1
|
Wu C, Liu C, Luo K, Li Y, Jiang J, Yan F. Changes in Expression of the Membrane Receptors CD14, MHC-II, SR-A, and TLR4 in Tissue-Specific Monocytes/Macrophages Following Porphyromonas gingivalis–LPS Stimulation. Inflammation 2017; 41:418-431. [DOI: 10.1007/s10753-017-0698-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Riva R, Korhonen TK, Meri S. The outer membrane protease PgtE of Salmonella enterica interferes with the alternative complement pathway by cleaving factors B and H. Front Microbiol 2015; 6:63. [PMID: 25705210 PMCID: PMC4319491 DOI: 10.3389/fmicb.2015.00063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/18/2015] [Indexed: 11/21/2022] Open
Abstract
The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella.
Collapse
Affiliation(s)
- Rauna Riva
- Immunobiology Research Program, Research Program Unit, University of HelsinkiHelsinki, Finland
- Department of Bacteriology and Immunology, Haartman Institute, University of HelsinkiHelsinki, Finland
| | - Timo K. Korhonen
- General Microbiology, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Seppo Meri
- Immunobiology Research Program, Research Program Unit, University of HelsinkiHelsinki, Finland
- Department of Bacteriology and Immunology, Haartman Institute, University of HelsinkiHelsinki, Finland
- HUSLAB, Hospital District of Helsinki and UusimaaHelsinki, Finland
| |
Collapse
|
3
|
Järvinen HM, Laakkonen L, Haiko J, Johansson T, Juuti K, Suomalainen M, Buchrieser C, Kalkkinen N, Korhonen TK. Human single-chain urokinase is activated by the omptins PgtE of Salmonella enterica and Pla of Yersinia pestis despite mutations of active site residues. Mol Microbiol 2013; 89:507-17. [PMID: 23763588 DOI: 10.1111/mmi.12293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2013] [Indexed: 01/05/2023]
Abstract
Fibrinolysis is important in cell migration and tightly regulated by specific inhibitors and activators; of the latter, urokinase (uPA) associates with enhancement of cell migration. Active uPA is formed through cleavage of the single-chain uPA (scuPA). The Salmonella enterica strain 14028R cleaved human scuPA at the peptide bond Lys158-Ile159, the site cleaved also by the physiological activator human plasmin. The cleavage led to activation of scuPA, while no cleavage or activation were detected with the mutant strain 14028R lacking the omptin protease PgtE. Complementation and expression studies confirmed the role of PgtE in scuPA activation. Similar cleavage and activation of scuPA were detected with recombinant Escherichia coli expressing the omptin genes pla from Yersinia pestis, ompT and ompP from E. coli, sopA from Shigella flexneri, and leo from Legionella pneumophila. For these omptins the activation of scuPA is the only shared function so far detected. Only poor cleavage and activation of scuPA were seen with YcoA of Y. pestis and YcoB of Yersinia pseudotuberculosis that are considered to be proteolytically inactive omptin variants. Point mutations of active site residues in Pla and PgtE had different effects on the proteolysis of plasminogen and of scuPA, indicating versatility in omptin proteolysis.
Collapse
Affiliation(s)
- Hanna M Järvinen
- Division of General Microbiology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI, 00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Barat S, Willer Y, Rizos K, Claudi B, Mazé A, Schemmer AK, Kirchhoff D, Schmidt A, Burton N, Bumann D. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog 2012; 8:e1002966. [PMID: 23093937 PMCID: PMC3475680 DOI: 10.1371/journal.ppat.1002966] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/14/2012] [Indexed: 01/05/2023] Open
Abstract
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. Salmonella infections cause extensive morbidity and mortality worldwide. A vaccine that prevents systemic Salmonella infections is urgently needed but suitable antigens remain largely unknown. In this study we identified several antigen candidates that mediated protective immunity to Salmonella in a mouse typhoid fever model. Interestingly, all these antigens were associated with the Salmonella surface. This suggested that similar antigen properties might be relevant for CD4 T cell dependent immunity to intracellular pathogens like Salmonella, as for antibody-dependent immunity to extracellular pathogens. Detailed analysis revealed that Salmonella surface antigens were not generally more immunogenic compared to internal antigens. However, internal antigens were inaccessible for CD4 T cell recognition of a substantial number of infected host cells that contained exclusively live intact Salmonella. Together, these results might pave the way for development of an efficacious Salmonella vaccine, and provide a basis to facilitate antigen identification for Salmonella and possibly other intracellular pathogens.
Collapse
Affiliation(s)
- Somedutta Barat
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Yvonne Willer
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
| | - Konstantin Rizos
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne K. Schemmer
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dennis Kirchhoff
- Immunomodulation Group, Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
5
|
Valls Serón M, Haiko J, DE Groot PG, Korhonen TK, Meijers JCM. Thrombin-activatable fibrinolysis inhibitor is degraded by Salmonella enterica and Yersinia pestis. J Thromb Haemost 2010; 8:2232-40. [PMID: 20704647 DOI: 10.1111/j.1538-7836.2010.04014.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pathogenic bacteria modulate the host coagulation system to evade immune responses or to facilitate dissemination through extravascular tissues. In particular, the important bacterial pathogens Salmonella enterica and Yersinia pestis intervene with the plasminogen/fibrinolytic system. Thrombin-activatable fibrinolysis inhibitor (TAFI) has anti-fibrinolytic properties as the active enzyme (TAFIa) removes C-terminal lysine residues from fibrin, thereby attenuating accelerated plasmin formation. RESULTS Here, we demonstrate inactivation and cleavage of TAFI by homologous surface proteases, the omptins Pla of Y. pestis and PgtE of S. enterica. We show that omptin-expressing bacteria decrease TAFI activatability by thrombin-thrombomodulin and that the anti-fibrinolytic potential of TAFIa was reduced by recombinant Escherichia coli expressing Pla or PgtE. The functional impairment resulted from C-terminal cleavage of TAFI by the omptins. CONCLUSIONS Our results indicate that TAFI is degraded directly by the omptins PgtE of S. enterica and Pla of Y. pestis. This may contribute to the ability of PgtE and Pla to damage tissue barriers, such as fibrin, and thereby to enhance spread of S. enterica and Y. pestis during infection.
Collapse
Affiliation(s)
- M Valls Serón
- Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Haiko J, Laakkonen L, Juuti K, Kalkkinen N, Korhonen TK. The omptins of Yersinia pestis and Salmonella enterica cleave the reactive center loop of plasminogen activator inhibitor 1. J Bacteriol 2010; 192:4553-61. [PMID: 20639337 PMCID: PMC2937412 DOI: 10.1128/jb.00458-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/23/2010] [Indexed: 01/03/2023] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a serine protease inhibitor (serpin) and a key molecule that regulates fibrinolysis by inactivating human plasminogen activators. Here we show that two important human pathogens, the plague bacterium Yersinia pestis and the enteropathogen Salmonella enterica serovar Typhimurium, inactivate PAI-1 by cleaving the R346-M347 bait peptide bond in the reactive center loop. No cleavage of PAI-1 was detected with Yersinia pseudotuberculosis, an oral/fecal pathogen from which Y. pestis has evolved, or with Escherichia coli. The cleavage and inactivation of PAI-1 were mediated by the outer membrane proteases plasminogen activator Pla of Y. pestis and PgtE protease of S. enterica, which belong to the omptin family of transmembrane endopeptidases identified in Gram-negative bacteria. Cleavage of PAI-1 was also detected with the omptins Epo of Erwinia pyrifoliae and Kop of Klebsiella pneumoniae, which both belong to the same omptin subfamily as Pla and PgtE, whereas no cleavage of PAI-1 was detected with omptins of Shigella flexneri or E. coli or the Yersinia chromosomal omptins, which belong to other omptin subfamilies. The results reveal a novel serpinolytic mechanism by which enterobacterial species expressing omptins of the Pla subfamily bypass normal control of host proteolysis.
