1
|
Sharma S, Pandey KM. Computational bioprospecting of phytoconstituents as potential inhibitors for peptide deformylase from Streptococcus oralis: An opportunistic pathogen. Arch Biochem Biophys 2024; 758:110079. [PMID: 38969195 DOI: 10.1016/j.abb.2024.110079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/20/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Streptococcus oralis an opportunistic bacterium has been reported to be involved in various blood borne infections like subacute bacterial endocarditis, septicemia, bacterial meningitis and in some cases dental caries too. Among various targets the peptide deformylase, of S.oralis appears to be most potent druggable target as it is involved in protein synthesis is opted for the current study. Due to unavailability of PDB structure of peptide deformylase from S. oralis the study initiates with homology modelling of the protein and 6OW2 of S pneumoniae is considered as the template. Thereafter, Molecular docking, Molecular dynamic simulation, ADME analysis, and MMPBSA analysis was carried out to explore the inhibitory potential of phyto-constituents as potential inhibitors for Peptide deformylase from S.oralis. Actinonin was considered as reference drug. Among 2370 phyto compounds the best observations were recorded for A1-Barrigenol (IMPHY010984) with binding affinity of -8.5 kcal/mol. Calculated RMSD, RMSF, Binding Free Energy for IMPHY010984 averaged at about 0.10 ± 0.03 nm, 0.08 ± 0.05 nm, 131 ± 21 kJ/mol respectively whereas the RMSD, RMSF, Binding Free Energy recorded for reference drug averaged at about 0.19 ± 0.04 nm, 0.11 ± 0.08 nm, -94 ± 18 kJ/mol respectively. Based on in silico observations IMPHY010984 is proved out as superior candidate over reference drug. The study reflects the potential of IMPHY010984 as prophylactic therapeutics for S.oralis.
Collapse
Affiliation(s)
- Shrutika Sharma
- Department of Biological Science & Engineering, MANIT, Bhopal, India.
| | | |
Collapse
|
2
|
Khan S, Patel MP, Patni AD, Cha SJ. Targeting Plasmodium Life Cycle with Novel Parasite Ligands as Vaccine Antigens. Vaccines (Basel) 2024; 12:484. [PMID: 38793735 PMCID: PMC11125637 DOI: 10.3390/vaccines12050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The WHO reported an estimated 249 million malaria cases and 608,000 malaria deaths in 85 countries in 2022. A total of 94% of malaria deaths occurred in Africa, 80% of which were children under 5. In other words, one child dies every minute from malaria. The RTS,S/AS01 malaria vaccine, which uses the Plasmodium falciparum circumsporozoite protein (CSP) to target sporozoite infection of the liver, achieved modest efficacy. The Malaria Vaccine Implementation Program (MVIP), coordinated by the WHO and completed at the end of 2023, found that immunization reduced mortality by only 13%. To further reduce malaria death, the development of a more effective malaria vaccine is a high priority. Three malaria vaccine targets being considered are the sporozoite liver infection (pre-erythrocytic stage), the merozoite red blood cell infection (asexual erythrocytic stage), and the gamete/zygote mosquito infection (sexual/transmission stage). These targets involve specific ligand-receptor interactions. However, most current malaria vaccine candidates that target two major parasite population bottlenecks, liver infection, and mosquito midgut infection, do not focus on such parasite ligands. Here, we evaluate the potential of newly identified parasite ligands with a phage peptide-display technique as novel malaria vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA 31207, USA; (S.K.); (M.P.P.); (A.D.P.)
