses in nasal cavity and intestine compared with s.c. immunization (p<0.001). Both immunization routes induced extremely strong liver IgA antibody responses (p<0.001). The Th1 and Th2 cell responses were assessed by examining the IgG1/IgG2α ratio at two and three weeks post-immunization. S.c. immunization resulted in a reduction in the IgG1/IgG2α ratio (Th1 tendency), whereas i.n. immunization caused a shift from Th1 to Th2. Moreover, immunohistochemistry showed that Em-TSP1 and -TSP3 were extensively located on the surface of E. multilocularis cysts, protoscoleces and adult worms with additional expression of Em-TSP3 in the inner part of protoscoleces and oncospheres. Conclusions Our study indicated that i.n. administration of rEm-TSP3 with CpG is able to induce both systemic and local immune responses and thus provides significant protection against AE. Humans and rodents become infected with E. multilocularis by oral ingesting of the eggs, which then develop into cysts in the liver and progress an endless proliferation. Untreated AE has a fatality rate of >90% in humans. Tetraspanins have been identified in Schistosoma and showed potential as the prospective vaccine candidates. In our recent study, we first identified seven tetraspanins in E. multilocularis and evaluated their protective efficacies as vaccines against AE when subcutaneously administered to BALB/c mice. Mucosal immunization of protective proteins is able to induce strong local and systemic immune responses, which might play a crucial role in protecting humans against E. multilocularis infection via the intestine, blood and liver. We focused on Em-TSP3, which achieved significant vaccine efficacy via both s.c. and i.n. routes. The adjuvanticity of nontoxic CpG OND as i.n. vaccine adjuvant was evaluated. The widespread expression of Em-TSP3 in all the developmental stages of E. multilocularis, and the strong local and systemic immune responses evoked by i.n. administration of rEm-TSP3 with CpG OND adjuvant suggest that this study might open the way for developing efficient, nontoxic human mucosal vaccines against AE.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Helminth/blood
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Echinococcosis
- Echinococcosis, Hepatic/prevention & control
- Echinococcus multilocularis/isolation & purification
- Enzyme-Linked Immunosorbent Assay
- Freund's Adjuvant/administration & dosage
- Glycoproteins/genetics
- Glycoproteins/immunology
- Immunity, Mucosal
- Immunoglobulin A/analysis
- Immunoglobulin G/blood
- Intestinal Mucosa/immunology
- Liver/parasitology
- Male
- Mice
- Mice, Inbred BALB C
- Nasal Mucosa/immunology
- Oligodeoxyribonucleotides/administration & dosage
- Pilot Projects
- Tetraspanins/genetics
- Tetraspanins/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Zhisheng Dang
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases MOA, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, People's Republic of China
| | - Kinpei Yagi
- Department of Biological Science, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Yuzaburo Oku
- Parasitology Laboratory, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hirokazu Kouguchi
- Department of Biological Science, Hokkaido Institute of Public Health, Sapporo, Hokkaido, Japan
| | - Kiichi Kajino
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun Matsumoto
- Laboratory of Medical Zoology, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Ryo Nakao
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroyuki Wakaguri
- Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- RIKEN Genomic Sciences Center, Yokohama, Kanagawa, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases MOA, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, People's Republic of China
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
22
|
Yoshino N, Kanno H, Takahashi K, Endo M, Sato S. Mucosal Immune Responses in W/Wv and Sl/Sld Mutant Mice. Exp Anim 2012; 61:407-16. [DOI: 10.1538/expanim.61.407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Naoto Yoshino
- Department of Microbiology, Iwate Medical University
| | | | | | - Masahiro Endo
- Department of Microbiology, Iwate Medical University
| | | |
Collapse
|
23
|
Marks E, Helgeby A, Andersson JO, Schön K, Lycke NY. CD4⁺ T-cell immunity in the female genital tract is critically dependent on local mucosal immunization. Eur J Immunol 2011; 41:2642-53. [PMID: 21681740 DOI: 10.1002/eji.201041297] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Immunizations via the i.n. and intravaginal (ivag) routes effectively generate strong genital tract antibody-mediated immunity. To what extent the same is true for T-cell responses is incompletely known. Therefore, we set out to investigate optimal conditions for stimulation of genital tract CD4(+) T-cell responses, using adoptive transfer of mouse DO11.10 TCR transgenic T cells specific for OVA and OVA conjugated to cholera toxin (CT) as an immunogen. We observed that progesterone was required for a T-cell response following ivag immunization, whereas estradiol prevented a response. Although i.n. immunization stimulated OVA-specific CD4(+) T-cell responses in the draining LNs, it was substantially less effective compared to ivag. More importantly, an ivag booster immunization was absolutely required to attract T cells to the genital tract mucosa itself. While clinical use of CT is precluded because of its toxicity, we developed a combined adjuvant vector based on a non-toxic derivative of CT and immune-stimulating complexes. The CTA1-DD/immune-stimulating complexes (ISCOMs) adjuvant together with major outer membrane protein was effective at stimulating genital tract CD4(+) T-cell immunity and protection against a live chlamydial infection, which holds promise for the development of mucosal vaccines against sexually transmitted infections.
