1
|
Viana LPS, Pinheiro LR, Petrillo LW, Medeiros IG, Rizo TG, Modolo LV, da Silva CM, de Fatima Â. Hydroxamic Acids Derivatives: Greener Synthesis, Antiureolytic Properties and Potential Medicinal Chemistry Applications - A Concise Review. Curr Top Med Chem 2025; 25:141-161. [PMID: 39484765 DOI: 10.2174/0115680266322401241021073138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 11/03/2024]
Abstract
Hydroxamic acids (HAs) are chemical compounds characterized by the general structure RCONR'OH, where R and R' can denote hydrogen, aryl, or alkyl groups. Recognized for their exceptional chelating capabilities, HAs can form mono or bidentate complexes through oxygen and nitrogen atoms, rendering them remarkably versatile. These distinctive structural attributes have paved the way for a broad spectrum of medicinal applications for HAs, among which their pivotal role as inhibitors of essential Ni(II) and Zn(II)-containing metalloenzymes. In 1962, a significant breakthrough occurred when Kobashi and colleagues identified hydroxamic acids (HAs) as potent urease inhibitors. Subsequent research has increasingly underscored their capability in combatting infections induced by ureolytic microorganisms, including Helicobacter pylori and Proteus mirabilis. However, comprehensive reviews exploring their potential applications in treating infections caused by ureolytic microorganisms remain scarce in the scientific literature. Thus, this minireview aims to bridge this gap by offering a systematic exploration of the subject. Furthermore, it seeks to explore the significant advancements in obtaining hydroxamic acid derivatives through environmentally sustainable methodologies.
Collapse
Affiliation(s)
- Luciana P S Viana
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luan R Pinheiro
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lorenzo W Petrillo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabela G Medeiros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Taina G Rizo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cleiton M da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo de Fatima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Xun M, Feng Z, Li H, Yao M, Wang H, Wei R, Jia J, Fan Z, Shi X, Lv Z, Zhang G. In vitro anti-Helicobacter pylori activity and antivirulence activity of cetylpyridinium chloride. PLoS One 2024; 19:e0300696. [PMID: 38603679 PMCID: PMC11008818 DOI: 10.1371/journal.pone.0300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
The primary treatment method for eradicating Helicobacter pylori (H. pylori) infection involves the use of antibiotic-based therapies. Due to the growing antibiotic resistance of H. pylori, there has been a surge of interest in exploring alternative therapies. Cetylpyridinium chloride (CPC) is a water-soluble and nonvolatile quaternary ammonium compound with exceptional broad-spectrum antibacterial properties. To date, there is no documented or described specific antibacterial action of CPC against H. pylori. Therefore, this study aimed to explore the in vitro activity of CPC against H. pylori and its potential antibacterial mechanism. CPC exhibited significant in vitro activity against H. pylori, with MICs ranging from 0.16 to 0.62 μg/mL and MBCs ranging from 0.31 to 1.24 μg/mL. CPC could result in morphological and physiological modifications in H. pylori, leading to the suppression of virulence and adherence genes expression, including flaA, flaB, babB, alpA, alpB, ureE, and ureF, and inhibition of urease activity. CPC has demonstrated in vitro activity against H. pylori by inhibiting its growth, inducing damage to the bacterial structure, reducing virulence and adherence factors expression, and inhibiting urease activity.
Collapse
Affiliation(s)
- Mingjin Xun
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zhong Feng
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hui Li
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haibo Wang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Ruixia Wei
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Junwei Jia
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zimao Fan
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Xiaoyan Shi
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zhanzhu Lv
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Guimin Zhang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| |
Collapse
|
3
|
Basu Thakur P, Mrotz VJ, Maines TR, Belser JA. Ferrets as a Mammalian Model to Study Influenza Virus-Bacteria Interactions. J Infect Dis 2024; 229:608-615. [PMID: 37739789 PMCID: PMC10922577 DOI: 10.1093/infdis/jiad408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
Ferrets represent an invaluable model for the study of influenza virus pathogenicity and transmissibility. Ferrets are also employed for the study of bacterial pathogens that naturally infect humans at different anatomical sites. While viral and bacterial infection studies in isolation using animal models are important for furthering our understanding of pathogen biology and developing improved therapeutics, it is also critical to extend our knowledge to pathogen coinfections in vivo, to more closely examine interkingdom dynamics that may contribute to overall disease outcomes. We discuss how ferrets have been employed to study a diverse range of both influenza viruses and bacterial species and summarize key studies that have utilized the ferret model for primary influenza virus challenge followed by secondary bacterial infection. These copathogenesis studies have provided critical insight into the dynamic interplay between these pathogens, underscoring the utility of ferrets as a model system for investigating influenza virus-bacteria interactions.
Collapse
Affiliation(s)
- Poulami Basu Thakur
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Victoria J Mrotz
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taronna R Maines
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Muranishi K, Ishimori K, Uchida T. Regulation of the expression of the nickel uptake system in Vibrio cholerae by iron and heme via ferric uptake regulator (Fur). J Inorg Biochem 2022; 228:111713. [PMID: 35032924 DOI: 10.1016/j.jinorgbio.2022.111713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022]
Abstract
Fur (ferric uptake regulator) is a transcription factor that regulates expression of downstream genes containing a specific Fe2+-binding sequence called the Fur box. In Vibrio cholerae, a Fur box is located upstream of the nik operon, which is responsible for nickel uptake, suggesting that its expression is regulated by Fur. However, there are no reports that Ni2+ induces expression of Fur box genes. Accordingly, we here investigated whether Ni2+ or Fe2+ binds to Fur to regulate expression of the nik operon. We found that Fur binds to the Fur box in the presence of Fe2+ with a dissociation constant (Kd) of 1.2 μM, whereas only non-specific binding was observed in the presence of Ni2+. Thus, Fur-mediated expression of the nik operon is dependent on Fe2+, but not Ni2+. Since most iron in cells exists as heme, we examined the effect of heme on the Fur box binding activity of V. cholerae Fur (VcFur). Addition of heme to the VcFur-Fur box complex induced dissociation of VcFur from the Fur box, indicating that expression of the V. cholerae nik operon is regulated by both iron and heme. Furthermore, VCA1098, a nik operon-encoded protein, bound heme with a Kd of 1.3 μM. Collectively, our results suggest that the V. cholerae nik operon is involved not only in nickel uptake but also in heme uptake, and depends on iron and heme concentrations within bacteria.
Collapse
Affiliation(s)
- Kazuyoshi Muranishi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
5
|
Imran M, Waqar S, Ogata K, Ahmed M, Noreen Z, Javed S, Bibi N, Bokhari H, Amjad A, Muddassar M. Identification of novel bacterial urease inhibitors through molecular shape and structure based virtual screening approaches. RSC Adv 2020; 10:16061-16070. [PMID: 35493653 PMCID: PMC9052855 DOI: 10.1039/d0ra02363a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
The enzyme urease is an essential colonizing factor of the notorious carcinogenic pathogen Helicobacter pylori (H. pylori), conferring acid resistance to the bacterium. Recently, antibiotic resistant strains have emerged globally with little to no alternative treatment available. In this study we propose novel urease inhibitors capable of controlling infection by H. pylori and other pathogenic bacteria. We employed hierarchal computational approaches to screen new urease inhibitors from commercial chemical databases followed by in vitro anti-urease assays. Initially ROCS shape-based screening was performed using o-chloro-hippurohydroxamic acid followed by molecular docking studies. Out of 1.83 million compounds, 1700 compounds were retrieved based on having a ROCS Tanimoto combo score in the range of values from 1.216 to 1.679. These compounds were further screened using molecular docking simulations and the 100 top ranked compounds were selected based on their Glide score. After structural classification of the top ranked compounds, eight compounds were selected and purchased for biological assays. The plausible binding modes of the most active compounds were also confirmed using molecular dynamics (MD) simulations. Compounds 1, 2 and 3 demonstrated good urease inhibitory properties (IC50 = 0.32, 0.68 and 0.42 μM) compared to the other compounds. Enzyme kinetic studies revealed that compounds 1 and 3 are competitive inhibitors while 2 is a mixed type inhibitor of the urease enzyme. Cell based urease inhibition and MTT assay showed that these compounds blocked H. pylori urease activity, affecting bacterial growth and acid tolerance. The enzyme urease is an essential colonizing factor of the notorious carcinogenic pathogen Helicobacter pylori (H. pylori), conferring acid resistance to the bacterium.![]()
Collapse
Affiliation(s)
- Muhammad Imran
- School of Life Sciences, FC College University Lahore Pakistan
| | - Saba Waqar
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Koji Ogata
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University 1-1-1 Daigaku-Dori, Sanyo-Onoda Yamaguchi 859-0884 Japan
| | | | - Zobia Noreen
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Sundus Javed
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Asma Amjad
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| |
Collapse
|
6
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
7
|
Guo L, Hong D, Wang S, Zhang F, Tang F, Wu T, Chu Y, Liu H, He M, Yang H, Yin R, Liu K. Therapeutic Protection Against H. pylori Infection in Mongolian Gerbils by Oral Immunization With a Tetravalent Epitope-Based Vaccine With Polysaccharide Adjuvant. Front Immunol 2019; 10:1185. [PMID: 31191547 PMCID: PMC6546824 DOI: 10.3389/fimmu.2019.01185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Urease is an effective target for design of a therapeutic epitope vaccine against Helicobacter pylori (H. pylori). In our previous studies, an epitope vaccine CTB-UE containing Th and B epitopes from H. pylori urease was constructed, and the CTB-UE vaccine could provide therapeutic effect on H. pylori infection in mice. However, a multivalent vaccine, combining different antigens participating in different aspects of H. pylori colonization and pathogenesis, may be more effective as a therapeutic vaccine than a univalent vaccine targetting urease. Therefore, a multivalent epitope vaccine FVpE, containing Th1-type immune adjuvant NAP, three selected functional fragments from CagA and VacA, and an urease multi-epitope peptide (UE) from CTB-UE, was constructed in this study and expected to obtain better sterilizing immunity than the univalent epitope vaccine CTB-UE. The therapeutic effect of multivalent epitope vaccine FVpE with polysaccharide adjuvant (PA) was evaluated in H. pylori-infected Mongolian gerbil model. The results showed that both FvpE and CTB-UE vaccine could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect on H. pylori urease activity. However, only FVpE could induce high levels of specific antibodies to CagA, VacA, and NAP. In addition, oral therapeutic immunization with FVpE plus PA significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils compared with oral immunization with CTB-UE plus PA, or FVpE only, and the FVpE vaccine with PA even exhibited sterilizing immunity. The protection of FVpE was related to the mixed CD4+ T cell responses and epitope-specific antibodies against various H. pylori antigens. These results indicate that a multivalent epitope vaccine targetting various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dantong Hong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shue Wang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Fan Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Tao Wu
- Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuankui Chu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Meng He
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Runting Yin