| |
Collapse
|
3
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
4
|
Hasegawa T, Takenaka S, Oda M, Domon H, Hiyoshi T, Sasagawa K, Ohsumi T, Hayashi N, Okamoto Y, Yamamoto H, Ohshima H, Terao Y, Noiri Y. Sulfated vizantin causes detachment of biofilms composed mainly of the genus Streptococcus without affecting bacterial growth and viability. BMC Microbiol 2020; 20:361. [PMID: 33238885 PMCID: PMC7687742 DOI: 10.1186/s12866-020-02033-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sulfated vizantin, a recently developed immunostimulant, has also been found to exert antibiofilm properties. It acts not as a bactericide, but as a detachment-promoting agent by reducing the biofilm structural stability. This study aimed to investigate the mechanism underlying this activity and its species specificity using two distinct ex vivo oral biofilm models derived from human saliva. RESULTS The biofilm, composed mainly of the genus Streptococcus and containing 50 μM of sulfated vizantin, detached significantly from its basal surface with rotation at 500 rpm for only 15 s, even when 0.2% sucrose was supplied. Expression analyses for genes associated with biofilm formation and bacterial adhesion following identification of the Streptococcus species, revealed that a variety of Streptococcus species in a cariogenic biofilm showed downregulation of genes encoding glucosyltransferases involved in the biosynthesis of water-soluble glucan. The expression of some genes encoding surface proteins was also downregulated. Of the two quorum sensing systems involved in the genus Streptococcus, the expression of luxS in three species, Streptococcus oralis, Streptococcus gordonii, and Streptococcus mutans, was significantly downregulated in the presence of 50 μM sulfated vizantin. Biofilm detachment may be facilitated by the reduced structural stability due to these modulations. As a non-specific reaction, 50 μM sulfated vizantin decreased cell surface hydrophobicity by binding to the cell surface, resulting in reduced bacterial adherence. CONCLUSION Sulfated vizantin may be a candidate for a new antibiofilm strategy targeting the biofilm matrix while preserving the resident microflora.
Collapse
Affiliation(s)
- Taisuke Hasegawa
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Masataka Oda
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan.,Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan.,Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naoki Hayashi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasuko Okamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hirofumi Yamamoto
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of Hard Tissue, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Faculty of Dentistry & Graduate School of Medical and Dental sciences, Niigata University, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
5
|
Drago L, Bortolin M, Vassena C, Romanò CL, Taschieri S, Fabbro MD. Plasma components and platelet activation are essential for the antimicrobial properties of autologous platelet-rich plasma: an in vitro study. PLoS One 2014; 9:e107813. [PMID: 25232963 PMCID: PMC4169456 DOI: 10.1371/journal.pone.0107813] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/02/2014] [Indexed: 12/21/2022] Open
Abstract
Autologous platelet concentrates are successfully adopted in a variety of medical fields to stimulate bone and soft tissue regeneration. The rationale for their use consists in the delivery of a wide range of platelet-derived bioactive molecules that promotes wound healing. In addition, antimicrobial properties of platelet concentrates have been pointed out. In this study, the effect of the platelet concentration, of the activation step and of the presence of plasmatic components on the antimicrobial activity of pure platelet-rich plasma was investigated against gram positive bacteria isolated from oral cavity. The antibacterial activity, evaluated as the minimum inhibitory concentration, was determined through the microdilution two-fold serial method. Results seem to suggest that the antimicrobial activity of platelet-rich plasma against Enterococcus faecalis, Streptococcus agalactiae, Streptococcus oralis and Staphylococcus aureus is sustained by a co-operation between plasma components and platelet-derived factors and that the activation of coagulation is a fundamental step. The findings of this study may have practical implications in the modality of application of platelet concentrates.
Collapse
Affiliation(s)
- Lorenzo Drago
- Laboratory of Technical Sciences for Laboratory Medicine, Department of Biomedical Science for Health, University of Milan, Milan, Italy
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
- * E-mail:
| | - Monica Bortolin
- Dental Clinic, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Christian Vassena
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Carlo L. Romanò
- Center of Reconstructive Surgery and Osteoarticular Infection, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Silvio Taschieri
- Dental Clinic, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Massimo Del Fabbro
- Dental Clinic, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
7
|
The antigenome: from protein subunit vaccines to antibody treatments of bacterial infections? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:90-117. [PMID: 20047038 PMCID: PMC7123057 DOI: 10.1007/978-1-4419-1132-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New strategies are needed to master infectious diseases. The so-called "passive vaccination", i.e., prevention and treatment with specific antibodies, has a proven record and potential in the management of infections and entered the medical arena more than 100 years ago. Progress in the identification of specific antigens has become the hallmark in the development of novel subunit vaccines that often contain only a single immunogen, frequently proteins, derived from the microbe in order to induce protective immunity. On the other hand, the monoclonal antibody technology has enabled biotechnology to produce antibody species in unlimited quantities and at reasonable costs that are more or less identical to their human counterparts and bind with high affinity to only one specific site of a given antigen. Although, this technology has provided a robust platform for launching novel and successful treatments against a variety of devastating diseases, it is up till now only exceptionally employed in therapy of infectious diseases. Monoclonal antibodies engaged in the treatment of specific cancers seem to work by a dual mode; they mark the cancerous cells for decontamination by the immune system, but also block a function that intervenes with cell growth. The availability of the entire genome sequence of pathogens has strongly facilitated the identification of highly specific protein antigens that are suitable targets for neutralizing antibodies, but also often seem to play an important role in the microbe's life cycle. Thus, the growing repertoire of well-characterized protein antigens will open the perspective to develop monoclonal antibodies against bacterial infections, at least as last resort treatment, when vaccination and antibiotics are no options for prevention or therapy. In the following chapter we describe and compare various technologies regarding the identification of suitable target antigens and the foundation of cognate monoclonal antibodies and discuss their possible applications in the treatment of bacterial infections together with an overview of current efforts.