Collapse
Affiliation(s)
- Ellen Marks
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
24
|
Zhao W, Zhao Z, Russell MW. Characterization of antigen-presenting cells induced by intragastric immunization with recombinant chimeric immunogens constructed from Streptococcus mutans AgI/II and type I or type II heat-labile enterotoxins. Mol Oral Microbiol 2011; 26:200-9. [PMID: 21545697 DOI: 10.1111/j.2041-1014.2011.00608.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intragastric (i.g.) immunization with recombinant chimeric proteins constructed from the saliva-binding region (SBR) of Streptococcus mutans surface antigen AgI/II and the A2/B subunits of enterobacterial heat-labile enterotoxins has been successfully used to induce salivary and circulating antibodies against S. mutans that have protective potential against dental caries. To investigate the mode of action of these vaccine constructs, mice were immunized i.g. with chimeric proteins constructed from SBR and cholera toxin (CT) or the type II enterotoxins of Escherichia coli, LT-IIa and LT-IIb. Antigen-presenting cells (APC) in Peyer's patches (PP) and mesenteric lymph nodes (MLN) were characterized by flow cytometry. Compared with immunization with SBR alone, chimeric proteins SBR-LTIIaA2/B and SBR-LTIIbA2/B increased the number of B cells and macrophages in PP and diminished B cell numbers in MLN, whereas SBR-CTA2/B diminished the numbers of B cells and macrophages in PP and MLN. Immunization with all three chimeric proteins led to upregulation of MHC class II molecules and co-stimulatory receptors CD40, CD80, and CD86 especially on dendritic cells in PP and also on APC in MLN. The results provide a molecular basis for the enhanced immune responses induced by chimeric proteins compared with uncoupled antigen, and for differential responses to chimeric proteins based on CT or type II enterotoxins.
Collapse
Affiliation(s)
- W Zhao
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
25
|
Salam MA, Katz J, Michalek SM. Role of Toll-like receptors in host responses to a virulence antigen of Streptococcus mutans expressed by a recombinant, attenuated Salmonella vector vaccine. Vaccine 2010; 28:4928-36. [PMID: 20653102 DOI: 10.1016/j.vaccine.2010.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the present study, we investigated the role of Toll-like receptors (TLRs) in host responses to the saliva-binding region (SBR) of Streptococcus mutans expressed by a recombinant, attenuated Salmonella vaccine. C57BL/6 wild type (wt), TLR2-/-, TLR4-/- and MyD88-/- mice were immunized by the intranasal route on days 0, 18 and boosted on day 98 with Salmonella typhimurium BRD 509 containing a plasmid encoding SBR. Serum and saliva samples were collected throughout the experiment and assessed for antibody activity by ELISA. Evidence is provided that the induction of a serum IgG2a (Th1-type) anti-SBR antibody response involved TLR2 signaling, whereas the anti-Salmonella response involved signaling through TLR4. The adaptor molecule MyD88 was not essential for the induction of a primary Th1-type response to SBR or Salmonella, but was necessary for a secondary response to SBR. Furthermore, the absence of TLR2, TLR4 or MyD88 resulted in enhanced Th2-type serum IgG1 anti-SBR and anti-Salmonella responses. Mucosal IgA responses to SBR were TLR2-, TLR4- and MyD88-dependent, while IgA responses to Salmonella were TLR4- and MyD88-dependent.
Collapse
Affiliation(s)
- Mohammad Abdus Salam
- Department of Biomedical and Diagnostic Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, United States
| | | | | |
Collapse
|
26
|
Yoshino N, Kanekiyo M, Hagiwara Y, Okamura T, Someya K, Matsuo K, Ami Y, Sato S, Yamamoto N, Honda M. Intradermal delivery of recombinant vaccinia virus vector DIs induces gut-mucosal immunity. Scand J Immunol 2010; 72:98-105. [PMID: 20618768 DOI: 10.1111/j.1365-3083.2010.02416.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antigen-specific mucosal immunity is generally induced by the stimulation of inductive mucosal sites. In this study, we found that the replication-deficient vaccinia virus vector, DIs, generates antigen-specific mucosal immunity and systemic responses. Following intradermal injection of recombinant DIs expressing simian immunodeficiency virus gag (rDIsSIVgag), we observed increased levels of SIV p27-specific IgA and IgG antibodies in faecal extracts and plasma samples, and antibody-forming cells in the intestinal mucosa and spleen of C57BL/6 mice. Antibodies against p27 were not detected in nasal washes, saliva, and vaginal washes. The enhanced mucosal and systemic immunity persisted for 1 year of observation. Induction of Gag-specific IFN-gamma spot-forming CD8(+) T cells in the spleen, small intestinal intraepithelial lymphocytes, and submandibular lymph nodes was observed in the intradermally injected mice. Heat-inactivated rDIsSIVgag rarely induced antigen-specific humoral and T-helper immunity. Moreover, rDIsSIVgag was detected in MHC class II IA antigen-positive (IA(+)) cells at the injection site. Consequently, intradermal delivery of rDIs effectively induces antigen-specific humoral and cellular immunity in gut-mucosal tissues of mice. Our data suggest that intradermal injection of an rDIs vaccine may be useful against mucosally transmitted pathogens.