Collapse
Affiliation(s)
- Johanna Haiko
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| | - Liisa Laakkonen
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| | - Katri Juuti
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| | - Nisse Kalkkinen
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| | - Timo K. Korhonen
- General Microbiology, Department of Biosciences, P.O. Box 56, Neuroscience Center, P.O. Box 56, Institute of Biotechnology, P.O. Box 65, University of Helsinki, FI 00014 Helsinki, Finland
| |
Collapse
|
7
|
Lai XH, Shirley RL, Crosa L, Kanistanon D, Tempel R, Ernst RK, Gallagher LA, Manoil C, Heffron F. Mutations of Francisella novicida that alter the mechanism of its phagocytosis by murine macrophages. PLoS One 2010; 5:e11857. [PMID: 20686600 PMCID: PMC2912274 DOI: 10.1371/journal.pone.0011857] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/29/2010] [Indexed: 12/15/2022] Open
Abstract
Infection with the bacterial pathogen Francisella tularensis tularensis (F. tularensis) causes tularemia, a serious and debilitating disease. Francisella tularensis novicida strain U112 (abbreviated F. novicida), which is closely related to F. tularensis, is pathogenic for mice but not for man, making it an ideal model system for tularemia. Intracellular pathogens like Francisella inhibit the innate immune response, thereby avoiding immune recognition and death of the infected cell. Because activation of inflammatory pathways may lead to cell death, we reasoned that we could identify bacterial genes involved in inhibiting inflammation by isolating mutants that killed infected cells faster than the wild-type parent. We screened a comprehensive transposon library of F. novicida for mutant strains that increased the rate of cell death following infection in J774 macrophage-like cells, as compared to wild-type F. novicida. Mutations in 28 genes were identified as being hypercytotoxic to both J774 and primary macrophages of which 12 were less virulent in a mouse infection model. Surprisingly, we found that F. novicida with mutations in four genes (lpcC, manB, manC and kdtA) were taken up by and killed macrophages at a much higher rate than the parent strain, even upon treatment with cytochalasin D (cytD), a classic inhibitor of macrophage phagocytosis. At least 10-fold more mutant bacteria were internalized by macrophages as compared to the parent strain if the bacteria were first fixed with formaldehyde, suggesting a surface structure is required for the high phagocytosis rate. However, bacteria were required to be viable for macrophage toxicity. The four mutant strains do not make a complete LPS but instead have an exposed lipid A. Interestingly, other mutations that result in an exposed LPS core were not taken up at increased frequency nor did they kill host cells more than the parent. These results suggest an alternative, more efficient macrophage uptake mechanism for Francisella that requires exposure of a specific bacterial surface structure(s) but results in increased cell death following internalization of live bacteria.
Collapse
Affiliation(s)
- Xin-He Lai
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- Virogenomics, Inc., Tigard, Oregon, United States of America
- * E-mail: (X-HL); (FH)
| | | | - Lidia Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Duangjit Kanistanon
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Rebecca Tempel
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Larry A. Gallagher
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (X-HL); (FH)
| |
Collapse
|
8
|
Kotarsky K, Sitnik KM, Stenstad H, Kotarsky H, Schmidtchen A, Koslowski M, Wehkamp J, Agace WW. A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa. Mucosal Immunol 2010; 3:40-8. [PMID: 19812544 DOI: 10.1038/mi.2009.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal-derived chemokines have a central role in orchestrating immune cell influx into the normal and inflamed intestine. Here, we identify the chemokine CCL6 as one of the most abundant chemokines constitutively expressed by both murine small intestinal and colonic epithelial cells. CCL6 protein localized to crypt epithelial cells, was detected in the gut lumen and reached high concentrations at the mucosal surface. Its expression was further enhanced in the small intestine following in vivo administration of LPS or after stimulation of the small intestinal epithelial cell line, mIC(c12), with IFNgamma, IL-4 or TNFalpha. Recombinant- and intestinal-derived CCL6 bound to a subset of the intestinal microflora and displayed antibacterial activity. Finally, the human homologs to CCL6, CCL14 and CCL15 were also constitutively expressed at high levels in human intestinal epithelium, were further enhanced in inflammatory bowel disease and displayed similar antibacterial activity. These findings identify a novel role for constitutively expressed, epithelial-derived chemokines as antimicrobial peptides in the intestinal mucosa.
Collapse
Affiliation(s)
- K Kotarsky
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zenk SF, Jantsch J, Hensel M. Role of Salmonella enterica lipopolysaccharide in activation of dendritic cell functions and bacterial containment. THE JOURNAL OF IMMUNOLOGY 2009; 183:2697-707. [PMID: 19625639 DOI: 10.4049/jimmunol.0900937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In contrast to nonpathogenic bacteria, the Gram-negative pathogen Salmonella enterica is not eradicated, but persists in murine dendritic cells (DC). The molecular basis of this phenotype is unknown. We set out to characterize bacterial and DC functions that are involved in Salmonella persistence. Our data prove that neither bacterial nor host cell de novo protein biosynthesis is required for Salmonella persistence in DC. We identified the Salmonella O-Ag of the LPS of Salmonella as an important factor for controlling the intracellular fate of Salmonella in DC. A Salmonella strain with entirely absent O-Ag showed an increased rate of uptake by DC, altered intracellular processing, and increased degradation, and also boosted the activation of immune functions of DC. These novel findings demonstrate that in addition to the multiple functions of the bacterial LPS in adaptation to the intestinal environment and protection against innate immune function, this molecule also has an important role in interaction of Salmonella with DC.
Collapse
Affiliation(s)
- Sebastian F Zenk
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
10
|
Ramu P, Lobo LA, Kukkonen M, Bjur E, Suomalainen M, Raukola H, Miettinen M, Julkunen I, Holst O, Rhen M, Korhonen TK, Lähteenmäki K. Activation of pro-matrix metalloproteinase-9 and degradation of gelatin by the surface protease PgtE of Salmonella enterica serovar Typhimurium. Int J Med Microbiol 2007; 298:263-78. [PMID: 17888724 DOI: 10.1016/j.ijmm.2007.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 10/22/2022] Open
Abstract
Mammalian matrix metalloproteinases (MMPs) degrade collagen networks in extracellular matrices by cleaving collagen and its denatured form gelatin, and thus enhance migration of mammalian cells. The gastrointestinal pathogen Salmonella enterica survives and grows within host macrophages and dendritic cells, and can disseminate in the host by travelling within infected host cells. Here, we report that S. enterica serovar Typhimurium activates proMMP-9 (gelatinase B) secreted by human primary macrophages, and degrades gelatin after growth within J774A.1 murine macrophage-like cells. Both proMMP-9 activation and gelatin degradation were due to expression of the Salmonella surface protease PgtE. Following intraperitoneal infection in BALB/c mice, the amount of a pgtE deletion derivative was nearly ten-fold lower in the livers and spleens of mice than the amount of wild-type S. enterica, suggesting that PgtE contributes to dissemination of Salmonella in the host. PgtE belongs to the omptin family of bacterial beta-barrel transmembrane proteases. The ortholog of PgtE in Yersinia pestis, Pla, which is central for bacterial virulence in plague, was poor in proMMP-9 activation and in gelatin degradation. To model the evolution of these activities in the omptin barrel, we performed a substitution analysis in Pla and genetically modified it into a PgtE-like gelatinase. Our results indicate that PgtE and Pla have diverged in substrate specificity, and suggest that Salmonella PgtE has evolved to functionally mimic mammalian MMPs.
Collapse
Affiliation(s)
- Päivi Ramu
- General Microbiology, Department of Biological and Environmental Sciences, Faculty of Biosciences, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rydström A, Wick MJ. Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:5789-801. [PMID: 17442963 DOI: 10.4049/jimmunol.178.9.5789] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neutrophils, monocytes, and dendritic cells (DC) are phenotypically and functionally related phagocytes whose presence in infected tissues is critical to host survival. Their overlapping expression pattern of surface molecules, the differentiation capacity of monocytes, and the presence of monocyte subsets underscores the complexity of understanding the role of these cells during infection. In this study we use five- to seven-color flow cytometry to assess the phenotype and function of monocytes recruited to Peyer's patches (PP) and mesenteric lymph nodes (MLN) after oral Salmonella infection of mice. The data show that CD68(high)Gr-1(int) (intermediate) monocytes, along with CD68(int)Gr-1(high) neutrophils, rapidly accumulate in PP and MLN. The monocytes have increased MHC-II and costimulatory molecule expression and, in contrast to neutrophils and DC, produce inducible NO synthase. Although neutrophils and monocytes from infected mice produce TNF-alpha and IL-1beta upon ex vivo culture, DC do not. In addition, although recruited monocytes internalize Salmonella in vitro and in vivo they did not induce the proliferation of OT-II CD4(+) T cells after coincubation with Salmonella expressing OVA despite their ability to activate OT-II cells when pulsed with the OVA(323-339) peptide. We also show that recruited monocytes enter the PP of infected mice independently of the mucosal address in cell adhesion molecule-1 (MAdCAM-1). Finally, recruited but not resident monocytes increase in the blood of orally infected mice, and MHC-II up-regulation, but not TNF-alpha or iNOS production, occur already in the blood. These studies are the first to describe the accumulation and function of monocyte subsets in the blood and GALT during oral Salmonella infection.
