1
|
Adler BL, Chung T, Rowe PC, Aucott J. Dysautonomia following Lyme disease: a key component of post-treatment Lyme disease syndrome? Front Neurol 2024; 15:1344862. [PMID: 38390594 PMCID: PMC10883079 DOI: 10.3389/fneur.2024.1344862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Dysautonomia, or dysfunction of the autonomic nervous system (ANS), may occur following an infectious insult and can result in a variety of debilitating, widespread, and often poorly recognized symptoms. Dysautonomia is now widely accepted as a complication of COVID-19 and is an important component of Post-Acute Sequelae of COVID-19 (PASC or long COVID). PASC shares many overlapping clinical features with other infection-associated chronic illnesses including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Post-Treatment Lyme Disease Syndrome (PTLDS), suggesting that they may share common underlying mechanisms including autonomic dysfunction. Despite the recognition of this complication of Lyme disease in the care of patients with PTLD, there has been a scarcity of research in this field and dysautonomia has not yet been established as a complication of Lyme disease in the medical literature. In this review, we discuss the evidence implicating Borrelia burgdorferi as a cause of dysautonomia and the related symptoms, propose potential pathogenic mechanisms given our knowledge of Lyme disease and mechanisms of PASC and ME/CFS, and discuss the diagnostic evaluation and treatments of dysautonomia. We also outline gaps in the literature and priorities for future research.
Collapse
Affiliation(s)
- Brittany L Adler
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - John Aucott
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
2
|
Adams Y, Clausen AS, Jensen PØ, Lager M, Wilhelmsson P, Henningson AJ, Lindgren PE, Faurholt-Jepsen D, Mens H, Kraiczy P, Kragh KN, Bjarnsholt T, Kjaer A, Lebech AM, Jensen AR. 3D blood-brain barrier-organoids as a model for Lyme neuroborreliosis highlighting genospecies dependent organotropism. iScience 2023; 26:105838. [PMID: 36686395 PMCID: PMC9851883 DOI: 10.1016/j.isci.2022.105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Lyme neuroborreliosis (LNB), a tick-borne infection caused by spirochetes within the Borrelia burgdorferi sensu lato (s.L.) complex, is among the most prevalent bacterial central nervous system (CNS) infections in Europe and the US. Here we have screened a panel of low-passage B. burgdorferi s.l. isolates using a novel, human-derived 3D blood-brain barrier (BBB)-organoid model. We show that human-derived BBB-organoids support the entry of Borrelia spirochetes, leading to swelling of the organoids and a loss of their structural integrity. The use of the BBB-organoid model highlights the organotropism between B. burgdorferi s.l. genospecies and their ability to cross the BBB contributing to CNS infection.
Collapse
Affiliation(s)
- Yvonne Adams
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Biomedical Sciences, University of Copenhagen, University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malin Lager
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Wilhelmsson
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna J. Henningson
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Per-Eric Lindgren
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Kasper Nørskov Kragh
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anja R. Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
3
|
A Live Cell Imaging Microfluidic Model for Studying Extravasation of Bloodborne Bacterial Pathogens. Cell Microbiol 2022. [DOI: 10.1155/2022/3130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria that migrate (extravasate) out of the bloodstream during vascular dissemination can cause secondary infections in many tissues and organs, including the brain, heart, liver, joints, and bone with clinically serious and sometimes fatal outcomes. The mechanisms by which bacteria extravasate through endothelial barriers in the face of blood flow-induced shear stress are poorly understood, in part because individual bacteria are rarely observed traversing endothelia in vivo, and in vitro model systems inadequately mimic the vascular environment. To enable the study of bacterial extravasation mechanisms, we developed a transmembrane microfluidics device mimicking human blood vessels. Fast, quantitative, three-dimensional live cell imaging in this system permitted single-cell resolution measurement of the Lyme disease bacterium Borrelia burgdorferi transmigrating through monolayers of primary human endothelial cells under physiological shear stress. This cost-effective, flexible method was 10,000 times more sensitive than conventional plate reader-based methods for measuring transendothelial migration. Validation studies confirmed that B. burgdorferi transmigrate actively and strikingly do so at similar rates under static and physiological flow conditions. This method has significant potential for future studies of B. burgdorferi extravasation mechanisms, as well as the transendothelial migration mechanisms of other disseminating bloodborne pathogens.
Collapse
|
4
|
Bockenstedt LK, Wooten RM, Baumgarth N. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:145-190. [PMID: 33289684 PMCID: PMC10842262 DOI: 10.21775/cimb.042.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The mammalian host responds to infection with Borrelia spirochetes through a highly orchestrated immune defense involving innate and adaptive effector functions aimed toward limiting pathogen burdens, minimizing tissue injury, and preventing subsequent reinfection. The evolutionary adaptation of Borrelia spirochetes to their reservoir mammalian hosts may allow for its persistence despite this immune defense. This review summarizes our current understanding of the host immune response to B. burgdorferi sensu lato, the most widely studied Borrelia spp. and etiologic agent of Lyme borreliosis. Pertinent literature will be reviewed with emphasis on in vitro, ex vivo and animal studies that influenced our understanding of both the earliest responses to B. burgdorferi as it enters the mammalian host and those that evolve as spirochetes disseminate and establish infection in multiple tissues. Our focus is on the immune response of inbred mice, the most commonly studied animal model of B. burgdorferi infection and surrogate for one of this pathogen's principle natural reservoir hosts, the white-footed deer mouse. Comparison will be made to the immune responses of humans with Lyme borreliosis. Our goal is to provide an understanding of the dynamics of the mammalian immune response during infection with B. burgdorferi and its relation to the outcomes in reservoir (mouse) and non-reservoir (human) hosts.
Collapse
Affiliation(s)
- Linda K. Bockenstedt
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Dept. Pathology, Microbiology and Immunology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
5
|
Lochhead RB, Arvikar SL, Aversa JM, Sadreyev RI, Strle K, Steere AC. Robust interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfectious, Borrelia burgdorferi-induced Lyme arthritis. Cell Microbiol 2018; 21:e12954. [PMID: 30218476 DOI: 10.1111/cmi.12954] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
In most patients with Lyme arthritis (LA), antibiotic therapy results in Borrelia burgdorferi pathogen elimination, tissue repair, and return to homeostasis. However, despite spirochetal killing, some patients develop proliferative synovitis, characterised by synovial hyperplasia, inflammation, vascular damage, and fibrosis that persists for months to several years after antibiotic treatment, called postinfectious LA. In this study, we characterised the transcriptomes of postinfectious LA patients' synovial tissue, the target tissue of the immune response. High-throughput RNA sequencing to a depth of ~30 million reads per sample was used to profile gene expression in synovial tissue from 14 patients with postinfectious LA, compared with eight patients with other types of chronic inflammatory arthritis and five with minimally inflammatory osteoarthritis (OA). Synovium from postinfectious LA and other inflammatory arthritides shared gene signatures associated with antigen presentation, innate immune responses, and cell-mediated immune activation, whereas these responses were diminished in OA synovium. Unique to postinfectious LA was a particularly robust interferon-gamma (IFNγ) signature. Moreover, this heightened IFNγ signature inversely correlated with expression of genes involved in repair of damaged tissue, including genes associated with stromal cell proliferation and differentiation, neovascularisation, and extracellular matrix synthesis, which were markedly suppressed in postinfectious LA. Transcriptional observations were confirmed by cytokine profiling, histologic analyses, and clinical correlations. We propose that in patients with postinfectious LA, overexpression of IFNγ in synovium prevents appropriate repair of tissue damaged by B. burgdorferi infection, blocking return to tissue homeostasis long after completion of antibiotic therapy and resolution of active infection.