Collapse
Affiliation(s)
- N Yoshino
- Department of Microbiology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Interleukin-12 as an adjuvant for induction of protective antibody responses. Cytokine 2010; 52:102-7. [PMID: 20650650 DOI: 10.1016/j.cyto.2010.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 01/08/2023]
Abstract
Interleukin (IL)-12 is a pivotal cytokine that strongly stimulates Th1-associated cellular immunity. It is now recognized that IL-12 also activates humoral immunity to both T-dependent and T-independent antigens. This has let to considerable interest in exploiting IL-12 as a vaccine adjuvant for protection against various bacterial and viral pathogens, particularly in the lung. Studies examining the efficacy of IL-12-mediated effects on protective antibody response in the mouse model are summarized in this review.
Collapse
|
28
|
Bronchus-associated lymphoid tissue (BALT) and survival in a vaccine mouse model of tularemia. PLoS One 2010; 5:e11156. [PMID: 20585390 PMCID: PMC2886834 DOI: 10.1371/journal.pone.0011156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/27/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Francisella tularensis causes severe pulmonary disease, and nasal vaccination could be the ideal measure to effectively prevent it. Nevertheless, the efficacy of this type of vaccine is influenced by the lack of an effective mucosal adjuvant. METHODOLOGY/PRINCIPAL FINDINGS Mice were immunized via the nasal route with lipopolysaccharide isolated from F. tularensis and neisserial recombinant PorB as an adjuvant candidate. Then, mice were challenged via the same route with the F. tularensis attenuated live vaccine strain (LVS). Mouse survival and analysis of a number of immune parameters were conducted following intranasal challenge. Vaccination induced a systemic antibody response and 70% of mice were protected from challenge as showed by their improved survival and weight regain. Lungs from mice recovering from infection presented prominent lymphoid aggregates in peribronchial and perivascular areas, consistent with the location of bronchus-associated lymphoid tissue (BALT). BALT areas contained proliferating B and T cells, germinal centers, T cell infiltrates, dendritic cells (DCs). We also observed local production of antibody generating cells and homeostatic chemokines in BALT areas. CONCLUSIONS These data indicate that PorB might be an optimal adjuvant candidate for improving the protective effect of F. tularensis antigens. The presence of BALT induced after intranasal challenge in vaccinated mice might play a role in regulation of local immunity and long-term protection, but more work is needed to elucidate mechanisms that lead to its formation.
Collapse
|
29
|
Solano-Parada J, Gonzalez-Gonzalez G, Torró LMDP, dos Santos MFB, Espino AM, Burgos M, Osuna A. Effectiveness of intranasal vaccination against Angiostrongylus costaricensis using a serine/threonine phosphatase 2 A synthetic peptide and recombinant antigens. Vaccine 2010; 28:5185-96. [PMID: 20558243 DOI: 10.1016/j.vaccine.2010.05.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/20/2010] [Accepted: 05/28/2010] [Indexed: 01/26/2023]
Abstract
Intranasal immunization was assayed in C57BL/6 mice against Angiostrongylus costaricensis using a synthetic and a recombinant peptide belonging to the catalytic region of the serine/threonine phosphatase 2 A (PP2A) of the parasite. Immunization was carried out with the synthetic peptide (SP) polymerized either with itself or with the beta fraction of the cholera toxin (CTB) and then enclosed in nanocapsules of phosphatidyl choline, cholesterol and Quil A (ISCOM). Another group of mice was immunized with recombinant peptide. Immunization consisted of two intranasal inoculations at two-week intervals, and the challenge with L3 larvae was made one month after the last vaccination. The effectiveness of immunization was evaluated 30 days after infection by analysis of the number of parasites in the arteries of the immunized mice, as well as by measuring spleen sizes in the experimental groups. The response induced was determined by identifying the isotypes of IgG as well as the IgE and IgA specific antigen response. The interleukins produced by the splenocyte culture of the different groups were assessed after exposing them to the peptide used in the immunization. From our results, 60%, 80%, and 100% protection against the A. costaricensis challenge was achieved in mice immunized with polymerized synthetic peptide in ISCOM, synthetic peptide polymerized with the CTB in ISCOM and inclusion bodies respectively. Splenomegaly was found to be less evident in the immunized mice than in the controls. A significant increase in IFN gamma and IL-17 levels was observed in the group with 100% protection. The results showed that vaccination through the nasal mucosa may constitute a useful method of immunization and result in a protective immune response against A. costaricensis.
Collapse
Affiliation(s)
- J Solano-Parada
- Institute of Biotechnology, Biochemistry and Molecular Parasitology Group, University of Granada, Edif Mecenas, Campus Fuentenueva, 18071 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Immunogenicity and protective efficacy of orally or intranasally administered recombinant Lactobacillus casei expressing ETEC K99. Vaccine 2010; 28:4113-8. [DOI: 10.1016/j.vaccine.2009.05.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/26/2009] [Accepted: 05/31/2009] [Indexed: 11/17/2022]
|
31
|
NALT (nasal cavity-associated lymphoid tissue) in the rabbit. Vet Immunol Immunopathol 2010; 133:212-8. [DOI: 10.1016/j.vetimm.2009.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 11/19/2022]
|
32
|
Yoshino N, Fujihashi K, Hagiwara Y, Kanno H, Takahashi K, Kobayashi R, Inaba N, Noda M, Sato S. Co-administration of cholera toxin and apple polyphenol extract as a novel and safe mucosal adjuvant strategy. Vaccine 2009; 27:4808-17. [DOI: 10.1016/j.vaccine.2009.05.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/28/2009] [Indexed: 01/24/2023]
|
33
|
Metzger DW. IL-12 as an adjuvant for the enhancement of protective humoral immunity. Expert Rev Vaccines 2009; 8:515-8. [PMID: 19397407 DOI: 10.1586/erv.09.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Donaldson DS, Williams NA. Bacterial toxins as immunomodulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:1-18. [PMID: 20054971 DOI: 10.1007/978-1-4419-1601-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial toxins are the causative agent at pathology in a variety of diseases. Although not always the primary target of these toxins, many have been shown to have potent immunomodulatory effects, for example, inducing immune responses to co-administered antigens and suppressing activation of immune cells. These abilities of bacterial toxins can be harnessed and used in a therapeutic manner, such as in vaccination or the treatment of autoimmune diseases. Furthermore, the ability of toxins to gain entry to cells can be used in novel bacterial toxin based immuno-therapies in order to deliver antigens into MHC Class I processing pathways. Whether the immunomodulatory properties of these toxins arose in order to enhance bacterial survival within hosts, to aid spread within the population or is pure serendipity, it is interesting to think that these same toxins potentially hold the key to preventing or treating human disease.