- Center for Cell Therapy, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Mannion A, Shen Z, Fox JG. Comparative genomics analysis to differentiate metabolic and virulence gene potential in gastric versus enterohepatic Helicobacter species. BMC Genomics 2018; 19:830. [PMID: 30458713 PMCID: PMC6247508 DOI: 10.1186/s12864-018-5171-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background The genus Helicobacter are gram-negative, microaerobic, flagellated, mucus-inhabiting bacteria associated with gastrointestinal inflammation and classified as gastric or enterohepatic Helicobacter species (EHS) according to host species and colonization niche. While there are over 30 official species, little is known about the physiology and pathogenic mechanisms of EHS, which account for most in the genus, as well as what genetic factors differentiate gastric versus EHS, given they inhabit different hosts and colonization niches. The objective of this study was to perform a whole-genus comparative analysis of over 100 gastric versus EHS genomes in order to identify genetic determinants that distinguish these Helicobacter species and provide insights about their evolution/adaptation to different hosts, colonization niches, and mechanisms of virulence. Results Whole-genome phylogeny organized Helicobacter species according to their presumed gastric or EHS classification. Analysis of orthologs revealed substantial heterogeneity in physiological and virulence-related genes between gastric and EHS genomes. Metabolic reconstruction predicted that unlike gastric species, EHS appear asaccharolytic and dependent on amino/organic acids to fuel metabolism. Additionally, gastric species lack de novo biosynthetic pathways for several amino acids and purines found in EHS and instead rely on environmental uptake/salvage pathways. Comparison of virulence factor genes between gastric and EHS genomes identified overlapping yet distinct profiles and included canonical cytotoxins, outer membrane proteins, secretion systems, and survival factors. Conclusions The major differences in predicted metabolic function suggest gastric species and EHS may have evolved for survival in the nutrient-rich stomach versus the nutrient-devoid environments, respectively. Contrasting virulence factor gene profiles indicate gastric species and EHS may utilize different pathogenic mechanisms to chronically infect hosts and cause inflammation and tissue damage. The findings from this study provide new insights into the genetic differences underlying gastric versus EHS and support the need for future experimental studies to characterize these pathogens. Electronic supplementary material The online version of this article (10.1186/s12864-018-5171-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Scopel-Guerra A, Olivera-Severo D, Staniscuaski F, Uberti AF, Callai-Silva N, Jaeger N, Porto BN, Carlini CR. The Impact of Helicobacter pylori Urease upon Platelets and Consequent Contributions to Inflammation. Front Microbiol 2017; 8:2447. [PMID: 29312166 PMCID: PMC5733092 DOI: 10.3389/fmicb.2017.02447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Gastric infection by Helicobacter pylori is considered a risk factor for gastric and duodenal cancer, and extragastric diseases. Previous data have shown that, in a non-enzymatic way, H. pylori urease (HPU) activates neutrophils to produce ROS and also induces platelet aggregation, requiring ADP secretion modulated by the 12-lipoxygenase pathway, a signaling cascade also triggered by the physiological agonist collagen. Here we investigated further the effects on platelets of recombinant versions of the holoenzyme HPU, and of its two subunits (HpUreA and HpUreB). Although HpUreA had no aggregating activity on platelets, it partially inhibited collagen-induced aggregation. HpUreB induced platelet aggregation in the nanomolar range, and also interfered dose-dependently on both collagen- and ADP-induced platelet aggregation. HPU-induced platelet aggregation was inhibited by antibodies against glycoprotein VI (GPVI), the main collagen receptor in platelets. Flow cytometry analysis revealed exposure of P-selectin in HPU-activated platelets. Anti-glycoprotein IIbIIIa (GPIIbIIIa) antibodies increased the binding of FITC-labeled HPU to activated platelets, whereas anti-GPVI did not. Evaluation of post-transcriptional events in HPU-activated platelets revealed modifications in the pre-mRNA processing of pro-inflammatory proteins, with increased levels of mRNAs encoding IL-1β and CD14. We concluded that HPU activates platelets probably through its HpUreB subunit. Activation of platelets by HPU turns these cells into a pro-inflammatory phenotype. Altogether, our data suggest that H. pylori urease, besides allowing bacterial survival within the gastric mucosa, may have an important, and so far overlooked, role in gastric inflammation mediated by urease-activated neutrophils and platelets.
Collapse
Affiliation(s)
- Adriele Scopel-Guerra
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deiber Olivera-Severo
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biology, Universidade Regional Integrada do Alto Uruguai e das Missões, São Luiz Gonzaga, Brazil
| | - Fernanda Staniscuaski
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Molecular Biology and Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Augusto F Uberti
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Biology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Callai-Silva
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Jaeger
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bárbara N Porto
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia R Carlini
- Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Guo L, Yin R, Xu G, Gong X, Chang Z, Hong D, Liu H, Ding S, Han X, Li Y, Tang F, Liu K. Immunologic properties and therapeutic efficacy of a multivalent epitope-based vaccine against four Helicobacter pylori adhesins (urease, Lpp20, HpaA, and CagL) in Mongolian gerbils. Helicobacter 2017; 22. [PMID: 28851031 DOI: 10.1111/hel.12428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Therapeutic vaccination is a desirable alternative for controlling Helicobacter pylori (H. pylori) infection. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and adhesins, which are on the surface of H. pylori, play a pivotal role in binding to human gastric mucosa. MATERIALS AND METHODS In the present study, we constructed a multivalent epitope-based vaccine named CFAdE with seven carefully selected antigenic fragments from four H. pylori adhesins (urease, Lpp20, HpaA and CagL). The specificity, immunogenicity and ability to produce neutralizing antibodies of CFAdE were evaluated in BALB/c mice. After that, its therapeutic efficacy and protective immune mechanisms were explored in H. pylori-infected Mongolian gerbils. RESULTS The results indicated that CFAdE could induce comparatively high levels of specific antibodies against urease, Lpp20, HpaA and CagL. Additionally, oral therapeutic immunization with CFAdE plus polysaccharide adjuvant (PA) significantly decreased H. pylori colonization compared with oral immunization with urease plus PA, and the protection was correlated with IgG and sIgA antibody and antigen-specific CD4+ T cells. CONCLUSIONS This study indicated that the multivalent epitope-based vaccine, which targeted multiple adhesins in adherence of H. pylori to the gastric mucosa, is more effective than the univalent vaccine targeting urease only. This multivalent epitope-based vaccine may be a promising therapeutic candidate vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Runting Yin
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaojuan Gong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Zisong Chang
- Dr. Notghi Contract Research GmbH, Berlin, Germany
| | - Dantong Hong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shuqin Ding
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xuebo Han
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuan Li
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
11
|
Péré-Védrenne C, Flahou B, Loke MF, Ménard A, Vadivelu J. Other Helicobacters, gastric and gut microbiota. Helicobacter 2017; 22 Suppl 1. [PMID: 28891140 DOI: 10.1111/hel.12407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current article is a review of the most important and relevant literature published in 2016 and early 2017 on non-Helicobacter pylori Helicobacter infections in humans and animals, as well as interactions between H. pylori and the microbiota of the stomach and other organs. Some putative new Helicobacter species were identified in sea otters, wild boars, dogs, and mice. Many cases of Helicobacter fennelliae and Helicobacter cinaedi infection have been reported in humans, mostly in immunocompromised patients. Mouse models have been used frequently as a model to investigate human Helicobacter infection, although some studies have investigated the pathogenesis of Helicobacters in their natural host, as was the case for Helicobacter suis infection in pigs. Our understanding of both the gastric and gut microbiome has made progress and, in addition, interactions between H. pylori and the microbiome were demonstrated to go beyond the stomach. Some new approaches of preventing Helicobacter infection or its related pathologies were investigated and, in this respect, the probiotic properties of Saccharomyces, Lactobacillus and Bifidobacterium spp. were confirmed.
Collapse
Affiliation(s)
- Christelle Péré-Védrenne
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,University of Bordeaux, Bacteriology Laboratory, Bordeaux, France
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Armelle Ménard
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,University of Bordeaux, Bacteriology Laboratory, Bordeaux, France
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Abstract
Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress. Helicobacter pylori is a bacterial pathogen that chronically infects half the global population and is a major contributor to the development of peptic ulcers and stomach cancer. H. pylori has evolved to survive in the stomach and one important adaptation is the enzyme urease. The bacteria cannot establish an infection in the host without this enzyme, and although widely postulated, the requirement of urease for chronic infection of the host has not been tested experimentally as conventional urease mutants are incapable of colonization. To overcome this constraint, a genetic system was introduced that allowed for the making of H. pylori strains in which urease expression could be turned off after the bacteria have colonised the stomach. We show for the first time that this enzyme is not only important for initial colonization but that it is also very important for maintaining chronic infection. We also show that if urease is turned off, the bacterium can mutate several different genes in order to restore urease expression. The genetic approach described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into how the bacterium is able to avoid clearance by the immune system and how it is able to adapt to changing biological environments.
Collapse
|
13
|
Shen Z, Batac F, Mannion A, Miller MA, Bakthavatchalu V, Ho C, Manning S, Paster BJ, Fox JG. Novel urease-negative Helicobacter sp. 'H. enhydrae sp. nov.' isolated from inflamed gastric tissue of southern sea otters. DISEASES OF AQUATIC ORGANISMS 2017; 123:1-11. [PMID: 28177288 DOI: 10.3354/dao03082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A total of 31 sea otters Enhydra lutris nereis found dead or moribund (and then euthanized) were necropsied in California, USA. Stomach biopsies were collected and transected with equal portions frozen or placed in formalin and analyzed histologically and screened for Helicobacter spp. in gastric tissue. Helicobacter spp. were isolated from 9 sea otters (29%); 58% (18 of 31) animals were positive for helicobacter by PCR. The Helicobacter sp. was catalase- and oxidase-positive and urease-negative. By electron microscopy, the Helicobacter sp. had lateral and polar sheathed flagella and had a slightly curved rod morphology. 16S and 23S rRNA sequence analyses of all 'H. enhydrae' isolates had similar sequences, which clustered as a novel Helicobacter sp. closely related to H. mustelae (96-97%). The genome sequence of isolate MIT 01-6242 was assembled into a single ~1.6 Mb long contig with a 40.8% G+C content. The annotated genome contained 1699 protein-coding sequences and 43 RNAs, including 65 genes homologous to known Helicobacter spp. and Campylobacter spp. virulence factors. Histological changes in the gastric tissues extended from mild cystic degeneration of gastric glands to severe mucosal erosions and ulcers. Silver stains of infected tissues demonstrated slightly curved bacterial rods at the periphery of the gastric ulcers and on the epithelial surface of glands. The underlying mucosa and submucosa were infiltrated by low numbers of neutrophils, macrophages, and lymphocytes, with occasional lymphoid aggregates and well-defined lymphoid follicles. This is the second novel Helicobacter sp., which we have named 'H. enhydrae', isolated from inflamed stomachs of mustelids, the first being H. mustelae from a ferret.