Collapse
Affiliation(s)
- Anna Rydström
- Department of Microbiology and Immunology, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
12
|
The surface protease PgtE of Salmonella enterica affects complement activity by proteolytically cleaving C3b, C4b and C5. FEBS Lett 2007; 581:1716-20. [PMID: 17418141 DOI: 10.1016/j.febslet.2007.03.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/05/2007] [Accepted: 03/13/2007] [Indexed: 01/08/2023]
Abstract
Complement activity in mammalian serum is fundamentally based on three homologous components C3b, C4b and C5. During systemic infection, the gastrointestinal pathogen Salmonella enterica disseminates within host phagocytic cells but also extracellularly. Consequently, systemic Salmonella transiently confronts the complement system. We show here that the surface protease PgtE of S. enterica proteolytically cleaves C3b, C4b and C5 and that the expression of PgtE enhances bacterial resistance to human serum. Degradation of C3b was further enhanced by PgtE-mediated plasminogen activation.
Collapse
|
13
|
Alaniz RC, Cummings LA, Bergman MA, Rassoulian-Barrett SL, Cookson BT. Salmonella typhimurium coordinately regulates FliC location and reduces dendritic cell activation and antigen presentation to CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3983-93. [PMID: 16951361 DOI: 10.4049/jimmunol.177.6.3983] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During infection, Salmonella transitions from an extracellular-phase (STEX, growth outside host cells) to an intracellular-phase (STIN, growth inside host cells): changes in gene expression mediate survival in the phagosome and modifies LPS and outer membrane protein expression, including altered production of FliC, an Ag recognized by immune CD4+ T cells. Previously, we demonstrated that systemic STIN bacteria repress FliC below the activation threshold of FliC-specific T cells. In this study, we tested the hypothesis that changes in FliC compartmentalization and bacterial responses triggered during the transition from STEX to STIN combine to reduce the ability of APCs to present FliC to CD4+ T cells. Approximately 50% of the Salmonella-specific CD4+ T cells from Salmonella-immune mice were FliC specific and produced IFN-gamma, demonstrating the potent immunogenicity of FliC. FliC expressed by STEX bacteria was efficiently presented by splenic APCs to FliC-specific CD4+ T cells in vitro. However, STIN bacteria, except when lysed, expressed FliC within a protected intracellular compartment and evaded stimulation of FliC-specific T cells. The combination of STIN-mediated responses that reduced FliC bioavailability were overcome by dendritic cells (DCs), which presented intracellular FliC within heat-killed bacteria; however, this ability was abrogated by live bacterial infection. Furthermore, STIN bacteria, unlike STEX, limited DC activation as measured by increased MHC class II, CD86, TNF-alpha, and IL-12 expression. These data indicate that STIN bacteria restrict FliC bioavailability by Ag compartmentalization, and together with STIN bacterial responses, limit DC maturation and cytokine production. Together, these mechanisms may restrain DC-mediated activation of FliC-specific CD4+ T cells.
Collapse
Affiliation(s)
- Robert C Alaniz
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
14
|
Murray GL, Attridge SR, Morona R. Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol 2006; 188:2735-9. [PMID: 16547065 PMCID: PMC1428429 DOI: 10.1128/jb.188.7.2735-2739.2006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A panel of isogenic Salmonella enterica serovar Typhimurium strains that vary only in the length of the O antigen was constructed through complementation of a wzz double mutant (displaying unregulated O-antigen length) with one of two homologous (wzzST and wzzfepE) or three heterologous (wzzO139 of Vibrio cholerae and wzzSF and wzzpHS-2 of Shigella flexneri) wzz genes. Each gene was functional in the S. enterica serovar Typhimurium host and specified production of O-antigen polymers with lengths typical of those synthesized by the donor bacteria (ranging from 2 to >100 O-antigen repeat units). By use of this panel of strains, it was found that O-antigen length influences invasion/uptake by macrophage cells; this is the first time this has been shown with Salmonella. O-antigen length was confirmed to be related to complement resistance, with a minimum protective length of >4 and <15 repeat units. O antigen of 16 to 35 repeat units was found to activate complement more efficiently than other lengths, but this was unrelated to complement resistance. No evidence was found to suggest that modifying the length of the O-antigen polymer affected expression of the O1, O4, or O5 antigenic factors.
Collapse
Affiliation(s)
- Gerald L Murray
- Australian Bacterial Pathogenesis Program, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, Australia 5005
| | | | | |
Collapse
|
15
|
Kalupahana RS, Mastroeni P, Maskell D, Blacklaws BA. Activation of murine dendritic cells and macrophages induced by Salmonella enterica serovar Typhimurium. Immunology 2005; 115:462-72. [PMID: 16011515 PMCID: PMC1782185 DOI: 10.1111/j.1365-2567.2005.02180.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Macrophages and dendritic cells (DCs) are antigen-presenting cells (APCs), and the direct involvement of both cell types in the immune response to Salmonella has been identified. In this study we analysed the phenotypic and functional changes that take place in murine macrophages and DCs in response to live and heat-killed Salmonella enterica serovar Typhimurium. Both types of cell secreted proinflammatory cytokines and nitric oxide (NO) in response to live and heat-killed salmonellae. Bacterial stimulation also resulted in up-regulation of costimulatory molecules on macrophages and DCs. The expression of major histocompatibility complex (MHC) class II molecules by macrophages and DCs was differentially regulated by interferon (IFN)-gamma and salmonellae. Live and heat-killed salmonellae as well as lipopolysaccharide (LPS) inhibited the up-regulation of MHC class II expression induced by IFN-gamma on macrophages but not on DCs. Macrophages as well as DCs presented Salmonella-derived antigen to CD4 T cells, although DCs were much more efficient than macrophages at stimulating CD4 T-cell cytokine release. Macrophages are effective in the uptake and killing of bacteria whilst DCs specialize in antigen presentation. This study showed that the viability of salmonellae was not essential for activation of APCs but, unlike live bacteria, prolonged contact with heat-killed bacteria was necessary to obtain maximal expression of the activation markers studied.
Collapse
Affiliation(s)
- Ruwani Sagarika Kalupahana
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
16
|
Domènech VES, Panthel K, Meinel KM, Rüssmann H. Rapid clearance of a recombinant Salmonella vaccine carrier prevents enhanced antigen-specific CD8 T-cell responses after oral boost immunizations. Microbes Infect 2005; 7:860-6. [PMID: 15878680 DOI: 10.1016/j.micinf.2005.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/03/2005] [Accepted: 02/07/2005] [Indexed: 01/22/2023]
Abstract
The type III secretion system of Salmonella enterica serovar Typhimurium can be used to target heterologous antigens directly into the cytosol of antigen-presenting cells. Our laboratory has previously reported that the single oral immunization of mice with a recombinant Salmonella strain expressing the translocated Yersinia outer protein E fused to the immunodominant antigen p60 from Listeria monocytogenes results in the efficient induction of p60-specific CD8 T cells and confers protection against a lethal wild-type Listeria challenge infection. In the present study, we investigated whether these antigen-specific cytotoxic T lymphocytes induced by the prime immunization contribute to a more rapid clearance of the vaccine carrier after subsequent boost immunizations and whether oral boost immunizations lead to an augmented p60-specific CD8 T-cell response. We found that the ability of recombinant Salmonella strains to colonize the intestine, mesenteric lymph nodes, and spleen was markedly impaired after boost immunizations but that this effect was independent of existing CD8 T cells reactive with p60(217-225). A significant elevation of antigen-specific CD8 T cells could not be detected by enzyme-linked immunospot assay after the second or the third oral immunization, possibly due to the rapid clearance of the bacterial vaccine carrier from lymphatic organs.