Collapse
|
8
|
Matsumoto-Nakano M, Tsuji M, Inagaki S, Fujita K, Nagayama K, Nomura R, Ooshima T. Contribution of cell surface protein antigen c of Streptococcus mutans to platelet aggregation. ACTA ACUST UNITED AC 2009; 24:427-30. [PMID: 19702959 DOI: 10.1111/j.1399-302x.2009.00521.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Streptococcus mutans is considered to be one of the pathogens that cause infective endocarditis. The purpose of the present study was to examine the properties of S. mutans with regard to platelet aggregation by focusing on its high molecular protein antigen c (PAc). METHODS The platelet aggregation properties of six clinical strains and one isogenic mutant strain of S. mutans were analysed using an aggregometer and confocal microscopy, as well as with an inhibition assay of platelet aggregation using anti-PAc serum. RESULTS S. mutans strains with PAc expression induced platelet aggregation, while a PAc-deficient mutant and two clinical isolates with no PAc expression did not. When platelets were pretreated with higher amounts of anti-PAc serum, the platelet aggregation rate was reduced in a dose-dependent manner, indicating that PAc binds directly to platelets. CONCLUSION S. mutans PAc is involved in human platelet aggregation and may be one of the virulence factors in the pathogenesis of infective endocarditis.
Collapse
Affiliation(s)
- M Matsumoto-Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Lang S. Getting to the heart of the problem: serological and molecular techniques in the diagnosis of infective endocarditis. Future Microbiol 2008; 3:341-9. [DOI: 10.2217/17460913.3.3.341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infective endocarditis is diagnosed using the Duke criteria, which rely predominantly on cardiac imaging and recovery of a causative organism from the bloodstream. These criteria can be inconclusive, particularly when blood cultures remain sterile either due to the fastidious nature of the infecting organism or prior antibiotic therapy. Serology and, more recently, molecular techniques have been investigated as a solution to the problematic negative blood culture. The detection of elevated antibody levels has proved particularly useful in the diagnosis of those patients infected with organisms that cannot be cultured using standard laboratory methods, whilst molecular methods have been successfully used in the detection of both fastidious pathogens and those inhibited by prior antibiotic therapy. In view of recent and ongoing developments in the field of molecular diagnostics, these techniques will become increasingly important not only in the routine investigation of infectious disease, but specifically the diagnosis of endocarditis.
Collapse
Affiliation(s)
- Sue Lang
- Glasgow Caledonian University, Department of Biological & Biomedical Sciences, Cowcaddens Road, Glasgow, G4 0BA, UK
| |
Collapse
|
10
|
Nakano K, Tsuji M, Nishimura K, Nomura R, Ooshima T. Contribution of cell surface protein antigen PAc of Streptococcus mutans to bacteremia. Microbes Infect 2006; 8:114-21. [PMID: 16442486 DOI: 10.1016/j.micinf.2005.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/21/2005] [Accepted: 06/02/2005] [Indexed: 11/23/2022]
Abstract
Streptococcus mutans, a major cariogenic bacterium, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis. Mutant strains of S. mutans MT8148, defective in the major surface proteins glucosyltransferase (GTF) B-, C-, and D-, and protein antigen c (PAc), were constructed by insertional inactivation of each respective gene with an antibiotic resistant cassette. Susceptibility to phagocytosis was determined by analyses of interactions of the bacteria with human polymorphonuclear leukocytes, and the PAc-defective mutant strain (PD) showed the lowest rate of phagocytosis. Further, when PD and MT8148 were separately injected into the jugular veins of Sprague-Dawley rats, PD was recovered in significantly larger numbers and for a longer duration, and caused more severe systemic inflammation than MT8148, indicating that S. mutans PAc is associated with its systemic virulence in blood. Next, 100 S. mutans clinical isolates from 100 Japanese children and adolescents were analyzed by Western blotting using antisera raised against recombinant PAc, generated based on the pac sequence of MT8148. Four of the 100 strains showed no positive band and each exhibited a significantly lower phagocytosis rate than that of 25 randomly selected clinical strains (P < 0.01). In addition, three of the 100 strains possessed a lower molecular weight PAc and a significantly lower rate of phagocytosis than the 25 reference strains (P < 0.05). These results suggest that S. mutans PAc may be associated with phagocytosis susceptibility to human polymorphonuclear leukocytes, with approximately 7% of S. mutans clinical isolates possible high-risk strains for the development of bacteremia.