Collapse
Affiliation(s)
- Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Flahou B, Haesebrouck F, Smet A. Non-Helicobacter pylori Helicobacter Infections in Humans and Animals. HELICOBACTER PYLORI RESEARCH 2016:233-269. [DOI: 10.1007/978-4-431-55936-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Lv X, Song H, Yang J, Li T, Xi T, Xing Y. A multi-epitope vaccine CTB-UE relieves Helicobacter pylori-induced gastric inflammatory reaction via up-regulating microRNA-155 to inhibit Th17 response in C57/BL6 mice model. Hum Vaccin Immunother 2015; 10:3561-9. [PMID: 25483699 DOI: 10.4161/hv.36096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vaccination is an effective mean of preventing infectious diseases, including those caused by Helicobacter pylori. Th17 cell responses are critical for the pathogenesis of Helicobacter pylori infection. In view of Th17 responses to multi-epitope vaccine CTB-UE, the IL-17 production in antiserum was examined. CTB-UE immunization decreased IL-17 production, implying that Th17 responses may be inhibited. Furthermore, IL-17 aggravated GES-1 cell injury induced by H. pylori SS1; In contrast, CTB-UE antiserum could alleviate this cell injury, which suggesting that CTB-UE can protect GES-1 cell infected with H. pylori SS1 by inhibiting Th17 responses. Treatment of mice with CTB-UE significantly reduced the H. pylori burden and inflammation in the stomach. On the other hand, the production of IL-17 in the stomach in H. pylori-infected mice was increased; but the production of IL-17 in the stomach was decreased after treatment with CTB-UE. Furthermore, the expression of microRNA-155 in gastric tissue was significantly up-regulated. The results suggested that CTB-UE could relieve the H. pylori-induced gastric inflammatory reaction via up-regulating microRNA-155 to inhibit Th17 responses, implying that the microRNA-155/IL-17 pathway was involved. Further study is required to elucidate the relationship between miRNA-155 and IL-17. We found that the production of IL-17 was significantly increased after the expression of miRNA-155 being down-regulated; however, the production of IL-17 was significantly decreased after the expression of miRNA-155 being upregulated.
Collapse
Key Words
- ATCC, American Type Culture Collection
- CTB, Cholera toxin B subunit
- E. coli, Escherichia coli
- ELISA, Enzyme-linkedimmunosorbent assay
- Epitope vaccine
- H. pylori, Helicobacter pylori
- HD, High-dose group
- Helicobacter pylori
- IL-17
- IL-17, Interleukin-17
- LD, Low-dose group
- Lipo-2000, Lipofectamine 2000
- MC, Model control group
- MD, Middle-dose group
- NC, Normal control group
- OD, Optical density
- PAGE, Polyacrylamide gel electrophoresis
- PCR, Polymerase chain reaction
- RT-PCR, Reverse transcription polymerase chain reaction
- SDS, Sodium dodecyl sulfate
- Th, Helper T lymphocyte
- Th1, Type 1 of helper T lymphocyte
- Th17
- Th17, Type 17 of helper T lymphocyte
- Th2, Type 2 of helper T lymphocytel
- UreA, Urease A subunit
- UreB, Urease B subunit
- cDNA, Complementary DNA
- dNTP, Deoxyribonucleoside triphosphate
- ddH2O, Double distilled water
- miR-155, microRNA-155
- miRNA, microRNA
- microRNA-155
Collapse
Affiliation(s)
- Xiaobo Lv
- a Biotechnology Center; School of Life Science and Technology ; China Pharmaceutical University , Nanjing , China
| | | | | | | | | | | |
Collapse
|
16
|
Aconitase Functions as a Pleiotropic Posttranscriptional Regulator in Helicobacter pylori. J Bacteriol 2015; 197:3076-86. [PMID: 26170414 DOI: 10.1128/jb.00529-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Posttranscriptional regulation in bacteria has increasingly become recognized as playing a major role in response to environmental stimuli. Aconitase is a bifunctional protein that not only acts enzymatically but also can be a posttranscriptional regulator. To investigate protein expression regulated by Helicobacter pylori AcnB in response to oxidative stress, a global proteomics study was conducted wherein the ΔacnB strain was compared to the parent strain when both strains were O2 stressed. Many proteins, including some involved in urease activity, in combating oxidative stress, and in motility, were expressed at a significantly lower level in the ΔacnB strain. A bioinformatics prediction tool was used to identify putative targets for aconitase-mediated regulation, and electrophoretic mobility shift assays demonstrated that apo-AcnB is able to bind to RNA transcripts of hpn (encoding a nickel-sequestering protein), ahpC (encoding alkyl hydroperoxide reductase), and flgR (encoding flagellum response regulator). Compared to the wild type (WT), the ΔacnB strain had decreased activities of the nickel-containing enzymes urease and hydrogenase, and this could be correlated with lower total nickel levels within ΔacnB cells. Binding of apo-AcnB to the hpn 5' untranslated region (UTR) may inhibit the expression of Hpn. In agreement with the finding that AcnB regulates the expression of antioxidant proteins such as AhpC, ΔacnB cells displayed oxidative-stress-sensitive phenotypes. The ΔacnB strain has a lesser motility ability than the WT strain, which can likely be explained by the functions of AcnB on the FlgRS-RpoN-FlgE regulatory cascade. Collectively, our results suggest a global role for aconitase as a posttranscriptional regulator in this gastric pathogen. IMPORTANCE Bacterial survival depends on the ability of the cell to sense and respond to a variety of environmental changes. For Helicobacter pylori, responding to environmental stimuli within the gastric niche is essential for persistence and host colonization. However, there is much to be learned about the regulatory mechanisms that H. pylori employs to orchestrate its response to different stimuli. In this study, we explore the role of aconitase, a bifunctional protein that has been found to act as a posttranscriptional regulator in several other bacteria. Our results shed light on the magnitude of aconitase-mediated regulation in H. pylori, and we propose that aconitase acts as a global regulator of key genes involved in virulence.
Collapse
|
17
|
Xing Y, Liu W, Li X, Guo L, Lv X, Xi T. Immunogenicity characterization of the multi-epitope vaccine CTB-UE with chitosan-CpG as combination adjuvants against Helicobacter pylori. Biochem Biophys Res Commun 2015; 462:269-74. [PMID: 25957472 DOI: 10.1016/j.bbrc.2015.04.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/28/2015] [Indexed: 11/28/2022]
Abstract
Urease is considered as an excellent vaccine candidate antigen against Helicobacter pylori (H. pylori) infection. Our previous study reported a novel multi-epitope vaccine CTB-UE which was composed of the mucosal adjuvant cholera toxin B subunit (CTB) and five cell epitopes from urease subunits. Murine experiments indicated that it could induce cellular and humoral immune responses intensively and attenuate H. pylori infection effectively in mice model. However, the body expression and lack of suitable adjuvant of this epitope vaccine restricted its application. In this study, new recombinant Escherichia coli strains was established to increase the solubility by fusing thioredoxin (Trx) and the combination adjuvants which composed of the chitosan and CpG were adopted to enhance the immunogenicity of CTB-UE for oral immunization. The experimental results indicated that the levels of IgG2a, IgG1 and IgA in the serum and the levels of sIgA in stomach, intestine and feces were significantly higher in the vaccinated group compared with the model control group. Additionally, chitosan-CpG combination adjuvants changed the ratio of IgG2a/IgG1 and conferred Th1/Th17-mediated protective immune responses. These results demonstrate that the oral vaccine with chitosan-CpG as combination adjuvants may be a promising vaccine candidate against H. pylori infection.
Collapse
Affiliation(s)
- Yingying Xing
- Biotechnology Center, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Liu
- Biotechnology Center, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaokang Li
- Biotechnology Center, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Le Guo
- School of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaobo Lv
- Biotechnology Center, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Xi
- Biotechnology Center, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Therapeutic efficacy of the multi-epitope vaccine CTB-UE against Helicobacter pylori infection in a Mongolian gerbil model and its microRNA-155-associated immuno-protective mechanism. Vaccine 2014; 32:5343-52. [PMID: 25093281 DOI: 10.1016/j.vaccine.2014.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/11/2014] [Accepted: 07/09/2014] [Indexed: 12/24/2022]
Abstract
Vaccination is an effective means of preventing infectious diseases, including those caused by Helicobacter pylori. In this study, we constructed a novel multi-epitope vaccine, CTB-UE, composed of the cholera toxin B subunit and tandem copies of the B and Th cell epitopes from the H. pylori urease A and B subunits. We evaluated the therapeutic efficacy of the multi-epitope vaccine CTB-UE against H. pylori infection in a Mongolian gerbil model and studied its immuno-protective mechanisms. The experimental results indicated that urease activity, H. pylori colonisation density, the levels of IL-8 and TNF-α in the serum, and the levels of COX-2 and NAP in gastric tissue were significantly lower and the IgG level in the serum and the IFN-γ level in spleen lymphocytes were significantly higher in the vaccinated group compared with the model control group; additionally, gastric mucosal inflammation was notably alleviated following vaccination. The results showed that CTB-UE had a good therapeutic effect on H. pylori infection. The immuno-protective mechanism was closely related to the immune response mediated by microRNA-155, the expression of which was strongly up-regulated after CTB-UE administration. The expression levels of the microRNA-155 target proteins IFN-γRα, AID, and PU.1 were significantly down-regulated; these results indicated that CTB-UE induced an immune response biased towards Th1 cells by up-regulating microRNA-155 to inhibit IFN-γRα expression and induced a humoral immune response towards B cells by up-regulating microRNA-155 to inhibit PU.1 and AID expression. These results demonstrate that the multi-epitope vaccine CTB-UE may be a promising therapeutic vaccine against H. pylori infection and is a new therapeutic tool for human use.