Collapse
Affiliation(s)
- Robert B Lochhead
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sheila L Arvikar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John M Aversa
- Department of Orthopedics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Klemen Strle
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Multifunctional and Redundant Roles of Leptospira interrogans Proteins in Bacterial-Adhesion and fibrin clotting inhibition. Int J Med Microbiol 2017; 307:297-310. [PMID: 28600123 DOI: 10.1016/j.ijmm.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/16/2017] [Accepted: 05/28/2017] [Indexed: 02/01/2023] Open
Abstract
Pathogenic Leptopira is the etiological agent of leptospirosis, the most widespread zoonotic infection in the world. The disease represents a major public health problem, especially in tropical countries. The present work focused on two hypothetical proteins of unknown function, encoded by the genes LIC13059 and LIC10879, and predicted to be surface-exposed proteins. The genes were cloned and the proteins expressed using E. coli as a host system. We report that the recombinant proteins interacted with extracellular matrix (ECM) laminin, in a dose-dependent fashion and are novel potential adhesins. The recombinant proteins were called Lsa25.6 (rLIC13059) and Lsa16 (rLIC10879), for Leptospiral surface adhesins, followed by the respective molecular masses. The proteins attached to plasminogen (PLG), generating plasmin, in the presence of PLG-activator uPA. Both proteins bind to fibrinogen (Fg), but only Lsa25.6 inhibited fibrin clotting by thrombin-catalyzed reaction. Moreover, Lsa16 interacts with the mammalian cell receptor E-cadherin, and could contribute to bacterial attachment to epithelial cells. The proteins were recognized by confirmed leptospirosis serum samples, suggesting that they are expressed during infection. The corresponding leptospiral proteins are surface exposed based on proteinase K accessibility assay, being LIC10879 most probably exposed in its dimer form. The data of this study extend the spectrum of surface-exposed proteins of L. interrogans and indicate a possible role of the originally annotated hypothetical proteins in infection processes.
Collapse
|
7
|
Hyde JA. Borrelia burgdorferi Keeps Moving and Carries on: A Review of Borrelial Dissemination and Invasion. Front Immunol 2017; 8:114. [PMID: 28270812 PMCID: PMC5318424 DOI: 10.3389/fimmu.2017.00114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi is the etiological agent of Lyme disease, a multisystemic, multistage, inflammatory infection resulting in patients experiencing cardiac, neurological, and arthritic complications when not treated with antibiotics shortly after exposure. The spirochetal bacterium transmits through the Ixodes vector colonizing the dermis of a mammalian host prior to hematogenous dissemination and invasion of distal tissues all the while combating the immune response as it traverses through its pathogenic lifecycle. The innate immune response controls the borrelial burden in the dermis, but is unable to clear the infection and thereby prevent progression of disease. Dissemination in the mammalian host requires temporal regulation of virulence determinants to allow for vascular interactions, invasion, and colonization of distal tissues. Virulence determinants and/or adhesins are highly heterogenetic among environmental B. burgdorferi strains with particular genotypes being associated with the ability to disseminate to specific tissues and the severity of disease, but fail to generate cross-protective immunity between borrelial strains. The unique motility of B. burgdorferi rendered by the endoflagella serves a vital function for dissemination and protection from immune recognition. Progress has been made toward understanding the chemotactic regulation coordinating the activity of the two polar localized flagellar motors and their role in borrelial virulence, but this regulation is not yet fully understood. Distinct states of motility allow for dynamic interactions between several B. burgdorferi adhesins and host targets that play roles in transendothelial migration. Transmigration across endothelial and blood-brain barriers allows for the invasion of tissues and elicits localized immune responses. The invasive nature of B. burgdorferi is lacking in proactive mechanisms to modulate disease, such as secretion systems and toxins, but recent work has shown degradation of host extracellular matrices by B. burgdorferi contributes to the invasive capabilities of the pathogen. Additionally, B. burgdorferi may use invasion of eukaryotic cells for immune evasion and protection against environmental stresses. This review provides an overview of B. burgdorferi mechanisms for dissemination and invasion in the mammalian host, which are essential for pathogenesis and the development of persistent infection.
Collapse
Affiliation(s)
- Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center , Bryan, TX , USA
| |
Collapse
|
8
|
Zhang RL, Zhang JP, Wang QQ. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer. PLoS One 2014; 9:e115134. [PMID: 25514584 PMCID: PMC4267829 DOI: 10.1371/journal.pone.0115134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.
Collapse
Affiliation(s)
- Rui-Li Zhang
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jing-Ping Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, & National Center for STD Control, China Centers for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Qian-Qiu Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, & National Center for STD Control, China Centers for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
9
|
Kelesidis T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front Immunol 2014; 5:310. [PMID: 25071771 PMCID: PMC4075078 DOI: 10.3389/fimmu.2014.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
10
|
Pulzova L, Kovac A, Mucha R, Mlynarcik P, Bencurova E, Madar M, Novak M, Bhide M. OspA-CD40 dyad: ligand-receptor interaction in the translocation of neuroinvasive Borrelia across the blood-brain barrier. Sci Rep 2011; 1:86. [PMID: 22355605 PMCID: PMC3216572 DOI: 10.1038/srep00086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/18/2011] [Indexed: 11/09/2022] Open
Abstract
Lyme borreliosis is the most widespread vector-borne disease in temperate zones of Europe and North America. Although the infection is treatable, the symptoms are often overlooked resulting in infection of the neuronal system. In this work we uncover the underlying molecular mechanism of borrelial translocation across the blood-brain barrier (BBB). We demonstrate that neuroinvasive strain of Borrelia readily crosses monolayer of brain-microvascular endothelial cells (BMECs) in vitro and BBB in vivo. Using protein-protein interaction assays we found that CD40 of BMECs and OspA of Borrelia are the primary molecules in transient tethering of Borrelia to endothelium. OspA of neuroinvasive Borrelia, but not of non-neuroinvasive strain, binds CD40. Furthermore, only the neuroinvasive Borrelia and its recombinant OspA activated CD40-dependent pathway in BMECs and induced expression of integrins essential for stationary adhesion. Demonstration of the CD40-ligand interactions may provide a new possible perspective on molecular mechanisms of borrelial BBB translocation process.
Collapse
Affiliation(s)
- Lucia Pulzova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181, Kosice, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ferrero MC, Bregante J, Delpino MV, Barrionuevo P, Fossati CA, Giambartolomei GH, Baldi PC. Proinflammatory response of human endothelial cells to Brucella infection. Microbes Infect 2011; 13:852-861. [PMID: 21621633 DOI: 10.1016/j.micinf.2011.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 01/18/2023]
Abstract
Although vascular pathologies such as vasculitis, endocarditis and mycotic aneurysms have been described in brucellosis patients, the interaction of Brucella with the endothelium has not been characterized. In this study we show that Brucella abortus and Brucella suis can infect and replicate in primary human umbilical vein endothelial cells (HUVEC) and in the microvascular endothelial cell line HMEC-1. Infection led to an increased production of IL-8, MCP-1 and IL-6 in HUVEC and HMEC-1 cells, and an increased expression of adhesion molecules (CD54 in both cells, CD106 and CD62E in HUVEC). Experiments with purified antigens from the bacterial outer membrane revealed that lipoproteins (Omp19) but not lipopolysaccharide mediate these proinflammatory responses. Infection of polarized HMEC-1 cells resulted in an increased capacity of these cells to promote the transmigration of neutrophils from the apical to the basolateral side of the monolayer, and the same phenomenon was observed when the cells were stimulated with live bacteria from the basolateral side. Overall, these results suggest that Brucella spp. can infect and survive within endothelial cells, and can induce a proinflammatory response that might be involved in the vascular manifestations of brucellosis.