Collapse
Affiliation(s)
- Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
11
|
Ito HO, Nakashima T, So T, Hirata M, Inoue M. Immunodominance of conformation-dependent B-cell epitopes of protein antigens. Biochem Biophys Res Commun 2003; 308:770-6. [PMID: 12927785 DOI: 10.1016/s0006-291x(03)01466-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Immunodominance of conformational epitopes over linear ones in four proteins was quantified making use of the B-cell hybridoma technology. The proteins were immunized in their native forms into BALB/c mice, and clonal frequencies of B-cell hybridomas that produce antibodies to the native and denatured forms were determined, using ELISA and immunoblotting. All 16 monoclonal antibodies (mAbs) to Porphyromonas gingivalis fimbria were suggested to recognize conformational epitopes expressed by the oligomer. Ten out of 14 mAbs to Serratia marcescens fimbria and 13 of 15 mAbs to hen lysozyme were also specific to their conformational epitopes. In contrast, all 18 mAbs to a surface protein of Streptococcus mutans, termed PAc, reacted to both the native and denatured forms, thereby indicating the immunodominance of linear epitopes in this protein. The results suggest that B-cell epitopes of proteins possessing stable tertiary or quaternary structures are predominantly expressed by the higher-order structures.
Collapse
Affiliation(s)
- Hiro O Ito
- Division of Preventive Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan.
| | | | | | | | | |
Collapse
|
12
|
Barsotti O, Décoret D, Renaud FNR. Identification of streptococcus mitis group species by RFLP of the PCR-amplified 16S-23S rDNA intergenic spacer. Res Microbiol 2002; 153:687-91. [PMID: 12558188 DOI: 10.1016/s0923-2508(02)01382-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitis group streptococci are pioneer colonizers of tooth surfaces and are implicated in various pathologies. Thus, accurate identification of oral mitis group strains would be valuable for studies of plaque ecology and dental caries and for diagnostic use in endocarditis or sepsis patients. The aim of this study was to evaluate the usefulness of PCR-RFLP analysis of the 16S-23S intergenic spacer for differentiating and identifying streptococcus mitis group species. The 16S-23S rDNA spacer regions of 27 type and reference Streptococcus strains, representing 8 species, were studied by PCR-mediated amplification by using oligonucleotide primers FGPS 1490-72 and FGPL 132'-38. PCR products were digested, independently, with 14 restriction enzymes. Only AluI, MboI, CfoI, HinfI and MaeII distinguished some species, particularly AluI and CfoI, but not all the species. Eight clusters were clearly generated, corresponding to currently recognized species, but only with the addition of five ITS restriction patterns, generated by AluI + MboI + CfoI + HinfI + MaeII, then clustered by UPGMA, on a distance consensus matrix. The combination of these five ITS RFLP tests allowed a relatively conclusive genomic group differentiation of mitis group species. Despite this observation, more strains of each species will need to be analyzed, particularly clinical isolates, before arriving at general conclusions about the utility of ITS restrictions for identification of strains at the species level. An ITS PCR-RFLP-based identifying method for streptococcus mitis group species would provide significant advantages over other molecular taxonomic methods which require DNA extraction and DNA-DNA hybridization.