Collapse
Affiliation(s)
- Victòria E Sevil Domènech
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | | | |
Collapse
|
17
|
Panthel K, Meinel KM, Domènech VES, Retzbach H, Igwe EI, Hardt WD, Rüssmann H. Salmonella pathogenicity island 2-mediated overexpression of chimeric SspH2 proteins for simultaneous induction of antigen-specific CD4 and CD8 T cells. Infect Immun 2005; 73:334-41. [PMID: 15618170 PMCID: PMC538990 DOI: 10.1128/iai.73.1.334-341.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/08/2004] [Accepted: 09/14/2004] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium employs two different type III secretion systems (TTSS) encoded within Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) for targeting of effector proteins into the cytosol of eukaryotic cells during different stages of the infection cycle. The SPI1 TTSS translocates virulence factors across the plasma membrane when the bacterium initially contacts the host cell. In contrast, the SPI2 TTSS functions to translocate proteins across the membrane of the Salmonella-containing vacuole and promotes intracellular survival and replication. The aim of the present study was to directly compare the potentials of SPI1 and SPI2 type III effector proteins to act as carrier molecules for a heterologous antigen. The p60 protein of Listeria monocytogenes was used as a model antigen to construct chimeric SopE2 (SPI1), SifA (SPI2), and SspH2 (SPI2) proteins. SPI1- and SPI2-dependent up- and down-regulation of hybrid gene expression led to sequential translocation of p60 fusion proteins into the cytosol of Salmonella-infected macrophages. Mice orally immunized with recombinant Salmonella strains expressing these hybrid proteins revealed comparable numbers of p60-specific CD8 T cells. However, only overexpression of translocated SspH2/p60 from a medium-copy-number vector induced simultaneous antigen-specific CD4 and CD8 T-cell responses, suggesting that SspH2 is an attractive carrier molecule for foreign-protein delivery.
Collapse
Affiliation(s)
- Klaus Panthel
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig Maximilians Universität München, Pettenkoferstr. 9a, 80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Lähteenmäki K, Kyllönen P, Partanen L, Korhonen TK. Antiprotease inactivation by Salmonella enterica released from infected macrophages. Cell Microbiol 2004; 7:529-38. [PMID: 15760453 DOI: 10.1111/j.1462-5822.2004.00483.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian serine protease plasmin, which has an important role in extracellular matrix degradation during cell migration, is regulated by the plasma antiprotease alpha(2)-antiplasmin (alpha(2)AP). The surface protease PgtE of Salmonella enterica serovar Typhimurium proteolytically inactivated alpha(2)AP. PgtE also activates the plasma zymogen plasminogen to plasmin, and bacteria expressing PgtE promoted degradation of extracellular matrix laminin in the presence of plasminogen and alpha(2)AP. alpha(2)AP inactivation was detected with the rough derivative of S. enterica 14028, but not with the smooth wild-type strain, suggesting that the O-antigen of lipopolysaccharide prevented contact of PgtE with the substrate molecule. After growth of S. enterica 14028 in murine J774A.1 macrophage-like cells, the infected cell lysate as well as bacteria from isolated Salmonella-containing vacuoles (SCVs) cleaved alpha(2)AP. Bacteria from SCVs produced an elevated level of PgtE and had a reduced O-antigen chain length. The lysate from S. enterica 14028-infected macrophages promoted formation of plasmin in the presence of alpha(2)AP, whereas plasmin formation by lysates from uninfected macrophages, or from macrophages infected with the pgtE-negative derivative of 14028, was inhibited by alpha(2)AP. Salmonella disseminates in the host within macrophages, which utilize plasmin for migration through tissue barriers. The results suggest that intracellular enhancement of PgtE activity in Salmonella may promote macrophage-associated proteolysis and cellular migration by altering the balance between host plasmin and alpha(2)AP.
Collapse
Affiliation(s)
- Kaarina Lähteenmäki
- General Microbiology, Faculty of Biosciences, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
19
|
Rüssmann H. Yersinia outer protein E, YopE. A versatile type III effector molecule for cytosolic targeting of heterologous antigens by attenuated Salmonella. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 529:407-13. [PMID: 12756799 DOI: 10.1007/0-306-48416-1_81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Many Gram-negative pathogens evade the host's immune response by utilizing a specialized protein secretion machinery, known as type III secretion system (TTSS). Virulence factors such as the Yersinia outer protein E (YopE) are delivered directly into the cytosol of target cells in a TTSS-dependent fashion. This unique translocation mechanism can be used by attenuated Salmonella carrier vaccines for the delivery of heterologous antigens fused to YopE into the MHC class I-restricted antigen processing pathway. In orally immunized mice, this novel vaccination strategy results in the induction of pronounced peptide-specific cytotoxic CD8 T cell responses.
Collapse
Affiliation(s)
- Holger Rüssmann
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336 München, Germany
| |
Collapse
|
20
|
Rüssmann H. Bacterial type III translocation: a unique mechanism for cytosolic display of heterologous antigens by attenuated Salmonella. Int J Med Microbiol 2003; 293:107-12. [PMID: 12755371 DOI: 10.1078/1438-4221-00249] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon infection, Gram-negative animal and plant pathogens evade the host immune response by utilizing a specialized protein secretion machinery, known as type III secretion system, for the export of bacterial virulence factors delivered directly into the cytosol of target cells. This unique translocation mechanism can be used for the delivery of large protein fragments derived from immunodominant viral and bacterial heterologous antigens into the MHC class I-restricted antigen-processing pathway by attenuated Salmonella carrier vaccines. In orally immunized mice, this novel vaccination strategy results in the induction of pronounced peptide-specific cytotoxic CD8 T cell responses.
Collapse
Affiliation(s)
- Holger Rüssmann
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, D-80336 München, Germany.
| |
Collapse
|
21
|
Abstract
The long-held paradigm of T lymphocyte-mediated activation of mononuclear phagocytes (Mø) as the major mechanism of protection against facultative intracellular pathogens such as Brucella has been modified to include killing of infected Mø by various subsets of T lymphocytes. Remnants of killed infected cells are phagocytosed by immunologically-activated Mø, which are much more efficient at killing such pathogens. Most of the detailed information regarding immunity in general and that of brucellosis specifically has been obtained using murine infection models rather than in cattle. However, there has been considerable definition of cellular phenotypes, cytokines and functional characteristics of T lymphocytes in cattle over the last decade. This was mainly due to development of monoclonal antibodies against cell surface markers and application of molecular cloning and polymerase chain reaction (PCR) for isolation, characterization and detection of genes encoding bovine cytokines. This review discusses cellular and molecular immunity in bovine brucellosis as pertains to T lymphocyte interactions with the Mø. Although current knowledge directly obtained from brucellosis immunity studies in the bovine host is limited and incomplete, the many parallels between the bovine and murine immune systems allow for some extrapolation in the description of bovine host defense mechanisms. Direct information from studies with immunized cattle supports the concepts of coordinate activation of uninfected Mø and killing of Brucella-infected Mø by antigen-specific T lymphocytes as major mechanisms of host defense in bovine brucellosis. There also appears to be a bias in the T lymphocyte compartment towards recognition of particular bacterial stress proteins following immunization with live Brucella vaccines.
Collapse
Affiliation(s)
- John H Wyckoff
- Department of Veterinary Pathobiology, College of Veterinary Medicine, 250 McElroy Hall, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| |
Collapse
|
22
|
Abstract
Processing exogenous and endogenous proteins for presentation by major histocompatibility complex (MHC) molecules to T cells is the defining function of antigen-presenting cells (APC) as major regulatory cells in the acquired immune response. MHC class II-restricted antigen presentation to CD4 T cells is achieved by an essentially common pathway that is subject to variation with regard to the location and extent of degradation of protein antigens and the site of peptide binding to MHC class II molecules. These subtle variations reveal a surprising flexibility in the ways a diverse peptide repertoire is displayed on the APC surface. This diversity may have profound consequences for the induction of immunity to infection and tumours, as well as autoimmunity and tolerance.