Collapse
Affiliation(s)
- Mariana C Ferrero
- Instituto de Estudios de la Inmunidad Humoral, Facultad de Farmacia y Bioquímica, UBA, Junín 956, (1113) Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
12
|
Sahay B, Singh A, Gnanamani A, Patsey RL, Blalock JE, Sellati TJ. CD14 signaling reciprocally controls collagen deposition and turnover to regulate the development of lyme arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:724-34. [PMID: 21281805 DOI: 10.1016/j.ajpath.2010.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/22/2010] [Accepted: 10/21/2010] [Indexed: 12/31/2022]
Abstract
CD14 is a glycosylphosphatidylinositol-anchored protein expressed primarily on myeloid cells (eg, neutrophils, macrophages, and dendritic cells). CD14(-/-) mice infected with Borrelia burgdorferi, the causative agent of Lyme disease, produce more proinflammatory cytokines and present with greater disease and bacterial burden in infected tissues. Recently, we uncovered a novel mechanism whereby CD14(-/-) macrophages mount a hyperinflammatory response, resulting from their inability to be tolerized by B. burgdorferi. Paradoxically, CD14 deficiency is associated with greater bacterial burden despite the presence of highly activated neutrophils and macrophages and elevated levels of cytokines with potent antimicrobial activities. Killing and clearance of Borrelia, especially in the joints, depend on the recruitment of neutrophils. Neutrophils can migrate in response to chemotactic gradients established through the action of gelatinases (eg, matrix metalloproteinase 9), which degrade collagen components of the extracellular matrix to generate tripeptide fragments of proline-glycine-proline. Using a mouse model of Lyme arthritis, we demonstrate that CD14 deficiency leads to decreased activation of matrix metalloproteinase 9, reduced degradation of collagen, and diminished recruitment of neutrophils. This reduction in neutrophil numbers is associated with greater numbers of Borrelia in infected tissues. Variation in the efficiency of neutrophil-mediated clearance of B. burgdorferi may underlie differences in the severity of Lyme arthritis observed in the patient population and suggests avenues for development of adjunctive therapy designed to augment host immunity.
Collapse
Affiliation(s)
- Bikash Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | | | | | | | | | | |
Collapse
|
13
|
Shin HS, Xu F, Bagchi A, Herrup E, Prakash A, Valentine C, Kulkarni H, Wilhelmsen K, Warren S, Hellman J. Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 186:1119-30. [PMID: 21169547 DOI: 10.4049/jimmunol.1001647] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
TLR2 activation induces cellular and organ inflammation and affects lung function. Because deranged endothelial function and coagulation pathways contribute to sepsis-induced organ failure, we studied the effects of bacterial lipoprotein TLR2 agonists, including peptidoglycan-associated lipoprotein, Pam3Cys, and murein lipoprotein, on endothelial function and coagulation pathways in vitro and in vivo. TLR2 agonist treatment induced diverse human endothelial cells to produce IL-6 and IL-8 and to express E-selectin on their surface, including HUVEC, human lung microvascular endothelial cells, and human coronary artery endothelial cells. Treatment of HUVEC with TLR2 agonists caused increased monolayer permeability and had multiple coagulation effects, including increased production of plasminogen activator inhibitor-1 (PAI-1) and tissue factor, as well as decreased production of tissue plasminogen activator and tissue factor pathway inhibitor. TLR2 agonist treatment also increased HUVEC expression of TLR2 itself. Peptidoglycan-associated lipoprotein induced IL-6 production by endothelial cells from wild-type mice but not from TLR2 knockout mice, indicating TLR2 specificity. Mice were challenged with TLR2 agonists, and lungs and plasmas were assessed for markers of leukocyte trafficking and coagulopathy. Wild-type mice, but not TLR2 mice, that were challenged i.v. with TLR2 agonists had increased lung levels of myeloperoxidase and mRNAs for E-selectin, P-selectin, and MCP-1, and they had increased plasma PAI-1 and E-selectin levels. Intratracheally administered TLR2 agonist caused increased lung fibrin levels. These studies show that TLR2 activation by bacterial lipoproteins broadly affects endothelial function and coagulation pathways, suggesting that TLR2 activation contributes in multiple ways to endothelial activation, coagulopathy, and vascular leakage in sepsis.
Collapse
Affiliation(s)
- Hae-Sook Shin
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gandhi G, Londoño D, Whetstine CR, Sethi N, Kim KS, Zückert WR, Cadavid D. Interaction of variable bacterial outer membrane lipoproteins with brain endothelium. PLoS One 2010; 5:e13257. [PMID: 21063459 PMCID: PMC2962627 DOI: 10.1371/journal.pone.0013257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 09/07/2010] [Indexed: 11/29/2022] Open
Abstract
Background Previously we reported that the variable outer membrane lipoprotein Vsp1 from the relapsing fever spirochete Borrelia turicatae disseminates from blood to brain better than the closely related Vsp2 [1]. Here we studied the interaction between Vsp1 and Vsp2 with brain endothelium in more detail. Methodology/Principal Findings We compared Vsp1 to Vsp2 using human brain microvascular endothelial cell (HBMEC) association assays with aminoacid radiolabeled Vsp-expressing clones of recombinant Borrelia burgdorferi and lanthanide-labeled purified lipidated Vsp1 (LVsp1) and Vsp2 (LVsp2) and inoculations of the lanthanide-labeled proteins into mice. The results showed that heterologous expression of LVsp1 or LVsp2 in B. burgdorferi increased its association with HBMEC to a similar degree. Purified lanthanide-labeled lipidated Vsp1 (LVsp1) and LVsp2 by themselves were capable of associating with HBMEC. The association of LVsp1 with brain endothelium was time-dependent, saturable, and required the lipidation. The association of Vsp1 with HBMEC was inhibited by incubation at lower temperature or with excess unlabeled LVsp1 or LVsp2 but not with excess rVsp1 or mouse albumin or an anti Vsp1 monoclonal antibody. The association of LVsp2 with HBMEC and its movement from blood to brain parenchyma significantly increased in the presence of LVsp1. Conclusions/Significance Variable bacterial outer membrane lipoproteins interact with brain endothelium differently; the lipidation and variable features at the protein dome region are key modulators of this interaction.
Collapse
Affiliation(s)
- Gaurav Gandhi
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Diana Londoño
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Christine R. Whetstine
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Nilay Sethi
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kwang S. Kim
- Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Diego Cadavid
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology and Neuroscience and Center for the Study of Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
15
|
Atzingen MV, Gómez RM, Schattner M, Pretre G, Gonçales AP, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Lp95, a novel leptospiral protein that binds extracellular matrix components and activates e-selectin on endothelial cells. J Infect 2009; 59:264-76. [PMID: 19665803 DOI: 10.1016/j.jinf.2009.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/26/2009] [Accepted: 07/02/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The study of a predicted outer membrane leptospiral protein encoded by the gene LIC12690 in mediating the adhesion process. METHODS The gene was cloned and expressed in Escherichia coli BL21 (SI) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and used to assess its ability to activate human umbilical vein endothelial cells (HUVECs). RESULTS The recombinant leptospiral protein of 95kDa, named Lp95, activated E-selectin in a dose-dependent fashion but not the intercellular adhesion molecule 1 (ICAM-1). In addition, we show that pathogenic and non-pathogenic Leptospira are both capable to stimulate endothelium E-selectin and ICAM-1, but the pathogenic L. interrogans serovar Copenhageni strain promotes a statistically significant higher activation than the non-pathogenic L. biflexa serovar Patoc (P<0.01). The Lp95 was identified in vivo in the renal tubules of animal during experimental infection with L. interrogans. The whole Lp95 as well as its fragments, the C-terminal containing the domain of unknown function (DUF), the N-terminal and the central overlap regions bind laminin and fibronectin ECM molecules, being the binding stronger with the DUF containing fragment. CONCLUSION This is the first leptospiral protein capable to mediate the adhesion to ECM components and the activation of HUVECS, thus suggesting its participation in the pathogenesis of Leptospira.
Collapse
Affiliation(s)
- Marina V Atzingen
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, São Paulo, SP 05503-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Spent culture medium from virulent Borrelia burgdorferi increases permeability of individually perfused microvessels of rat mesentery. PLoS One 2008; 3:e4101. [PMID: 19116656 PMCID: PMC2605548 DOI: 10.1371/journal.pone.0004101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022] Open
Abstract
Background Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi (Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivo studies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can directly alter the vascular permeability in vivo has not been investigated. The objective of the present study was to investigate if Bb produces a mediator(s) that can directly activate endothelial cells resulting in increases in permeability in intact microvessels in the absence of blood cells. Methodology/Principal Findings The effects of cell-free, spent culture medium from virulent (B31-A3) and avirulent (B31-A) B. burgdorferi on microvessel permeability and endothelial calcium concentration, [Ca2+]i, were examined in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca2+]i, a necessary signal initiating hyperpermeability, was measured in Fura-2 loaded microvessels. B31-A3 spent medium caused a rapid and transient increase in Lp and endothelial [Ca2+]i. Within 2–5 min, the mean peak Lp increased to 5.6±0.9 times the control, and endothelial [Ca2+]i increased from 113±11 nM to a mean peak value of 324±35 nM. In contrast, neither endothelial [Ca2+]i nor Lp was altered by B31-A spent medium. Conclusions/Significance A mediator(s) produced by virulent Bb under culture conditions directly activates endothelial cells, resulting in increases in microvessel permeability. Most importantly, the production of this mediator is associated with Bb virulence and is likely produced by one or more of the 8 plasmid(s) missing from strain B31-A.