Collapse
Affiliation(s)
- Odile Barsotti
- Laboratoire d'Etude des Interfaces et des Biofilms en Odontologie, UFR d'Odontologie, rue Guillaume Paradin, 69372 Lyon cedex 08, France.
| | | | | |
Collapse
|
13
|
Nejatollahi F, Hodgetts SJ, Vallely PJ, Burnie JP. Neutralising human recombinant antibodies to human cytomegalovirus glycoproteins gB and gH. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 34:237-44. [PMID: 12423777 DOI: 10.1111/j.1574-695x.2002.tb00630.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A phage antibody display library of single chain fragment variable (scFv) was applied to develop anti-HCMV glycoprotein B (gB) and glycoprotein H (gH) neutralising libraries. To enrich for specific scFvs, the phage antibody was panned against cytomegalovirus epitopes derived from the N-terminal part of gB, the C-terminal part of gB and the N-terminal part of gH (NETIYNTTLKYGDV, VTSGSTKD and AASEALDPHAFHLLLNTYGR). A number of clones were differentiated by Bst N1 fingerprinting. After isolation of specific clones against each peptide, the neutralising effect of each clone was assessed by plaque reduction assay. This resulted in the isolation of eight neutralising scFv antibodies with 51-63% neutralising effects. Sequence analysis of three neutralising clones revealed the amino acids specificity changes in heavy and light chains of antibody molecules.
Collapse
Affiliation(s)
- Foroogh Nejatollahi
- Department of Medical Microbiology, Manchester University, Manchester Royal Infirmary, 2nd Floor, Clinical Sciences Building, Oxford Road, Manchester M13 9WL, UK
| | | | | | | |
Collapse
|
14
|
Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. Communication among oral bacteria. Microbiol Mol Biol Rev 2002; 66:486-505, table of contents. [PMID: 12209001 PMCID: PMC120797 DOI: 10.1128/mmbr.66.3.486-505.2002] [Citation(s) in RCA: 624] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.
Collapse
Affiliation(s)
- Paul E Kolenbrander
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4350, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Burnie J, Carter T, Rigg G, Hodgetts S, Donohoe M, Matthews R. Identification of ABC transporters in vancomycin-resistant Enterococcus faecium as potential targets for antibody therapy. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 33:179-89. [PMID: 12110480 DOI: 10.1111/j.1574-695x.2002.tb00589.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The occurrence of an outbreak of septicaemias due to vancomycin-resistant Enterococcus faecium (VRE), in Manchester, UK, provided an opportunity to examine the antibody responses in patients infected by the same strain. Immunoblotting sera from 24 cases, six of whom died, showed an immunodominant cluster of antigens at 34, 54 and 97 kDa, with a statistically significant correlate between survival and immunoglobulin G to the 34 and 97 kDa bands (P<0.05). Screening a genomic expression library of VRE with seropositive serum and peritoneal dialysate from a survivor gave a recombinant clone with two contiguous open reading frames, the derived amino acid sequences of which both showed sequence homologue with ABC transporters, with a Walker A and Walker B motif and the signature sequence LSGGQ. The first open reading frame (putative VRE ABC1) showed 57% homologue with YbxA from Bacillus subtilis. A partial sequence (putative VRE ABC2) was also obtained, in the same recombinant clone, of a second ABC transporter with 72% homologue with ybaE from B. subtilis. Affinity selection with the seropositive serum and peritoneal dialysate used to screen the library showed that the eluted antibody bound to the 97, 54, 34 and 30 kDa bands. Direct amino acid sequencing identified this as a possible ABC transporter. Rabbit antiserum against peptides representing Walker A and an area adjacent to the Walker B site cross-reacted with bands at 34, 54, 97, 110 kDa and at 30, 34 and 54 kDa respectively. This therefore appeared to be an immunodominant complex of ABC transporters of which the smallest was the 30 kDa antigen. Epitope mapping of this antigen with seropositive patients' sera delineated three linear epitopes (KVGIV, FGPKNF and RVAI). The Walker A site represented by peptide 1 (GHNGSGKSTLAKTIN), epitope RVAI represented by peptides 2 (MRRVAIAGVLAMPRE) and 3 (ELSGGQMRRVAIAGV), epitope KVGIV represented by peptide 4 (LKPIRKKVGIVFQFP), and recombinant VRE ABC1 and VRE ABC2 expressed in Escherichia coli pBAD were then used to isolate human genetically recombinant antibodies from a phage antibody display library. An assessment of the protective potential of these antibodies was carried out in a mouse model of the infection. This study suggests that an ABC transporter homologue could be a target for antibody therapy against VRE infections.