Collapse
Affiliation(s)
- John H Robinson
- Department of Microbiology and Immunology, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | |
Collapse
|
23
|
Bumann D. Regulated antigen expression in live recombinant Salmonella enterica serovar Typhimurium strongly affects colonization capabilities and specific CD4(+)-T-cell responses. Infect Immun 2001; 69:7493-500. [PMID: 11705925 PMCID: PMC98839 DOI: 10.1128/iai.69.12.7493-7500.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulated antigen expression can influence the immunogenicity of live recombinant Salmonella vaccines, but a rational optimization has remained difficult since important aspects of this effect are incompletely understood. Here, attenuated Salmonella enterica serovar Typhimurium SL3261 strains expressing the model antigen GFP_OVA were used to quantify in vivo antigen levels by flow cytometry and to simultaneously follow the crucial early steps of antigen-specific T-cell responses in mice that are transgenic for a T-cell receptor recognizing ovalbumin. Among seven tested promoters, P(pagC) has the highest activity in murine tissues combined with low in vitro expression, whereas P(tac) has a comparable in vivo and a very high in vitro activity. Both SL3261 (pP(pagC)GFP_OVA) and SL3261 (pP(tac)GFP_OVA) cells can induce potent ovalbumin-specific cellular immune responses following oral administration, but doses almost 1,000-fold lower are sufficient for the in vivo-inducible construct SL3261 (pP(pagC)GFP_OVA) compared to SL3261 (pP(tac)GFP_OVA). This efficacy difference is largely explained by impaired early colonization capabilities of SL3261 (pP(tac)GFP_OVA) cells. Based on the findings of this study, appropriate in vivo expression levels for any given antigen can be rationally selected from the increasing set of promoters with defined properties. This will allow the improvement of recombinant Salmonella vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- D Bumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, D-10117 Berlin, Germany.
| |
Collapse
|
24
|
Abstract
The present article summarizes studies aimed at addressing the role of antigen-presenting cell populations, particularly dendritic cells (DC), in the immune response to Salmonella typhimurium. Data from in vitro studies shed light on presentation of antigens expressed in Salmonella on major histocompatibility complex class I and class II molecules by infected DC and macrophages, and the activation state of DC following infection. Finally, data from in vivo studies addressing the role of DC and defined DC subsets during the host response to Salmonella using a murine infection model are discussed.
Collapse
Affiliation(s)
- U Yrlid
- Department of Cell and Molecular Biology, Section for Immunology, Lund University, BMC I-13, 221 84 Lund, Sweden
| | | | | | | |
Collapse
|
25
|
Svensson M, Johansson C, Wick MJ. Salmonella typhimurium-induced cytokine production and surface molecule expression by murine macrophages. Microb Pathog 2001; 31:91-102. [PMID: 11453704 DOI: 10.1006/mpat.2001.0448] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of Salmonella enterica serovar Typhimurium (S. typhimurium) on co-stimulatory molecule expression, cytokine production and induction of nitric oxide synthase (iNOS) by murine macrophages (Mphi), as well as the influence of the phoP locus on these aspects of S. typhimurium-Mphi interaction, was characterized. Pulsing Mphi with S. typhimurium resulted in increased surface expression of MHC-I, MHC-II, CD86 and CD54. Furthermore, co-incubating S. typhimurium with Mphi resulted in interleukin (IL)-12p40, IL-6 and tumor necrosis factor-alpha production as well as iNOS induction while IL-12p70 was not detectable. Finally, although phoP did not influence the level of surface molecule expression or cytokine production by S. typhimurium-pulsed Mphi phoP did influence the level of iNOS induction. Together these data show that S. typhimurium interaction with Mphi activates these cells in ways that may enhance their ability to productively stimulate Salmonella-specific T cells following phagocytic processing and presentation of Salmonella antigens.
Collapse
Affiliation(s)
- M Svensson
- Department of Cell and Molecular Biology, Section for Immunology, Lund University, S-221 84 Lund, Sweden
| | | | | |
Collapse
|
26
|
Schneider SC, Ohmen J, Fosdick L, Gladstone B, Guo J, Ametani A, Sercarz EE, Deng H. Cutting edge: introduction of an endopeptidase cleavage motif into a determinant flanking region of hen egg lysozyme results in enhanced T cell determinant display. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:20-3. [PMID: 10861030 DOI: 10.4049/jimmunol.165.1.20] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The choice of which determinants of a whole Ag will be presented on cell surface MHC class II molecules after uptake and processing by APC is the result of the interplay between structural characteristics of the Ag and the processing machinery of the APC. In this study, we demonstrate that introduction of a dibasic motif adjacent to a subdominant determinant enhances the presentation of this determinant from the whole molecule. This is the first report showing that a single amino acid substitution in a whole Ag, designed to introduce an endopeptidase recognition site, enhances display of class II-restricted determinants, most likely by creating a peptide chain cleavage in the antigenic molecule. Our findings have important implications for the understanding of immunodominance and for vaccine design.
Collapse
Affiliation(s)
- S C Schneider
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen H, Schifferli DM. Mucosal and systemic immune responses to chimeric fimbriae expressed by Salmonella enterica serovar typhimurium vaccine strains. Infect Immun 2000; 68:3129-39. [PMID: 10816454 PMCID: PMC97544 DOI: 10.1128/iai.68.6.3129-3139.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant live oral vaccines expressing pathogen-derived antigens offer a unique set of attractive properties. Among these are the simplicity of administration, the capacity to induce mucosal and systemic immunity, and the advantage of permitting genetic manipulation for optimal antigen presentation. In this study, the benefit of having a heterologous antigen expressed on the surface of a live vector rather than intracellularly was evaluated. Accordingly, the immune response of mice immunized with a Salmonella enterica serovar Typhimurium vaccine strain expressing the Escherichia coli 987P fimbrial antigen on its surface (Fas(+)) was compared with the expression in the periplasmic compartment (Fas(-)). Orally immunized BALB/c mice showed that 987P fimbriated Salmonella serovar Typhimurium CS3263 (aroA asd) with pCS151 (fas(+) asd(+)) elicited a significantly higher level of 987P-specific systemic immunoglobulin G (IgG) and mucosal IgA than serovar Typhimurium CS3263 with pCS152 (fasD mutant, asd(+)) expressing 987P periplasmic antigen. Further studies were aimed at determining whether the 987P fimbriae expressed by serovar Typhimurium chi4550 (cya crp asd) could be used as carriers of foreign epitopes. For this, the vaccine strain was genetically engineered to express chimeric fimbriae carrying the transmissible gastroenteritis virus (TGEV) C (379-388) and A (521-531) epitopes of the spike protein inserted into the 987P major fimbrial subunit FasA. BALB/c mice administered orally serovar Typhimurium chi4550 expressing the chimeric fimbriae from the tet promoter in pCS154 (fas(+) asd(+)) produced systemic antibodies against both fimbria and the TGEV C epitope but not against the TGEV A epitope. To improve the immunogenicity of the chimeric fimbriae, the in vivo inducible nirB promoter was inserted into pCS154, upstream of the fas genes, to create pCS155. In comparison with the previously used vaccine, BALB/c mice immunized orally with serovar Typhimurium chi4550/pCS155 demonstrated significantly higher levels of serum IgG and mucosal IgA against 987P fimbria. Moreover, mucosal IgA against the TGEV C epitope was only detected with serovar Typhimurium chi4550/pCS155. The induced antibodies also recognized the epitopes in the context of the full-length TGEV spike protein. Hence, immune responses to heterologous chimeric fimbriae on Salmonella vaccine vectors can be optimized by using promoters known to be activated in vivo.
Collapse
MESH Headings
- Adhesins, Escherichia coli/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/immunology
- Antigens, Surface/immunology
- Bacterial Proteins/genetics
- Bacterial Vaccines/immunology
- Escherichia coli/immunology
- Escherichia coli Proteins
- Female
- Fimbriae Proteins
- Fimbriae, Bacterial/immunology
- Immunity, Mucosal
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Nitrite Reductases
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/immunology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Surface Properties
- Transmissible gastroenteritis virus/immunology
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/immunology
- Viral Proteins/immunology
Collapse
Affiliation(s)
- H Chen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
28
|
Lo-Man R, Langeveld JP, Dériaud E, Jehanno M, Rojas M, Clément JM, Meloen RH, Hofnung M, Leclerc C. Extending the CD4(+) T-cell epitope specificity of the Th1 immune response to an antigen using a Salmonella enterica serovar typhimurium delivery vehicle. Infect Immun 2000; 68:3079-89. [PMID: 10816447 PMCID: PMC97535 DOI: 10.1128/iai.68.6.3079-3089.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the CD4 T-cell immunodominance of the response to a model antigen (Ag), MalE, when delivered by an attenuated strain of Salmonella enterica serovar Typhimurium (SL3261*pMalE). Compared to purified MalE Ag administered with adjuvant, the mapping of the peptide-specific proliferative responses showed qualitative differences when we used the Salmonella vehicle. We observed the disappearance of one out of eight MalE peptides' T-cell reactivity upon SL3261*pMalE immunization, but this phenomenon was probably due to a low level of T-cell priming, since it could be overcome by further immunization. The most striking effect of SL3261*pMalE administration was the activation and stimulation of new MalE peptide-specific T-cell responses that were silent after administration of purified Ag with adjuvant. Ag presentation assays performed with MalE-specific T-cell hybridomas showed that infection of Ag-presenting cells by this intracellular attenuated bacterium did not affect the processing and presentation of the different MalE peptides by major histocompatibility complex (MHC) class II molecules and therefore did not account for immunodominance modulation. Thus, immunodominance of the T-cell response to microorganisms is governed not only by the frequency of the available T-cell repertoire or the processing steps in Ag-presenting cells that lead to MHC presentation but also by other parameters probably related to the infectious process and to the bacterial products. Our results indicate that, upon infection by a microorganism, the specificity of the T-cell response induced against its Ags can be much more effective than with purified Ags and that it cannot completely be mimicked by purified Ags administered with adjuvant.