Collapse
|
17
|
Londoño D, Marques A, Hornung RL, Cadavid D. Relapsing fever borreliosis in interleukin-10-deficient mice. Infect Immun 2008; 76:5508-13. [PMID: 18794280 PMCID: PMC2583564 DOI: 10.1128/iai.00587-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/19/2008] [Accepted: 09/08/2008] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever (RF) is a spirochetal infection characterized by periods of sickness with fever at time of high bacteremia that alternate with afebrile periods of relative well being during low bacteremia. Patients with epidemic RF who are doing relatively well have extraordinarily high levels of interleukin-10 (IL-10) in the circulation. We investigated the possibility that IL-10 plays an important protective role in this infection using wild-type and IL-10-deficient mice inoculated with virulent serotype 2 of the RF spirochete Borrelia turicatae. During peak bacteremia there was increased systemic production of IL-10 that quickly resolved in the postpeak period; in contrast, IL-6 and CXCL13 production increased during the peak but remained elevated during postpeak bacteremia. IL-10 deficiency resulted in lower bacteremia, increased specific antibody production, higher production of CXCL13 and IL-6, and thrombotic and hemorrhagic complications affecting multiple organs with secondary tissue injury. Our results revealed that production of IL-10 is highly regulated during RF and plays an important protective role in the prevention of hemorrhagic and thrombotic complications at the cost of reduced pathogen control.
Collapse
Affiliation(s)
- Diana Londoño
- Department of Neurology and Neuroscience and Center for Emerging Pathogens at UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
18
|
Gómez RM, Vieira ML, Schattner M, Malaver E, Watanabe MM, Barbosa AS, Abreu PAE, de Morais ZM, Cifuente JO, Atzingen MV, Oliveira TR, Vasconcellos SA, Nascimento ALTO. Putative outer membrane proteins of Leptospira interrogans stimulate human umbilical vein endothelial cells (HUVECS) and express during infection. Microb Pathog 2008; 45:315-22. [PMID: 18778767 DOI: 10.1016/j.micpath.2008.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/04/2008] [Accepted: 08/06/2008] [Indexed: 11/19/2022]
Abstract
Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L. interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L. interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira.
Collapse
Affiliation(s)
- Ricardo M Gómez
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Forestal CA, Gil H, Monfett M, Noah CE, Platz GJ, Thanassi DG, Benach JL, Furie MB. A conserved and immunodominant lipoprotein of Francisella tularensis is proinflammatory but not essential for virulence. Microb Pathog 2008; 44:512-23. [PMID: 18304778 PMCID: PMC2483246 DOI: 10.1016/j.micpath.2008.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/03/2008] [Indexed: 11/22/2022]
Abstract
Francisella tularensis is a highly virulent bacterium that causes tularemia, a disease that is often fatal if untreated. A live vaccine strain (LVS) of this bacterium is attenuated for virulence in humans but produces lethal disease in mice. F. tularensis has been classified as a Category A agent of bioterrorism. Despite this categorization, little is known about the components of the organism that are responsible for causing disease in its hosts. Here, we report the deletion of a well-characterized lipoprotein of F. tularensis, designated LpnA (also known as Tul4), in the LVS. An LpnA deletion mutant was comparable to the wild-type strain in its ability to grow intracellularly and cause lethal disease in mice. Additionally, mice inoculated with a sublethal dose of the mutant strain were afforded the same protection against a subsequent lethal challenge with the LVS as were mice initially administered a sublethal dose of the wild-type bacterium. The LpnA-deficient strain showed an equivalent ability to promote secretion of chemokines by human monocyte-derived macrophages as its wild-type counterpart. However, recombinant LpnA potently stimulated primary cultures of human macrophages in a Toll-like receptor 2-dependent manner. Although human endothelial cells were also activated by recombinant LpnA, their response was relatively modest. LpnA is clearly unnecessary for multiple functions of the LVS, but its inflammatory capacity implicates it and other Francisella lipoproteins as potentially important to the pathogenesis of tularemia.
Collapse
Affiliation(s)
- Colin A. Forestal
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
| | - Horacio Gil
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
| | - Michael Monfett
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
| | - Courtney E. Noah
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
| | - Gabrielle J. Platz
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
| | - David G. Thanassi
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
| | - Jorge L. Benach
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
| | - Martha B. Furie
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120
| |
Collapse
|
20
|
Vieira ML, D'Atri LP, Schattner M, Habarta AM, Barbosa AS, de Morais ZM, Vasconcellos SA, Abreu PAE, Gómez RM, Nascimento ALTO. A novel leptospiral protein increases ICAM-1 and E-selectin expression in human umbilical vein endothelial cells. FEMS Microbiol Lett 2008; 276:172-80. [PMID: 17956423 DOI: 10.1111/j.1574-6968.2007.00924.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It has been reported previously that activation of vascular endothelium by outer membrane proteins of the spirochetes Borrelia sp. and Treponema sp. resulted in enhanced expression of endothelial cell adhesion molecules. To investigate the role of leptospiral proteins in this process, a predicted lipoprotein encoded by the gene LIC10365 was selected, which belongs to a paralogous family that presents a domain of unknown function, DUF1565. The LIC10365 gene was cloned and the protein expressed in Escherichia coli C43 (DE3) strain using the vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and was used to assess its ability to activate cultured human umbilical vein endothelial cells. The rLIC10365 activated endothelium in such a manner that E-selectin and intercellular adhesion molecule 1 (ICAM-1) became upregulated in a dose-dependent fashion. The LIC10365-encoded protein was identified in vivo in the renal tubules of animal during experimental infection with Leptospira interrogans. Collectively, these results implicate the LIC10365-coding protein of L. interrogans as a potential effector molecule in the promotion of a host inflammatory response. This is the first report of a leptospiral protein capable of up-regulating the expression of endothelial cell adhesion molecules ICAM-1 and E-selectin.
Collapse
Affiliation(s)
- Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lazarus JJ, Meadows MJ, Lintner RE, Wooten RM. IL-10 deficiency promotes increased Borrelia burgdorferi clearance predominantly through enhanced innate immune responses. THE JOURNAL OF IMMUNOLOGY 2007; 177:7076-85. [PMID: 17082624 DOI: 10.4049/jimmunol.177.10.7076] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Borrelia burgdorferi is capable of persistently infecting a variety of hosts despite eliciting potent innate and adaptive immune responses. Preliminary studies indicated that IL-10-deficient (IL-10(-/-)) mice exhibit up to 10-fold greater clearance of B. burgdorferi from target tissues compared with wild-type mice, establishing IL-10 as the only cytokine currently known to have such a significant effect on spirochetal clearance. To further delineate these IL-10-mediated immune effects, kinetic studies indicated that spirochete dissemination to target tissues is similar in both wild-type and IL-10(-/-) mouse strains, and that enhanced clearance of B. burgdorferi in IL-10(-/-) mice is correlated with increased B. burgdorferi-specific Ab as early as 2 wk postinfection. Immunoblot analysis indicated that Abs produced by infected IL-10(-/-) and wild-type mice recognize similar ranges of spirochetal Ags. Immune sera from IL-10(-/-) and wild-type mice also exhibited similar bactericidal activity in vitro, and passive transfer of these immune sera into B. burgdorferi-infected SCID mice caused similar reductions of bacterial numbers in target tissues. Infectious dose studies indicated that 8-fold more B. burgdorferi were needed to efficiently infect naive IL-10(-/-) mice, suggesting these animals possess higher innate barriers to infection. Moreover, macrophages derived from IL-10(-/-) mice exhibit enhanced proinflammatory responses to B. burgdorferi stimulation compared with wild-type controls, and these responses are not significantly affected by the presence of immune serum. These findings confirm that B. burgdorferi clearance by innate immune responses is more efficient in the absence of IL-10, and these activities are not directly related to increased levels of B. burgdorferi-specific Ab.
