1
|
Weldearegay YB, Brogaard L, Rautenschlein S, Meens J, Valentin-Weigand P, Schaaf D. Primary cell culture systems to investigate host-pathogen interactions in bacterial respiratory tract infections of livestock. Front Cell Infect Microbiol 2025; 15:1565513. [PMID: 40415959 PMCID: PMC12098631 DOI: 10.3389/fcimb.2025.1565513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
Respiratory infections of livestock represent a major health issue for the animals and cause high economic losses for the farmers. Still, little is known about the intricate interactions between host cells and the many different pathogens that cause respiratory diseases, leaving a substantial knowledge gap to be filled in order to develop effective therapies. Immortalized cell lines and two-dimensional cultures of primary respiratory epithelial cells do not reflect the complex architecture and functionality of the respiratory tract tissues. Thus, it is essential to develop and apply appropriate primary cell culture systems to study respiratory diseases. In human research, the use of complex cell culture systems, such as air-liquid interface (ALI) cultures, organoids and lung-on-chip, has proceeded significantly during the last years, whereas in veterinary research, these models are only rarely used. Nevertheless, there are several three-dimensional, primary cell culture systems available to study respiratory infections of livestock. Here, we give an overview on models that are currently used in this field: nasal mucosa explants, tracheal organ cultures, ALI cultures, and precision-cut lung slices. All these models align with the 3R principle, as they can replace animal experiments to some extent and the tissue material for these culture systems can be obtained from abattoirs or veterinary research facilities. We aim to encourage other researchers to use these versatile cell culture systems to drive investigations of respiratory tract infections of livestock forward. Finally, these models are not limited to infection research, but can also be applied in other research fields and can be transferred to other animal species than livestock.
Collapse
Affiliation(s)
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Désirée Schaaf
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Hangalapura BN, Witvliet M, Jacobs AAC, Segers RPAM. A novel intradermal combination vaccine for PCV2 and Mycoplasma hyopneumoniae protection in swine: its use with Lawsonia intracellularis and PRRSV vaccines. Porcine Health Manag 2025; 11:14. [PMID: 40082953 PMCID: PMC11905488 DOI: 10.1186/s40813-025-00426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/09/2025] [Indexed: 03/16/2025] Open
Abstract
The combined, intradermal application of multiple vaccines against key diseases in swine offers many benefits, including reduced time and labor costs, and improved animal welfare due to fewer injections and manipulations. This study investigated the efficacy of a newly developed intradermal combination vaccine for Porcine circovirus 2 (PCV2) and Mycoplasma hyopneumoniae (M hyo) (PCV M Hyo ID vaccine) in swine. The vaccine was evaluated for its efficacy against PCV2 and M hyo infection and its concurrent mixed use with Lawsonia intracellularis (LI) and non-mixed use with Porcine reproductive and respiratory syndrome virus (PRRSV) vaccines. The findings demonstrated that the PCV M Hyo ID combination vaccine is efficacious against PCV2 and M hyo infection. Furthermore, the new PCV M Hyo ID combination vaccine can also be administered simultaneously and at the same anatomical location after mixing with LI ID vaccine, and next to PRRS ID vaccine, to efficiently protect pigs from all four major diseases in swine. The efficacy with the combination of vaccines was equivalent to that of the single vaccines.
Collapse
|
3
|
Xie M, Huang Z, Zhang Y, Gan Y, Li H, Li D, Ding H. The Mycoplasma hyopneumoniae protein Mhp274 elicits mucosal and systemic immune responses in mice. Front Cell Infect Microbiol 2025; 15:1516944. [PMID: 39991712 PMCID: PMC11842358 DOI: 10.3389/fcimb.2025.1516944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Background Mycoplasma hyopneumoniae is the etiological agent of mycoplasmal pneumonia of swine (MPS). Commercial vaccines provide partial protection and do not prevent the colonization and transmission of M. hyopneumoniae. The bottleneck in the development of more effective vaccines for MPS is the stimulation of effective immune responses in the host. The purpose of the present study was to evaluate the immune responses of immunodominant proteins Mhp170, Mhp274 and Mhp336 in BALB/c mice. Methods The recombinant Mhp170 (rMhp170), Mhp274 (rMhp274), and Mhp336 (rMhp336) proteins were purified from recombinant bacteria. Fifty-two six-week-old SPF female BALB/c mice were divided into five groups: a commercial inactivated vaccine-immunized group, three recombinant protein-inoculated groups, and a PBS-treated group. The physical parameters and body weights of the mice were observed during the experiment. The lung/body coefficient and macroscopic and microscopic lung lesions were evaluated. IgG and its isotypes IgG1 and IgG2a in serum and BALF and sIgA in BALF were assessed. The levels of IFN-γ, IL-4, and IL-17, in the supernatants of splenocytes and in serum were measured, and the mRNA levels of three cytokines in splenocytes were analyzed. Finally, lymphocyte proliferation after stimulation with corresponding proteins or crude extract of M. hyopneumoniae J strain was assessed. Results We successfully constructed recombinant bacteria expressing rMhp170, rMhp274, and rMhp336. None of the mice from all groups presented adverse reactions and macroscopic and microscopic lung lesions. rMhp170 and rMhp274 were capable of inducing the production of IgG, IgG1 and IgG2 in serum and BALF, the secretion of IFN-γ, IL-4 and IL-17 in serum, the expression of IFN-γ, IL-4 and IL-17 mRNAs in splenocytes, and high levels of lymphocyte proliferation. Moreover, rMhp274 significantly increased sIgA in BALF. Nevertheless, rMhp336 induced only IgG, IgG1 and IgG2 production in sera; the secretion of IFN-γ and IL-4 in sera and BALF; the expression of IFN-γ and IL-4 mRNAs in the splenocyte population; and lymphocyte proliferation. Conclusion Mhp170 and Mhp274 induced Th1/Th2/Th17 immune responses, and Mhp336 stimulated mixed Th1/Th2-type immune responses, in mice. Our data suggest that Mhp274 is a potential viable candidate for the development of a subunit vaccine for MPS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Garcia-Morante B, De Abreu C, Underwood G, Lara Puente JH, Pieters M. Characterization of a Mycoplasma hyopneumoniae aerosol infection model in pigs. Vet Microbiol 2024; 299:110296. [PMID: 39581076 DOI: 10.1016/j.vetmic.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
The purpose of the present study was to develop and characterize an experimental aerosol model for Mycoplasma hyopneumoniae (M. hyopneumoniae) infection and respiratory disease in pigs. The experiment was carried out to determine the pathogenicity, colonization, mucosal immune response, and clinical course of disease of dose-controlled aerosols of M. hyopneumoniae. Four groups of three M. hyopneumoniae-free gilts each were individually exposed to aerosols of diluted lung homogenate containing M. hyopneumoniae strain 232 in a chamber. Each group was exposed to different doses of viable organisms (105 to 106 color changing units/mL during 15-20 or 30-35 min in two consecutive days). Nasal, laryngeal, and deep-tracheal secretions were collected from each gilt at 0, 7, 14, 21, and 28 days post-exposure (dpe). Blood samples were collected at 0 and 28 dpe. At necropsy, lung lesions were assessed, and bronchial secretions and bronchoalveolar lavage fluid (BALF) were collected from each lung set. Blood was used to assess seroconversion by means of an indirect ELISA, while BALF, deep-tracheal and nasal secretions were tested by modifying the ELISA to evaluate mucosal IgG and IgA production. Nasal, laryngeal, deep-tracheal, and bronchial secretions were tested by real-time PCR to evaluate bacterial load. Gilts became infected irrespective of the infectious dose, as determined by M. hyopneumoniae detection in deep-tracheal secretions from all gilts at 7 dpe. A specific local humoral immune response starting at 14 dpe was detected in all gilts. While all experimental groups presented gilts with some extent of mycoplasmal pneumonia, only the exposure of gilts to high-dose aerosols consistently reproduced typical clinical signs and severe lung lesions. These results showed that the reproduction of mycoplasmal pneumonia by means of infectious aerosols can be successfully achieved at experimental level, making this model a valuable alternative to evaluate preventive and treatment measures against M. hyopneumoniae.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, Catalonia 08193, Spain; WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra 08193, Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Cipriano De Abreu
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
5
|
Li S, Yin R, Xiong Q, Liu M, Wang J, Zhang Z, Shao G, Deng Z, Feng Z, Yu Y. The immune responses elicited by six recombinant antigens of Mycoplasma hyopneumoniae in mice. Vet Microbiol 2024; 299:110295. [PMID: 39531743 DOI: 10.1016/j.vetmic.2024.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the causative agent of swine enzootic pneumonia, resulting in substantial economic losses in global pig farming. Although vaccination is the primary strategy for controlling M. hyopneumoniae infection, current vaccines fall short in preventing transmission of this pathogen or protecting the body from secondary infection. This study aimed to assess the immunogenicity of six recombinant antigens (P97R1, P46, GAPDH, PdhA, DnaK, and EF-Tu) of M. hyopneumoniae through intramuscular immunization in mice. The results showed that the six antigens elicited high levels of serum IgG. Among them, P97R1, P46, PdhA, and DnaK stimulated robust antigen-specific IgA mucosal immune responses. CCK-8 assays revealed that both P97R1 and DnaK significantly increased the proliferation of mononuclear cells from spleen and lung, and DnaK also promoted the proliferation of blood mononuclear cells. Additionally, PdhA induced Th17-type immune response with a high level of IL-17 level in serum. Flow cytometry analysis indicated that P97R1 and PdhA increased the ratio of CD8+/CD4+ T lymphocyte, favoring cytotoxic T lymphocyte (CTL) immune responses. Notably, P97R1 immunization significantly decreased the percentages of CD4+ T cells while increased the percentages of CD8+ T cells. The present findings demonstrate that the candidate antigens P97R1, PdhA, and DnaK of M. hyopneumoniae induce specific humoral and mucosal immunity; P97R1 and DnaK also stimulated intense cellular immunity, and PdhA induced CTL and Th17-type immune responses. In conclusion, P97R1, PdhA, and DnaK emerge as potential candidate antigens for the future development of a more effective subunit vaccine against M. hyopneumoniae.
Collapse
Affiliation(s)
- Shiyang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Ruiru Yin
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jia Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China; School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhibang Deng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China; Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Jiang B, Zhang Y, Li G, Quan Y, Shu J, Feng H, He Y. Research Progress on Immune Evasion of Mycoplasma hyopneumoniae. Microorganisms 2024; 12:1439. [PMID: 39065207 PMCID: PMC11279058 DOI: 10.3390/microorganisms12071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
As the main pathogen associated with enzootic pneumonia (EP), Mycoplasma hyopneumoniae (Mhp) is globally prevalent and inflicts huge financial losses on the worldwide swine industry each year. However, the pathogenicity of Mhp has not been fully explained to date. Mhp invasion usually leads to long-term chronic infection and persistent lung colonization, suggesting that Mhp has developed effective immune evasion strategies. In this review, we offer more detailed information than was previously available about its immune evasion mechanisms through a systematic summary of the extant findings. Genetic mutation and post-translational protein processing confer Mhp the ability to alter its surface antigens. With the help of adhesins, Mhp can achieve cell invasion. And Mhp can modulate the host immune system through the induction of inflammation, incomplete autophagy, apoptosis, and the suppression of immune cell or immune effector activity. Furthermore, we offer the latest views on how we may treat Mhp infections and develop novel vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.J.); (Y.Z.); (G.L.); (Y.Q.); (J.S.); (H.F.)
| |
Collapse
|
7
|
Rosales RS, Risco D, García-Nicolás O, Pallarés FJ, Ramírez AS, Poveda JB, Nicholas RAJ, Salguero FJ. Differential Gene Expression in Porcine Lung Compartments after Experimental Infection with Mycoplasma hyopneumoniae. Animals (Basel) 2024; 14:1290. [PMID: 38731294 PMCID: PMC11083927 DOI: 10.3390/ani14091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Mycoplasma hyopneumoniae (Mhyo) is the causative agent of porcine enzootic pneumonia (EP), as well as one of the main pathogens involved in the porcine respiratory disease complex. The host-pathogen interaction between Mhyo and infected pigs is complex and not completely understood; however, improving the understanding of these intricacies is essential for the development of effective control strategies of EP. In order to improve our knowledge about this interaction, laser-capture microdissection was used to collect bronchi, bronchi-associated lymphoid tissue, and lung parenchyma from animals infected with different strains of Mhyo, and mRNA expression levels of different molecules involved in Mhyo infection (ICAM1, IL-8, IL-10, IL-23, IFN-α, IFN-γ, TGF-β, and TNF-α) were analyzed by qPCR. In addition, the quantification of Mhyo load in the different lung compartments and the scoring of macroscopic and microscopic lung lesions were also performed. Strain-associated differences in virulence were observed, as well as the presence of significant differences in expression levels of cytokines among lung compartments. IL-8 and IL-10 presented the highest upregulation, with limited differences between strains and lung compartments. IFN-α was strongly downregulated in BALT, implying a relevant role for this cytokine in the immunomodulation associated with Mhyo infections. IL-23 was also upregulated in all lung compartments, suggesting the potential involvement of a Th17-mediated immune response in Mhyo infections. Our findings highlight the relevance of Th1 and Th2 immune response in cases of EP, shedding light on the gene expression levels of key cytokines in the lung of pigs at a microscopic level.