Collapse
|
19
|
Uberti AF, Olivera-Severo D, Wassermann GE, Scopel-Guerra A, Moraes JA, Barcellos-de-Souza P, Barja-Fidalgo C, Carlini CR. Pro-inflammatory properties and neutrophil activation by Helicobacter pylori urease. Toxicon 2013; 69:240-9. [PMID: 23466444 DOI: 10.1016/j.toxicon.2013.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/25/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023]
Abstract
The gastric pathogen Helicobacter pylori produces large amounts of urease, whose enzyme activity enables the bacterium to survive in the stomach. We have previously shown that ureases display enzyme-independent effects in mammalian models, most through lipoxygenases-mediated pathways. Here, we evaluated potential pro-inflammatory properties of H. pylori urease (HPU). Mouse paw edema and activation of human neutrophils were tested using a purified, cell-free, recombinant HPU. rHPU induced paw edema with intense neutrophil infiltration. In vitro 100 nM rHPU was chemotactic to human neutrophils, inducing production of reactive oxygen species. rHPU-activated neutrophils showed increased lifespan, with inhibition of apoptosis accompanied by alterations of Bcl-XL and Bad contents. These effects of rHPU persisted in the absence of enzyme activity. rHPU-induced paw edema, neutrophil chemotaxis and apoptosis inhibition reverted in the presence of the lipoxygenase inhibitors esculetin or AA861. Neutrophils exposed to rHPU showed increased content of lipoxygenase(s) and no alteration of cyclooxygenase(s). Altogether, our data indicate that HPU, besides allowing the bacterial survival in the stomach, could play an important role in the pathogenesis of the gastrointestinal inflammatory disease caused by H. pylori.
Collapse
Affiliation(s)
- Augusto F Uberti
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
A novel mechanism aimed at controlling urease expression in Helicobacter pylori in the presence of ample nickel is described. Higher urease activities were observed in an hp0868 mutant (than in the wild type) in cells supplemented with nickel, suggesting that the HP0868 protein (herein named Mua for modulator of urease activity) represses urease activity when nickel concentrations are ample. The increase in urease activity in the Δmua mutant was linked to an increase in urease transcription and synthesis, as shown by quantitative real-time PCR, SDS-PAGE, and immunoblotting against UreAB. Increased urease synthesis was also detected in a Δmua ΔnikR double mutant strain. The Δmua mutant was more sensitive to nickel toxicity but more resistant to acid challenge than was the wild-type strain. Pure Mua protein binds 2 moles of Ni2+ per mole of dimer. Electrophoretic mobility shift assays did not reveal any binding of Mua to the ureA promoter or other selected promoters (nikR, arsRS, 5′ ureB-sRNAp). Previous yeast two-hybrid studies indicated that Mua and RpoD may interact; however, only a weak interaction was detected via cross-linking with pure components and this could not be verified by another approach. There was no significant difference in the intracellular nickel level between wild-type and mua mutant cells. Taken together, our results suggest the HP0868 gene product represses urease transcription when nickel levels are high through an as-yet-uncharacterized mechanism, thus counterbalancing the well-described NikR-mediated activation. Urease is a nickel-containing enzyme that buffers both the cytoplasm and the periplasm of Helicobacter pylori by converting urea into ammonia and carbon dioxide. The enzyme is the most abundant protein in H. pylori, accounting for an estimated 10% of the total protein content of the cell, and it is essential for early colonization and virulence. Numerous studies have focused on the transcription of the structural ureAB genes and its control by the regulatory proteins NikR and ArsR. Here we propose that urease transcription is under the control of another Ni-binding protein besides NikR, the Mua (HP0868) protein. Our results suggest that the Mua protein represses urease transcription when nickel levels are high. This mechanism would counterbalance the NikR-mediated activation of urease and ensure that, in the presence of a high nickel concentration, urease activation is limited and does not lead to massive production of detrimental ammonia.
Collapse
|
21
|
Lee HK, Kim H, Chae HS, Choi SS, Kim HK, Cho YS, Maeng LS, Kim HN, Baik KH. Differences of urease activity and expression of associated genes according to gastric topography. Helicobacter 2011; 16:20-26. [PMID: 21241408 DOI: 10.1111/j.1523-5378.2010.00804.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND We hypothesize that pH difference between acid-secreting corpus and non-secreting antrum might influence the activity of H. pylori's urease and/or related genes. We therefore measured urease activity and the expression of amiE whose encoded protein that hydrolyzes short-chain amides to produce ammonia. MATERIALS AND METHODS Fifty-four patients were recruited into this study. Each gastroscopic biopsy specimen collected from the antrum and body of each patient was immediately used to measure urease activity using serial changes of urease activity (ammonia levels) during 60 minutes. Probe specific for amiE was labeled with a biotin nick-translation kit and was used to detect expression of these genes (mRNA) in fresh-frozen gastroscopic biopsy specimens using fluorescent in situ hybridization (FISH). RESULTS Urease activity at 60 minutes from the gastric antrum and body of all patients infected with H. pylori was 399.5 ± 490.5 and 837.9 ± 1038.9 μg/dL, respectively (p = .004). Urease activity in the antrum was correlated with H. pylori density. Urease activity or H. pylori density in the antrum was significantly correlated with chronic active inflammation; in contrast, this correlation was not found in the gastric body. The expression level of amiE was 1.5 times higher (p < .05) in the gastric body compared with the antrum. CONCLUSION Topographically, the urease activity in body was much higher than in antrum. The expression level of amiE was higher in the gastric body compared with the antrum.
Collapse
Affiliation(s)
- Hae Kyung Lee
- Department of Laboratory Medicine, Catholic University, Uijeongbu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang JY, Liu T, Guo H, Liu XF, Zhuang Y, Yu S, Chen L, Wu C, Zhao Z, Tang B, Luo P, Mao XH, Guo G, Shi Y, Zou QM. Induction of a Th17 cell response by Helicobacter pylori Urease subunit B. Immunobiology 2010; 216:803-10. [PMID: 21269729 DOI: 10.1016/j.imbio.2010.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/14/2010] [Accepted: 12/19/2010] [Indexed: 02/05/2023]
Abstract
Th17 cells represent a novel subset of CD4(+) T cells, which is associated with Helicobacter pylori infection. In the present study, we investigated the potential role of Urease subunit B (UreB) in the induction of Th17 cell response. Co-cultured splenic lymphocytes from H. pylori-infected mice with the recombinant UreB (rUreB) elevated IL-17 secretion and caused an increase in the number of Th17 cells. The expression of IL-6 and IL-23 p19 was significantly increased in rUreB-stimulated macrophages. Whole cell protein (WCP) of UreB-deficient strain (UreB(-) strain) induced less Th17 cell responses than that of wild-type strain. In addition, subcutaneous and intranasal immunization of rUreB elicited antigen-specific Th17 cell responses. Intranasal immunization of rUreB reduced H. pylori colonization in the stomach, which was closely related with the increased rUreB-specific Th17 cell responses. These results suggest that UreB is an important protein which is able to elicit Th17 cell responses against H. pylori both in vivo and in vitro.
Collapse
Affiliation(s)
- Jin-Yu Zhang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Follmer C. Ureases as a target for the treatment of gastric and urinary infections. J Clin Pathol 2010; 63:424-30. [PMID: 20418234 DOI: 10.1136/jcp.2009.072595] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urease is known to be a major contributor to pathologies induced by Helicobacter pylori and Proteus species. In H pylori, urease allows the bacteria to survive in an acidic gastric environment during colonisation, playing an important role in the pathogenesis of gastric and peptic ulcers. Ureolytic activity also results in the production of ammonia in close proximity to the gastric epithelium, causing cell damage and inflammation. In the case of Proteus species (notably Proteus mirabilis) infection, stones are formed due to the presence of ammonia and carbon dioxide released by urease action. In addition, the ammonia released is able to damage the glycosaminoglycan layer, which protects the urothelial surface against bacterial infection. In this context, the administration of urease inhibitors may be an effective therapy for urease-dependent pathogenic bacteria. This is a review of the role of ureases in H pylori and Proteus species infections, focussing on the biochemical and clinical aspects of the most promising and/or potent urease inhibitors for the treatment of gastric and urinary tract infections.
Collapse
Affiliation(s)
- C Follmer
- Department of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
| |
Collapse
|
24
|
An ABC transporter and a TonB ortholog contribute to Helicobacter mustelae nickel and cobalt acquisition. Infect Immun 2010; 78:4261-7. [PMID: 20643857 DOI: 10.1128/iai.00365-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The genomes of Helicobacter species colonizing the mammalian gastric mucosa (like Helicobacter pylori) contain a large number of genes annotated as iron acquisition genes but only few nickel acquisition genes, which contrasts with the central position of nickel in the urease-mediated acid resistance of these gastric pathogens. In this study we have investigated the predicted iron and nickel acquisition systems of the ferret pathogen Helicobacter mustelae. The expression of the outer membrane protein-encoding frpB2 gene was iron and Fur repressed, whereas the expression of the ABC transporter genes fecD and ceuE was iron and Fur independent. The inactivation of the two tonB genes showed that TonB1 is required for heme utilization, whereas the absence of TonB2 only marginally affected iron-dependent growth but led to reduced cellular nickel content and urease activity. The inactivation of the fecD and ceuE ABC transporter genes did not affect iron levels but resulted in significantly reduced urease activity and cellular nickel content. Surprisingly, the inactivation of the nixA nickel transporter gene affected cellular nickel content and urease activity only when combined with the inactivation of other nickel acquisition genes, like fecD or ceuE. The FecDE ABC transporter is not specific for nickel, since an fecD mutant also showed reduced cellular cobalt levels and increased cobalt resistance. We conclude that the H. mustelae fecDE and ceuE genes encode an ABC transporter involved in nickel and cobalt acquisition, which works independently of the nickel transporter NixA, while TonB2 is required primarily for nickel acquisition, with TonB1 being required for heme utilization.