Collapse
Affiliation(s)
- David S Donaldson
- Department of Cellular and Molecular Medicine, School of Medicine Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
35
|
Mucosal immunization of mice with recombinant OMP P2 induces antibodies that bind to surface epitopes of multiple strains of nontypeable Haemophilus influenzae. Mucosal Immunol 2009; 2:63-73. [PMID: 19079335 PMCID: PMC4497548 DOI: 10.1038/mi.2008.70] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a significant cause of otitis media in children and exacerbations in patients with chronic obstructive pulmonary disease. Vaccine research for NTHI has focused on the outer membrane proteins (OMPs) of NTHI. The goal of this study was to evaluate mucosal and systemic immune responses to recombinant OMP P2 (rP2) of NTHI. Enzyme-linked immunosorbent assay (ELISA) demonstrated that both mucosal and systemic routes of immunization resulted in antibodies to rP2. Whole-cell ELISA and flow cytometry indicated that mucosal immunization induced antibodies to epitopes that are on the bacterial surface of the homologous strain as well as several heterologous strains. In contrast, systemic immunization induced antibodies to non-surface exposed epitopes. These data show for the first time that mucosal immunization of mice with rP2 induces antibodies that recognize surface exposed epitopes on multiple strains, indicating that P2 is a candidate for development of a mucosal vaccine for NTHI.
Collapse
|
36
|
Primary activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant bacteria. Infect Immun 2008; 76:5817-25. [PMID: 18838521 DOI: 10.1128/iai.00793-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary activation of T-helper and T-cytotoxic cells following mucosal immunization with recombinant Streptococcus gordonii was studied in vivo by adoptive transfer of ovalbumin (OVA)-specific transgenic CD8(+) (OT-I) and CD4(+) (OT-II) T cells. A recombinant strain, expressing on the surface the vaccine antigen Ag85B-ESAT-6 from Mycobacterium tuberculosis fused to OVA T-helper and T-cytotoxic epitopes (peptides 323 to 339 and 257 to 264), was constructed and used to immunize C57BL/6 mice by the intranasal route. Recombinant, but not wild-type, bacteria induced OVA-specific CD4(+) and CD8(+) T-cell clonal expansion in cervical lymph nodes, lung, and spleen. OVA-specific CD4(+) and CD8(+) T-cell proliferation appeared first in cervical lymph nodes and later in the spleen, suggesting a possible migration of activated cells from the inductive site to the systemic district. A significant correlation between the percentages of CD4(+) and CD8(+) proliferating T cells was observed for each animal. The expression of CD69, CD44, and CD45RB on proliferating T lymphocytes changed as a function of the cell division number, confirming T-cell activation following the antigen encounter. These data indicate that intranasal immunization with recombinant S. gordonii is capable of inducing primary activation of naive antigen-specific CD4(+) and CD8(+) T cells, both locally and systemically.
Collapse
|
37
|
Intranasal immunization of mice with recombinant Streptococcus gordonii expressing NadA of Neisseria meningitidis induces systemic bactericidal antibodies and local IgA. Vaccine 2008; 26:4244-50. [PMID: 18582996 DOI: 10.1016/j.vaccine.2008.05.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 11/20/2022]
Abstract
NadA and NhhA, two surface proteins of serogroup B Neisseria meningitidis identified as candidate vaccine antigens, were expressed on the surface of the human oral commensal bacterium Streptococcus gordonii. Recombinant strains were used to immunize BALB/c mice by the intranasal route and the local and systemic immune response was assessed. Mice were inoculated with recombinant bacteria administered alone or with LTR72, a partially inactivated mutant of Escherichia coli heat-labile enterotoxin, as a mucosal adjuvant. Intranasal immunization with live bacteria expressing NadA induced a significant serum antibody response, with a prevalence of the IgG2a subclass, bactericidal activity in the sera of 71% of animals, and a NadA-specific IgA response in nasal and bronchoalveolar lavages. A formalin-inactivated recombinant strain of S. gordonii expressing NadA was also administered intranasally, inducing a systemic and mucosal humoral response comparable to that of live bacteria. The administration of recombinant bacteria with the mucosal adjuvant LTR72 stimulated a stronger systemic antibody response, protective in 85% of sera, while did not increase the local IgA response. Recombinant S. gordonii expressing NhhA induced a systemic but not mucosal antibody response. These data support the role of NadA as vaccine candidate against serogroup B meningococci, and the use of S. gordonii as vector for intranasal vaccination.