Collapse
Affiliation(s)
- Rubén S. Rosales
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - David Risco
- Unidad de Histología y Anatomía Patológica, Departamento de Medicina Animal, Veterinary Faculty, University of Extremadura, Avenida de la Universidad, s/n, 10003 Cáceres, Spain
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Francisco J. Pallarés
- Pathology and Immunology Group (UCO-PIG), Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus “CeiA3”, 14001 Córdoba, Spain;
| | - Ana S. Ramírez
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - José B. Poveda
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | | | - Francisco J. Salguero
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK;
| |
Collapse
|
8
|
Pageaut H, Lacouture S, Lehoux M, Marois-Créhan C, Segura M, Gottschalk M. Interactions of Mycoplasma hyopneumoniae and/or Mycoplasma hyorhinis with Streptococcus suis Serotype 2 Using In Vitro Co-Infection Models with Swine Cells. Pathogens 2023; 12:866. [PMID: 37513713 PMCID: PMC10383509 DOI: 10.3390/pathogens12070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial and/or viral co-infections are very common in swine production and cause severe economic losses. Mycoplasma hyopneumoniae, Mycoplasma hyorhinis and Streptococcus suis are pathogenic bacteria that may be found simultaneously in the respiratory tracts of pigs. In the present study, the interactions of S. suis with epithelial and phagocytic cells in the presence or absence of a pre-infection with M. hyopneumoniae and/or M. hyorhinis were studied. Results showed relatively limited interactions between these pathogens. A previous infection with one or both mycoplasmas did not influence the adhesion or invasion properties of S. suis in epithelial cells or its resistance to phagocytosis (including intracellular survival) by macrophages and dendritic cells. The most important effect observed during the co-infection was a clear increment in toxicity for the cells. An increase in the relative expression of the pro-inflammatory cytokines IL-6 and CXCL8 was also observed; however, this was the consequence of an additive effect due to the presence of different pathogens rather than a synergic effect. It may be hypothesized that if one or both mycoplasmas are present along with S. suis in the lower respiratory tract at the same time, then increased damage to epithelial cells and phagocytes, as well as an increased release of pro-inflammatory cytokines, may eventually enhance the invasive properties of S. suis. However, more studies should be carried out to confirm this hypothesis.
Collapse
Affiliation(s)
- Héloïse Pageaut
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Lehoux
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Corinne Marois-Créhan
- Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology Bacteriology and Antimicrobial Resistance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22 440 Ploufragan, France
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
9
|
Wang J, Li S, Chen J, Gan L, Wang J, Xiong Q, Feng Z, Li Q, Deng Z, Yuan X, Yu Y. Hijacking of Host Plasminogen by Mesomycoplasma ( Mycoplasma) hyopneumoniae via GAPDH: an Important Virulence Mechanism To Promote Adhesion and Extracellular Matrix Degradation. Microbiol Spectr 2023; 11:e0021823. [PMID: 37199643 PMCID: PMC10269845 DOI: 10.1128/spectrum.00218-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Mesomycoplasma hyopneumoniae is the etiological agent of mycoplasmal pneumonia of swine (MPS), which causes substantial economic losses to the world's swine industry. Moonlighting proteins are increasingly being shown to play a role in the pathogenic process of M. hyopneumoniae. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, displayed a higher abundance in a highly virulent strain of M. hyopneumoniae than in an attenuated strain, suggesting that it may have a role in virulence. The mechanism by which GAPDH exerts its function was explored. Flow cytometry and colony blot analysis showed that GAPDH was partly displayed on the surface of M. hyopneumoniae. Recombinant GAPDH (rGAPDH) was able to bind PK15 cells, while the adherence of a mycoplasma strain to PK15 was significantly blocked by anti-rGAPDH antibody pretreatment. In addition, rGAPDH could interact with plasminogen. The rGAPDH-bound plasminogen was demonstrated to be activated to plasmin, as proven by using a chromogenic substrate, and to further degrade the extracellular matrix (ECM). The critical site for GAPDH binding to plasminogen was K336, as demonstrated by amino acid mutation. The affinity of plasminogen for the rGAPDH C-terminal mutant (K336A) was significantly decreased according to surface plasmon resonance analysis. Collectively, our data suggested that GAPDH might be an important virulence factor that facilitates the dissemination of M. hyopneumoniae by hijacking host plasminogen to degrade the tissue ECM barrier. IMPORTANCE Mesomycoplasma hyopneumoniae is a specific pathogen of pigs that is the etiological agent of mycoplasmal pneumonia of swine (MPS), which is responsible for substantial economic losses to the swine industry worldwide. The pathogenicity mechanism and possible particular virulence determinants of M. hyopneumoniae are not yet completely elucidated. Our data suggest that GAPDH might be an important virulence factor in M. hyopneumoniae that facilitates the dissemination of M. hyopneumoniae by hijacking host plasminogen to degrade the extracellular matrix (ECM) barrier. These findings will provide theoretical support and new ideas for the research and development of live-attenuated or subunit vaccines against M. hyopneumoniae.
Collapse
Affiliation(s)
- Jiying Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Department of Animal Science and Technology, Huaihua Polytechnic College, Huaihua, China
| | - Shiyang Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Junhong Chen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Lanxi Gan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Jia Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhibang Deng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaomin Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
10
|
Zhou G, Tian Y, Tian J, Ma Q, Huang S, Li Q, Wang S, Shi H. Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the P42 and P97 Antigens Protects Mice against Mycoplasma hyopneumoniae Challenge. Microbiol Spectr 2022; 10:e0236122. [PMID: 36377878 PMCID: PMC9769600 DOI: 10.1128/spectrum.02361-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is the etiological agent of swine enzootic pneumonia (EP), which has been associated with considerable economic losses due to reduced daily weight gain and feed efficiency. Adhesion to the cilia is important for Mhp to colonize the respiratory epithelium. Therefore, a successful vaccine must induce broad Mhp-specific immune responses at the mucosal surface. Recombinant attenuated Salmonella strains are believed to act as powerful live vaccine vectors that are able to elicit mucosal immune responses against various pathogens. To develop efficacious and inexpensive vaccines against Mhp, the immune responses and protection induced by recombinant attenuated Salmonella vaccines based on the P42 and P97 antigens of Mhp were evaluated. In general, the oral inoculation of recombinant rSC0016(pS-P42) or rSC0016(pS-P97) resulted in strong mucosal immunity, cell-mediated immunity, and humoral immunity, which was a mixed Th1/Th2-type response. In addition, the levels of specific IL-4 and IFN-γ in the immunized mice were increased, and the proliferation of lymphocytes was also enhanced, confirming the production of a good cellular immune response. Finally, both vaccine candidate strains were able to improve the weight loss of mice after a challenge and reduce clinical symptoms, lung pathological damage, and the inflammatory cell infiltration. These results suggest that the delivery of protective antigens with recombinant attenuated Salmonella vectors may be an effective means by which to combat Mhp infection. IMPORTANCE Mhp is the main pathogen of porcine enzootic pneumonia, a highly infectious and economically significant respiratory disease that affects pigs of all ages. As the target tissue of Mhp infections are the mucosal sites of the respiratory tract, the induction of protective immunity at the mucosal tissues is the most efficient strategy by which to block disease transmission. Because the stimulation of mucosal immune responses is efficient, Salmonella-vector oral vaccines are expected to be especially useful against mucosal-invading pathogens. In this study, we expressed the immunogenic proteins of P42 and P97 with the attenuated Salmonella Choleraesuis vector rSC0016, thereby generating a low-cost and more effective vaccine candidate against Mhp by inducing significant mucosal, humoral and cellular immunity. Furthermore, rSC0016(pS-P42) effectively prevents Mhp-induced weight loss and the pulmonary inflammation of mice. Because of the effectiveness of rSC0016(pS-P42) against Mhp infection in mice, this novel vaccine candidate strain shows great potential for its use in the pig breeding industry.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jiashuo Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shan Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
11
|
Rüger N, Szostak MP, Rautenschlein S. The expression of GapA and CrmA correlates with the Mycoplasma gallisepticum in vitro infection process in chicken TOCs. Vet Res 2022; 53:66. [PMID: 36056451 PMCID: PMC9440553 DOI: 10.1186/s13567-022-01085-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma (M.) gallisepticum is the most pathogenic mycoplasma species in poultry. Infections cause mild to severe clinical symptoms associated with respiratory epithelial lesion development. Adherence, biofilm formation, and cell invasion of M. gallisepticum contribute to successful infection, immune evasion, and survival within the host. The important M. gallisepticum membrane-bound proteins, GapA and CrmA, are key factors for host cell interaction and the bacterial life-cycle, including its gliding motility, although their precise role in the individual infection step is not yet fully understood. In this study, we investigated the correlation between the host-pathogen interaction and the GapA/CrmA expression in an environment that represents the natural host's multicellular compartment. We used an in vitro tracheal organ culture (TOC) model, allowing the investigation of the M. gallisepticum variants, Rlow, RCL1, RCL2, and Rhigh, under standardised conditions. In this regard, we examined the bacterial adherence, motility and colonisation pattern, host lesion development and alterations of mucociliary clearance. Compared to low virulent RCL2 and Rhigh, the high virulent Rlow and RCL1 were more efficient in adhering to TOCs and epithelium colonisation, including faster movement from the cilia tips to the apical membrane and subsequent cell invasion. RCL2 and Rhigh showed a more localised invasion pattern, accompanied by significantly fewer lesions than Rlow and RCL1. Unrelated to virulence, comparable mucus production was observed in all M. gallisepticum infected TOCs. Overall, the present study demonstrates the role of GapA/CrmA in virulence factors from adherence to colonisation, as well as the onset and severity of lesion development in the tracheal epithelium.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael P Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
12
|
Garcia-Morante B, Maes D, Sibila M, Betlach AM, Sponheim A, Canturri A, Pieters M. Improving Mycoplasma hyopneumoniae diagnostic capabilities by harnessing the infection dynamics. Vet J 2022; 288:105877. [PMID: 35901923 DOI: 10.1016/j.tvjl.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Mycoplasma hyopneumoniae remains one of the most problematic bacterial pathogens for pig production. Despite an abundance of observational and laboratory testing capabilities for this organism, diagnostic interpretation of test results can be challenging and ambiguous. This is partly explained by the chronic nature of M. hyopneumoniae infection and its tropism for lower respiratory tract epithelium, which affects diagnostic sensitivities associated with sampling location and stage of infection. A thorough knowledge of the available tools for routine M. hyopneumoniae diagnostic testing, together with a detailed understanding of infection dynamics, are essential for optimizing sampling strategies and providing confidence in the diagnostic process. This study reviewed known information on sampling and diagnostic tools for M. hyopneumoniae and summarized literature reports of the dynamics of key infection outcomes, including clinical signs, lung lesions, pathogen detection, and humoral immune responses. Such knowledge could facilitate better understanding of the performance of different diagnostic approaches at various stages of infection.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Salisburylaan, 133 B-9820 Merelbeke, Belgium
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Vet Center, 1608 S Minnesota Ave, St. Peter, MN 56082, USA
| | - Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Canturri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St Paul, 55108 MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
13
|
Zong B, Zhu Y, Liu M, Wang X, Chen H, Zhang Y, Tan C. Characteristics of Mycoplasma hyopneumoniae Strain ES-2 Isolated From Chinese Native Black Pig Lungs. Front Vet Sci 2022; 9:883416. [PMID: 35847655 PMCID: PMC9280346 DOI: 10.3389/fvets.2022.883416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Mycoplasma hyopneumoniae is the primary pathogen of swine enzootic pneumonia and causes great economic losses to the swine industry worldwide. In China, M. hyopneumoniae seriously hinders the healthy development of the native black pigs. To prevent and treat porcine respiratory disease caused by M. hyopneumoniae, the characteristics of M. hyopneumoniae strain ES-2 isolated from Chinese native black pig lungs with gross lesions at post-mortem were studied for the first time in this study. Strain ES-2 cell was round or oval cells and most sensitive to kanamycin. The diameters of most strain ES-2 cells ranged from 0.4 to 1.0 μm with maximum viability of 1010 CCU/ml. Experimental challenge of animals with strain ES-2 showed respiratory disease could be reproduced, with pneumonic lung lesions evident. Comparative genomics analysis identified that 2 genes are specific to pathogenic M. hyopneumoniae strains, which may be predicted to be a molecular marker. These findings suggest that the study on the characteristics of M. hyopneumoniae strain ES-2 will guide the rapid and accurate drug use in the clinic, and develop a theoretical foundation for accurately diagnosing and treating the infection caused by pathogenic M. hyopneumoniae.