Collapse
Affiliation(s)
- John J Lazarus
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | |
Collapse
|
22
|
Dame TM, Orenzoff BL, Palmer LE, Furie MB. IFN-γ Alters the Response ofBorrelia burgdorferi-Activated Endothelium to Favor Chronic Inflammation. THE JOURNAL OF IMMUNOLOGY 2007; 178:1172-9. [PMID: 17202382 DOI: 10.4049/jimmunol.178.2.1172] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Borrelia burgdorferi, the agent of Lyme disease, promotes proinflammatory changes in the endothelium that lead to the recruitment of leukocytes. The host immune response to infection results in increased levels of IFN-gamma in the serum and lesions of Lyme disease patients that correlate with greater severity of disease. Therefore, the effect of IFN-gamma on the gene expression profile of primary human endothelial cells exposed to B. burgdorferi was determined. B. burgdorferi and IFN-gamma synergistically augmented the expression of 34 genes, 7 of which encode chemokines. Six of these (CCL7, CCL8, CX3CL1, CXCL9, CXCL10, and CXCL11) attract T lymphocytes, and one (CXCL2) is specific for neutrophils. Synergistic production of the attractants for T cells was confirmed at the protein level. IL-1beta, TNF-alpha, and LPS also cooperated with IFN-gamma to induce synergistic production of CXCL10 by the endothelium, indicating that IFN-gamma potentiates inflammation in concert with a variety of mediators. An in vitro model of the blood vessel wall revealed that an increased number of human T lymphocytes traversed the endothelium exposed to B. burgdorferi and IFN-gamma, as compared with unstimulated endothelial monolayers. In contrast, addition of IFN-gamma diminished the migration of neutrophils across the B. burgdorferi-activated endothelium. IFN-gamma thus alters gene expression by endothelia exposed to B. burgdorferi in a manner that promotes recruitment of T cells and suppresses that of neutrophils. This modulation may facilitate the development of chronic inflammatory lesions in Lyme disease.
Collapse
Affiliation(s)
- Tarah M Dame
- Graduate Program in Genetics, Center for Infectious Diseases, School of Medicine, Stone Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
23
|
Olson CM, Hedrick MN, Izadi H, Bates TC, Olivera ER, Anguita J. p38 mitogen-activated protein kinase controls NF-kappaB transcriptional activation and tumor necrosis factor alpha production through RelA phosphorylation mediated by mitogen- and stress-activated protein kinase 1 in response to Borrelia burgdorferi antigens. Infect Immun 2007; 75:270-7. [PMID: 17074860 PMCID: PMC1828394 DOI: 10.1128/iai.01412-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 09/29/2006] [Accepted: 10/16/2006] [Indexed: 12/24/2022] Open
Abstract
The interaction of Borrelia burgdorferi, the causative agent of Lyme borreliosis, with phagocytic cells induces the activation of NF-kappaB and the expression of proinflammatory cytokines including tumor necrosis factor alpha (TNF-alpha). B. burgdorferi-induced TNF-alpha production is also dependent on the activation of p38 mitogen-activated protein (MAP) kinase. The specific contribution of these signaling pathways to the response of phagocytic cells to the spirochete and the molecular mechanisms underlying this response remain unresolved. We now show that p38 MAP kinase activity regulates the transcriptional activation of NF-kappaB in response to spirochetal lysate stimulation of phagocytic cells. The regulation occurs at the nuclear level and is independent of the translocation of the transcription factor to the nucleus or its capacity to bind to specific DNA target sequences. In RAW264.7 cells, p38alpha MAP kinase regulates the phosphorylation of NF-kappaB RelA. p38 MAP kinase phosphorylates the nuclear kinase mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 in turn phosphorylates the transcriptionally active subunit of NF-kappaB, RelA. The repression of MSK1 expression with small interfering RNA results in reduced RelA phosphorylation and a significant decrease in the production of TNF-alpha in response to B. burgdorferi lysates. Overall, these results clarify the contribution of the signaling pathways that are activated in response to the interaction of spirochetes with phagocytic cells to TNF-alpha production. Our results situate p38 MAP kinase activity as a central regulator of the phagocytic proinflammatory response through MSK1-mediated transcriptional activation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- Chris M Olson
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 103 Paige Lab., 161 Holdsworth Way, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sethi N, Sondey M, Bai Y, Kim KS, Cadavid D. Interaction of a neurotropic strain of Borrelia turicatae with the cerebral microcirculation system. Infect Immun 2006; 74:6408-18. [PMID: 16940140 PMCID: PMC1695479 DOI: 10.1128/iai.00538-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever (RF) is a spirochetal infection characterized by relapses of a febrile illness and spirochetemia due to the sequential appearance and disappearance of isogenic serotypes in the blood. The only difference between isogenic serotypes is the variable major outer membrane lipoprotein. In the absence of specific antibody, established serotypes cause persistent infection. Studies in our laboratory indicate that another consequence of serotype switching in RF is a change in neuroinvasiveness. As the next step to elucidate this phenomenon, we studied the interaction of the neurotropic Oz1 strain of the RF agent Borrelia turicatae with the cerebral microcirculation. During persistent infection of antibody-deficient mice, we found that serotype 1 entered the brain in larger numbers and caused more severe cerebral microgliosis than isogenic serotype 2. Microscopic examination revealed binding of B. turicatae to brain microvascular endothelial cells in vivo. In vitro we found that B. turicatae associated with brain microvascular endothelial cells (BMEC) significantly more than with fibroblasts or arachnoidal cells. The binding was completely eliminated by pretreatment of BMEC with proteinase K. Using transwell chambers with BMEC barriers, we found that serotype 1 crossed into the lower compartment significantly better than serotype 2. Heat killing significantly reduced BMEC crossing but not binding. We concluded that the interaction of B. turicatae with the cerebral microcirculation involves both binding and crossing brain microvascular endothelial cells, with significant differences among isogenic serotypes.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Neurology and Neuroscience, Center for the Study of Emerging Pathogens, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, MSB H506, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
25
|
Salazar JC, Pope CD, Moore MW, Pope J, Kiely TG, Radolf JD. Lipoprotein-dependent and -independent immune responses to spirochetal infection. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:949-58. [PMID: 16085913 PMCID: PMC1182186 DOI: 10.1128/cdli.12.8.949-958.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we used the epidermal suction blister technique, in conjunction with multiparameter flow cytometry, to analyze the cellular and cytokine responses elicited by intradermal injection of human volunteers with synthetic analogs for spirochetal lipoproteins and compared the responses to findings previously reported from patients with erythema migrans (EM). Compared with peripheral blood (PB), lipopeptides derived from the N termini of the Borrelia burgdorferi outer surface protein C and the 17-kDa lipoprotein of Treponema pallidum (OspC-L and 17-L, respectively) elicited infiltrates enriched in monocytes/macrophages and dendritic cells (DCs) but also containing substantial percentages of neutrophils and T cells. Monocytoid (CD11c(+)) and plasmacytoid (CD11c(-)) DCs were selectively recruited to the skin in ratios similar to those in PB, but only the former expressed the activation/maturation surface markers CD80, CD83, and DC-SIGN. Monocytes/macrophages and monocytoid DCs, but not plasmacytoid DCs, displayed significant increases in surface expression of Toll-like receptor 1 (TLR1), TLR2, and TLR4. Staining for CD45RO and CD27 revealed that lipopeptides preferentially recruited antigen-experienced T-cell subsets; despite their lack of antigenicity, these agonists induced marked T-cell activation, as evidenced by surface expression of CD69, CD25, and CD71. Lipopeptides also induced significant increases in interleukin 12 (IL-12), IL-10, gamma interferon, and most notably IL-6 without corresponding increases in serum levels of these cytokines. Although lipopeptides and EM lesional infiltrates shared many similarities, differences were noted in a number of immunologic parameters. These studies have provided in situ evidence for a prominent "lipoprotein effect" during human infection while at the same time helping to pinpoint aspects of the cutaneous response that are uniquely driven by spirochetal pathogens.