Collapse
|
38
|
Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR. Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retroviruses 2008; 24:271-81. [PMID: 18260780 DOI: 10.1089/aid.2007.0148] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemiological and experimental data suggest that both robust neutralizing antibodies and potent cellular responses play important roles in controlling primary HIV-1 infection. In this study we have investigated the induction of systemic and mucosal immune responses to HIV gp120 monomer immunogen administered intranasally in a novel, oil-in-water nanoemulsion (NE) adjuvant. Mice and guinea pigs intranasally immunized by the application of recombinant HIV gp120 antigen mixed in NE demonstrated robust serum anti-gp120 IgG, as well as bronchial, vaginal, and serum anti-gp120 IgA in mice. The serum of these animals demonstrated antibodies that cross-reacted with heterologous serotypes of gp120 and had significant neutralizing activity against two clade-B laboratory strains of HIV (HIVBaL and HIVSF162) and five primary HIV-1 isolates. The analysis of gp120-specific CTL proliferation, INF-gamma induction, and prevalence of anti-gp120 IgG2 subclass antibodies indicated that nasal vaccination in NE also induced systemic, Th1-polarized cellular immune responses. This study suggests that NE should be evaluated as a mucosal adjuvant for multivalent HIV vaccines.
Collapse
Affiliation(s)
- Anna U. Bielinska
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - Katarzyna W. Janczak
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - Jeffrey J. Landers
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - David M. Markovitz
- Internal Medicine, Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109
| | - David C. Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research and Development, Duke University Medical Center, Durham, North Carolina 27706
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
39
|
Mestecky J, Russell MW, Elson CO. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? THE JOURNAL OF IMMUNOLOGY 2007; 179:5633-8. [PMID: 17947632 DOI: 10.4049/jimmunol.179.9.5633] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mucosal administration of Ags induces specific Abs in external secretions and systemic unresponsiveness termed oral or mucosal tolerance. The dominant response depends on the species studied, the nature, dose, frequency, route of Ag application, and the use of adjuvants. The temporal sequence of Ag exposure determines the quality of the ensuing immune response; although initial mucosal Ag exposure results in systemic T cell hyporesponsiveness, pre-existing systemic responses are refractory to the tolerizing effects of mucosal Ag encounter. Mucosal and systemic humoral responses may be induced concomitantly with diminished systemic T cell responses, thereby permitting Ab-mediated containment of mucosal Ags without stimulation of the systemic immune compartment. B cell Ig isotype switching and differentiation toward IgA production share common regulatory mechanisms with the suppression of T cells. Optimization of mucosal vaccination strategies has the potential for enhancing protective immune responses and suppressing systemic responses to autoantigens desirable for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
40
|
Schwartz-Cornil I, Epardaud M, Bonneau M. Cervical duct cannulation in sheep for collection of afferent lymph dendritic cells from head tissues. Nat Protoc 2007; 1:874-9. [PMID: 17406320 DOI: 10.1038/nprot.2006.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pseudo-afferent cervical lymph-duct cannulation in a sheep model allows large amounts of lymph cells to be collected under physiological conditions, carrying immune signaling information from the head tissues, including oro-nasal mucosae. Importantly, large quantities of dendritic cells (DCs) of several subtypes are obtained (up to 8 million per overnight collection), as well as many other trafficking leukocytes. The technique includes three steps: removal of all head lymph nodes on one side (2 h), catheterization of cervical lymph ducts after 2 months (2-3 h) and collection/purification of lymph-cell subsets (4 h). The approach is challenging (1 in 3 success rate) but fruitful, and can be used to study DC subsets under immunomodulation, in order to assess lymph-cell subset dynamic changes and antigen transportation from oro-nasal tissues. This protocol is directed to experienced postdoctoral researchers.
Collapse
Affiliation(s)
- Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaires UR892 INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France.