Collapse
Affiliation(s)
- Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongwei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yanyan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
14
|
Silva APSP, Storino GY, Ferreyra FSM, Zhang M, Miller JM, Harmon KM, Gauger PC, Witbeck W, Doolittle K, Zimmerman S, Wang C, Derscheid RJ, Clavijo MJ, Arruda BL, Zimmerman JJ. Effect of testing protocol and within-pen prevalence on the detection of Mycoplasma hyopneumoniae DNA in oral fluid samples. Prev Vet Med 2022; 204:105670. [DOI: 10.1016/j.prevetmed.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022]
|
15
|
Silva APSP, Storino GY, Ferreyra FSM, Zhang M, Fano E, Polson D, Wang C, Derscheid RJ, Zimmerman JJ, Clavijo MJ, Arruda BL. Cough associated with the detection of Mycoplasma hyopneumoniae DNA in clinical and environmental specimens under controlled conditions. Porcine Health Manag 2022; 8:6. [PMID: 35078535 PMCID: PMC8788120 DOI: 10.1186/s40813-022-00249-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
Background The association of cough with Mycoplasma hyopneumoniae (MHP) DNA detection in specimens was evaluated under conditions in which the MHP status of inoculated and contact-infected pen mates was closely monitored for 59 days post-inoculation (DPI).
Methods Seven-week-old pigs (n = 39) were allocated to five rooms (with one pen). Rooms contained 9 pigs each, with 1, 3, 6, or 9 MHP-inoculated pigs, respectively, except Room 5 (three sham-inoculated pigs). Cough data (2 × week) and specimens, tracheal swabs (2 × week), oral fluids (daily), drinker wipes (~ 1 × week), and air samples (3 × week) were collected. At 59 DPI, pigs were euthanized, and lung and trachea were evaluated for gross and microscopic lesions. Predictive cough value to MHP DNA detection in drinker and oral fluid samples were estimated using mixed logistic regression. Results Following inoculation, MHP DNA was first detected in tracheal swabs from inoculated pigs (DPI 3), then oral fluids (DPI 8), air samples (DPI 10), and drinker wipes (21 DPI). MHP DNA was detected in oral fluids in 17 of 59 (Room 1) to 43 of 59 (Room 3) samples, drinker wipes in 4 of 8 (Rooms 2 and 3) to 5 of 8 (Rooms 1 and 4) samples, and air samples in 5 of 26 (Room 2) or 3 of 26 (Room 4) samples. Logistic regression showed that the frequency of coughing pigs in a pen was associated with the probability of MHP DNA detection in oral fluids (P < 0.01) and nearly associated with drinker wipes (P = 0.08). Pathology data revealed an association between the period when infection was first detected and the severity of gross lung lesions. Conclusions Dry, non-productive coughs suggest the presence of MHP, but laboratory testing and MHP DNA detection is required for confirmation. Based on the data from this study, oral fluids and drinker wipes may provide a convenient alternative for MHP DNA detection at the pen level when cough is present. This information may help practitioners in specimen selection for MHP surveillance.
Collapse
|
16
|
Nueangphuet P, Suwanruengsri M, Fuke N, Uemura R, Hirai T, Yamaguchi R. Neutrophil and M2-polarized Macrophage Infiltration, Expression of IL-8 and Apoptosis in Mycoplasma hyopneumoniae Pneumonia in Swine. J Comp Pathol 2021; 189:31-44. [PMID: 34886984 DOI: 10.1016/j.jcpa.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Mycoplasma hyopneumoniae (Mhp) is the primary pathogen of porcine enzootic pneumonia (PEP). Consolidated lung tissue from the cranioventral lung lobes of 15 pigs with PEP was collected for quantitative polymerase chain reaction, histopathology and immunohistochemistry. Histopathology revealed the co-existence of bronchial-associated lymphoid tissue hyperplasia with intra-alveolar neutrophils and macrophage infiltration in lesions of suppurative bronchopneumonia. Immunolabelling of infiltrated macrophages with CD163/CD204 indicated the presence of M2-polarized macrophages. Mhp antigen was detected on respiratory epithelial cells and in phagocytosed neutrophils. The intensity of Mhp immunolabelling and number of CD163/CD204-positive macrophages were correlated with the Mhp load in lung tissue (r = 0.87, 0.56, P <0.05). IL-8 immunolabelling was mainly found in neutrophils and correlated with Mhp load, Mhp immunolabelling and histological lesion score (r = 0.70, 0.66, 0.64, P <0.05), respectively. Apoptosis was seen in intra-alveolar cells and was correlated with Mhp load (r = 0.62, P <0.05). It is postulated that IL-8 attracts neutrophils to the lesions, while M2-polarized macrophages are a major source of IL-10 and promote a Th2-type immune response.
Collapse
Affiliation(s)
- Phawut Nueangphuet
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mathurot Suwanruengsri
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Naoyuki Fuke
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryoko Uemura
- Department of Animal Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takuya Hirai
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
17
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
18
|
Almeida HMS, Mechler-Dreibi ML, Sonálio K, Ferreira MM, Martinelli PEB, Gatto IRH, Maes D, Montassier HJ, Oliveira LG. Dynamics and chronology of Mycoplasma hyopneumoniae strain 232 infection in experimentally inoculated swine. Porcine Health Manag 2021; 7:42. [PMID: 34193314 PMCID: PMC8243732 DOI: 10.1186/s40813-021-00221-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022] Open
Abstract
Direct detection of Mycoplasma hyopneumoniae through molecular tools is a growing trend for early diagnosis, highlighting the importance of knowing M. hyopneumoniae dynamics in the respiratory tract upon infection. This study focused on monitoring the infection level and its effects in different anatomic sites of the respiratory tract of experimentally infected swine in four time-points post-infection. To this end, 24 pigs were allocated to either non-inoculated group (n = 8) or inoculated group (n = 16). On day 0 post-infection (dpi), animals of the inoculated group were intratracheally inoculated with M. hyopneumoniae. Nasal swabs were collected weekly for qPCR detection of bacterial shedding. At 14, 28, 42, and 56 dpi, four animals from the inoculated group and two from the control group were necropsied. Bronchoalveolar lavage fluid (BALF) and samples from three different anatomical tracheal sections (cranial - CT, medium - MT, lower - LT) were collected for qPCR and histopathology. Bacterial loads (qPCR) in tracheal samples were: 4.47 × 102 copies∕μL (CT), 1.5 × 104- copies∕ μL (MT) and 1.4 × 104 copies∕μL (LT samples). M. hyopneumoniae quantification in BALF showed the highest load at 28 dpi (2.0 × 106 copies∕ μL). Microscopic lesions in LT samples presented the highest scores at 56 dpi and were significantly correlated with the pathogen load on 14 dpi (0.93) and 28 dpi (0.75). The greatest bacterial load of M. hyopneumoniae in CT samples and BALF was registered at 28 dpi, and it remained high in BALF and LT throughout the 56 dpi. The pathogen was able to persist during the whole experimental period, however higher estimated quantification values were registered in the lower parts of the respiratory tract, especially at 56 dpi. These findings are important for improving diagnostics, treatment, and control measures of M. hyopneumoniae infection in swine herds.
Collapse
Affiliation(s)
- Henrique M S Almeida
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marina L Mechler-Dreibi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Karina Sonálio
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marcela M Ferreira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Paulo E B Martinelli
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Igor R H Gatto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hélio J Montassier
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Luís G Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
19
|
Maes D, Boyen F, Devriendt B, Kuhnert P, Summerfield A, Haesebrouck F. Perspectives for improvement of Mycoplasma hyopneumoniae vaccines in pigs. Vet Res 2021; 52:67. [PMID: 33964969 PMCID: PMC8106180 DOI: 10.1186/s13567-021-00941-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is one of the primary agents involved in the porcine respiratory disease complex, economically one of the most important diseases in pigs worldwide. The pathogen adheres to the ciliated epithelium of the trachea, bronchi, and bronchioles, causes damage to the mucosal clearance system, modulates the immune system and renders the animal more susceptible to other respiratory infections. The pathogenesis is very complex and not yet fully understood. Cell-mediated and likely also mucosal humoral responses are considered important for protection, although infected animals are not able to rapidly clear the pathogen from the respiratory tract. Vaccination is frequently practiced worldwide to control M. hyopneumoniae infections and the associated performance losses, animal welfare issues, and treatment costs. Commercial vaccines are mostly bacterins that are administered intramuscularly. However, the commercial vaccines provide only partial protection, they do not prevent infection and have a limited effect on transmission. Therefore, there is a need for novel vaccines that confer a better protection. The present paper gives a short overview of the pathogenesis and immune responses following M. hyopneumoniae infection, outlines the major limitations of the commercial vaccines and reviews the different experimental M. hyopneumoniae vaccines that have been developed and tested in mice and pigs. Most experimental subunit, DNA and vector vaccines are based on the P97 adhesin or other factors that are important for pathogen survival and pathogenesis. Other studies focused on bacterins combined with novel adjuvants. Very few efforts have been directed towards the development of attenuated vaccines, although such vaccines may have great potential. As cell-mediated and likely also humoral mucosal responses are important for protection, new vaccines should aim to target these arms of the immune response. The selection of proper antigens, administration route and type of adjuvant and carrier molecule is essential for success. Also practical aspects, such as cost of the vaccine, ease of production, transport and administration, and possible combination with vaccines against other porcine pathogens, are important. Possible avenues for further research to develop better vaccines and to achieve a more sustainable control of M. hyopneumoniae infections are discussed.