Collapse
Affiliation(s)
- James Burnie
- Infectious Diseases Research Group, University of Manchester, Oxford Road, Manchester M13 9WL, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Doyuk E, Ormerod OJ, Bowler ICJW. Native valve endocarditis due to Streptococcus vestibularis and Streptococcus oralis. J Infect 2002; 45:39-41. [PMID: 12217730 DOI: 10.1053/jinf.2002.1004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Viridans streptococci are the commonest cause of native valve infective endocarditis (IE). The taxonomy of this group is evolving allowing new disease associations to be made. Streptococcus vestibularis is a recently described member of the viridans group, first isolated from the vestibular mucosa of the human oral cavity. It has rarely been associated with human disease. Streptococcus oralis, another member of the viridans group resident in the human oral cavity is a well known cause of IE and bacteraemia in neutropenic patients. We report the first case of native mitral valve endocarditis due to S. vestibularis in a patient with co-existing S. oralis endocarditis.
Collapse
Affiliation(s)
- Elif Doyuk
- Department of Microbiology, The John Radcliffe Hospital, Oxford Radcliffe Hospitals NHS Trust, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
17
|
Fujiwara T, Nakano K, Kawaguchi M, Ooshima T, Sobue S, Kawabata S, Nakagawa I, Hamada S. Biochemical and genetic characterization of serologically untypable Streptococcus mutans strains isolated from patients with bacteremia. Eur J Oral Sci 2001; 109:330-4. [PMID: 11695754 DOI: 10.1034/j.1600-0722.2001.00119.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Four out of 522 streptococcal isolates from the peripheral blood of patients with bacteremia exhibited typical properties of Streptococcus mutans in terms of sucrose-dependent adhesion, expression of glucosyltransferases, fermentation profiles of sugars, the presence of surface protein antigen, and DNA-DNA hybridization. Two strains were determined as serotype f and e by immunodiffusion, whereas the other two isolates did not react with the specific antiserum to S. mutans serotype c. e. or f of the eight different serotypes of mutans streptococci. The latter two untypable isolates, however, expressed a new antigenic determinant that was different from serotype c/e/f specificity as revealed by immunodiffusion. Analysis of the cell wall polysaccharides revealed very low contents of glucose in the untypable isolates. Furthermore, Southern blot analysis demonstrated that the untypable strains lacked at least one gene corresponding to a glucose-adding enzyme. These results indicate that the serologically untypable nature is due to the loss of glucosidic residue from the serotype-specific polysaccharide antigens of S. mutans.
Collapse
Affiliation(s)
- T Fujiwara
- Department of Pedodontics, Osaka University Faculty of Dentistry, Suita-Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Burnie JP, Matthews RC, Carter T, Beaulieu E, Donohoe M, Chapman C, Williamson P, Hodgetts SJ. Identification of an immunodominant ABC transporter in methicillin-resistant Staphylococcus aureus infections. Infect Immun 2000; 68:3200-9. [PMID: 10816464 PMCID: PMC97562 DOI: 10.1128/iai.68.6.3200-3209.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoblotting sera from 26 patients with septicemia due to an epidemic strain of methicillin-resistant Staphylococcus aureus (EMRSA-15), 6 of whom died, revealed an immunodominant EMRSA-15 antigen at 61 kDa. There was a statistically significant correlate (P < 0.001) between survival and immunoglobulin G to the 61-kDa band. The antigen was identified by sequencing positive clones obtained by screening a genomic expression library of EMRSA-15 with pooled sera from patients taken after the septicemic episode. Eluted antibody reacted with the 61-kDa antigen on immunoblots. The amino terminus was obtained by searching the S. aureus NCTC 8325 and MRSA strain COL databases, and the whole protein was expressed in Escherichia coli TOP 10F'. The derived amino acid sequence showed homology with ABC transporters, with paired Walker A and Walker B motifs and 73% homology to YkpA from Bacillus subtilis. Epitope mapping of the derived amino acid sequence with sera from patients who had recovered from EMRSA-15 septicemia delineated seven epitopes. Three of these epitopes, represented by peptides 1 (KIKVYVGNYDFWYQS), 2 (TVIVVSHDRHFLYNNV), and 3 (TETFLRGFLGRMLFS), were synthesized and used to isolate human recombinant antibodies from a phage antibody display library. Recombinant antibodies against peptides 1 and 2 gave logarithmic reductions in organ colony counts, compared with control groups, in a mouse model of the infection. This study suggests the potential role of an ABC transporter as a target for immunotherapy.