Collapse
|
25
|
O'Toole PW, Snelling WJ, Canchaya C, Forde BM, Hardie KR, Josenhans C, Graham RL, McMullan G, Parkhill J, Belda E, Bentley SD. Comparative genomics and proteomics of Helicobacter mustelae, an ulcerogenic and carcinogenic gastric pathogen. BMC Genomics 2010; 11:164. [PMID: 20219135 PMCID: PMC2846917 DOI: 10.1186/1471-2164-11-164] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/10/2010] [Indexed: 12/11/2022] Open
Abstract
Background Helicobacter mustelae causes gastritis, ulcers and gastric cancer in ferrets and other mustelids. H. mustelae remains the only helicobacter other than H. pylori that causes gastric ulceration and cancer in its natural host. To improve understanding of H. mustelae pathogenesis, and the ulcerogenic and carcinogenic potential of helicobacters in general, we sequenced the H. mustelae genome, and identified 425 expressed proteins in the envelope and cytosolic proteome. Results The H. mustelae genome lacks orthologs of major H. pylori virulence factors including CagA, VacA, BabA, SabA and OipA. However, it encodes ten autotransporter surface proteins, seven of which were detected in the expressed proteome, and which, except for the Hsr protein, are of unknown function. There are 26 putative outer membrane proteins in H. mustelae, some of which are most similar to the Hof proteins of H. pylori. Although homologs of putative virulence determinants of H. pylori (NapA, plasminogen adhesin, collagenase) and Campylobacter jejuni (CiaB, Peb4a) are present in the H. mustelae genome, it also includes a distinct complement of virulence-related genes including a haemagglutinin/haemolysin protein, and a glycosyl transferase for producing blood group A/B on its lipopolysaccharide. The most highly expressed 264 proteins in the cytosolic proteome included many corresponding proteins from H. pylori, but the rank profile in H. mustelae was distinctive. Of 27 genes shown to be essential for H. pylori colonization of the gerbil, all but three had orthologs in H. mustelae, identifying a shared set of core proteins for gastric persistence. Conclusions The determination of the genome sequence and expressed proteome of the ulcerogenic species H mustelae provides a comparative model for H. pylori to investigate bacterial gastric carcinogenesis in mammals, and to suggest ways whereby cag minus H. pylori strains might cause ulceration and cancer. The genome sequence was deposited in EMBL/GenBank/DDBJ under accession number FN555004.
Collapse
Affiliation(s)
- Paul W O'Toole
- Department of Microbiology, & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Umamaheshwari RB, Jain S, Bhadra D, Jain NK. Floating microspheres bearing acetohydroxamic acid for the treatment of Helicobacter pylori. J Pharm Pharmacol 2010; 55:1607-13. [PMID: 14738585 DOI: 10.1211/0022357022223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
This investigation is part of our ongoing effort to develop effective drug delivery systems for the treatment of Helicobacter pylori infection using polycarbonate (PC) floating microspheres as drug carriers. In an effort to augment the anti-H. pylori effect of acetohydroxamic acid (AHA), floating PC microspheres, which have the ability to reside in the gastrointestinal (GI) tract for an extended period, were prepared by emulsion (O/W) solvent evaporation technique. The effect of PC concentration on the morphology, particle size, entrapment efficiency and drug release rate was studied. In-vitro studies confirmed the excellent floating properties of PC microspheres. In-vitro and in-vivo growth inhibition studies were performed on developed system(s) taking isolated cultures of H. pylori and H. pylori-infected Mongolian gerbils, respectively. The drug and PC microspheres both showed anti-H. pylori activity in vivo, but the required dose of AHA was effectively reduced by a factor of 10 in the case of PC microspheres. In conclusion, the floating microspheres more effectively cleared H. pylori from the GI tract than the drug because of the prolonged gastric residence time resulting from the excellent buoyancy of the PC.
Collapse
Affiliation(s)
- R B Umamaheshwari
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar (M.P.) 470 003, India
| | | | | | | |
Collapse
|
27
|
Characterization of NikR-responsive promoters of urease and metal transport genes of Helicobacter mustelae. Biometals 2009; 23:145-59. [PMID: 19894125 DOI: 10.1007/s10534-009-9275-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/23/2009] [Indexed: 12/13/2022]
Abstract
The NikR protein is a nickel-responsive regulator, which in the gastric pathogen Helicobacter pylori controls expression of nickel-transporters and the nickel-cofactored urease acid resistance determinant. Although NikR-DNA interaction has been well studied, the Helicobacter NikR operator site remains poorly defined. In this study we have identified the NikR operators in the promoters of two inversely nickel-regulated urease operons (ureAB and ureA2B2) in the ferret pathogen Helicobacter mustelae, and have used bioinformatic approaches for the prediction of putative NikR operators in the genomes of four urease-positive Helicobacter species. Helicobacter mustelae NikR bound to the ureA2 promoter to a sequence overlapping with the -35 promoter region, leading to repression. In contrast, NikR binding to a site far upstream of the canonical sigma(80) promoter in the H. mustelae ureA promoter resulted in transcriptional induction, similar to the situation in H. pylori. Using H. pylori NikR operators and the newly identified H. mustelae NikR operators a new consensus sequence was generated (TRWYA-N(15)-TRWYA), which was used to screen the genomes of four urease-positive Helicobacter species (H. mustelae, H. pylori, H. acinonychis and H. hepaticus) for putative NikR-regulated promoters. One of these novel putative NikR-regulated promoters in H. mustelae is located upstream of a putative TonB-dependent outer membrane protein designated NikH, which displayed nickel-responsive expression. Insertional inactivation of the nikH gene in H. mustelae resulted in a significant decrease in urease activity, and this phenotype was complemented by nickel-supplementation of the growth medium, suggesting a function for NikH in nickel transport across the outer membrane. In conclusion, the H. mustelae NikR regulator directly controls nickel-responsive regulation of ureases and metal transporters. The improved consensus NikR operator sequence allows the prediction of additional NikR targets in Helicobacter genomes, as demonstrated by the identification of a new nickel-repressed outer membrane protein in H. mustelae.
Collapse
|
28
|
Gastric helicobacters in domestic animals and nonhuman primates and their significance for human health. Clin Microbiol Rev 2009; 22:202-23, Table of Contents. [PMID: 19366912 DOI: 10.1128/cmr.00041-08] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacters other than Helicobacter pylori have been associated with gastritis, gastric ulcers, and gastric mucosa-associated lymphoid tissue lymphoma in humans. These very fastidious microorganisms with a typical large spiral-shaped morphology were provisionally designated "H. heilmannii," but in fact they comprise at least five different Helicobacter species, all of which are known to colonize the gastric mucosa of animals. H. suis, which has been isolated from the stomachs of pigs, is the most prevalent gastric non-H. pylori Helicobacter species in humans. Other gastric non-H. pylori helicobacters colonizing the human stomach are H. felis, H. salomonis, H. bizzozeronii, and the still-uncultivable "Candidatus Helicobacter heilmannii." These microorganisms are often detected in the stomachs of dogs and cats. "Candidatus Helicobacter bovis" is highly prevalent in the abomasums of cattle but has only occasionally been detected in the stomachs of humans. There are clear indications that gastric non-H. pylori Helicobacter infections in humans originate from animals, and it is likely that transmission to humans occurs through direct contact. Little is known about the virulence factors of these microorganisms. The recent successes with in vitro isolation of non-H. pylori helicobacters from domestic animals open new perspectives for studying these microorganisms and their interactions with the host.
Collapse
|
29
|
Hassani ARS, Ordouzadeh N, Ghaemi A, Amirmozafari N, Hamdi K, Nazari R. IN VITRO INHIBITION OF HELICOBACTER PYLORI UREASE WITH NON AND SEMI FERMENTED CAMELLIA SINENSIS. Indian J Med Microbiol 2009. [DOI: 10.1016/s0255-0857(21)01749-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Borlace GN, Butler RN, Brooks DA. Monocyte and macrophage killing of helicobacter pylori: relationship to bacterial virulence factors. Helicobacter 2008; 13:380-7. [PMID: 19250513 DOI: 10.1111/j.1523-5378.2008.00625.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Helicobacter pylori infection is an important health problem, as it involves approximately 50% of the world's population, causes chronic inflammatory disease and increases the risk of gastric cancer development. H. pylori infection elicits a vigorous immune response, but this does not usually result in bacterial clearance. We have investigated whether the persistence of H. pylori in the host could be partly due to an inability of macrophages to kill this bacterium. MATERIALS AND METHODS Monocytes and macrophages isolated from the peripheral blood of normal human controls were infected in vitro with five H. pylori isolates. The isolates were characterized for known H. pylori virulence factors; vacuolating cytotoxin (VacA), the cag pathogenicity island (cagPAI), urease, and catalase by Western blot and polymerase chain reaction analysis. The ability of primary human monocytes and macrophages to kill each of these H. pylori strains was then defined at various time points after cellular infection. RESULTS The five H. pylori strains showed contrasting patterns of the virulence factors. There were different rates of killing for the bacterial strains. Macrophages had less capacity than monocytes to kill three H. pylori strains. There appeared to be no correlation between the virulence factors studied and differential killing in monocytes. CONCLUSIONS Primary human monocytes had a higher capacity to kill certain strains of H. pylori when compared to macrophages. The VacA, cagPAI, urease, and catalase virulence factors were not predictive of the capacity to avoid monocyte and macrophage killing, suggesting that other factors may be important in H. pylori intracellular pathogenicity.
Collapse
Affiliation(s)
- Glenn N Borlace
- Sansom Institute, University of South Australia, South Australia, Australia
| | | | | |
Collapse
|
31
|
Ge Z, Lee A, Whary MT, Rogers AB, Maurer KJ, Taylor NS, Schauer DB, Fox JG. Helicobacter hepaticus urease is not required for intestinal colonization but promotes hepatic inflammation in male A/JCr mice. Microb Pathog 2008; 45:18-24. [PMID: 18486436 PMCID: PMC4046838 DOI: 10.1016/j.micpath.2008.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/15/2008] [Accepted: 02/22/2008] [Indexed: 12/22/2022]
Abstract
Urease activity contributes to bacterial survival in the acidic environment of the stomach and is essential for persistent infection by known gastric helicobacters such as the human pathogen Helicobacter pylori. Several enterohepatic Helicobacter species (EHS) that primarily infect the less acidic intestine also have very active urease enzymes. The importance of urease and its contribution to pathogenesis for these EHS are poorly understood. In this study, we generated a urease-deficient, isogenic mutant (HhureNT9) of Helicobacter hepaticus 3B1 (Hh 3B1), an EHS that possesses a urease gene cluster similar to that of H. pylori. Lack of urease activity did not affect the level of cecal colonization by HhureNT9 compared to Hh 3B1 in male A/JCr mice (P=0.48) at 4 months post-inoculation (MPI). In contrast, there was no HhureNT9 detected in the livers of any infected mice, whereas all livers from the Hh 3B1-infected mice were PCR-positive for Hh 3B1. The mice infected with HhureNT9 developed significantly less severe hepatitis (P=0.017) and also produced significantly lower hepatic mRNA levels of proinflammatory cytokines IFN-gamma (P=0.0007) and TNF-alpha (P<0.0001) compared to the Hh 3B1-infected mice. The Hh 3B1-infected mice developed significantly higher total IgG, Th1-associated IgG2a and Th2-associated IgG1 responses to infection. These results indicate that H. hepaticus urease activity plays a crucial role in hepatic disease but is not required for cecal colonization by H. hepaticus.