Collapse
Affiliation(s)
- Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Filip Boyen
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
20
|
Clampitt JM, Madsen ML, Minion FC. Construction of Mycoplasma hyopneumoniae P97 Null Mutants. Front Microbiol 2021; 12:518791. [PMID: 33967967 PMCID: PMC8101707 DOI: 10.3389/fmicb.2021.518791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia, a world-wide problem in the pig industry. This disease is characterized by a dry, non-productive cough, labored breathing, and pneumonia. Despite years of research, vaccines are marginally effective, and none fully protect pigs in a production environment. A better understanding of the host-pathogen interactions of the M. hyopneumoniae-pig disease, which are complex and involve both host and pathogen components, is required. Among the surface proteins involved in virulence are members of two gene families called P97 and P102. These proteins are the adhesins directing attachment of the organism to the swine respiratory epithelium. P97 is the major ciliary binding adhesin and has been studied extensively. Monoclonal antibodies that block its binding to swine cilia have contributed extensively to its characterization. In this study we use recombination to construct null mutants of P97 in M. hyopneumoniae and characterize the resulting mutants in terms of loss of protein by immunoblot using monoclonal antibodies, ability to bind purified swine cilia, and adherence to PK15 cells. Various approaches to recombination with this fastidious mycoplasma were tested including intact plasmid DNA, single-stranded DNA, and linear DNA with and without a heterologous RecA protein. Our results indicate that recombination can be used to generate site-specific mutants in M. hyopneumoniae. P97 mutants are deficient in cilia binding and PK15 cell adherence, and lack the characteristic banding pattern seen in immunoblots developed with the anti-P97 monoclonal antibody.
Collapse
Affiliation(s)
- Jeannett M Clampitt
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
21
|
Poeta Silva APS, Magtoto RL, Souza Almeida HM, McDaniel A, Magtoto PD, Derscheid RJ, Merodio MM, Matias Ferreyra FS, Gatto IRH, Baum DH, Clavijo MJ, Arruda BL, Zimmerman JJ, Giménez-Lirola LG. Performance of Commercial Mycoplasma hyopneumoniae Serum Enzyme-Linked Immunosorbent Assays under Experimental and Field Conditions. J Clin Microbiol 2020; 58:e00485-20. [PMID: 32967897 PMCID: PMC7685885 DOI: 10.1128/jcm.00485-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023] Open
Abstract
Mycoplasma hyopneumoniae is an economically significant pathogen of swine. M. hyopneumoniae serum antibody detection via commercial enzyme-linked immunosorbent assays (ELISAs) is widely used for routine surveillance in commercial swine production systems. Samples from two studies were used to evaluate assay performance. In study 1, 6 commercial M. hyopneumoniae ELISAs were compared using serum samples from 8-week-old cesarean-derived, colostrum-deprived (CDCD) pigs allocated to the following 5 inoculation groups of 10 pigs each: (i) negative control, (ii) Mycoplasma flocculare (strain 27399), (iii) Mycoplasma hyorhinis (strain 38983), (iv) Mycoplasma hyosynoviae (strain 34428), and (v) M. hyopneumoniae (strain 232). Weekly serum and daily oral fluid samples were collected through 56 days postinoculation (dpi). The true status of pigs was established by PCR testing on oral fluids samples over the course of the observation period. Analysis of ELISA performance at various cutoffs found that the manufacturers' recommended cutoffs were diagnostically specific, i.e., produced no false positives, with the exceptions of 2 ELISAs. An analysis based on overall misclassification error rates found that 4 ELISAs performed similarly, although one assay produced more false positives. In study 2, the 3 best-performing ELISAs from study 1 were compared using serum samples generated under field conditions. Ten 8-week-old pigs were intratracheally inoculated with M. hyopneumoniae Matched serum and tracheal samples (to establish the true pig M. hyopneumoniae status) were collected at 7- to 14-day intervals through 98 dpi. Analyses of sensitivity and specificity showed similar performance among these 3 ELISAs. Overall, this study provides an assessment of the performance of current M. hyopneumoniae ELISAs and an understanding of their use in surveillance.
Collapse
Affiliation(s)
- Ana Paula S Poeta Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Ronaldo L Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | | | - Aric McDaniel
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Precy D Magtoto
- Pampanga State Agricultural University, Pampanga, Philippines
| | - Rachel J Derscheid
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Maria M Merodio
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Franco S Matias Ferreyra
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Igor R H Gatto
- Universidade Estadual de São Paulo, Jaboticabal, São Paulo, Brazil
| | - David H Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Maria J Clavijo
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
- PIC North America, Hendersonville, Tennessee, USA
| | - Bailey L Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
22
|
Paracellular Pathway-Mediated Mycoplasma hyopneumoniae Migration across Porcine Airway Epithelial Barrier under Air-Liquid Interface Conditions. Infect Immun 2020; 88:IAI.00470-20. [PMID: 32747599 DOI: 10.1128/iai.00470-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mycoplasma hyopneumoniae is an important respiratory pathogen of pigs that causes persistent and secondary infections. However, the mechanisms by which this occurs are unclear. In this study, we established air-liquid interface culture systems for pig bronchial epithelial cells (ALI-PBECs) that were comparable to the conditions in the native bronchus in vivo We used this ALI-PBECs model to study the infection and migration characteristics of M. hyopneumoniae in vitro Based on the results, we confirmed that M. hyopneumoniae was able to adhere to ALI-PBECs and disrupt mucociliary function. Importantly, M. hyopneumoniae could migrate to the basolateral chamber through the paracellular route but not the transcellular pathway, and this was achieved by reversibly disrupting tight junctions (TJs) and increasing the permeability and damaging the integrity of the epithelial barrier. We examined the migration ability of M. hyopneumoniae using an ALI-PBECs model for the first time. The disruption of the epithelial barrier allowed M. hyopneumoniae to migrate to the basolateral chamber through the paracellular route, which may be related to immune evasion, extrapulmonary dissemination, and persistent infection of M. hyopneumoniae.
Collapse
|
23
|
Sakuma A, Sugawara S, Hidaka H, Nakajo M, Suda Y, Shimazu T, Rose MT, Urakawa M, Zhuang T, Zhao G, Watanabe K, Nochi T, Kitazawa H, Katoh K, Suzuki K, Aso H. IL-12p40 gene expression in lung and hilar lymph nodes of MPS-resistant pigs. Anim Sci J 2020; 91:e13450. [PMID: 32881233 DOI: 10.1111/asj.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 11/28/2022]
Abstract
Mycoplasma pneumonia of swine (MPS) is caused by Mycoplasma hyopneumoniae (M.hp) and is a common chronic respiratory disease of pigs. Recently, a genetically selected variant of the Landrace pig (Miyagino L2) has a lower incidence of pulmonary MPS lesions. We investigated the pathological and immunological characteristics of MPS resistance in these pigs (n = 24) by comparing with the normal landrace pig (control: n = 24). The pathological MPS lung lesion score in MPS-selected landrace pigs was significantly lower than in the control. The gene expression of interleukin (IL)-12p40, which acts as a chemoattractant and a component of the bioactive cytokines IL-12 and IL-23, was significantly higher at the hilar lymph nodes, lung, and spleen in MPS-selected landrace pigs than in control landrace pigs, and these were negatively correlated with the macroscopic MPS lung lesion score. In summary, we demonstrate that resistance against MPS in Miyagino L2 pigs is associated with IL-12p40 up-regulation, in comparison with normal landrace pigs without the MPS vaccine. In addition, a comparative study of macroscopic MPS lung lesions and IL-12p40 gene expression in lung and hilar lymph nodes may lead to beneficial selection traits for the genetic selection for MPS resistance in pigs.
Collapse
Affiliation(s)
- Akiko Sakuma
- Miyagi Livestock Experimental Station, Osaki, Japan.,Miyagi Prefectural Sendai Livestock Hygiene Service Center, Sendai, Japan.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shizuka Sugawara
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hikaru Hidaka
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Tomoyuki Shimazu
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Michael T Rose
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, TAS, Australia
| | - Megumi Urakawa
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tao Zhuang
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kazuo Katoh
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keiichi Suzuki
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Mycoplasma hyopneumoniae J elicits an antioxidant response and decreases the expression of ciliary genes in infected swine epithelial cells. Sci Rep 2020; 10:13707. [PMID: 32792522 PMCID: PMC7426424 DOI: 10.1038/s41598-020-70040-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is the most costly pathogen for swine production. Although several studies have focused on the host-bacterium association, little is known about the changes in gene expression of swine cells upon infection. To improve our understanding of this interaction, we infected swine epithelial NPTr cells with M. hyopneumoniae strain J to identify differentially expressed mRNAs and miRNAs. The levels of 1,268 genes and 170 miRNAs were significantly modified post-infection. Up-regulated mRNAs were enriched in genes related to redox homeostasis and antioxidant defense, known to be regulated by the transcription factor NRF2 in related species. Down-regulated mRNAs were enriched in genes associated with cytoskeleton and ciliary functions. Bioinformatic analyses suggested a correlation between changes in miRNA and mRNA levels, since we detected down-regulation of miRNAs predicted to target antioxidant genes and up-regulation of miRNAs targeting ciliary and cytoskeleton genes. Interestingly, most down-regulated miRNAs were detected in exosome-like vesicles suggesting that M. hyopneumoniae infection induced a modification of the composition of NPTr-released vesicles. Taken together, our data indicate that M. hyopneumoniae elicits an antioxidant response induced by NRF2 in infected cells. In addition, we propose that ciliostasis caused by this pathogen is partially explained by the down-regulation of ciliary genes.