Collapse
Affiliation(s)
- J P Burnie
- NeuTec Pharma plc, University of Manchester, Central Manchester Healthcare Trust, Manchester M13 9WL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rudney JD, Larson CJ. Identification of oral mitis group streptococci by arbitrarily primed polymerase chain reaction. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:33-42. [PMID: 10204478 DOI: 10.1034/j.1399-302x.1999.140104.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
"Mitis group" streptococci are commensal but may play some role in dental caries, septicemia or endocarditis. Rapid genotypic identification would aid studies of dental plaque ecology, or diagnostic use. AP-PCR with 58 unpaired arbitrary primers was used to characterize 7 Streptococcus gordonii, 11 Streptococcus sanguis, 2 Streptococcus crista, 5 Streptococcus parasanguis, 18 Streptococcus oralis, and 36 Streptococcus mitis (22 biovar 1 and 14 biovar 2). S. parasanguis 16S rRNA variable region primer RR2 produced species-specific bands with all S. gordonii and S. sanguis. Human V beta 1 T-cell receptor primer 434 yielded concordant genotypic identification of all phenotypically defined S. crista and S. parasanguis, 83% of S. oralis, and 74% of S. mitis biovar 1. Amplicon patterns for S. mitis biovar 2 were heterogeneous. Findings suggest that primers RR2 and 434 in succession will allow rapid identification of genotypic groups corresponding closely to mitis group species established by phenotype.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
20
|
Brady LJ, Cvitkovitch DG, Geric CM, Addison MN, Joyce JC, Crowley PJ, Bleiweis AS. Deletion of the central proline-rich repeat domain results in altered antigenicity and lack of surface expression of the Streptococcus mutans P1 adhesin molecule. Infect Immun 1998; 66:4274-82. [PMID: 9712778 PMCID: PMC108516 DOI: 10.1128/iai.66.9.4274-4282.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/1997] [Accepted: 06/08/1998] [Indexed: 11/20/2022] Open
Abstract
Members of the family of surface adhesins of oral streptococci, including P1 of Streptococcus mutans, contain two highly conserved repeat domains, one rich in alanine (A region) and the other rich in proline (P region). To assess the contribution of the P region to the biological properties of P1, an internal deletion in spaP was engineered. In addition, the P region was subcloned and expressed as a fusion partner with the maltose binding protein of Escherichia coli and liberated by digestion with factor Xa. Results of Western blot experiments in which recombinant polypeptides were probed with a panel of 11 monoclonal antibodies indicated that the P region is a necessary component of conformational epitopes within the central portion of P1. Antibodies reactive with the P region were detected in a polyclonal rabbit antiserum generated against whole S. mutans cells but not in two rabbit antisera generated against purified P1 (Mr approximately 185,000), suggesting that this domain is immunogenic on the surface of intact bacteria but not as part of a soluble full-length molecule. Finally, transformation of a spaP-negative mutant with a shuttle vector containing an internally deleted spaP lacking P-region DNA resulted in a complete absence of surface-localized P1 and substantially less P1 in sonicated cells compared to the case for the mutant complemented with the full-length gene. These results suggest that the P region is an integral component contributing to the conformation of the central region of P1 and indicate that its presence is necessary for surface expression of the molecule on S. mutans.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Blotting, Western
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Escherichia coli
- Membrane Glycoproteins
- Mice
- Plasmids
- Proline/genetics
- Proline/immunology
- RNA, Messenger
- Rabbits
- Repetitive Sequences, Nucleic Acid
- Sequence Deletion
- Streptococcus mutans/genetics
- Streptococcus mutans/immunology
- Transformation, Bacterial
Collapse
Affiliation(s)
- L J Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79:129-68. [PMID: 9749880 DOI: 10.1016/s0163-7258(98)00013-8] [Citation(s) in RCA: 743] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 90-kDa molecular chaperone family (which comprises, among other proteins, the 90-kDa heat-shock protein, hsp90 and the 94-kDa glucose-regulated protein, grp94, major molecular chaperones of the cytosol and of the endoplasmic reticulum, respectively) has become an increasingly active subject of research in the past couple of years. These ubiquitous, well-conserved proteins account for 1-2% of all cellular proteins in most cells. However, their precise function is still far from being elucidated. Their involvement in the aetiology of several autoimmune diseases, in various infections, in recognition of malignant cells, and in antigen-presentation already demonstrates the essential role they likely will play in clinical practice of the next decade. The present review summarizes our current knowledge about the cellular functions, expression, and clinical implications of the 90-kDa molecular chaperone family and some approaches for future research.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|