Collapse
Affiliation(s)
- Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Stoof J, Breijer S, Pot RGJ, van der Neut D, Kuipers EJ, Kusters JG, van Vliet AHM. Inverse nickel-responsive regulation of two urease enzymes in the gastric pathogen Helicobacter mustelae. Environ Microbiol 2008; 10:2586-97. [PMID: 18564183 DOI: 10.1111/j.1462-2920.2008.01681.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The acidic gastric environment of mammals can be chronically colonized by pathogenic Helicobacter species, which use the nickel-dependent urea-degrading enzyme urease to confer acid resistance. Nickel availability in the mammal host is low, being mostly restricted to vegetarian dietary sources, and thus Helicobacter species colonizing carnivores may be subjected to episodes of nickel deficiency and associated acid sensitivity. The aim of this study was to investigate how these Helicobacter species have adapted to the nickel-restricted diet of their carnivorous host. Three carnivore-colonizing Helicobacter species express a second functional urea-degrading urease enzyme (UreA2B2), which functions as adaptation to nickel deficiency. UreA2B2 was not detected in seven other Helicobacter species, and is in Helicobacter mustelae only expressed in nickel-restricted conditions, and its expression was higher in iron-rich conditions. In contrast to the standard urease UreAB, UreA2B2 does not require activation by urease or hydrogenase accessory proteins, which mediate nickel incorporation into these enzymes. Activity of either UreAB or UreA2B2 urease allowed survival of a severe acid shock in the presence of urea, demonstrating a functional role for UreA2B2 in acid resistance. Pathogens often express colonization factors which are adapted to their host. The UreA2B2 urease could represent an example of pathogen adaptation to the specifics of the diet of their carnivorous host, rather than to the host itself.
Collapse
Affiliation(s)
- Jeroen Stoof
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Cróinín TO, McCormack A, van Vliet AHM, Kusters JG, Bourke B. Random mutagenesis to identify novelHelicobacter mustelaevirulence factors. ACTA ACUST UNITED AC 2007; 50:257-63. [PMID: 17316371 DOI: 10.1111/j.1574-695x.2006.00207.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helicobacter mustelae is a gastric pathogen of ferrets, where it causes disorders similar to those caused by Helicobacter pylori in humans. The H. mustelae ferret model therefore has potential for the in vivo study of Helicobacter pathogenesis in general. In this study a library of 500 individual H. mustelae mutants was generated using an in vitro random insertion mutagenesis technique. Mutants were subsequently tested for motility and adherence, and 43 of the 500 mutants tested were found to be nonmotile in a soft agar assay. Of these 43 mutants, seven were subsequently identified as deficient in their ability to adhere to AGS cells. Insertion had taken place in different positions in the H. mustelae genome, and included mutants in or near to genes involved in motility and urease activity (e.g. the chemotaxis gene cheV and the urease accessory gene ureH). The development of a mutant library for a natural animal model of Helicobacter infection provides the opportunity to study in vivo the role of candidate Helicobacter virulence genes.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
34
|
Pot RGJ, Stoof J, Nuijten PJM, de Haan LAM, Loeffen P, Kuipers EJ, van Vliet AHM, Kusters JG. UreA2B2: a second urease system in the gastric pathogenHelicobacter felis. ACTA ACUST UNITED AC 2007; 50:273-9. [PMID: 17298583 DOI: 10.1111/j.1574-695x.2007.00212.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Urease activity is vital for gastric colonization by Helicobacter species, such as the animal pathogen Helicobacter felis. Here it is demonstrated that H. felis expresses two independent, and distinct urease systems. H. felis isolate CS1 expressed two proteins of 67 and 70 kDa reacting with antibodies to H. pylori urease. The 67-kDa protein was identified as the UreB urease subunit, whereas the N-terminal amino acid sequence of the 70-kDa protein displayed 58% identity with the UreB protein and was tentatively named UreB2. The gene encoding the UreB2 protein was identified and located in a gene cluster named ureA2B2. Inactivation of ureB led to complete absence of urease activity, whereas inactivation of ureB2 resulted in decreased urease activity. Although the exact function of the UreA2B2 system is still unknown, it is conceivable that UreA2B2 may contribute to pathogenesis of H. felis infection through a yet unknown mechanism.
Collapse
Affiliation(s)
- Raymond G J Pot
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu G, Snyder E, Boyle S, Crasta O, Czar M, Mane S, Purkayastha A, Sobral B, Setubal J. A versatile computational pipeline for bacterial genome annotation improvement and comparative analysis, with Brucella as a use case. Nucleic Acids Res 2007; 35:3953-62. [PMID: 17553834 PMCID: PMC1919506 DOI: 10.1093/nar/gkm377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We present a bacterial genome computational analysis pipeline, called GenVar. The pipeline, based on the program GeneWise, is designed to analyze an annotated genome and automatically identify missed gene calls and sequence variants such as genes with disrupted reading frames (split genes) and those with insertions and deletions (indels). For a given genome to be analyzed, GenVar relies on a database containing closely related genomes (such as other species or strains) as well as a few additional reference genomes. GenVar also helps identify gene disruptions probably caused by sequencing errors. We exemplify GenVar's capabilities by presenting results from the analysis of four Brucella genomes. Brucella is an important human pathogen and zoonotic agent. The analysis revealed hundreds of missed gene calls, new split genes and indels, several of which are species specific and hence provide valuable clues to the understanding of the genome basis of Brucella pathogenicity and host specificity.
Collapse
Affiliation(s)
- G.X. Yu
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - E.E. Snyder
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - S.M. Boyle
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - O.R. Crasta
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - M. Czar
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - S.P. Mane
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - A. Purkayastha
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - B. Sobral
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - J.C. Setubal
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, Department of Biology and Department of Computer Science, Boise State University, Boise, ID 83726 and Center for Molecular Medicine and Infectious Diseases, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- *To whom correspondence should be addressed. +1 540 231 9464+1 540 231 2606
| |
Collapse
|
36
|
Sachs G, Kraut JA, Wen Y, Feng J, Scott DR. Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J Membr Biol 2007; 212:71-82. [PMID: 17264989 DOI: 10.1007/s00232-006-0867-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2006] [Indexed: 12/15/2022]
Abstract
Urea transporters in bacteria are relatively rare. There are three classes, the ABC transporters such as those expressed by cyanobacteria and Corynebacterium glutamicum, the Yut protein expressed by Yersinia spp and the UreI expressed by gastric Helicobacter spp. This review focuses largely on the UreI proton-gated channel that is part of the acid acclimation mechanism essential for gastric colonization by the latter. UreI is a six-transmembrane polytopic integral membrane protein, N and C termini periplasmic, and is expressed in all gastric Helicobacter spp that have been studied but also in Helicobacter hepaticus and Streptococcus salivarius. The first two are proton-gated, the latter is pH insensitive. Site-directed mutagenesis and chimeric constructs have identified histidines and dicarboxylic amino acids in the second periplasmic loop of H. pylori and the first loop of H. hepaticus UreI and the C terminus of both as involved in a hydrogen-bonding dependence of proton gating, with the membrane domain in these but not in the UreI of S. salivarius responding to the periplasmic conformational changes. UreI and urease are essential for gastric colonization and urease associates with UreI during acid exposure, facilitating activation of the UreA and UreB apoenzyme complex by Ni2+ insertion by the UreF-UreH and UreE-UreG assembly proteins. Transcriptome analysis of acid responses of H. pylori also identified a cytoplasmic and periplasmic carbonic anhydrase as responding specifically to changes in periplasmic pH and these have been shown to be essential also for acid acclimation. The finding also of upregulation of the two-component histidine kinase HP0165 and its response element HP0166, illustrates the complexity of the acid acclimation processes involved in gastric colonization by this pathogen.
Collapse
Affiliation(s)
- G Sachs
- Department of Physiology, Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
37
|
Belzer C, van Schendel BAM, Kuipers EJ, Kusters JG, van Vliet AHM. Iron-responsive repression of urease expression in Helicobacter hepaticus is mediated by the transcriptional regulator Fur. Infect Immun 2006; 75:745-52. [PMID: 17101656 PMCID: PMC1828516 DOI: 10.1128/iai.01163-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Persistent colonization of mucosal surfaces by bacteria in the mammalian host requires concerted expression of colonization factors, depending on the environmental conditions. Helicobacter hepaticus is a urease-positive pathogen that colonizes the intestinal and hepatobiliary tracts of rodents. Here it is reported that urease expression of H. hepaticus is iron repressed by the transcriptional regulator Fur. Iron restriction of growth medium resulted in a doubling of urease activity in wild-type H. hepaticus strain ATCC 51449 and was accompanied by increased levels of urease subunit proteins and ureA mRNA. Insertional inactivation of the fur gene abolished iron-responsive repression of urease activity, whereas inactivation of the perR gene did not affect iron-responsive regulation of urease activity. The iron-responsive promoter element was identified directly upstream of the H. hepaticus ureA gene. Recombinant H. hepaticus Fur protein bound to this ureA promoter region in a metal-dependent matter, and binding resulted in the protection of a 41-bp, Fur box-containing operator sequence located at positions -35 to -75 upstream of the transcription start site. In conclusion, H. hepaticus Fur controls urease expression at the transcriptional level in response to iron availability. This represents a novel type of urease regulation in ureolytic bacteria and extends the already diverse regulatory repertoire of the Fur protein.
Collapse
Affiliation(s)
- Clara Belzer
- Department of Gastroenterology and Hepatology, Erasmus MC--University Medical Center, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Sgouros SN, Bergele C. Clinical outcome of patients with Helicobacter pylori infection: the bug, the host, or the environment? Postgrad Med J 2006; 82:338-42. [PMID: 16679473 PMCID: PMC2563779 DOI: 10.1136/pgmj.2005.038273] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is well established that only a minority of patients with Helicobacter pylori infection develop severe inflammation leading to peptic ulcer or gastric cancer. Recent evidence suggests that the virulence factors of the organism do not seem crucial in the progression of inflammation towards a more severe disease. It seems probable that other host derived and environmental factors are more significant in determining clinical outcome but additional studies are needed to clarify the underlying mechanisms involved in the pathogenesis of infection.