Collapse
|
25
|
Kamminga T, Benis N, Martins Dos Santos V, Bijlsma JJE, Schaap PJ. Combined Transcriptome Sequencing of Mycoplasma hyopneumoniae and Infected Pig Lung Tissue Reveals Up-Regulation of Bacterial F1-Like ATPase and Down-Regulation of the P102 Cilium Adhesin in vivo. Front Microbiol 2020; 11:1679. [PMID: 32765473 PMCID: PMC7379848 DOI: 10.3389/fmicb.2020.01679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) causes enzootic pneumonia in pigs but it is still largely unknown which host-pathogen interactions enable persistent infection and cause disease. In this study, we analyzed the host and bacterial transcriptomes during infection using RNA sequencing. Comparison of the transcriptome of lung lesion tissue from infected pigs with lung tissue from non-infected animals, identified 424 differentially expressed genes (FDR < 0.01 and fold change > 1.5LOG2). These genes were part of the following major pathways of the immune system: interleukin signaling (type 4, 10, 13, and 18), regulation of Toll-like receptors by endogenous ligand and activation of C3 and C5 in the complement system. Besides analyzing the lung transcriptome, a sampling protocol was developed to obtain enough bacterial mRNA from infected lung tissue for RNA sequencing. This was done by flushing infected lobes in the lung, and subsequently enriching for bacterial RNA. On average, 2.2 million bacterial reads were obtained per biological replicate to analyze the bacterial in vivo transcriptome. We compared the in vivo bacterial transcriptome with the transcriptome of bacteria grown in vitro and identified 22 up-regulated and 30 down-regulated genes (FDR < 0.01 and fold change > 2LOG2). Six out of seven genes in the operon encoding the mycoplasma specific F1-like ATPase (MHP_RS02445-MHP_RS02475) and all genes in the operon MHP_RS01965-MHP_RS01990 with functions related to nucleotide metabolism, spermidine transport and glycerol-3-phoshate transport were up-regulated in vivo. Down-regulated in vivo were genes related to glycerol uptake, cilium adhesion (P102), cell division and myo-inositol metabolism. In addition to providing a novel method to isolate bacterial mRNA from infected lung, this study provided insights into changes in gene expression during infection, which could help development of novel treatment strategies against enzootic pneumonia caused by M. hyopneumoniae.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands.,Bioprocess Technology and Support, MSD Animal Health, Boxmeer, Netherlands
| | - Nirupama Benis
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Vitor Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
26
|
Immunohistochemical and Ultrastructural Studies of Mycoplasma hyopneumoniae Strain in Naturally Infected Pigs in Nigeria. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Enzootic pneumonia caused by hyopneumoniae (MHYO) remains a serious concern to the swine industry in many countries including Nigeria. MHYO strains isolated from pigs from different countries and geographical locations are known to vary in pathogenicity. There is a paucity of information on the pathogenicity of the MHYO strain affecting pigs in Nigeria. This study investigated the pathogenicity of the MHYO strain in naturally infected pigs using immunohisto-chemistry and electron microscopy. Two hundred and sixty four lungs of slaughtered pigs were randomly collected from abattoirs at Abeokuta, Ibadan and Lagos, in Southwest Nigeria. A sub-sample of 104 pneumonic and 20 apparently normal lungs was selected, processed for routine histopathological examination and immunohistochemistry, while 3 lung tissues samples were selected for ultrastructural studies. The most significant microscopic changes observed were suppurative broncho-interstitial pneumonia associated with varying degrees of lymphoid hyperplasia of the bronchus-associated lymphoid tissue (BALT) and thickened alveolar septa due to cellular infiltration consisting predominantly of neutrophils and a few mononuclear cells. Immunohistochemically, MHYO antigen was detected in 86/104 (82.69 %) of MHYO-infected lung tissues and typically exhibited a granular brown reaction on the bronchial and bronchiolar epithelial lining, mononuclear cells in the BALT and luminal cellular exudates within the airways. Transmission electron microscopy revealed numerous Mycoplasma organisms in the lumina of the airways, in between degenerated cilia, while a few Mycoplasmas were located within the alveoli. It was concluded that the MHYO strain detected in this study was pathogenic to pigs and capable of inducing pneumonia, and therefore implicated in the pathogenesis.
Collapse
|
27
|
Vilalta C, Garcia‐Morante B, Sanhueza JM, Schwartz M, Pieters M. PCR detection of
Mycoplasma hyopneumoniae
in piglet processing fluids in the event of a clinical respiratory disease outbreak. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2019-001045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Carles Vilalta
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| | | | | | - Mark Schwartz
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Maria Pieters
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| |
Collapse
|
28
|
Machado LDPN, Paes JA, Souza Dos Santos P, Ferreira HB. Evidences of differential endoproteolytic processing on the surfaces of Mycoplasma hyopneumoniae and Mycoplasma flocculare. Microb Pathog 2020; 140:103958. [PMID: 31899326 DOI: 10.1016/j.micpath.2019.103958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetic similar bacteria that colonize the swine respiratory tract. However, while M. hyopneumoniae is a pathogen that causes porcine enzootic pneumonia, M. flocculare is a commensal. Adhesion to the respiratory epithelium is mediated by surface-displayed adhesins, and at least some M. hyopneumoniae adhesins are post-translational proteolytically processed, producing differential proteoforms with differential adhesion properties. Based on LC-MS/MS data, we assessed differential proteolytic processing among orthologs of the five most abundant adhesins (p97 and p216) or adhesion-related surface proteins (DnaK, p46, and ABC transporter xylose-binding lipoprotein) from M. hyopneumoniae strains 7448 (pathogenic) and J (non-pathogenic), and M. flocculare. Both surface and cytoplasmic non-tryptic cleavage events were mapped and compared, and antigenicity predictions were performed for the resulting proteoforms. It was demonstrated that not only bona fide adhesins, but also adhesion-related proteins undergo proteolytical processing. Moreover, most of the detected cleavage events were differential among M. hyopneumoniae strains and M. flocculare, and also between cell surface and cytoplasm. Overall, our data provided evidences of a complex scenario of multiple antigenic proteoforms of adhesion-related proteins, that is differential among M. hyopneumoniae strains and M. flocculare, altering the surface architecture and likely contributing to virulence and pathogenicity.
Collapse
Affiliation(s)
- Lais Del Prá Netto Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Priscila Souza Dos Santos
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
29
|
Toll-Like Receptor 2 (TLR2) and TLR4 Mediate the IgA Immune Response Induced by Mycoplasma hyopneumoniae. Infect Immun 2019; 88:IAI.00697-19. [PMID: 31611272 PMCID: PMC6921651 DOI: 10.1128/iai.00697-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
IgA plays an important role in mucosal immunity against infectious pathogens; however, the molecular mechanism of IgA secretion in response to infection remains largely unknown, particularly in Mycoplasma spp. In this study, we found that the levels of IgA in the peripheral blood serum, bronchoalveolar lavage fluid, nasal mucosa, trachea, hilar lymph nodes, and lung tissues of pigs increased significantly after infection with Mycoplasma hyopneumoniae. IgA plays an important role in mucosal immunity against infectious pathogens; however, the molecular mechanism of IgA secretion in response to infection remains largely unknown, particularly in Mycoplasma spp. In this study, we found that the levels of IgA in the peripheral blood serum, bronchoalveolar lavage fluid, nasal mucosa, trachea, hilar lymph nodes, and lung tissues of pigs increased significantly after infection with Mycoplasma hyopneumoniae. Furthermore, IgA and CD11c were detected in the lungs and hilar lymph nodes by immunohistochemical analysis, and colocalization of these two markers indicates that CD11c+ cells play an important role in IgA mucosal immunity induced by M. hyopneumoniae. To investigate the regulatory mechanism of IgA, we separated mouse dendritic cells (DCs) from different tissues and mouse macrophages from the lungs and then cultured mouse B cells together with either DCs or macrophages in vitro. In the mouse lung-DC/B (LDC/B) cell coculture, IgA secretion was increased significantly after the addition of whole-cell lysates of M. hyopneumoniae. The expression of both Toll-like receptor 2 (TLR2) and TLR4 was also upregulated, as determined by mRNA and protein expression analyses, whereas no obvious change in the expression of TLR3 and TLR7 was detected. Moreover, the IgA level decreased to the same as the control group when TLR2 or TLR4 was inhibited instead of TLR8 or TLR7/9. In conclusion, M. hyopneumoniae can stimulate the response of IgA through TLR2 and TLR4 in a mouse LDC/B cell coculture model, and the coculture model is an ideal tool for studying the IgA response mechanism, particularly that with Mycoplasma spp.
Collapse
|
30
|
Surendran Nair M, Yao D, Chen C, Pieters M. Serum metabolite markers of early Mycoplasma hyopneumoniae infection in pigs. Vet Res 2019; 50:98. [PMID: 31771624 PMCID: PMC6878661 DOI: 10.1186/s13567-019-0715-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 01/22/2023] Open
Abstract
Mycoplasma hyopneumoniae, the primary pathogenic bacterium causing enzootic pneumonia, significantly affects worldwide swine production. The infection is usually persistent and bacterial identification and isolation of M. hyopneumoniae in clinical samples are challenging due to the fastidious requirements for its growth. Hence, new practical surveillance tools that improve or complement existing diagnostics on M. hyopneumoniae are desirable, especially in early infection. The objective of this study was to identify potential metabolite markers of early M. hyopneumoniae infection in pigs through metabolomics analysis. Samples obtained from pigs in a previous M. hyopneumoniae experimental infection were used in this study. Briefly, two pigs served as mock inoculated controls and ten pigs were intra-tracheally inoculated with M. hyopneumoniae. Sera, laryngeal swabs (LS), and tracheo-bronchial lavage fluid (TBLF) were collected from all pigs at 0, 2, 5, 9, 14, 21 and 28 days post-inoculation (dpi). Bronchial swabs (BS) were collected post-mortem at 28 dpi. Mycoplasma hyopneumoniae infection was confirmed by PCR in LS, TBLF and BS. Serum metabolites were profiled using high-resolution liquid chromatography-mass spectrometry (LC-MS) analysis. Metabolite markers were identified by structural analysis following multivariate analysis of LC-MS data. The results showed that M. hyopneumoniae infection time-dependently altered the serum levels of selective amino acids and fatty acids. α-Aminobutyric acid and long-chain fatty acids were markedly increased at 14 and 21 dpi in inoculated pigs (p < 0.05). These results indicated that M. hyopneumoniae infection caused systemic changes in host metabolism, warranting further studies to determine underlying biochemical and physiological mechanisms responsible for the observed changes.
Collapse
Affiliation(s)
- Meera Surendran Nair
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Dan Yao
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55018 USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55018 USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
31
|
Leal Zimmer FMA, Moura H, Barr JR, Ferreira HB. Intracellular changes of a swine tracheal cell line infected with a Mycoplasma hyopneumoniae pathogenic strain. Microb Pathog 2019; 137:103717. [PMID: 31494300 DOI: 10.1016/j.micpath.2019.103717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia (EP), a widespread disease that causes major economic losses to the pig industry. The swine host response plays an important role in the outcome of M. hyopneumoniae infections. The whole proteome of newborn pig trachea (NPTr) epithelial cells infected with the M. hyopneumoniae pathogenic strain 7448 was analyzed using an LC-MS/MS approach to shed light on intracellular processes triggered in response to the pathogen. Overall, 853 swine protein species were identified, 156 of which were differentially represented in response to M. hyopneumoniae 7448 infection in comparison with non-infected control cells. These differentially represented proteins were categorized by function. Fifty-seven of them were assigned to the immune system and/or response to stimulus functional subcategories. Comparative expression analysis of these immune-related proteins in NPTr cells infected with attenuated or non-pathogenic mycoplasmas (M. hyopneumoniae J strain and M. flocculare, respectively) revealed proteins whose abundance was altered only in response to the pathogenic M. hyopneumoniae 7448 strain. Among these proteins, calcium homeostasis and endoplasmic reticulum stress-related biomarkers were detected, providing evidence of molecular mechanisms that might lead to swine cell apoptosis.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
32
|
Host-Pathogen Interactions of Mycoplasma mycoides in Caprine and Bovine Precision-Cut Lung Slices (PCLS) Models. Pathogens 2019; 8:pathogens8020082. [PMID: 31226867 PMCID: PMC6631151 DOI: 10.3390/pathogens8020082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Respiratory infections caused by mycoplasma species in ruminants lead to considerable economic losses. Two important ruminant pathogens are Mycoplasma mycoides subsp. Mycoides (Mmm), the aetiological agent of contagious bovine pleuropneumonia and Mycoplasma mycoides subsp. capri (Mmc), which causes pneumonia, mastitis, arthritis, keratitis, and septicemia in goats. We established precision cut lung slices (PCLS) infection model for Mmm and Mmc to study host-pathogen interactions. We monitored infection over time using immunohistological analysis and electron microscopy. Moreover, infection burden was monitored by plating and quantitative real-time PCR. Results were compared with lungs from experimentally infected goats and cattle. Lungs from healthy goats and cattle were also included as controls. PCLS remained viable for up to two weeks. Both subspecies adhered to ciliated cells. However, the titer of Mmm in caprine PCLS decreased over time, indicating species specificity of Mmm. Mmc showed higher tropism to sub-bronchiolar tissue in caprine PCLS, which increased in a time-dependent manner. Moreover, Mmc was abundantly observed on pulmonary endothelial cells, indicating partially, how it causes systemic disease. Tissue destruction upon prolonged infection of slices was comparable to the in vivo samples. Therefore, PCLS represents a novel ex vivo model to study host-pathogen interaction in livestock mycoplasma.