Collapse
Affiliation(s)
- R Lo-Man
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Phagocytosis of microorganisms and other particles is mediated most efficiently by receptors such as Fc-receptors (FcR) and complement-receptors (C3R). Interaction between these receptors and ligands on the particle results in signal transduction events that lead to actin polymerisation and phagosome formation. The phagosome then undergoes a maturation process whereby it transforms into a phagolysosome. Phagosome maturation depends on interactions (fusion events) with early and late endosomes as well as with lysosomes. The fusion processes are regulated by small GTP-binding proteins and other proteins that are also involved in fusion processes in the endocytic pathway. Although most phagocytosed microorganisms are killed in the lysosome, some pathogens have developed survival strategies and are able to live in the harsh conditions in the phagolysosome or interfere with the maturation process and thereby evade destruction by acid hydrolases.
Collapse
Affiliation(s)
- T E Tjelle
- Norwegian Radium Hospital, Department of Biophysics, Institute for Cancer Research, Montebello, 0310 Oslo, Norway.
| | | | | |
Collapse
|
30
|
Yrlid U, Wick MJ. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J Exp Med 2000; 191:613-24. [PMID: 10684853 PMCID: PMC2195841 DOI: 10.1084/jem.191.4.613] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Salmonella typhimurium is a gram-negative bacterium that survives and replicates inside vacuolar compartments of macrophages. Infection of macrophages with S. typhimurium grown under conditions allowing expression of the type III secretion system results in apoptotic death of the infected cells. Here, we show that infection of bone marrow-derived macrophages (MPhi) with wild-type S. typhimurium 14028 results in presentation of epitopes derived from a bacteria-encoded antigen on major histocompatibility complex (MHC) class I and MHC class II molecules after internalization of apoptotic MPhi by bystander dendritic cells (DCs). In contrast, infection of MPhi with the phoP constitutive mutant strain CS022, which does not induce apoptosis in infected MPhi, does not result in presentation of a bacteria-derived antigen by bystander DCs unless the infected MPhi are induced to undergo apoptosis by treatment with lipopolysaccharide and ATP. DCs appear to be unique in their ability to present antigens derived from MPhi induced to undergo apoptosis by Salmonella, as bystander MPhi are not capable of presenting the bacteria-derived antigen despite the fact that they efficiently internalize the apoptotic cells. These data suggest that apoptosis induction by bacterial infection of MPhi may not be a quiescent death that allows the bacteria to escape recognition by the immune system, but rather may contribute to an antimicrobial immune response upon engulfment by bystander DCs.
Collapse
Affiliation(s)
- Ulf Yrlid
- From the Department of Cell and Molecular Biology, Section for Immunology, Lund University, S-223 62 Lund, Sweden
| | - Mary Jo Wick
- From the Department of Cell and Molecular Biology, Section for Immunology, Lund University, S-223 62 Lund, Sweden
| |
Collapse
|
31
|
Hopkins SA, Niedergang F, Corthesy-Theulaz IE, Kraehenbuhl JP. A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer's patch dendritic cells. Cell Microbiol 2000; 2:59-68. [PMID: 11207563 DOI: 10.1046/j.1462-5822.2000.00035.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The attenuated Salmonella typhimurium PhoPc strain is avirulent but immunogenic via the oral route in mice and is attenuated in survival in macrophage cell lines. In this study, the fate of PhoPc bacteria expressing green fluorescent protein was investigated in murine Peyer's patches. The survival of PhoPc was monitored after orogastric inoculation of BALB/c mice. Bacteria persisted for several weeks in the Peyer's patches and were also recovered from the mesenteric lymph nodes and spleen. Confocal microscopy analysis identified dendritic cells as the Peyer's patch cell type that internalized PhoPc expressing green fluorescent protein at early time points. In addition, live PhoPc were found in Peyer's patch dendritic cells and not in B cells 3 days after orogastric inoculation. Taken together, these results provide strong evidence that PhoPc is internalized and survives within Peyer's patch dendritic cells. As these cells are potent antigen-presenting cells, these data could explain the immunogenicity of S. typhimurium vaccine strains in vivo.
Collapse
Affiliation(s)
- S A Hopkins
- Swiss Institute for Cancer Research, Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | |
Collapse
|
32
|
Ramachandra L, Noss E, Boom WH, Harding CV. Phagocytic processing of antigens for presentation by class II major histocompatibility complex molecules. Cell Microbiol 1999; 1:205-14. [PMID: 11207553 DOI: 10.1046/j.1462-5822.1999.00026.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbes and other particulate antigens (Ags) are internalized by phagocytosis and then reside in plasma membrane-derived phagosomes. The contribution of phagosomes to the degradation of Ags has long been appreciated. It has been unclear, however, whether peptides derived from these degraded antigens bind class II major histocompatibility complex (MHC-II) molecules within phagosomes or within endocytic compartments that receive Ag fragments from phagosomes. Recent experiments have demonstrated that phagosomes containing Ag-conjugated latex beads express a full complement of Ag-processing molecules, e.g. MHC-II molecules, invariant chain, H2-DM and proteases sufficient to degrade bead- associated Ag. These phagosomes mediate the formation of peptide-MHC-II complexes, which are transported to the cell surface and presented to T cells. Phagosomes acquire both newly synthesized and plasma membrane-derived MHC-II molecules, but the formation of peptide-MHC-II complexes in phagosomes primarily involves newly synthesized MHC-II molecules. The content and traffic of phagosomal proteins vary considerably with the type of Ag ingested. Pathogenic microbes can alter phagosome composition and function to reduce Ag processing. For example, Mycobacterium tuberculosis blocks the maturation of phagosomes and reduces the ability of infected cells to present exogenous soluble protein Ags.
Collapse
Affiliation(s)
- L Ramachandra
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106-4943, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Two key steps control immune responses in mucosal tissues: the sampling and transepithelial transport of antigens, and their targeting into professional antigen-presenting cells in mucosa-associated lymphoid tissue. Live Salmonella bacteria use strategies that allow them to cross the epithelial barrier of the gut, to survive in antigen-presenting cells where bacterial antigens are processed and presented to the immune cells, and to express adjuvant activity that prevents induction of oral tolerance. Two Salmonella serovars have been used as vaccines or vectors, S. typhimurium in mice and S. typhi in humans. S. typhimurium causes gastroenteritis in a broad host range, including humans, while S. typhi infection is restricted to humans. Attenuated S. typhimurium has been used successfully in mice to induce systemic and mucosal responses against more than 60 heterologous antigens. This review aims to revisit S. typhimurium-based vaccination, as an alternative to S. typhi, with special emphasis on the molecular pathogenesis of S. typhimurium and the host response. We then discuss how such knowledge constitutes the basis for the rational design of novel live mucosal vaccines.
Collapse
Affiliation(s)
- J C Sirard
- Swiss Institute for Experimental Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
34
|
Loy AL, Allison G, Arias CF, Verma NK. Immune response to rotavirus VP4 expressed in an attenuated strain of Shigella flexneri. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 25:283-8. [PMID: 10459583 DOI: 10.1111/j.1574-695x.1999.tb01353.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An attenuated strain of Shigella flexneri was utilised to express viral protein (VP) 4 of rotavirus and the immunogenicity of the recombinant constructs was studied in BALB/c mice. VP4 was expressed as a fusion with maltose binding protein (MBP) in both the cytoplasm and periplasm, with a much higher level of expression occurring in the former. While all constructs induced a Shigella-specific response in mice, only the construct expressing MBP-VP4 in the cytoplasm of Shigella stimulated an immune response specific to rotavirus. This study demonstrates that Shigella can be used to deliver rotavirus antigens and induces an immune response directed towards both rotavirus and Shigella.