Collapse
Affiliation(s)
- S N Sgouros
- Department of Gastroenterology, Athens Naval and Veterans Hospital, Athens, Greece.
| | | |
Collapse
|
39
|
Wen Y, Feng J, Scott DR, Marcus EA, Sachs G. Involvement of the HP0165-HP0166 two-component system in expression of some acidic-pH-upregulated genes of Helicobacter pylori. J Bacteriol 2006; 188:1750-61. [PMID: 16484186 PMCID: PMC1426556 DOI: 10.1128/jb.188.5.1750-1761.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
About 200 genes of the gastric pathogen Helicobacter pylori increase expression at medium pHs of 6.2, 5.5, and 4.5, an increase that is abolished or much reduced by the buffering action of urease. Genes up-regulated by a low pH include the two-component system HP0165-HP0166, suggesting a role in the regulation of some of the pH-sensitive genes. To identify targets of HP0165-HP0166, the promoter regions of genes up-regulated by a low pH were grouped based on sequence similarity. Probes for promoter sequences representing each group were subjected to electrophoretic mobility shift assays (EMSA) with recombinant HP0166-His(6) or a mutated response regulator, HP0166-D52N-His(6), that can specifically determine the role of phosphorylation of HP0166 in binding (including a control EMSA with in-vitro-phosphorylated HP0166-His(6)). Nineteen of 45 promoter-regulatory regions were found to interact with HP0166-His(6). Seven promoters for genes encoding alpha-carbonic anhydrase, omp11, fecD, lpp20, hypA, and two with unknown function (pHP1397-1396 and pHP0654-0675) were clustered in gene group A, which may respond to changes in the periplasmic pH at a constant cytoplasmic pH and showed phosphorylation-dependent binding in EMSA with HP0166-D52N-His(6). Twelve promoters were clustered in groups B and C whose up-regulation likely also depends on a reduction of the cytoplasmic pH at a medium pH of 5.5 or 4.5. Most of the target promoters in groups B and C showed phosphorylation-dependent binding with HP0166-D52N-His(6), but promoters for ompR (pHP0166-0162), pHP0682-0681, and pHP1288-1289 showed phosphorylation-independent binding. These findings, combined with DNase I footprinting, suggest that HP0165-0166 is an acid-responsive signaling system affecting the expression of pH-sensitive genes. Regulation of these genes responds either to a decrease in the periplasmic pH alone (HP0165 dependent) or also to a decrease in the cytoplasmic pH (HP0165 independent).
Collapse
Affiliation(s)
- Yi Wen
- Membrane Biology Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA.
| | | | | | | | | |
Collapse
|
40
|
Bleich A, Mahler M. Environment as a Critical Factor for the Pathogenesis and Outcome of Gastrointestinal Disease: Experimental and Human Inflammatory Bowel Disease and Helicobacter-Induced Gastritis. Pathobiology 2006; 72:293-307. [PMID: 16582581 DOI: 10.1159/000091327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/18/2005] [Indexed: 12/20/2022] Open
Abstract
Environmental factors play an important role in the manifestation, course, and prognosis of diseases of the gastrointestinal tract such as inflammatory bowel disease (IBD) and Helicobacter pylori-induced gastritis. These two disease complexes were chosen for a discussion of the contribution of environmental factors to the disease outcome in humans and animal models. Dissecting complex diseases like IBD and Helicobacter-induced gastritis has shown that the outcome of disease depends on the allelic constellation of a host and the microbial and physical environments. Host alleles predisposing to a disease in one genomic and/or environmental milieu may not be deleterious in other constellations; on the other hand, microbes can have different effects in different hosts and under different environmental conditions. The impact of the complex interaction between host genetics and environmental factors, particularly microflora, also underlines the importance of a defined genetic background and defined environments in animal studies and is indicative of the difficulties in analyzing complex diseases in humans.
Collapse
Affiliation(s)
- A Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
41
|
Belzer C, Stoof J, Beckwith CS, Kuipers EJ, Kusters JG, van Vliet AHM. Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology (Reading) 2005; 151:3989-3995. [PMID: 16339943 DOI: 10.1099/mic.0.28188-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helicobacter hepaticus is a pathogen of rodents, which causes diverse enteric and hepatic inflammatory diseases and malignancies. The urease enzyme is an important colonization factor of gastric Helicobacter species like Helicobacter pylori, but little is known about the role and regulation of urease in enterohepatic Helicobacter species. Here it is reported that urease activity of H. hepaticus does not contribute to acid resistance, and that it is nickel-responsive at the post-translational level. H. hepaticus strain ATCC 51449 did not grow or survive at pH 3·0, and supplementation with urea or NiCl2 did not abrogate this acid sensitivity. Furthermore, urease enzyme activity of H. hepaticus was acid-independent, which contrasts with the acid-induced urease system of H. pylori. Nickel supplementation of Brucella medium resulted in a tenfold increase in urease activity in both H. hepaticus and H. pylori, but the maximum level of urease activity in H. hepaticus was still three- to fivefold lower when compared to H. pylori in the same conditions. The increase in urease activity of H. hepaticus was not associated with elevation of urease mRNA or protein levels. Inhibition of protein synthesis by chloramphenicol did not affect nickel-responsive induction of urease activity in H. hepaticus, and confirmed that nickel induction occurs at the post-translational level, probably by activation of preformed apo-enzyme. In conclusion, both the role of the urease enzyme and the regulation of urease activity differ between the enterohepatic pathogen H. hepaticus and the gastric pathogen H. pylori.
Collapse
Affiliation(s)
- Clara Belzer
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jeroen Stoof
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Catherine S Beckwith
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Johannes G Kusters
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Arnoud H M van Vliet
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
42
|
Marcus EA, Moshfegh AP, Sachs G, Scott DR. The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J Bacteriol 2005; 187:729-38. [PMID: 15629943 PMCID: PMC543530 DOI: 10.1128/jb.187.2.729-738.2005] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of the periplasmic alpha-carbonic anhydrase (alpha-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditions, allowing adequate bioenergetics for survival and growth. Since alpha-CA catalyzes the conversion of CO2 to HCO3-, the role of CO2 in periplasmic buffering was studied using an alpha-CA deletion mutant and the CA inhibitor acetazolamide. Western analysis confirmed that alpha-CA was bound to the inner membrane. Immunoblots and PCR confirmed the absence of the enzyme and the gene in the alpha-CA knockout. In the mutant or in the presence of acetazolamide, there was an approximately 3 log10 decrease in acid survival. In acid, absence of alpha-CA activity decreased membrane integrity, as observed using membrane-permeant and -impermeant fluorescent DNA dyes. The increase in membrane potential and cytoplasmic buffering following urea addition to wild-type organisms in acid was absent in the alpha-CA knockout mutant and in the presence of acetazolamide, although UreI and urease remained fully functional. At low pH, the elevation of cytoplasmic and periplasmic pH with urea was abolished in the absence of alpha-CA activity. Hence, buffering of the periplasm to a pH consistent with viability depends not only on NH3 efflux from the cytoplasm but also on the conversion of CO2, produced by urease, to HCO3- by the periplasmic alpha-CA.
Collapse
Affiliation(s)
- Elizabeth A Marcus
- The Membrane Biology Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
43
|
Shin JH, Roe IH, Kim HG. Production of anti-Helicobacter pylori urease-specific immunoglobulin in egg yolk using an antigenic epitope of H. pylori urease. J Med Microbiol 2004; 53:31-34. [PMID: 14663102 DOI: 10.1099/jmm.0.05327-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The potential therapeutic effects of Helicobacter pylori-specific immunoglobulin (IgY-Hp) derived from egg yolk and identification of the immunodominant H. pylori proteins have previously been reported. In this study, the urease epitope that is recognized by IgY-Hp was identified and used as an immunogen to produce urease-specific IgY (IgY-HpU). Epitope regions were mapped and peptides of selected epitope regions were synthesized. The IgY-Hp titre against synthetic peptides was evaluated using ELISA analysis. Hens were immunized with synthetic peptides conjugated with BSA. Urease activity was quantified by measuring the optical density of an indicator dye. Of the five synthetic peptides assayed, a peptide representing 15 amino acid residues of UreB (UB-3; aa 396-410, DNDNFRIKRYLSKYT) was specifically recognized by the IgY-Hp. Immunization of hens with BSA-conjugated UB-3 resulted in the generation of IgY-HpU. IgY-HpU markedly reduced H. pylori urease activity by 80 % as compared to control IgY (IgY-BSA). The availability of the synthetic UreB-derived peptide enabled the production of highly specific anti-urease IgY, which had a significant inhibitory effect on H. pylori urease activity. Therefore, specific IgY-HpU produced using the synthetic peptide may be an effective tool against infection by H. pylori.
Collapse
Affiliation(s)
- Ji-Hyun Shin
- Department of Pharmacology1 and Gastroenterology2, Dankook University College of Medicine, Cheonan, Korea
| | - Im-Hwan Roe
- Department of Pharmacology1 and Gastroenterology2, Dankook University College of Medicine, Cheonan, Korea
| | - Hyung-Gun Kim
- Department of Pharmacology1 and Gastroenterology2, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
44
|
Abstract
Helicobacter pylori is a neutralophilic, gram-negative, ureolytic organism that is able to colonize the human stomach but does not survive in a defined medium with a pH <4.0 unless urea is present. In order to live in the gastric environment, it has developed a repertoire of acid resistance mechanisms that can be classified into time-independent, acute, and chronic responses. Time-independent acid resistance depends on the structure of the organism's inner and outer membrane proteins that have a high isoelectric point, thereby reducing their proton permeability. Acute acid resistance depends on the constitutive synthesis of a neutral pH optimum urease that is an oligomeric Ni(2+)-containing heterodimer of UreA and UreB subunits. Gastric juice urea is able to rapidly access intrabacterial urease when the periplasmic pH falls below approximately 6.2 owing to pH-gating of a urea channel, UreI. This results in the formation of NH3, which then neutralizes the bacterial periplasm to provide a pH of approximately 6.2 and an inner membrane potential of -101 mV, giving a proton motive force of approximately -200 mV. UreI is a six-transmembrane segment protein, with homology to the amiS genes of the amidase gene cluster and to UreI of Helicobacter hepaticus and Streptococcus salivarius. Expression of these UreI proteins in Xenopus oocytes has shown that UreI of H. pylori and H. hepaticus can transport urea only at acidic pH, whereas that of S. salivarius is open at both neutral and acidic pH. Site-directed mutagenesis and chimeric analysis have identified amino acids implicated in maintaining the closed state of the channel at neutral pH and other amino acids that play a structural role in channel function. Deletion of ureI abolishes the ability of the organism to survive in acid and also to colonize the mouse or gerbil stomach. However, if acid secretion is inhibited in gerbils, the deletion mutants do colonize but are eradicated when acid secretion is allowed to return, showing that UreI is essential for gastric survival and that the habitat of H. pylori at the gastric surface must fall to pH 3.5 or below. The chronic response is from increased Ni(2+) insertion into the apo-enzyme, which results in a threefold increase in urease, which is also dependent on expression of UreI. This allows the organism to live in either gastric fundus or gastric antrum depending on the level of acidity at the gastric surface. There are other effects of acid on transcript stability that may alter levels of protein synthesis in acid. Incubation of the organism at acidic pH also results in regulation of expression of a variety of genes, such as some outer membrane proteins, that constitutes an acid tolerance response. Understanding of these acid resistance and tolerance responses should provide novel eradication therapies for this carcinogenic gastric pathogen.