Collapse
|
33
|
Henthorn CR, Chris Minion F, Sahin O. Utilization of macrophage extracellular trap nucleotides by Mycoplasma hyopneumoniae. MICROBIOLOGY-SGM 2019; 164:1394-1404. [PMID: 30383520 DOI: 10.1099/mic.0.000717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia in swine, an important disease worldwide. It has finite biosynthetic capabilities, including a deficit in de novo nucleotide synthesis. The source(s) for nucleotides in vivo are unknown, but mycoplasmas are known to carry membrane-bound nucleases thought to participate in the acquisition of nucleotides from host genomic DNA. Recent research has demonstrated that neutrophils can produce extracellular traps (NETs), chromatin NETs decorated with granular proteins to interact with and eliminate pathogens. We hypothesized that M. hyopneumoniae could utilize its membrane nuclease to obtain nucleotides from extracellular traps to construct its own DNA. Using the human monocytic cell line THP-1, we induced macrophage extracellular traps (METs), which are structurally similar to NETs. The thymidine analogue ethynyl deoxyuridine (EdU) was incorporated into THP-1 DNA and METs were induced. When incubated with M. hyopneumoniae, METs were degraded and the modified nucleotide label could be co-localized within M. hyopneumoniae DNA. When the nucleases were inhibited, MET degradation and nucleotide transfer were also inhibited. Controls confirmed that the EdU originated directly from the METs and not from free nucleotides arising from intracellular pools released during extrusion of the chromosomal DNA. M. hyopneumoniae incorporated labelled nucleotides more efficiently when 'fed' on METs than from free nucleotides in the medium, suggesting a tight linkage between nuclease degradation of DNA and nucleotide transport. These results strongly suggest that M. hyopneumoniae could degrade extracellular traps formed in vivo during infection and incorporate those host nucleotides into its own DNA.
Collapse
Affiliation(s)
- Clair R Henthorn
- †Present address: Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA.,1Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - F Chris Minion
- 3Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames IA, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA
| | - Orhan Sahin
- 1Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
34
|
Chen R, Yu Y, Feng Z, Gan R, Xie X, Zhang Z, Xie Q, Wang W, Ran T, Zhang W, Xiong Q, Shao G. Featured Species-Specific Loops Are Found in the Crystal Structure of Mhp Eno, a Cell Surface Adhesin From Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2019; 9:209. [PMID: 31263685 PMCID: PMC6585157 DOI: 10.3389/fcimb.2019.00209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Enolase is an evolutionarily conserved enzyme involved in the processes of glycolysis and gluconeogenesis. Mycoplasma hyopneumoniae belongs to Mycoplasma, whose species are wall-less and among the smallest self-replicating bacteria, and is an important colonizing respiratory pathogen in the pig industry worldwide. Mycoplasma hyopneumoniae enolase (Mhp Eno) expression is significantly increased after infection and was previously found to be a virulence factor candidate. Our studies show that Mhp Eno is a cell surface-localized protein that can adhere to swine tracheal epithelial cells (STECs). Adhesion to STECs can be specifically inhibited by an Mhp Eno antibody. Mhp Eno can recognize and interact with plasminogen with high affinity. Here, the first crystal structure of the mycoplasmal enolase from Mycoplasma hyopneumoniae was determined. The structure showed unique features of Mhp Eno in the S3/H1, H6/S6, H7/H8, and H13 regions. All of these regions were longer than those of other enolases and were exposed on the Mhp Eno surface, making them accessible to host molecules. These results show that Mhp Eno has specific structural characteristics and acts as a multifunctional adhesin on the Mycoplasma hyopneumoniae cell surface.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingyun Xie
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
35
|
Betlach AM, Maes D, Garza-Moreno L, Tamiozzo P, Sibila M, Haesebrouck F, Segalés J, Pieters M. Mycoplasma hyopneumoniae variability: Current trends and proposed terminology for genomic classification. Transbound Emerg Dis 2019; 66:1840-1854. [PMID: 31099490 DOI: 10.1111/tbed.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the aetiologic agent of enzootic pneumonia in swine, a prevalent chronic respiratory disease worldwide. Mycoplasma hyopneumoniae is a small, self-replicating microorganism that possesses several characteristics allowing for limited biosynthetic abilities, resulting in the fastidious, host-specific growth and unique pathogenic properties of this microorganism. Variation across several isolates of M. hyopneumoniae has been described at antigenic, proteomic, transcriptomic, pathogenic and genomic levels. The microorganism possesses a minimal number of genes that regulate the transcription process. Post-translational modifications (PTM) occur frequently in a wide range of functional proteins. The PTM by which M. hyopneumoniae regulates its surface topography could play key roles in cell adhesion, evasion and/or modulation of the host immune system. The clinical outcome of M. hyopneumoniae infections is determined by different factors, such as housing conditions, management practices, co-infections and also by virulence differences among M. hyopneumoniae isolates. Factors contributing to adherence and colonization as well as the capacity to modulate inflammatory and immune responses might be crucial. Different components of the cell membrane (i.e. proteins, glycoproteins and lipoproteins) may serve as adhesins and/or be toxic for the respiratory tract cells. Mechanisms leading to virulence are complex and more research is needed to identify markers for virulence. The utilization of typing methods and complete or partial-gene sequencing for M. hyopneumoniae characterization has increased in diagnostic laboratories as control and elimination strategies for this microorganism are attempted worldwide. A commonly employed molecular typing method for M. hyopneumoniae is Multiple-Locus Variable number tandem repeat Analysis (MLVA). The agreement of a shared terminology and classification for the various techniques, specifically MLVA, has not been described, which makes inferences across the literature unsuitable. Therefore, molecular trends for M. hyopneumoniae have been outlined and a common terminology and classification based on Variable Number Tandem Repeats (VNTR) types has been proposed.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Swine Vet Center, St. Peter, Minnesota
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Merelbeke, Belgium
| | - Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Pablo Tamiozzo
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joaquim Segalés
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
36
|
Formylated N-terminal methionine is absent from the Mycoplasma hyopneumoniae proteome: Implications for translation initiation. Int J Med Microbiol 2019; 309:288-298. [PMID: 31126750 DOI: 10.1016/j.ijmm.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/28/2019] [Accepted: 03/17/2019] [Indexed: 12/31/2022] Open
Abstract
N-terminal methionine excision (NME) is a proteolytic pathway that cleaves the N-termini of proteins, a process that influences where proteins localise in the cell and their turnover rates. In bacteria, protein biosynthesis is initiated by formylated methionine start tRNA (fMet-tRNAfMet). The formyl group is attached by formyltransferase (FMT) and is subsequently removed by peptide deformylase (PDF) in most but not all proteins. Methionine aminopeptidase then cleaves deformylated methionine to complete the process. Components of NME, particularly PDF, are promising therapeutic targets for bacterial pathogens. In Mycoplasma hyopneumoniae, a genome-reduced, major respiratory pathogen of swine, pdf and fmt are absent from its genome. Our bioinformatic analysis uncovered additional enzymes involved in formylated N-terminal methionine (fnMet) processing missing in fourteen mycoplasma species, including M. hyopneumoniae but not in Mycoplasma pneumoniae, a major respiratory pathogen of humans. Consistent with our bioinformatic studies, an analysis of in-house tryptic peptide libraries confirmed the absence of fnMet in M. hyopneumoniae proteins but, as expected fnMet peptides were detected in the proteome of M. pneumoniae. Additionally, computational molecular modelling of M. hyopneumoniae translation initiation factors reveal structural and sequence differences in areas known to interact with fMet-tRNAfMet. Our data suggests that some mycoplasmas have evolved a translation process that does not require fnMet.
Collapse
|
37
|
Mycoplasma hyopneumoniae Mhp597 is a cytotoxicity, inflammation and immunosuppression associated nuclease. Vet Microbiol 2019; 235:53-62. [PMID: 31282379 DOI: 10.1016/j.vetmic.2019.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
Abstract
Nucleases are ubiquitously recognized as essential proteins in mycoplasmas because these organisms lack most capacities for de novo synthesis of nucleotides. Some of these proteins were proved to be important pathogenic factors during the infection of mycoplasms. In this study, the protein Mhp597 from M. hyopneumoniae was expressed and purified in Escherichia coli. Analysis of nuclease activity showed that recombinant Mhp597 (rMhp597) was a Ca2+ or Mg2+ dependent thermostable nuclease with very high activity and neutrophil extracellular traps (NETs) induced by M. hyopneumoniae were completely degraded by this nuclease. In addition, when PK15 cells were incubated with different concentrations of rMhp597, their viability was reduced and cell apoptosis was observed in a dose-dependent manner. To further investigate the host immune system response, we report that rMhp597 up-regulated the exression of inflammatory genes showing that TLR4/MyD88/NF-κB signal pathway was involved. On the other hand, rMhp597 down-regulated the expression of type I IFN (IFN-α/β) and promoted the multiplication of porcine reproductive and respiratory syndrome virus (PRRSV). Recombinant rMhp597δ315-377 lacking C-terminal 63 amino acids exhibited all biological functions mentioned above except for nuclease activity. In summary, Mhp597 is a dynamic secreted nuclease involved in cytotoxicity, inflammation and immunosuppression.
Collapse
|
38
|
Huang T, Zhang M, Tong X, Chen J, Yan G, Fang S, Guo Y, Yang B, Xiao S, Chen C, Huang L, Ai H. Microbial communities in swine lungs and their association with lung lesions. Microb Biotechnol 2019; 12:289-304. [PMID: 30556308 PMCID: PMC6389860 DOI: 10.1111/1751-7915.13353] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Under natural farming, environmental pathogenic microorganisms may invade and affect swine lungs, further resulting in lung lesions. However, few studies on swine lung microbiota and their potential relationship with lung lesions were reported. Here, we sampled 20 pigs from a hybrid herd raised under natural conditions; we recorded a lung-lesion phenotype and investigated lung microbial communities by sequencing the V3-V4 region of 16S rRNA gene for each individual. We found reduced microbial diversity but more biomass in the severe-lesion lungs. Methylotenera, Prevotella, Sphingobium and Lactobacillus were the prominent bacteria in the healthy lungs, while Mycoplasma, Ureaplasma, Sphingobium, Haemophilus and Phyllobacterium were the most abundant microbes in the severe-lesion lungs. Notably, we identified 64 lung-lesion-associated OTUs, of which two classified to Mycoplasma were positively associated with lung lesions and 62 showed negative association including thirteen classified to Prevotella and six to Ruminococcus. Cross-validation analysis showed that lung microbiota explained 23.7% phenotypic variance of lung lesions, suggesting that lung microbiota had large effects on promoting lung healthy. Furthermore, 22 KEGG pathways correlated with lung lesions were predicted. Altogether, our findings improve the knowledge about swine lung microbial communities and give insights into the relationship between lung microbiota and lung lesions.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Mingpeng Zhang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Xinkai Tong
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Jiaqi Chen
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Guorong Yan
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Shaoming Fang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Yuanmei Guo
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Bin Yang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Shijun Xiao
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Congying Chen
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Lusheng Huang
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| | - Huashui Ai
- State Key Laboratory for Swine Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchang330045China
| |
Collapse
|
39
|
Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci Rep 2018; 8:17697. [PMID: 30523267 PMCID: PMC6283846 DOI: 10.1038/s41598-018-36054-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Enzootic pneumonia incurs major economic losses to pork production globally. The primary pathogen and causative agent, Mycoplasma hyopneumoniae, colonises ciliated epithelium and disrupts mucociliary function predisposing the upper respiratory tract to secondary pathogens. Alleviation of disease is reliant on antibiotics, vaccination, and sound animal husbandry, but none are effective at eliminating M. hyopneumoniae from large production systems. Sustainable pork production systems strive to lower reliance on antibiotics but lack of a detailed understanding of the pathobiology of M. hyopneumoniae has curtailed efforts to develop effective mitigation strategies. M. hyopneumoniae is considered an extracellular pathogen. Here we show that M. hyopneumoniae associates with integrin β1 on the surface of epithelial cells via interactions with surface-bound fibronectin and initiates signalling events that stimulate pathogen uptake into clathrin-coated vesicles (CCVs) and caveosomes. These early events allow M. hyopneumoniae to exploit an intracellular lifestyle by commandeering the endosomal pathway. Specifically, we show: (i) using a modified gentamicin protection assay that approximately 8% of M. hyopneumoniae cells reside intracellularly; (ii) integrin β1 expression specifically co-localises with the deposition of fibronectin precisely where M. hyopneumoniae cells assemble extracellularly; (iii) anti-integrin β1 antibodies block entry of M. hyopneumoniae into porcine cells; and (iv) M. hyopneumoniae survives phagolysosomal fusion, and resides within recycling endosomes that are trafficked to the cell membrane. Our data creates a paradigm shift by challenging the long-held view that M. hyopneumoniae is a strict extracellular pathogen and calls for in vivo studies to determine if M. hyopneumoniae can traffic to extrapulmonary sites in commercially-reared pigs.