Collapse
Affiliation(s)
- A L Loy
- Division of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT
| | | | | | | |
Collapse
|
35
|
Lattemann CT, Yan ZX, Matzen A, Meyer TF, Apfel H. Immunogenicity of the extracellular copper/zinc superoxide dismutase of the filarial parasite Acanthocheilonema viteae delivered by a two-phase vaccine strain of Salmonella typhimurium. Parasite Immunol 1999; 21:219-24. [PMID: 10320619 DOI: 10.1046/j.1365-3024.1999.00207.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recombinant extracellular copper/zinc superoxide dismutase of the filarial parasite Acanthocheilonema viteae (AVSOD2) was cloned in an expression vector under control of the bacteriophage T7 promoter and the resulting plasmid pLAT7 was introduced in tha aroA attenuated Salmonella typhimurium vaccine strain SL3261:pYZ84. This vaccine strain carries a chromosomally integrated two phase expression system containing inducible T7 RNA polymerase. The recombinant AVSOD2 was efficiently expressed, constituting up to 5% of the total bacterial protein. Furthermore, the plasmid vector containing the AVSOD2 cDNA was shown to be stable over a long period of time in the vaccine strain without antibiotic selection in vitro and in vivo. Jirds which were immunised orally with the recombinant vaccine strain expressing the A. viteae EC-SOD produced a strong humoral immune response.
Collapse
Affiliation(s)
- C T Lattemann
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Spemannstrasse 34, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
36
|
Ramachandra L, Chu RS, Askew D, Noss EH, Canaday DH, Potter NS, Johnsen A, Krieg AM, Nedrud JG, Boom WH, Harding CV. Phagocytic antigen processing and effects of microbial products on antigen processing and T-cell responses. Immunol Rev 1999; 168:217-39. [PMID: 10399077 DOI: 10.1111/j.1600-065x.1999.tb01295.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Processing of exogenous antigens and microbes involves contributions by multiple different endocytic and phagocytic compartments. During the processing of soluble antigens, different endocytic compartments have been demonstrated to use distinct antigen-processing mechanisms and to process distinct sets of antigenic epitopes. Processing of particulate and microbial antigens involves phagocytosis and functions contributed by phagocytic compartments. Recent data from our laboratory demonstrate that phagosomes containing antigen-conjugated latex beads are fully competent class II MHC (MHC-II) antigen-processing organelles, which generate peptide:MHC-II complexes. In addition, phagocytosed antigen enters an alternate class I MHC (MHC-I) processing pathway that results in loading of peptides derived from exogenous antigens onto MHC-I molecules, in contrast to the cytosolic antigen source utilized by the conventional MHC-I antigen-processing pathway. Antigen processing and other immune response mechanisms may be activated or inhibited by microbial components to the benefit of either the host or the pathogen. For example, antigen processing and T-cell responses (e.g. Th1 vs Th2 differentiation) are modulated by multiple distinct microbial components, including lipopolysaccharide, cholera toxin, heat labile enterotoxin of Escherichia coli, DNA containing CpG motifs (found in prokaryotic and invertebrate DNA but not mammalian DNA) and components of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- L Ramachandra
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schaible UE, Collins HL, Kaufmann SH. Confrontation between intracellular bacteria and the immune system. Adv Immunol 1999; 71:267-377. [PMID: 9917916 DOI: 10.1016/s0065-2776(08)60405-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- U E Schaible
- Max-Planck Institute for Infection Biology, Berlin, Germany
| | | | | |
Collapse
|
38
|
Zirk NM, Hashmi SF, Ziegler HK. The polysaccharide portion of lipopolysaccharide regulates antigen-specific T-cell activation via effects on macrophage-mediated antigen processing. Infect Immun 1999; 67:319-26. [PMID: 9864232 PMCID: PMC96313 DOI: 10.1128/iai.67.1.319-326.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/1998] [Accepted: 10/16/1998] [Indexed: 11/20/2022] Open
Abstract
The lipopolysaccharide (LPS) structure of Salmonella typhimurium has been correlated with the virulence of wild-type strain LT2. Mutants of LT2 with truncated polysaccharide portions of LPS are less virulent than strains with a complete LPS structure. Polyclonal T cells and monoclonal T-cell hybridomas were more reactive to heat-killed rough mutants than to heat-killed smooth strains, as measured by interleukin-2 (IL-2) production. Using a large panel of strains with truncated LPS molecules, we found that T-cell reactivity decreased with certain lengths of polysaccharide. The decreased response was not due to differential phagocytic uptake, IL-12 production, or major histocompatibility complex class II surface expression by macrophages. Also, LT2 did not mediate any global suppression since addition of LT2 did not diminish the response of T cells specific for antigens unrelated to Salmonella. In an experiment in which processing times were varied, we found that antigens from rough strains were processed and presented more quickly than those associated with smooth strains. At longer processing times, epitopes from LT2 were presented well. We hypothesize that the slower antigen processing and presentation of wild-type Salmonella may be caused by masking of surface antigens by the longer polysaccharide portion of smooth LPS. This blocking of effective antigen presentation may contribute to the virulence of Salmonella.
Collapse
Affiliation(s)
- N M Zirk
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
39
|
Campbell DJ, Shastri N. Bacterial Surface Proteins Recognized by CD4+ T Cells During Murine Infection with Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.5.2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Optimal immunity to the Gram-positive pathogen Listeria monocytogenes (LM) requires both CD8+ and CD4+ antigen-specific T cell responses. Understanding how CD4+ T cells function in an immune response to LM and how bacterial proteins are processed to peptide/MHC class II complexes in infected cells requires identification of these proteins. Using LacZ-inducible, LM-specific CD4+ T cells as probes, we identified two immunogenic LM proteins by a novel expression cloning strategy. The antigenic peptides contained within these proteins were defined by deletion analysis of the genes, and their antigenicity was confirmed with synthetic peptides. The nucleotide sequences of the genes showed that they encode previously unknown LM proteins that are homologous to surface proteins in other bacterial species. Consistent with their surface topology, mild trypsin treatment of LM protoplasts ablated T cell recognition of these Ags. These findings establish a general strategy for identifying unknown CD4+ T cell Ags and demonstrate that LM surface proteins can provide the peptides for presentation by MHC class II molecules that are specific targets for CD4+ T cells during murine LM infection.
Collapse
Affiliation(s)
- Daniel J. Campbell
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Nilabh Shastri
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
40
|
Delvig AA, Robinson JH. Two T Cell Epitopes from the M5 Protein of Viable Streptococcus pyogenes Engage Different Pathways of Bacterial Antigen Processing in Mouse Macrophages. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.11.5267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We studied the mechanisms of MHC class II-restricted bacterial Ag processing of the surface fibrillar M5 protein from viable Streptococcus pyogenes in murine macrophages. Two previously defined T cell epitopes were studied using T cell hybridomas specific for 308–319/Ad, associated with the cell wall on the surface of streptococci, and 17–31/Ed, located at the protruding amino terminus of M5. Studies with metabolic inhibitors showed that slow (1 h) processing of M5 308–319 occurred in late endosomes and was dependent on newly synthesized MHC class II molecules and microtubules and on communications between early and late endosomes, consistent with engagement of the classical MHC class II processing pathway. In contrast, fast (15 min) bacterial Ag processing of 17–31 occurred in early endosomes independently of newly synthesized MHC class II molecules and microtubules and of trafficking between early and late endosomes, consistent with the recycling MHC class II processing pathway. Finally, bacterial Ag processing of the epitopes exhibited differential sensitivity to blocking with anti-MHC class II Abs. Thus, two T cell epitopes of a single protective Ag from the surface of whole bacteria are routed to distinct MHC class II processing pathways.
Collapse
Affiliation(s)
- Alexei A. Delvig
- Department of Immunology, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - John H. Robinson
- Department of Immunology, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
41
|
Leary SE, Griffin KF, Garmory HS, Williamson ED, Titball RW. Expression of an F1/V fusion protein in attenuated Salmonella typhimurium and protection of mice against plague. Microb Pathog 1997; 23:167-79. [PMID: 9281474 DOI: 10.1006/mpat.1997.0141] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel approach to making fusions of F1 and V antigens, which may be incorporated into a live recombinant vaccine for plague, was developed. The nucleotide sequences encoding Yersinia pestis V antigen (lcrV) and the mature form of F1 antigen (caf1) were amplified by PCR with primers which included tails. At the 3' end of caf1 and the 5' end of lcrV, the tails encoded one of three six- or eight-amino acid linkers or their complementary sequences. The DNA overlap in each linker region was used to prime a second PCR to generate three F1/V fusions, which were cloned into pUC18. The resulting plasmids expressed fusion proteins consisting of F1 and V antigens, separated by the linkers Gly-Ser-Ile-Glu-Gly-Arg, Ser-Ala-Pro-Gly-Thr-Pro or Ser-Ala-Pro-Gly-Thr-Pro-Ser-Arg. As shown by Western blotting of bacterial cell lysates with anti-V and anti-F1 sera, the level of expression and degree of degradation of the three fusion proteins was similar. To investigate the immunogenicity of F1/V, one of the plasmids, placFV6 which encoded the Gly-Ser-Ile-Glu-Gly-Arg linker, was electroporated into the attenuated Salmonella typhimurium strain SL3261 (aroA). Mice receiving two intravenous doses of 5 x 10(6) cfu SL3261/placFV6 developed serum anti-V and anti-F1 IgG titres, with similar IgG1:IgG2a isotype ratios, and T cell responses specific for V and F1 antigens. Six weeks after vaccination, mice were challenged subcutaneously with 7.4 x 10(2) or 7.4 x 10(4) LD50s of Y. pestis strain GB, and a significant degree of protection was demonstrated. These results demonstrate the potential of co-expressing Y. pestis antigens as fusion proteins to develop a live recombinant vaccine against plague.