Collapse
Affiliation(s)
- George Sachs
- Department of Physiology, University of California, Los Angeles, California 90024, USA.
| | | | | | | |
Collapse
|
45
|
Merrell DS, Goodrich ML, Otto G, Tompkins LS, Falkow S. pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun 2003; 71:3529-39. [PMID: 12761138 PMCID: PMC155744 DOI: 10.1128/iai.71.6.3529-3539.2003] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colonization by the gastric pathogen Helicobacter pylori has been shown to be intricately linked to the development of gastritis, ulcers, and gastric malignancy. Little is known about mechanisms employed by the bacterium that help it adapt to the hostile environment of the human stomach. In an effort to extend our knowledge of these mechanisms, we utilized spotted-DNA microarrays to characterize the response of H. pylori to low pH. Expression of approximately 7% of the bacterial genome was reproducibly altered by shift to low pH. Analysis of the differentially expressed genes led to the discovery that acid exposure leads to profound changes in motility of H. pylori, as a larger percentage of acid-exposed bacterial cells displayed motility and moved at significantly higher speeds. In contrast to previous publications, we found that expression of the bacterial virulence gene cagA was strongly repressed by acid exposure. Furthermore, this transcriptional repression was reflected at the level of protein accumulation in the H. pylori cell.
Collapse
Affiliation(s)
- D Scott Merrell
- Department of Microbiology and Immunology, Stanford School of Medicine, California 94305, USA.
| | | | | | | | | |
Collapse
|
46
|
Patterson MM, O'Toole PW, Forester NT, Noonan B, Trust TJ, Xu S, Taylor NS, Marini RP, Ihrig MM, Fox JG. Failure of surface ring mutant strains of Helicobacter mustelae to persistently infect the ferret stomach. Infect Immun 2003; 71:2350-5. [PMID: 12704104 PMCID: PMC153230 DOI: 10.1128/iai.71.5.2350-2355.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helicobacter mustelae, the gastric pathogen of ferrets, produces an array of surface ring structures which have not been described for any other member of the genus Helicobacter, including H. pylori. The unique ring structures are composed of a protein named Hsr. To investigate whether the Hsr rings are important for colonization of the ferret stomach, ferrets specific pathogen free for H. mustelae were inoculated with an Hsr-deficient mutant strain or the wild-type H. mustelae strain. Quantitative cultures from antral biopsy specimens obtained at 3, 6, and 9 weeks postinoculation demonstrated no significant difference in the levels of bacteria in the ferrets that received the Hsr-negative strain and the ferrets infected with the parent strain. However, when the ferrets were biopsied at 12 and 15 weeks and necropsied at 18 weeks after infection, the levels of bacteria of the Hsr-negative strain in the stomach antrum were significantly reduced. This decline contrasted the robust antral colonization by the wild-type strain. The Hsr-negative strain did not efficiently colonize the gastric body of the study ferrets. Histological examination at 18 weeks postinoculation revealed minimal gastric inflammation in the animals that received the mutant H. mustelae strain, a finding consistent with its waning infection status, whereas lesions characteristic of helicobacter infection were present in ferrets infected with the wild-type strain. Scant colonization by the Hsr-negative H. mustelae strain at the end of the 18-week study, despite initial successful colonization, indicates an inability of the mutant to persist, perhaps due to a specific host response.
Collapse
Affiliation(s)
- M M Patterson
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mollenhauer-Rektorschek M, Hanauer G, Sachs G, Melchers K. Expression of UreI is required for intragastric transit and colonization of gerbil gastric mucosa by Helicobacter pylori. Res Microbiol 2002; 153:659-66. [PMID: 12558185 DOI: 10.1016/s0923-2508(02)01380-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Helicobacter pylori colonizes the antral mucosa of the human stomach. There is a controversy as to whether the microorganism is exposed to acidity in its ecological niche. In vitro, the microorganism requires urease for gastric colonization and survival at pH < 4.0. UreI encodes an acid activated urea channel enabling urea access to intrabacterial urease at acidic pH. UreI is also necessary for survival at pH < 4.0. However, the role of UreI for both intragastric transit and colonization of the epithelial gastric mucosa has never been analyzed in detail. We therefore infected gerbils, whose intragastric pH and response to infection resemble those of man, with H. pylori G1.1 wild type bacteria and their corresponding isogenic ureI mutants. Inhibitors of gastric acid secretion and colonization were used for manipulation of gastric pH. Gastric colonization was determined by urease assay and PCR. Gastric pH was measured with pH electrodes. Whereas H. pylori wild type or ureI complemented ureI knockout bacteria colonized the antrum, ureI deletion mutants were unable to colonize. However, continuous inhibition of acid secretion resulted in gastric colonization by the ureI mutants, as also observed with the wild type strain. Restoration of acid secretion resulted in eradication of ureI mutants but not wild type bacteria. The data show that ureI is essential for both gastric transit after inoculation and mucosal colonization in the untreated stomach. The eradication of ureI mutants following restoration of acid secretion suggests that the organism is exposed to pH < 4.0 at the surface of the antral mucosa and that UreI provides a target for specific monotherapy of H. pylori infections.
Collapse
|
48
|
Scott DR, Marcus EA, Weeks DL, Sachs G. Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology 2002; 123:187-95. [PMID: 12105847 DOI: 10.1053/gast.2002.34218] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori, a neutralophile, uses acid neutralization by urease to combat gastric acidity, allowing gastric colonization. Both acute and chronic acid resistance mechanisms are present. Acute mechanisms of acid adaptation could be due to surface urease, increased inner-membrane urea permeability via UreI, or both. Slower mechanisms may involve increased nickel insertion into apoenzyme, posttranscriptional regulation, or increased enzyme synthesis. The aim of this study was to further define regulation of urease under acidic conditions. METHODS Surface-bound urease was analyzed by measurement of free and bound urease after centrifugation through a step gradient and by quantitative urease immunostaining of intact and fixed bacteria. Changes in urease synthesis or assembly were determined by incubation of the organisms at pH 5.5 or 7.0 in the absence and presence of chloramphenicol, urea, or nickel chelator and in ureI-positive and -negative organisms. RESULTS The amount of surface urease was below detection limits with either centrifugation washing or immunostaining. Total bacterial urease activity was increased 3-5-fold by incubation at pH 5.5 in the presence of chloramphenicol but not in nickel-free medium or in ureI knockout organisms. There was also a 3-fold increase in survival of acid shock in acid-adapted organisms. CONCLUSIONS Surface-bound urease is too low to contribute to acid resistance. Acidic medium pH induces UreI-dependent nickel incorporation into apoenzyme. This augmentation of urease activity increases survival in acid and is part of the gastric colonization strategy of the organism.
Collapse
Affiliation(s)
- David R Scott
- Department of Physiology, University of California Los Angeles, Los Angeles, California 90073, USA
| | | | | | | |
Collapse
|
49
|
Nolan KJ, McGee DJ, Mitchell HM, Kolesnikow T, Harro JM, O'Rourke J, Wilson JE, Danon SJ, Moss ND, Mobley HLT, Lee A. In vivo behavior of a Helicobacter pylori SS1 nixA mutant with reduced urease activity. Infect Immun 2002; 70:685-91. [PMID: 11796600 PMCID: PMC127660 DOI: 10.1128/iai.70.2.685-691.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori mutants devoid of urease activity fail to colonize the gastric mucosa of mice; however, the effect of decreased levels of urease on colonization has not been examined. The nixA gene, required for full urease activity, encodes a cytoplasmic membrane nickel transporter that imports nickel ions and leads to incorporation of nickel ions into apourease. A nixA mutant of the Sydney strain of H. pylori (SS1) was constructed by disruption of the nixA gene with a kanamycin resistance cassette. This mutant retained only half the urease activity of the wild-type (wild-type) SS1 strain. C57BL/6j (n = 75) and BALB/c (n = 75) mice were inoculated independently with the wild-type or the nixA strain. The level and distribution of colonization were assessed by bacterial colony counts and histological grading at 4, 12, and 24 weeks postinfection. Colonization levels of the nixA strain in BALB/c mice were significantly lower compared with SS1 (P = 0.005), while colonization in C57BL/6j mice was similar for both the wild-type and mutant strains. Subtle differences in colonization of the different regions of the stomach, determined by microscopic grading, were observed between wild-type SS1 and the nixA strain in BALB/c mice. On the contrary, when C57BL/6j (n = 35) and BALB/c (n = 35) mice were coinfected with the wild-type and nixA strains simultaneously, the nixA mutant failed to colonize and was outcompeted by the wild-type SS1 strain, which established normal levels of colonization. These results demonstrate the importance of the nixA gene for increasing the fitness of H. pylori for gastric colonization. Since nixA is required for full urease activity, the decreased fitness of the nixA mutant is likely due to reduced urease activity; however, pleiotropic effects of the mutation cannot be completely ruled out.
Collapse
Affiliation(s)
- Kylie J Nolan
- School of Microbiology and Immunology, The University of New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Eaton KA, Gilbert JV, Joyce EA, Wanken AE, Thevenot T, Baker P, Plaut A, Wright A. In vivo complementation of ureB restores the ability of Helicobacter pylori to colonize. Infect Immun 2002; 70:771-8. [PMID: 11796610 PMCID: PMC127652 DOI: 10.1128/iai.70.2.771-778.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The objective of this study was to determine (i) if complementation of ureB-negative Helicobacter pylori restores colonization and (ii) if urease is a useful reporter for promoter activity in vivo. Strains used were M6, M6DeltaureB, and 10 recombinant derivatives of M6 or M6DeltaureB in which urease expression was under the control of different H. pylori promoters. Mice were orally inoculated with either the wild type or one of the mutant strains, and colonization, in vivo urease activity, and extent of gastritis were determined. Of eight M6DeltaureB recombinants tested, four colonized mice. Of those, three had the highest in vitro urease activity of any of the recombinants, significantly different from that of the noncolonizing mutants. The fourth colonizing recombinant, with ureB under control of the cag-15 promoter, had in vitro urease activity which did not differ significantly from the noncolonizing strains. In vivo, urease activities of the four colonizing transformants and the wild-type control were indistinguishable. There were no differences in gastritis or epithelial lesions between mice infected with M6 and those infected with the transformants. These results demonstrate that recovery of urease activity can restore colonizing ability to urease-negative H. pylori. They also suggest that cag-15 is upregulated in vivo, as was previously suggested by demonstrating that it is upregulated upon contact with epithelial cells. Finally, our results suggest that total urease activity and colonization density do not contribute to gastritis due to H. pylori.
Collapse
Affiliation(s)
- Kathryn A Eaton
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|