| | | | | |
Collapse
|
41
|
Han TK, Dao ML. Enhancement of salivary IgA response to a DNA vaccine against Streptococcus mutans wall-associated protein A in mice by plasmid-based adjuvants. J Med Microbiol 2007; 56:675-680. [PMID: 17446293 DOI: 10.1099/jmm.0.47020-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific salivary IgA (sIgA) response was obtained in mice by intranasal immunization with a naked DNA vaccine consisting of the Streptococcus mutans wall-associated protein A gene (wapA) inserted into the mammalian expression vector pcDNA3.1/V5/His-TOPO. In the present study, the vaccine, referred to as pcDNA-wapA, was administered with or without the cationic lipid DMRIE-C. No mucosal response was observed in mice immunized with the vaccine alone, whereas a weak and temporal sIgA response was obtained when the vaccine was mixed with DMRIE-C. To investigate the use of pcDNA containing the interleukin 5 (IL-5) gene (pcDNA-il-5) or the cholera toxin B gene (pcDNA-ctb) as genetic adjuvants, these constructs were used in co-immunization studies. The enhancement effect was transient with pcDNA-il-5, but longer lasting with pcDNA-ctb, thus supporting the use of the latter as a genetic adjuvant to DNA vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Cholera Toxin/genetics
- Cholera Toxin/immunology
- Female
- Genetic Vectors
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin A, Secretory/immunology
- Interleukin-5/genetics
- Interleukin-5/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Saliva/immunology
- Streptococcal Vaccines/genetics
- Streptococcal Vaccines/immunology
- Streptococcus mutans/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Thomas K Han
- Department of Biology, University of South Florida, Tampa, FL, USA
| | - My Lien Dao
- Department of Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
42
|
Pilgrim MJ, Kasman L, Grewal J, Bruorton ME, Werner P, London L, London SD. A focused salivary gland infection with attenuated MCMV: an animal model with prevention of pathology associated with systemic MCMV infection. Exp Mol Pathol 2007; 82:269-79. [PMID: 17320076 PMCID: PMC3506192 DOI: 10.1016/j.yexmp.2006.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 11/25/2022]
Abstract
While the salivary gland has been recognized as an important effector site of the common mucosal immune system, a useful model for studying anti-viral salivary gland immune responses in vivo and for exploring the role of the salivary gland within the common mucosal system has been lacking. Murine cytomegalovirus (MCMV) is a beta-herpesvirus that displays a strong tropism for the salivary gland and produces significant morbidity in susceptible mice when introduced by intraperitoneal (i.p.) inoculation. This study tested the hypothesis that MCMV morbidity and pathology could be reduced by injecting the virus directly the submandibular salivary gland (intraglandular (i.g.)), using either in vivo derived MCMV or the less virulent, tissue-culture-derived MCMV (tcMCMV). Peak salivary gland viral titers were completely unaffected by infection route (i.p vs. i.g.) after inoculation with either MCMV or tcMCMV. However, i.g. tcMCMV inoculation reduced viremia in all systemic tissues tested compared to i.p. inoculation. Furthermore, systemic organ pathology observed in the liver and spleen after i.p. inoculation with either MCMV or tcMCMV was completely eliminated by i.g. inoculation with tcMCMV. Cellular infiltrates in the salivary glands, after i.p. or i.g. inoculation were composed of both B and T cells, indicating the potential for a local immune response to occur in the salivary gland. These results demonstrate that a focused MCMV infection of the salivary gland without systemic organ pathology is possible using i.g. delivery of tcMCMV.
Collapse
Affiliation(s)
- Mark J. Pilgrim
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Laura Kasman
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Jasvir Grewal
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Mary E. Bruorton
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Phil Werner
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
- College of Dental Medicine, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Lucille London
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| | - Steven D. London
- Department of Microbiology and Immunology, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
- College of Dental Medicine, Medical University of South Carolina, PO Box 250504, 173 Ashley Avenue, Charleston, South Carolina, 29425, USA
| |
Collapse
|
43
|
Lee P, Faubert GM. Expression of the Giardia lamblia cyst wall protein 2 in Lactococcus lactis. MICROBIOLOGY-SGM 2006; 152:1981-1990. [PMID: 16804173 DOI: 10.1099/mic.0.28877-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, Lactococcus lactis was engineered to express Giardia lamblia cyst wall protein 2 (CWP2) at three different subcellular locations, intracellular, secreted or cell-surface-anchored, using nisin as an inducing agent. CWP2 expression did not appear to be detrimental to L. lactis viability. No particular subcellular location of CWP2 expression offered any advantages over the others with respect to decreased toxicity towards the bacteria. All recombinant lactococci experienced a similar reduction in growth rate when induced. It was determined whether recombinant lactococcal cells engineered for cell surface expression of CWP2 were capable of inducing a CWP2-specific mucosal IgA antibody response. Recombinant lactococci were successful at inducing CWP2-specific IgA antibodies. Moreover, in a pilot challenge experiment, mice immunized with these recombinant lactococci demonstrated a significant (63 %) reduction in cyst output. Thus, it has been demonstrated that G. lamblia CWP2 may be expressed in L. lactis and that recombinant lactococcal cells elicit Giardia-specific antibodies which reduce cyst shedding in a murine model.
Collapse
Affiliation(s)
- Peter Lee
- Institute of Parasitology, McGill University, Macdonald Campus, 21 111 Lakeshore Rd, Ste-Anne de Bellevue, Québec H9X 3V9, Canada
| | - Gaétan M Faubert
- Institute of Parasitology, McGill University, Macdonald Campus, 21 111 Lakeshore Rd, Ste-Anne de Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
44
|
Salam MA, Katz J, Zhang P, Hajishengallis G, Michalek SM. Immunogenicity of Salmonella vector vaccines expressing SBR of Streptococcus mutans under the control of a T7-nirB (dual) promoter system. Vaccine 2006; 24:5003-15. [PMID: 16621196 DOI: 10.1016/j.vaccine.2006.03.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 03/14/2006] [Accepted: 03/16/2006] [Indexed: 11/16/2022]
Abstract
The purpose of the present study was to determine if a Salmonella vector expressing the cloned saliva-binding region (SBR) of Streptococcus mutans or SBR linked to the A2 and B subunits of cholera toxin (CTA2/B) under the control of both the T7 and nirB promoters (T7-nirB dual promoter) was more effective in inducing mucosal and systemic anti-SBR antibody responses than Salmonella clones expressing the same antigens but under the control of either the nirB or T7 promoter. Mice were immunized by the intranasal route on days 0, 18 and 320 with Salmonella enterica serovar Typhimurium strain BRD 509 containing one of six plasmids encoding SBR or SBR-CTA2/B under the control of the T7-nirB, T7, or nirB promoter. Serum, saliva and vaginal wash samples were collected throughout the experiment and assessed for antibody activity by ELISA. Evidence is provided that Salmonella clones expressing SBR or SBR-CAT2/B under the control of either the T7 or T7-nirB promoter induced a high and persistent mucosal and systemic anti-SBR antibody response. All Salmonella clones induced good anti-SBR responses following the boost on day 320.