Collapse
Affiliation(s)
- Juan C Salazar
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, 282 Washington Street, Hartford, Connecticut 06106, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Gläsner J, Blum H, Wehner V, Stilz HU, Humphries JD, Curley GP, Mould AP, Humphries MJ, Hallmann R, Röllinghoff M, Gessner A. A small molecule alpha 4 beta 1 antagonist prevents development of murine Lyme arthritis without affecting protective immunity. THE JOURNAL OF IMMUNOLOGY 2005; 175:4724-34. [PMID: 16177120 DOI: 10.4049/jimmunol.175.7.4724] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After infection with Borrelia burgdorferi, humans and mice under certain conditions develop arthritis. Initiation of inflammation is dependent on the migration of innate immune cells to the site of infection, controlled by interactions of a variety of adhesion molecules. In this study, we used the newly synthesized compound S18407, which is a prodrug of the active drug S16197, to analyze the functional importance of alpha4beta1-dependent cell adhesion for the development of arthritis and for the antibacterial immune response. S16197 is shown to interfere specifically with the binding of alpha4beta(1 integrin to its ligands VCAM-1 and fibronectin in vitro. Treatment of B. burgdorferi-infected C3H/HeJ mice with the alpha4beta1 antagonist significantly ameliorated the outcome of clinical arthritis and the influx of neutrophilic granulocytes into ankle joints. Furthermore, local mRNA up-regulation of the proinflammatory mediators IL-1, IL-6, and cyclooxygenase-2 was largely abolished. Neither the synthesis of spirochete-specific Igs nor the development of a Th1-dominated immune response was altered by the treatment. Importantly, the drug also did not interfere with Ab-mediated control of spirochete load in the tissues. These findings demonstrate that the pathogenesis, but not the protective immune response, in Lyme arthritis is dependent on the alpha4beta1-mediated influx of inflammatory cells. The onset of inflammation can be successfully targeted by treatment with S18407.
Collapse
Affiliation(s)
- Joachim Gläsner
- Institute for Clinical Microbiology, Immunology, and Hygiene, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Benhnia MREI, Wroblewski D, Akhtar MN, Patel RA, Lavezzi W, Gangloff SC, Goyert SM, Caimano MJ, Radolf JD, Sellati TJ. Signaling through CD14 attenuates the inflammatory response to Borrelia burgdorferi, the agent of Lyme disease. THE JOURNAL OF IMMUNOLOGY 2005; 174:1539-48. [PMID: 15661914 DOI: 10.4049/jimmunol.174.3.1539] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lyme disease is a chronic inflammatory disorder caused by the spirochetal bacterium, Borrelia burgdorferi. In vitro evidence suggests that binding of spirochetal lipoproteins to CD14, a pattern recognition receptor expressed on monocytes/macrophages and polymorphonuclear cells, is a critical requirement for cellular activation and the subsequent release of proinflammatory cytokines that most likely contribute to symptomatology and clinical manifestations. To test the validity of this notion, we assessed the impact of CD14 deficiency on Lyme disease in C3H/HeN mice. Contrary to an anticipated diminution in pathology, CD14(-/-) mice exhibited more severe and persistent inflammation than did CD14(+/+) mice. This disparity reflects altered gene regulation within immune cells that may engender the higher bacterial burden and serum cytokine levels observed in CD14(-/-) mice. Comparing their in vitro stimulatory activity, live spirochetes, but not lysed organisms, were a potent CD14-independent stimulus of cytokine production, triggering an exaggerated response by CD14(-/-) macrophages. Collectively, our in vivo and in vitro findings support the provocative notion that: 1) pattern recognition by CD14 is entirely dispensable for elaboration of an inflammatory response to B. burgdorferi, and 2) CD14-independent signaling pathways are inherently more destructive than CD14-dependent pathways. Continued study of CD14-independent signaling pathways may provide mechanistic insight into the inflammatory processes that underlie development of chronic inflammation.
Collapse
|
28
|
Abstract
Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.
Collapse
Affiliation(s)
- Paul A. Cullen
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
| | - David A. Haake
- School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Division of Infectious Diseases, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ben Adler
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
- Corresponding author. Tel.: +61-3-9905-4815; fax: +61-3-9905-4811. E-mail address: (B. Adler)
| |
Collapse
|
29
|
Haggar A, Ehrnfelt C, Holgersson J, Flock JI. The extracellular adherence protein from Staphylococcus aureus inhibits neutrophil binding to endothelial cells. Infect Immun 2004; 72:6164-7. [PMID: 15385525 PMCID: PMC517550 DOI: 10.1128/iai.72.10.6164-6167.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 04/23/2004] [Accepted: 06/25/2004] [Indexed: 11/20/2022] Open
Abstract
Extracellular adherence protein (Eap) from Staphylococcus aureus inhibits the adherence of neutrophils to nonstimulated and tumor necrosis factor alpha-stimulated endothelial cells in both static adhesion assays and flow adhesion assays. Consequently, Eap also impaired their transendothelial migration. During an S. aureus infection, Eap may thus serve to reduce inflammation by inhibiting neutrophil adhesion and extravasation.
Collapse
Affiliation(s)
- Axana Haggar
- Division of Clinical Bacteriology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 2004; 5:495-502. [PMID: 15107846 DOI: 10.1038/ni1066] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 03/08/2004] [Indexed: 01/25/2023]
Abstract
Activation of Toll-like receptors (TLRs) results in a proinflammatory response needed to combat infection. Thus, limiting TLR signaling is essential for preventing a protective response from causing injury to the host. Here we describe how a RING finger protein, Triad3A, acts as an E3 ubiquitin-protein ligase and enhances ubiquitination and proteolytic degradation of some TLRs. Triad3A overexpression promoted substantial degradation of TLR4 and TLR9 with a concomitant decrease in signaling, but did not affect TLR2 expression or signaling. Conversely, a reduction in endogenous Triad3A by small interfering RNA increased TLR expression and enhanced TLR activation. Thus, ubiquitination by Triad3A represents one pathway by which the intensity and duration of TLR signaling is controlled.
Collapse
Affiliation(s)
- Tsung-Hsien Chuang
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
31
|
Welty DM, Snyder DS. Internalization of OspA in rsCD14 complex and aggregated forms. Mol Microbiol 2003; 50:835-43. [PMID: 14617145 DOI: 10.1046/j.1365-2958.2003.03769.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the spirochetal protein OspA is capable of stimulating immune cells in a CD14- and TLR2-dependent manner, little is known about how TLR2 receptor complex ligands, such as OspA, are handled by the cell once delivered. We examine here the internalization of the fluorescently derivatized forms of both the full length OspA lipoprotein delivered as a recombinant soluble CD14 (rsCD14) complex and the corresponding lipohexapeptide given to the cells as an aggregate. Both forms of OspA are internalized in a similar manner to acetylated low density lipoprotein (AcLDL), a scavenger receptor ligand. Acetylated low density lipoprotein is capable of competing for internalization with OspA even when OspA is delivered as a rsCD14 complex. We observe co-localization of OspA with lysosomes but not with the Golgi complex. These phenomena are similar between RAW264.7 macrophages and endothelial cells but change drastically when the cells are deprived of serum. Upon serum starvation, OspA shows some localization to the Golgi apparatus whereas the lipohexapeptide remains on the cell surface. Inhibition of internalization of OspA via treatment with cytochalasin D or of the lipohexapeptide via serum starvation does not interfere with TNF induction activity, consistent with signalling from the cell surface.