Collapse
Affiliation(s)
- S E Leary
- Medical Countermeasures Department, CBD, Porton Down, Salisbury, Wiltshire, SP4 0JQ, U.K
| | | | | | | | | |
Collapse
|
42
|
Wick MJ, Pfeifer JD. Major histocompatibility complex class I presentation of ovalbumin peptide 257-264 from exogenous sources: protein context influences the degree of TAP-independent presentation. Eur J Immunol 1996; 26:2790-9. [PMID: 8921970 DOI: 10.1002/eji.1830261135] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Peritoneal macrophages from C57BL/6 mice process antigens from bacteria or coated on polystyrene beads for presentation by major histocompatibility complex (MHC) class I molecules. To investigate this antigen processing pathway, peritoneal macrophages from homozygous TAP1-/- mice, which lack the transporter associated with antigen processing (TAP) and are defective in presenting endogenous antigens on MHC class I, were used. TAP1-/- or C57BL/6 macrophages were co-incubated with either bacteria or polystyrene beads containing the 257-264 epitope from ovalbumin [OVA(257-264)], which binds the mouse class I molecule Kb. The source of the OVA(257-264) epitope was either the Crl-OVA(257-264) (Crl-OVA) fusion protein, the maltose binding protein (MBP)-Crl-OVA fusion protein, native OVA or bacterial recombinant OVA (rOVA); Crl-OVA, MBP-Crl-OVA and rOVA were each expressed in bacteria, and Crl-OVA and MBP-Crl-OVA purified from bacterial lysates and native egg OVA were coated onto polystyrene beads. The data reveal that peritoneal macrophages from C57BL/6 and TAP1-/- mice can process bacteria expressing Crl-OVA, MBP-Crl-OVA and rOVA as well as beads coated with native OVA, purified Crl-OVA, and purified MBP-Crl-OVA and present OVA(257-264) for recognition by OVA(257-264)/Kb-specific T hybridoma cells, albeit with different relative processing efficiencies. The processing efficiency of TAP1-/- macrophages co-incubated with bacteria or beads containing Crl-OVA or MBP-Crl-OVA was reduced approximately three to five times compared to C57BL/6 macrophages, but OVA(257-264) was presented 100 times less efficiently when the source of OVA(257-264) was full-length OVA. Chloroquine inhibition studies showed a differential requirement for acidic compartments in C57BL/6 versus TAP1-/- macrophages, which also depended upon the source of the OVA (257-264) epitope (Crl-OVA versus full-length OVA). These data suggest that TAP1-/- and C57BL/6 macrophages may process Crl-OVA and full-length OVA in different cellular compartments and that the protein context of the OVA(257-264) epitope influences the extent of TAP-independent processing for MHC class I presentation.
Collapse
Affiliation(s)
- M J Wick
- Department of Cell and Molecular Biology, Lund University, Sweden.
| | | |
Collapse
|
43
|
Lo-Man R, Martineau P, Dériaud E, Newton SM, Jehanno M, Clément JM, Fayolle C, Hofnung M, Leclerc CD. Control by H-2 genes of the Th1 response induced against a foreign antigen expressed by attenuated Salmonella typhimurium. Infect Immun 1996; 64:4424-32. [PMID: 8890187 PMCID: PMC174393 DOI: 10.1128/iai.64.11.4424-4432.1996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Attenuated salmonellae represent an attractive vehicle for the delivery of heterologous protective antigens to the immune system. Here, we have investigated the influence of the genetic background of the host which regulates the growth and elimination of Salmonella cells on the cellular response induced against a foreign antigen delivered by an aroA Salmonella strain. We have tested CD4+ T-cell responses (cell proliferation and cytokine production) in various mouse strains following immunization with Salmonella typhimurium SL3261 expressing a high level of the recombinant Escherichia coli MalE protein. We were able to detect a CD4+ T-cell response against the recombinant MalE protein only in a restricted number of mouse strains, whereas all mice produced good levels of anti-MalE immunoglobulin G antibodies. The Ity gene did not play a major role in these differences in T-cell responses, since both Ity-resistant and -susceptible strains of mice were found to be unresponsive to MalE delivered by recombinant salmonellae. In contrast, when B10 congenic mice were used, a correlation was established between MalE-specific T-cell unresponsiveness and H-2 genes. The discrepancies described in this paper in the ability of various strains of mice to develop an efficient Th1 response against a recombinant antigen displayed by a live Salmonella vaccine underscore the difficulties that can be encountered in the vaccination of human populations by such a strategy.
Collapse
Affiliation(s)
- R Lo-Man
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yan ZX, Meyer TF. Mixed population approach for vaccination with live recombinant Salmonella strains. J Biotechnol 1996; 44:197-201. [PMID: 8717404 DOI: 10.1016/0168-1656(95)00116-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attenuated strains of enteropathogenic species, such as Salmonella, represent useful carries for the delivery of heterologous recombinant antigens to the immune system. A frequently encountered obstacle, however, is the negative influence of high-level antigen production on the stability of carrier strains and the maintenance of their specific properties concerning tissue colonization and viability during infection. To solve this problem we have established an expression system based on genetic variation. This generates two sub-populations of a recombinant vaccine strain, i.e., one consisting of viable cells which maintain all characteristics of the native carrier strain and generate a second population of cells producing antigen(s) of interest at a very high level. This novel expression system offers unique applications and advantages over common live recombinant vaccine approaches.
Collapse
Affiliation(s)
- Z X Yan
- Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | |
Collapse
|
45
|
Wick MJ, Harding CV, Twesten NJ, Normark SJ, Pfeifer JD. The phoP locus influences processing and presentation of Salmonella typhimurium antigens by activated macrophages. Mol Microbiol 1995; 16:465-76. [PMID: 7565107 DOI: 10.1111/j.1365-2958.1995.tb02411.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The destruction and processing of bacteria by activated macrophages facilitates the presentation of antigens to T cells and thereby promotes the induction of specific immunity. The PhoP-PhoQ regulatory system that controls the synthesis of many Salmonella proteins required for virulence and survival within macrophages is one mechanism that this particular intracellular pathogen has evolved to resist destruction. To address whether the phoP locus also influences antigen processing during the interaction of Salmonella typhimurium with macrophages, we tested the effect of phoP mutations on the processing and presentation of model antigens expressed by the bacteria. Activated macrophages processed phoP- bacteria with greater efficiency than wild-type bacteria, as measured by the response of antigen-specific T-hybridoma cells; Salmonella constitutively expressing PhoP were processed even less efficiently than wild-type Salmonella. After heat-inactivation, however, both wild-type and phoP- bacteria were efficiently processed. The altered processing and presentation efficiency was not due to differences in the level of antigen expressed by the bacteria or differences in the level of bacterial uptake by the macrophages. In addition, phoP-regulated gene expression was shown to influence processing of antigen phagocytosed independently of the bacteria. Thus, phoP-regulated gene products decrease the processing and presentation of S. typhimurium antigens, demonstrating a role for this virulence locus in the inhibition of the induction of specific immunity.
Collapse
Affiliation(s)
- M J Wick
- Immunology Unit, Lund University, Sweden
| | | | | | | | | |
Collapse
|
46
|
Abstract
Phagocytosis plays a major role in the defence of higher organisms against microbial infection not only by allowing ingested microbes to be destroyed by microbicidal mechanisms, but also by providing the basis for processing of their antigens to forms that generate immune responses. This article examines the role of the phagolysosome in antigen processing, and discusses the contributions of both MHC class II and MHC class I molecules to the presentation of antigens derived from phagocytosed material.
Collapse
Affiliation(s)
- C V Harding
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|