Collapse
|
40
|
Burgher Y, Koszegi M, St-Sauveur VG, Fournier D, Lafond-Lambert C, Provost C, Gagnon CA. Canada: First report of Ureaplasma diversum, a bovine pathogen, in the respiratory tract of swine in Canada. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2018; 59:1333-1337. [PMID: 30532293 PMCID: PMC6237260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Yaima Burgher
- Swine and poultry infectious diseases research center (CRIPA) (Burgher, Koszegi, Provost, Gagnon), Molecular diagnostic laboratory (MDL), Service de diagnostic (Grenier St-Saveur, Lafond-Lambert, Provost, Gagnon), Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2; Laboratoire de santé animale, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 2650 rue Einstein, Ville de Québec, Québec G1P 4S8 (Fournier)
| | - Marika Koszegi
- Swine and poultry infectious diseases research center (CRIPA) (Burgher, Koszegi, Provost, Gagnon), Molecular diagnostic laboratory (MDL), Service de diagnostic (Grenier St-Saveur, Lafond-Lambert, Provost, Gagnon), Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2; Laboratoire de santé animale, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 2650 rue Einstein, Ville de Québec, Québec G1P 4S8 (Fournier)
| | - Valérie Grenier St-Sauveur
- Swine and poultry infectious diseases research center (CRIPA) (Burgher, Koszegi, Provost, Gagnon), Molecular diagnostic laboratory (MDL), Service de diagnostic (Grenier St-Saveur, Lafond-Lambert, Provost, Gagnon), Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2; Laboratoire de santé animale, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 2650 rue Einstein, Ville de Québec, Québec G1P 4S8 (Fournier)
| | - Dominique Fournier
- Swine and poultry infectious diseases research center (CRIPA) (Burgher, Koszegi, Provost, Gagnon), Molecular diagnostic laboratory (MDL), Service de diagnostic (Grenier St-Saveur, Lafond-Lambert, Provost, Gagnon), Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2; Laboratoire de santé animale, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 2650 rue Einstein, Ville de Québec, Québec G1P 4S8 (Fournier)
| | - Cynthia Lafond-Lambert
- Swine and poultry infectious diseases research center (CRIPA) (Burgher, Koszegi, Provost, Gagnon), Molecular diagnostic laboratory (MDL), Service de diagnostic (Grenier St-Saveur, Lafond-Lambert, Provost, Gagnon), Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2; Laboratoire de santé animale, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 2650 rue Einstein, Ville de Québec, Québec G1P 4S8 (Fournier)
| | - Chantale Provost
- Swine and poultry infectious diseases research center (CRIPA) (Burgher, Koszegi, Provost, Gagnon), Molecular diagnostic laboratory (MDL), Service de diagnostic (Grenier St-Saveur, Lafond-Lambert, Provost, Gagnon), Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2; Laboratoire de santé animale, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 2650 rue Einstein, Ville de Québec, Québec G1P 4S8 (Fournier)
| | - Carl A Gagnon
- Swine and poultry infectious diseases research center (CRIPA) (Burgher, Koszegi, Provost, Gagnon), Molecular diagnostic laboratory (MDL), Service de diagnostic (Grenier St-Saveur, Lafond-Lambert, Provost, Gagnon), Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2; Laboratoire de santé animale, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 2650 rue Einstein, Ville de Québec, Québec G1P 4S8 (Fournier)
| |
Collapse
|
41
|
Yu Y, Liu M, Hua L, Qiu M, Zhang W, Wei Y, Gan Y, Feng Z, Shao G, Xiong Q. Fructose-1,6-bisphosphate aldolase encoded by a core gene of Mycoplasma hyopneumoniae contributes to host cell adhesion. Vet Res 2018; 49:114. [PMID: 30454073 PMCID: PMC6245935 DOI: 10.1186/s13567-018-0610-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mycoplasma hyopneumoniae is an important respiratory pathogen that causes great economic losses to the pig industry worldwide. Although some putative virulence factors have been reported, pathogenesis remains poorly understood. Herein, we evaluated the relative abundance of proteins in virulent 168 (F107) and attenuated 168L (F380) M. hyopneumoniae strains to identify virulence-associated factors by two-dimensional electrophoresis (2-DE). Seven proteins were found to be ≥ 1.5-fold more abundant in 168, and protein-protein interaction network analysis revealed that all seven interact with putative virulence factors. Unexpectedly, six of these virulence-associated proteins are encoded by core rather than accessory genomic elements. The most differentially abundant of the seven, fructose-1,6-bisphosphate aldolase (FBA), was successfully cloned, expressed and purified. Flow cytometry demonstrated the surface localisation of FBA, recombinant FBA (rFBA) mediated adhesion to swine tracheal epithelial cells (STEC), and anti-rFBA sera decreased adherence to STEC. Surface plasmon resonance showed that rFBA bound to fibronectin with a moderately strong KD of 469 nM. The results demonstrate that core gene expression contributes to adhesion and virulence in M. hyopneumoniae, and FBA moonlights as an important adhesin, mediating binding to host cells via fibronectin.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Lizhong Hua
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingjun Qiu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Animal Science and Technology, Shanxi Agricultural University, Taigu, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanna Wei
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan Gan
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
42
|
Liu W, Zhou D, Yuan F, Liu Z, Duan Z, Yang K, Guo R, Li M, Li S, Fang L, Xiao S, Tian Y. Surface proteins mhp390 (P68) contributes to cilium adherence and mediates inflammation and apoptosis in Mycoplasma hyopneumoniae. Microb Pathog 2018; 126:92-100. [PMID: 30385395 DOI: 10.1016/j.micpath.2018.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP) and responsible for major economic losses in global swine industry. After colonization of the respiratory epithelium, M. hyopneumoniae elicits a general mucociliary clearance loss, prolonged inflammatory response, host immunosuppression and secondary infections. Until now, the pathogenesis of M. hyopneumoniae is not completely elucidated. This present study explores the pathogenicity of mhp390 (P68, a membrane-associated lipoprotein) by elucidating its multiple functions. Microtitrer plate adherence assay demonstrated that mhp390 is a new cilia adhesin that plays an important role in binding to swine tracheal cilia. Notably, mhp390 could induce significant apoptosis of lymphocytes and monocytes from peripheral blood mononuclear cells (PBMCs), as well as primary alveolar macrophages (PAMs), which might weaken the host immune response. In addition, mhp390 contributes to the production of proinflammatory cytokines, at least partially, via the release of IL-1β and TNF-α. To the best of our knowledge, this is the first report of the multiple functions of M. hyopneumoniae mhp390, which may supplement known virulence genes and further develop our understanding of the pathogenicity of M. hyopneumoniae.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zhengyin Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Mao Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sha Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liurong Fang
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaobo Xiao
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
43
|
Identification of targets of monoclonal antibodies that inhibit adhesion and growth in Mycoplasma mycoides subspecies mycoides. Vet Immunol Immunopathol 2018; 204:11-18. [PMID: 30596376 PMCID: PMC6215757 DOI: 10.1016/j.vetimm.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
Abstract
A panel of anti-Mmm mAbs was produced and screened for host-pathogen inhibition. 13 mAbs inhibited adhesion of Mmm to host target cells. Anti-capsular polysaccharide inhibited growth and caused agglutination of Mmm. Anti-PDHC inhibited adherence of Mmm cells showing the possible role of glycolytic enzymes in host-pathogen interaction. One novel antigen that is a promising vaccine candidate against CBPP identified.
Mycoplasma mycoides subspecies mycoides (Mmm) adhesion is tissue and host specific. Inhibition of adhesion will prevent Mmm from binding to lung cells and hence prevent colonization and disease. The aim of this study was to develop a panel of Mmm monoclonal antibodies against Mmm and use these antibodies to investigate their inhibitory effect on the adherence of Mmm to bovine lung epithelial cells (BoLEC), and to further identify an antigen to any of the inhibitory antibodies. Thirteen anti-Mycoplasma mycoides subsp. mycoides (AMMY) monoclonal antibodies (mAbs) inhibited adhesion by at least 30% and ten of the mAbs bound to multiple bands on Western blots suggesting that the antibodies bound to proteins of variable sizes. AMMY 10, a previously characterized Mmm- capsular polysaccharide (CPS) specific antibody, inhibited growth of Mmm in vitro and also caused agglutination of Mmm total cell lysate. AMMY 5, a 2-oxo acid dehydrogenase acyltransferase (Catalytic domain) (MSC_0267) specific antibody, was identified and polyclonal rabbit serum against recombinant MSC_0267 blocked adhesion of Mmm to BoLEC by 41%. Antigens recognized by these antibodies could be vaccine candidate(s) and should be subsequently tested for their ability to induce a protective immune response in vivo.
Collapse
|
44
|
Leal Zimmer FMDA, Paludo GP, Moura H, Barr JR, Ferreira HB. Differential secretome profiling of a swine tracheal cell line infected with mycoplasmas of the swine respiratory tract. J Proteomics 2018; 192:147-159. [PMID: 30176387 DOI: 10.1016/j.jprot.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar. However, M. hyopneumoniae causes porcine enzootic pneumonia, while M. flocculare is a commensal bacterium. M. hyopneumoniae and M. flocculare do not penetrate their host cells, and secreted proteins are important for bacterium-host interplay. Thus, the secretomes of a swine trachea cell line (NPTr) infected with M. hyopneumoniae 7448 (a pathogenic strain), M. hyopneumoniae J (a non-pathogenic strain) and M. flocculare were compared to shed light in bacterium-host interactions. Medium from the cultures was collected, and secreted proteins were identified by a LC-MS/MS. Overall numbers of identified host and bacterial proteins were, respectively, 488 and 58, for NPTr/M. hyopneumoniae 7448; 371 and 67, for NPTr/M. hyopneumoniae J; and 203 and 81, for NPTr/M. flocculare. The swine cells revealed different secretion profiles in response to the infection with each M. hyopneumoniae strain or with M. flocculare. DAMPs and extracellular proteasome proteins, secreted in response to cell injury and death, were secreted by NPTr cells infected with M. hyopneumoniae 7448. All three mycoplasmas secreted virulence factors during NPTr infection, but M. hyopneumoniae 7448 secreted higher number of adhesins and hypothetical proteins, that may be related with pathogenicity. SIGNIFICANCE: The enzootic pneumonia caused by mycoplasmas of swine respiratory tract has economic loss consequences in pig industry due to antibiotic costs and pig weight loss. However, some genetically similar mycoplasmas are pathogenic while others, such as Mycoplasma hyopneumoniae and Mycoplasma flocculare, are non-pathogenic. Here, we conducted an infection assay between swine cells and pathogenic and non-pathogenic mycoplasmas to decipher secreted proteins during host-pathogen interaction. Mycoplasma response to cell infection was also observed. Our study provided new insights on secretion profile of swine cells in response to the infection with pathogenic and non-pathogenic mycoplasmas. It was possible to observe that pathogenic M. hyopneumoniae 7448 secreted known virulence factors and swine cells responded by inducing cell death. Otherwise, M. hyopneumoniae J and M. flocculare, non-pathogenic mycoplasmas, secreted a different profile of virulence factors in response to swine cells. Consequently, swine cells altered their secretome profile, but the changes were not sufficient to cause disease.