Collapse
Affiliation(s)
- Diane M Welty
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St. Hamilton, MT 59840, USA
| | | |
Collapse
|
32
|
Forestal CA, Benach JL, Carbonara C, Italo JK, Lisinski TJ, Furie MB. Francisella tularensis selectively induces proinflammatory changes in endothelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2563-70. [PMID: 12928407 DOI: 10.4049/jimmunol.171.5.2563] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naturally acquired infections with Francisella tularensis, the bacterial agent of tularemia, occur infrequently in humans. However, the high infectivity and lethality of the organism in humans raise concerns that it might be exploited as a weapon of bioterrorism. Despite this potential for illicit use, the pathogenesis of tularemia is not well understood. To examine how F. tularensis interacts with cells of its mammalian hosts, we tested the ability of a live vaccine strain (LVS) to induce proinflammatory changes in cultured HUVEC. Living F. tularensis LVS induced HUVEC to express the adhesion molecules VCAM-1 and ICAM-1, but not E-selectin, and to secrete the chemokine CXCL8, but not CCL2. Stimulation of HUVEC by the living bacteria was partially suppressed by polymyxin B, an inhibitor of LPS, but did not require serum, suggesting that F. tularensis LVS does not stimulate endothelium through the serum-dependent pathway that is typically used by LPS from enteric bacteria. In contrast to the living organisms, suspensions of killed F. tularensis LVS acquired the ability to increase endothelial expression of both E-selectin and CCL2. Up-regulation of E-selectin and CCL2 by the killed bacteria was not inhibited by polymyxin B. Exposure of HUVEC to either live or killed F. tularensis LVS for 24 h promoted the transendothelial migration of subsequently added neutrophils. These data indicate that multiple components of F. tularensis LVS induce proinflammatory changes in endothelial cells in an atypical manner that may contribute to the exceptional infectivity and virulence of this pathogen.
Collapse
Affiliation(s)
- Colin A Forestal
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | | | | | | | | | |
Collapse
|
33
|
Salazar JC, Pope CD, Sellati TJ, Feder HM, Kiely TG, Dardick KR, Buckman RL, Moore MW, Caimano MJ, Pope JG, Krause PJ, Radolf JD. Coevolution of markers of innate and adaptive immunity in skin and peripheral blood of patients with erythema migrans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2660-70. [PMID: 12928420 DOI: 10.4049/jimmunol.171.5.2660] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used multiparameter flow cytometry to characterize leukocyte immunophenotypes and cytokines in skin and peripheral blood of patients with erythema migrans (EM). Dermal leukocytes and cytokines were assessed in fluids aspirated from epidermal suction blisters raised over EM lesions and skin of uninfected controls. Compared with corresponding peripheral blood, EM infiltrates were enriched for T cells, monocytes/macrophages, and dendritic cells (DCs), contained lower proportions of neutrophils, and were virtually devoid of B cells. Enhanced expression of CD14 and HLA-DR by lesional neutrophils and macrophages indicated that these innate effector cells were highly activated. Staining for CD45RO and CD27 revealed that lesional T lymphocytes were predominantly Ag-experienced cells; furthermore, a subset of circulating T cells also appeared to be neosensitized. Lesional DC subsets, CD11c(+) (monocytoid) and CD11c(-) (plasmacytoid), expressed activation/maturation surface markers. Patients with multiple EM lesions had greater symptom scores and higher serum levels of IFN-alpha, TNF-alpha, and IL-2 than patients with solitary EM. IL-6 and IFN-gamma were the predominant cytokines in EM lesions; however, greater levels of both mediators were detected in blister fluids from patients with isolated EM. Circulating monocytes displayed significant increases in surface expression of Toll-like receptor (TLR)1 and TLR2, while CD11c(+) DCs showed increased expression of TLR2 and TLR4; lesional macrophages and CD11c(+) and CD11c(-) DCs exhibited increases in expression of all three TLRs. These results demonstrate that Borrelia burgdorferi triggers innate and adaptive responses during early Lyme disease and emphasize the interdependence of these two arms of the immune response in the efforts of the host to contain spirochetal infection.
Collapse
Affiliation(s)
- Juan C Salazar
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06106, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoder A, Wang X, Ma Y, Philipp MT, Heilbrun M, Weis JH, Kirschning CJ, Wooten RM, Weis JJ. Tripalmitoyl-S-glyceryl-cysteine-dependent OspA vaccination of toll-like receptor 2-deficient mice results in effective protection from Borrelia burgdorferi challenge. Infect Immun 2003; 71:3894-900. [PMID: 12819074 PMCID: PMC161983 DOI: 10.1128/iai.71.7.3894-3900.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptor 2 (TLR2) is a transmembrane signal transducer for tripalmitoyl-S-glyceryl-cysteine (Pam(3)Cys)-modified lipoproteins, including OspA from the Lyme disease spirochete Borrelia burgdorferi. The Pam(3)Cys modification provides adjuvant activity for inducing humoral responses, suggesting that TLR2 could function as the adjuvant receptor for the OspA vaccine. The importance of TLR2 in the humoral response to OspA was confirmed, because overall levels of immunoglobulin G (IgG) were reduced in TLR2-deficient mice, when compared with those in wild-type mice. However, the levels of production of IgG1 were similar in both mouse strains, and the levels of induction of protective immunity were comparable. Unlipidated OspA was not immunogenic in wild-type or TLR2-deficient mice, indicating the lipid modification was active in the absence of TLR2. These findings indicate that the Pam(3)Cys modification of bacterial lipoprotein has adjuvant properties independent of TLR2 signaling.
Collapse
Affiliation(s)
- Alyson Yoder
- Department of Pathology, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lisinski TJ, Furie MB. Interleukin‐10 inhibits proinflammatory activation of endothelium in response to
Borrelia burgdorferi
or lipopolysaccharide but not interleukin‐1β or tumor necrosis factor α. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tracy J. Lisinski
- Center for Infectious Diseases and Department of Pathology, State University of New York at Stony Brook
| | - Martha B. Furie
- Center for Infectious Diseases and Department of Pathology, State University of New York at Stony Brook
| |
Collapse
|
36
|
Neilsen PO, Zimmerman GA, McIntyre TM. Escherichia coli Braun lipoprotein induces a lipopolysaccharide-like endotoxic response from primary human endothelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5231-9. [PMID: 11673537 DOI: 10.4049/jimmunol.167.9.5231] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
All bacteria contain proteins in which their amino-terminal cysteine residue is modified with N-acyl S-diacylglycerol functions, and peptides and proteins bearing this modification are immunomodulatory. The major outer membrane lipoprotein of Escherichia coli, the Braun lipoprotein (BLP), is the prototypical triacylated cysteinyl-modified protein. We find it is as active as LPS in stimulating human endothelial cells to an inflammatory phenotype, and a BLP-negative mutant of E. coli was less inflammatory than its parental strain. While the lipid modification was essential, the lipidated protein was more potent than a lipid-modified peptide. BLP associates with CD14, but this interaction, unlike that with LPS, was not required to elicit endothelial cell activation. BLP stimulated endothelial cell E-selectin surface expression, IL-6 secretion, and up-regulation of the same battery of cytokine mRNAs induced by LPS. Quantitative microarray analysis of 4400 genes showed the same 30 genes were induced by BLP and LPS, and that there was near complete concordance in the level of gene induction. We conclude that the lipid modification of at least one abundant Gram-negative protein is essential for endotoxic activity, but that the protein component also influences activity. The equivalent potency of BLP and LPS, and their complete concordance in the nature and extent of endothelial cell activation show that E. coli endotoxic activity is not due to just LPS. The major outer membrane protein of E. coli is a fully active endotoxic agonist for endothelial cells.
Collapse
Affiliation(s)
- P O Neilsen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
37
|
Coleman JL, Gebbia JA, Benach JL. Borrelia burgdorferi and other bacterial products induce expression and release of the urokinase receptor (CD87). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:473-80. [PMID: 11123326 DOI: 10.4049/jimmunol.166.1.473] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR, CD87) is a highly glycosylated 55- to 60-kDa protein anchored to the cell membrane through a glycosylphosphatidylinositol moiety that promotes the acquisition of plasmin on the surface of cells and subsequent cell movement and migration by binding urokinase-type plasminogen activator. uPAR also occurs in a soluble form in body fluids and tumor extracts, and both membrane and soluble uPAR are overexpressed in patients with tumors. uPAR may be a factor in inflammatory disorders as well. We investigated whether Borrelia burgdorferi could stimulate up-regulation of cell membrane uPAR in vitro. B. burgdorferi, purified native outer surface protein A, and a synthetic outer surface protein A hexalipopeptide stimulated human monocytes to up-regulate membrane uPAR as measured by immunofluorescence/FACS and Western blot. The presence of soluble uPAR in culture supernatants, measured by Ag capture ELISA, was also observed. LPS from Salmonella typhimurium and lipotechoic acid from Streptococcus pyogenes also induced the up-regulation of both membrane and soluble uPAR protein by monocytes. Up-regulation of uPAR was induced by conditioned medium from B. burgdorferi/monocyte cocultures. The up-regulation of uPAR by B. burgdorferi was concomitant with an increase in uPAR mRNA, indicating that synthesis was de novo. The expression and release of uPAR in response to B. burgdorferi and other bacterial components suggests a role in the pathogenesis of Lyme disease as well as in other bacterial infections.