Collapse
Affiliation(s)
- Mohammad Abdus Salam
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 258/5, 35294-2170, USA
| | | | | | | | | |
Collapse
|
45
|
Medaglini D, Ciabattini A, Cuppone AM, Costa C, Ricci S, Costalonga M, Pozzi G. In vivo activation of naive CD4+ T cells in nasal mucosa-associated lymphoid tissue following intranasal immunization with recombinant Streptococcus gordonii. Infect Immun 2006; 74:2760-6. [PMID: 16622213 PMCID: PMC1459748 DOI: 10.1128/iai.74.5.2760-2766.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antigen-specific primary activation of CD4+ T cells was studied in vivo by adoptive transfer of ovalbumin-specific transgenic T cells (KJ1-26+ CD4+) following intranasal immunization with recombinant Streptococcus gordonii. A strain of S. gordonii expressing on its surface a model vaccine antigen fused to the ovalbumin (OVA) peptide from position 323 to 339 was constructed and used to study the OVA-specific T-cell activation in nasal mucosa-associated lymphoid tissue (NALT), lymph nodes, and spleens of mice immunized by the intranasal route. The recombinant strain, but not the wild type, activated the OVA-specific CD4+ T-cell population in the NALT (89% of KJ1-26+ CD4+ T cells) just 3 days following immunization. In the cervical lymph nodes and in the spleen, the percentage of proliferating cells was initially low, but it reached the peak of activation at day 5 (90%). This antigen-specific clonal expansion of KJ1-26+ CD4+ T cells after intranasal immunization was obtained with live and inactivated recombinant bacteria, and it indicates that the NALT is the site of antigen-specific T-cell priming.
Collapse
Affiliation(s)
- Donata Medaglini
- LAMMB, Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Gockel CM, Russell MW. Induction and recall of immune memory by mucosal immunization with a non-toxic recombinant enterotoxin-based chimeric protein. Immunology 2005; 116:477-86. [PMID: 16313361 PMCID: PMC1802434 DOI: 10.1111/j.1365-2567.2005.02246.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 07/22/2005] [Accepted: 07/26/2005] [Indexed: 11/29/2022] Open
Abstract
Previous reports have suggested that peroral delivery of antigens chemically coupled to non-toxic recombinant enterotoxin B subunits, such as the cholera toxin B subunit (CTB), induces tolerance to the antigen that may be abrogated by the toxic enzyme activity of intact enterotoxins, such as cholera toxin (CT). The aim of this study was to examine the immunogenicity of a genetically coupled protein composed of the saliva-binding region (SBR) of the Streptococcus mutans surface antigen AgI/II and the non-toxic A2 and B subunits of CT (SBR-CTA2/B) compared with that of recombinant SBR admixed with CT (SBR + CT) and SBR chemically coupled to recombinant CTB (SBR-CTB) following peroral delivery by intragastric (i.g.) immunization. The results showed that i.g. immunization with SBR-CTA2/B, like SBR + CT, induced antigen-specific serum immunoglobulin G (IgG) and salivary IgA antibodies, and sensitized splenic T cells. Comparison studies with SBR-CTB produced serum IgG but not salivary IgA titres and failed to sensitize splenic cells. Immunization with SBR-CTA2/B via the intranasal route also primed for the recall of antigen-specific memory antibody responses 6 months later. These findings show that SBR-CTA2/B is an immunogenic, not tolerogenic, chimeric protein that can induce and recall antigen-specific memory responses upon mucosal immunization.
Collapse
Affiliation(s)
- Christine M Gockel
- Department of Microbiology and Immunology, University of Buffalo, NY 14214, USA.
| | | |
Collapse
|
47
|
Abstract
The bronchus-associated lymphoid tissue (BALT) and the nasal-associated lymphoid tissue (NALT) constitute organized lymphoid aggregates that are capable of T- and B-cell responses to inhaled antigens. BALT, located mostly at bifurcations of the bronchus in animals and humans, is present in the fetus and develops rapidly following birth, especially in the presence of antigens. Humoral immune responses elicited by BALT are primarily immunoglobulin A secretion both locally and by BALT-derived B cells that have trafficked to distant mucosal sites. Similarly located T-cell responses have been noted. On the basis of these findings, the BALT can be thought of as functionally analogous to mucosal lymphoid aggregates in the intestine and is deemed a member of the common mucosal immunologic system. NALT has been described principally in the rodent nasal passage as two separate lymphoid aggregates. It develops after birth, likely in response to antigen, and B- and T-cell responses parallel those that occur in BALT. It is not known whether NALT cells traffic to distant mucosal sites, although mucosal responses have been detected after nasal immunization. NALT appears from many studies to be a functionally distinct lymphoid aggregate when compared with BALT and Peyer's patches. It may exist, however, in humans as a diffuse collection of isolated lymphoid follicles.