Collapse
Affiliation(s)
- Fernanda Munhoz Dos Anjos Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
45
|
Raymond BBA, Jenkins C, Turnbull L, Whitchurch CB, Djordjevic SP. Extracellular DNA release from the genome-reduced pathogen Mycoplasma hyopneumoniae is essential for biofilm formation on abiotic surfaces. Sci Rep 2018; 8:10373. [PMID: 29991767 PMCID: PMC6039474 DOI: 10.1038/s41598-018-28678-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/22/2018] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma hyopneumoniae is an economically devastating, globally disseminated pathogen that can maintain a chronic infectious state within its host, swine. Here, we depict the events underpinning M. hyopneumoniae biofilm formation on an abiotic surface and demonstrate for the first time, biofilms forming on porcine epithelial cell monolayers and in the lungs of pigs, experimentally infected with M. hyopneumoniae. Nuclease treatment prevents biofilms forming on glass but not on porcine epithelial cells indicating that extracellular DNA (eDNA), which localises at the base of biofilms, is critical in the formation of these structures on abiotic surfaces. Subpopulations of M. hyopneumoniae cells, denoted by their ability to take up the dye TOTO-1 and release eDNA, were identified. A visually distinct sub-population of pleomorphic cells, that we refer to here as large cell variants (LCVs), rapidly transition from phase dark to translucent "ghost" cells. The translucent cells accumulate the membrane-impermeable dye TOTO-1, forming readily discernible membrane breaches immediately prior to lysis and the possible release of eDNA and other intracellular content (public goods) into the extracellular environment. Our novel observations expand knowledge of the lifestyles adopted by this wall-less, genome-reduced pathogen and provide further insights to its survival within farm environments and swine.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, PMB 8, Camden, NSW, Australia
| | - Lynne Turnbull
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Cynthia B Whitchurch
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
46
|
Garcia-Morante B, Dors A, León-Kempis R, Pérez de Rozas A, Segalés J, Sibila M. Assessment of the in vitro growing dynamics and kinetics of the non-pathogenic J and pathogenic 11 and 232 Mycoplasma hyopneumoniae strains. Vet Res 2018; 49:45. [PMID: 29801517 PMCID: PMC5970506 DOI: 10.1186/s13567-018-0541-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Information on the in vitro growth of pathogenic and non-pathogenic Mycoplasma hyopneumoniae (M. hyopneumoniae) strains is scarce and controversial. Despite its limitations, the colour changing units (CCU) assay is still considered the golden standard titration technique for M. hyopneumoniae culture. Thus, the aims of the present study were: (1) to describe the growth dynamics and kinetics of pathogenic and non-pathogenic M. hyopneumoniae strains, and (2) to monitor the strains’ daily growth by ATP luminometry, CCU, colony forming units (CFU), and DNA quantification by real time quantitative PCR (qPCR) and by fluorescent double-stranded DNA (dsDNA) staining, to evaluate them as putative titration methodologies. The growth of the non-pathogenic J (ATCC®25934™) type strain and the pathogenic 11 (ATCC®25095™) reference strain and 232 strain was modelled by the Gompertz model. Globally, all three-strain cultures showed the same growing phases as well as similar maximal titres within a particular technique, but for CFU. However, the J strain displayed the fastest growing. During the logarithmic phase of growing, CCU, ATP and M. hyopneumoniae copy titres were strongly and linearly associated, and correlation between techniques could be reliably established. In conclusion, real-time culture titration by means of ATP or molecular assays was useful to describe the in vitro growth of the tested strains. Knowledge about the in vitro growth behaviour of a specific strain in a specific medium may provide several advantages, including information about the time required to reach maximal titres by the culture. Noteworthy, the obtained results refers to the three strains used, so extrapolation to other M. hyopneumoniae strains or culture conditions should be made cautiously.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG (BI VRC), 30559, Hannover, Germany
| | - Arkadius Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100, Puławy, Poland
| | - Rocio León-Kempis
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG (BI VRC), 30559, Hannover, Germany
| | - Ana Pérez de Rozas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, UAB-IRTA), Campus de la, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Sanitati Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
47
|
Yu Y, Wang H, Wang J, Feng Z, Wu M, Liu B, Xin J, Xiong Q, Liu M, Shao G. Elongation Factor Thermo Unstable (EF-Tu) Moonlights as an Adhesin on the Surface of Mycoplasma hyopneumoniae by Binding to Fibronectin. Front Microbiol 2018; 9:974. [PMID: 29867877 PMCID: PMC5962738 DOI: 10.3389/fmicb.2018.00974] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma hyopneumoniae is a colonizing respiratory pathogen that can cause great economic losses to the pig industry worldwide. Although putative virulence factors have been reported, the pathogenesis of this species remains unclear. Here, we used the virulent M. hyopneumoniae strain 168 to infect swine tracheal epithelial cells (STEC) to identify the infection-associated factors by two-dimensional electrophoresis (2-DE). Whole proteins of M. hyopneumoniae were obtained and compared with samples cultured in broth. Six differentially expressed proteins with an increase in abundance of ≥1.5 in the cell infection group were successfully identified. A String network of virulence-associated proteins showed that all the six differential abundance proteins were involved in virulence of M. hyopneumoniae. One of the most important upregulated hubs in this network, elongation factor thermo unstable (EF-Tu), which showed a relatively higher expression in M. hyopneumoniae-infected STEC and obtained a higher score on mass spectrometry was successfully recombined. In addition to its canonical enzymatic activities in protein synthesis, EF-Tu was also reported to be located on the cell surface as an important adhesin in many other pathogens. The cell surface location of EF-Tu was then observed in M. hyopneumoniae with flow cytometry. Recombinant EF-Tu (rEF-Tu) was found to be able to adhere to STEC and anti-rEF-Tu antibody enclosed M. hyopneumoniae decreased adherence to STEC. In addition, surface plasmon resonance (SPR) analysis showed that rEF-Tu could bind to fibronectin with a specific and moderately strong interaction, a dissociation constant (KD) of 605 nM. Furthermore, the block of fibronectin in STEC also decreased the binding of M. hyopneumoniae to the cell surface. Collectively, these data imply EF-Tu as an important adhesin of M. hyopneumoniae and fibronectin as an indispensable receptor on STEC. The binding between EF-Tu with fibronectin contributes to the adhesion of M. hyopneumoniae to STEC. HIGHLIGHTSElongation factor thermo unstable (EF-Tu) exists on the cell surface of M. hyopneumoniae. EF-Tu moonlights as an adhesin of M. hyopneumoniae. The adhesive effect of EF-Tu is partly meditated by fibronectin.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongen Wang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Animal Science and Technology, Shanxi Agricultural University, Taigu, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Meng Wu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Beibei Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiuqing Xin
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine & National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
48
|
Raymond BBA, Madhkoor R, Schleicher I, Uphoff CC, Turnbull L, Whitchurch CB, Rohde M, Padula MP, Djordjevic SP. Extracellular Actin Is a Receptor for Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2018. [PMID: 29535975 PMCID: PMC5835332 DOI: 10.3389/fcimb.2018.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular β-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target β-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ranya Madhkoor
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ina Schleicher
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Lynne Turnbull
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cynthia B Whitchurch
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthew P Padula
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Proteomics Core Facility, University of Technology, Sydney, NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Proteomics Core Facility, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
49
|
Maes D, Sibila M, Kuhnert P, Segalés J, Haesebrouck F, Pieters M. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis 2017; 65 Suppl 1:110-124. [PMID: 28834294 DOI: 10.1111/tbed.12677] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Indexed: 02/07/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary pathogen of enzootic pneumonia, a chronic respiratory disease in pigs. Infections occur worldwide and cause major economic losses to the pig industry. The present paper reviews the current knowledge on M. hyopneumoniae infections, with emphasis on identification and analysis of knowledge gaps for optimizing control of the disease. Close contact between infected and susceptible pigs is the main route of M. hyopneumoniae transmission. Management and housing conditions predisposing for infection or disease are known, but further research is needed to better understand M. hyopneumoniae transmission patterns in modern pig production systems, and to assess the importance of the breeding population for downstream disease control. The organism is primarily found on the mucosal surface of the trachea, bronchi and bronchioles. Different adhesins and lipoproteins are involved in the adherence process. However, a clear picture of the virulence and pathogenicity of M. hyopneumoniae is still missing. The role of glycerol metabolism, myoinositol metabolism and the Mycoplasma Ig binding protein-Mycoplasma Ig protease system should be further investigated for their contribution to virulence. The destruction of the mucociliary apparatus, together with modulating the immune response, enhances the susceptibility of infected pigs to secondary pathogens. Clinical signs and severity of lesions depend on different factors, such as management, environmental conditions and likely also M. hyopneumoniae strain. The potential impact of strain variability on disease severity is not well defined. Diagnostics could be improved by developing tests that may detect virulent strains, by improving sampling in live animals and by designing ELISAs allowing discrimination between infected and vaccinated pigs. The currently available vaccines are often cost-efficient, but the ongoing research on developing new vaccines that confer protective immunity and reduce transmission should be continued, as well as optimization of protocols to eliminate M. hyopneumoniae from pig herds.
Collapse
Affiliation(s)
- D Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - P Kuhnert
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - J Segalés
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Haesebrouck
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
50
|
Pieters M, Daniels J, Rovira A. Comparison of sample types and diagnostic methods for in vivo detection of Mycoplasma hyopneumoniae during early stages of infection. Vet Microbiol 2017; 203:103-109. [PMID: 28619131 DOI: 10.1016/j.vetmic.2017.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Detection of Mycoplasma hyopneumoniae in live pigs during the early stages of infection is critical for timely implementation of control measures, but is technically challenging. This study compared the sensitivity of various sample types and diagnostic methods for detection of M. hyopneumoniae during the first 28days after experimental exposure. Twenty-one 8-week old pigs were intra-tracheally inoculated on day 0 with M. hyopneumoniae strain 232. Two age matched pigs were mock inoculated and maintained as negative controls. On post-inoculation days 0, 2, 5, 9, 14, 21 and 28, nasal swabs, laryngeal swabs, tracheobronchial lavage fluid, and blood samples were obtained from each pig and oral fluid samples were obtained from each room in which pigs were housed. Serum samples were assayed by ELISA for IgM and IgG M. hyopneumoniae antibodies and C-reactive protein. All other samples were tested for M. hyopneumoniae DNA by species-specific real-time PCR. Serum antibodies (IgG) to M. hyopneumoniae were detected in challenge-inoculated pigs on days 21 and 28. M. hyopneumoniae DNA was detected in samples from experimentally inoculated pigs beginning at 5days post-inoculation. Laryngeal swabs at all samplings beginning on day 5 showed the highest sensitivity for M. hyopneumoniae DNA Detection, while oral fluids showed the lowest sensitivity. Although laryngeal swabs are not considered the typical M. hyopneumoniae diagnostic sample, under the conditions of this study laryngeal swabs tested by PCR proved to be a practical and reliable diagnostic sample for M. hyopneumoniae detection in vivo during early-stage infection.
Collapse
Affiliation(s)
- Maria Pieters
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA.
| | - Jason Daniels
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA; Present address: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Albert Rovira
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA
| |
Collapse
|