Collapse
|
48
|
Zhang P, Yang QB, Balkovetz DF, Lewis JP, Clements JD, Michalek SM, Katz J. Effectiveness of the B subunit of cholera toxin in potentiating immune responses to the recombinant hemagglutinin/adhesin domain of the gingipain Kgp from Porphyromonas gingivalis. Vaccine 2005; 23:4734-44. [PMID: 15955601 DOI: 10.1016/j.vaccine.2005.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/03/2005] [Accepted: 05/09/2005] [Indexed: 11/21/2022]
Abstract
The hemagglutinin/adhesin HArep domain is present in the gingipains HRgpA and Kgp and in the hemagglutinin HagA of Porphyromonas gingivalis and is felt to be important in the virulence of this bacterium. In the present study, we determined the immunogenicity of recombinant HArep from the gingipain Kgp (termed Kgp-rHArep) and the effectiveness of the B subunit of cholera toxin (CTB), compared to other adjuvants in potentiating a specific response to Kgp-rHArep following intranasal (i.n.) immunization of mice. Furthermore, we determined the effectiveness of anti-Kgp-rHArep antibodies in protection against P. gingivalis invasion of epithelial cells. Evidence is provided that Kgp-rHArep was effective in inducing immune responses following systemic or mucosal immunization. Kgp-rHArep induced both a Th1- and Th2-type response following i.n. immunization. Immunization of mice with Kgp-rHArep and CTB, either admixed or chemically conjugated to the antigen, via the i.n. route, resulted in a significant augmentation of the systemic and mucosal immune response to Kgp-rHArep, which was similar to or higher than the responses seen in mice immunized with antigen and the other adjuvants tested. CTB and the heat-labile toxin of Escherichia coli potentiated a Th1- and Th2-type response to Kgp-rHArep, whereas the adjuvant monophosphoryl lipid A preferentially promoted a Th1-type response to the antigen. Furthermore, anti-Kgp-rHArep antibodies were shown to protect against P. gingivalis invasion of epithelial cells in an in vitro system. These results demonstrate the effectiveness of certain mucosal adjuvants in potentiating and in altering the nature of the immune response to Kgp-rHArep following i.n. immunization, and provide evidence for the potential usefulness of Kgp-rHArep for the development of a vaccine against periodontal disease.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 845 19th Street South, BBRB258/5, Birmingham, AL 35294-2170, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kurohane K, Kobayashi C, Imai Y. Facilitated production of secretory IgA against Shiga toxin B subunits by intranasal application of antigen-coated polystyrene microspheres. Microbiol Immunol 2005; 49:149-54. [PMID: 15722600 DOI: 10.1111/j.1348-0421.2005.tb03714.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the effects of microspheres as antigen carriers in mucosal immunization. Shiga toxin B subunits (Stx1B) were adsorbed on 6 mum polystyrene microspheres, which were then intranasally administered to mice together with cholera toxin (CT). Stx1B-specific serum IgG production and secretory IgA production at local mucosal sites were enhanced by the use of microspheres. When OVA was used as a model antigen, secretory IgA production but not serum IgG production was enhanced on the use of microspheres. These results indicated that microspheres provide a useful means of potentiating the immune response against Stx1B with weak immunogenicity.
Collapse
Affiliation(s)
- Kohta Kurohane
- Department of Microbiology and COE Program in the 21st Century, University of Shizuoka School of Pharmaceutical Sciences, Japan
| | | | | |
Collapse
|
50
|
Kodama S, Hirano T, Suenaga S, Abe N, Suzuki M. Eustachian tube possesses immunological characteristics as a mucosal effector site and responds to P6 outer membrane protein of nontypeable Haemophilus influenzae. Vaccine 2005; 24:1016-27. [PMID: 16242817 DOI: 10.1016/j.vaccine.2005.07.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 05/27/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
The eustachian tube (ET) plays an important role in the pathogenesis of otitis media (OM). To better understand its biology and to develop a nasal vaccine for preventing OM, mucosal lymphocytes in the ET were analyzed, and the ET's immunological function was investigated. Mononuclear cells were isolated from murine ET, and lymphocyte subsets were analyzed by flow cytometry. Antibody-producing cells were determined by enzyme-linked immunospot assay. The expression of cytokine mRNA in ET CD4(+) T cells was determined by RT-PCR. Results in naive mice showed that the ET contained many immunocompetent cells, including a relative large number of IgA-producing cells and Th2 cytokine-expressing T cells. Next, we investigated antigen-specific immune responses in the ET. Mice were immunized intranasally with the P6 outer membrane of nontypeable Haemophilus influenzae (NTHi) and cholera toxin (CT), and P6-specific immune responses in the ET were examined. P6-specific IgA producing cells markedly increased in the ET. Moreover, in vitro stimulation with P6 of purified CD4(+) T cells from immunized mice resulted in the proliferation of CD4(+) T cells that expressed Th2 cytokine mRNA. These results indicate that the ET might be characterized as a mucosal effector site and that antigen-specific IgA and Th2 immune responses could be induced in the ET by intranasal immunization. These findings suggest that the ET might be a key immunological organ in the pathogenesis of OM, and in the development of a nasal vaccine.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Otolaryngology, Oita University Faculty of Medicine, Hazama-machi, Japan
| | | | | | | | | |
Collapse
|