Collapse
MESH Headings
- Animals
- Antigens, Surface/pharmacology
- Bacterial Outer Membrane Proteins/pharmacology
- Bacterial Vaccines
- Borrelia burgdorferi Group/growth & development
- Borrelia burgdorferi Group/immunology
- Borrelia burgdorferi Group/pathogenicity
- Cell Membrane/metabolism
- Cell Membrane/microbiology
- Cells, Cultured
- Culture Media, Conditioned/metabolism
- Culture Media, Conditioned/pharmacology
- Humans
- Lipopolysaccharides/immunology
- Lipopolysaccharides/pharmacology
- Lipoproteins
- Lyme Disease Vaccines/pharmacology
- Mice
- Mice, Inbred C3H
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/microbiology
- Plasminogen Activators/biosynthesis
- Plasminogen Activators/genetics
- Plasminogen Activators/metabolism
- Protein Isoforms/biosynthesis
- Protein Isoforms/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Urokinase Plasminogen Activator
- Salmonella typhimurium/immunology
- Solubility
- Streptococcus pyogenes/immunology
- Teichoic Acids/immunology
- Transcription, Genetic/immunology
- U937 Cells
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- J L Coleman
- State of New York Department of Health, State University of New York, Stony Brook, NY 11794-5120, USA.
| | | | | |
Collapse
|
38
|
Shamaei-Tousi A, Burns MJ, Benach JL, Furie MB, Gergel EI, Bergström S. The relapsing fever spirochaete, Borrelia crocidurae, activates human endothelial cells and promotes the transendothelial migration of neutrophils. Cell Microbiol 2000; 2:591-9. [PMID: 11207611 DOI: 10.1046/j.1462-5822.2000.00083.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The blood-borne, erythrocyte-aggregating Borrelia crocidurae, the causative agent of African relapsing fever, have been shown to induce severe cellular lesions in mice. In this paper, we present the first report of how the endothelium is stimulated during an African relapsing fever B. crocidurae infection. B. crocidurae co-incubated with cultured human umbilical vein endothelial cells (HUVECs) activated endothelium in such way that E-selectin and intercellular adhesion molecule 1 (ICAM-1) became upregulated in a dose- and time-dependent fashion, as determined by a whole-cell enzyme-linked immunosorbent assay (ELISA). The upregulation was reduced by treatment that killed the bacteria, suggesting that viability is important for the stimulation of HUVECs by B. crocidurae. Furthermore, conditioned medium from HUVECs stimulated with B. crocidurae contained interleukin (IL)-8, which is a chemotactic agent for neutrophils. Activation of HUVECs by B. crocidurae resulted in migration of subsequently added neutrophils across the endothelial monolayers, and this migration was inhibited by antibodies to IL-8. The activation of endothelium by B. crocidurae may constitute a key pathophysiological mechanism in B. crocidurae-induced vascular damage.
Collapse
|
39
|
Affiliation(s)
- David A Haake
- Division of Infectious Diseases, 111F, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA and Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA1
| |
Collapse
|
40
|
Soler-Rodriguez AM, Zhang H, Lichenstein HS, Qureshi N, Niesel DW, Crowe SE, Peterson JW, Klimpel GR. Neutrophil activation by bacterial lipoprotein versus lipopolysaccharide: differential requirements for serum and CD14. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2674-83. [PMID: 10679108 DOI: 10.4049/jimmunol.164.5.2674] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neutrophil activation plays an important role in the inflammatory response to Gram-negative bacterial infections. LPS has been shown to be a major mediator of neutrophil activation which is accompanied by an early down-regulation of L-selectin and up-regulation of CD1lb/CD18. In this study, we investigated whether lipoprotein (LP), the most abundant protein in the outer membrane of bacteria from the family Enterobacteriaceae, can activate neutrophils and whether this activation is mediated by mechanisms that differ from those used by LPS or Escherichia coli diphosphoryl lipid A (EcDPLA). Neutrophil activation was assessed by measuring down-regulation of L-selectin and up-regulation of CD11b/CD18. When comparing molar concentrations of LP vs EcDPLA, LP was more potent (four times) at activating neutrophils. In contrast to LPS/EcDPLA, LP activation of neutrophils was serum independent. However, LP activation of neutrophils was enhanced by the addition of soluble CD14 and/or LPS-binding protein. In the presence of serum, LP activation of neutrophils was inhibited by different mAbs to CD14. This inhibition was significantly reduced or absent when performed in the absence of serum. Diphosphoryl lipid A from Rhodobacter spheroides (RaDPLA) completely inhibited LPS/EcDPLA activation of neutrophils but only slightly inhibited LP activation of neutrophils. These results suggest that LP activation of human neutrophils can be mediated by a mechanism that is different from LPS activation and that LP is a potentially important component in the development of diseases caused by Gram-negative bacteria of the family Enterobacteriaceae.
Collapse
Affiliation(s)
- A M Soler-Rodriguez
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lewczuk P, Reiber H, Korenke GC, Bollensen E, Dorta-Contreras AJ. Intrathecal release of sICAM-1 into CSF in neuroborreliosis--increased brain-derived fraction. J Neuroimmunol 2000; 103:93-6. [PMID: 10674994 DOI: 10.1016/s0165-5728(99)00221-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, we report sICAM-1 concentration in the cerebrospinal fluid (CSF) and serum of patients with neuroborreliosis (NB, n = 11), compared to the data from a control group of patients with corresponding blood/CSF barrier dysfunction but without inflammation in the central nervous system (disc prolaps, DP, n = 11). In NB, the sICAM-1 concentration in CSF was increased up to six-fold (ranges: 6.6-42.8 ng/ml and 2.2-9.8 ng/ml for NB and DP respectively) with no change in serum sICAM-1. The corresponding sICAM-1 CSF/serum concentration quotients (Q(ICAM)) were in the ranges: 22.5-171.3 X 10(-3), and 8.8-27.8 X 10(-3) for NB and DP respectively. This finding can be explained by increase of the brain-derived fraction of sICAM-1 in NB. In one case we observed increased Q(ICAM) on 6th day after admission to the hospital (171.3 X 10(-3) at the time of the first lumbar puncture slightly increasing to 243.6 x 10(-3) five days later), followed by normalization, in two remaining repunctured patients we observed decreasing QICAM with normalizing Q(Alb).
Collapse
Affiliation(s)
- P Lewczuk
- Neurochemistry Laboratory, University of Goettingen, Germany.
| | | | | | | | | |
Collapse
|
42
|
Scragg IG, Kwiatkowski D, Vidal V, Reason A, Paxton T, Panico M, Dell A, Morris H. Structural characterization of the inflammatory moiety of a variable major lipoprotein of Borrelia recurrentis. J Biol Chem 2000; 275:937-41. [PMID: 10625630 DOI: 10.1074/jbc.275.2.937] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Louse-borne relapsing fever, caused by Borrelia recurrentis, provides one of the best documented examples of the causative role of tumor necrosis factor (TNF) in the pathology of severe infection in humans. We have identified the principal TNF-inducing factor of B. recurrentis as a variable major lipoprotein (Vmp). Here we report the complete gene sequence of Vmp, including its lipoprotein leader sequence. Using metabolically labeled forms of the native Vmp we confirm that the TNF inducing properties are associated with the lipid portion of the molecule. Quadrupole orthogonal time of flight mass spectrometry unequivocally locates the lipidic moiety at the NH(2)-terminal cysteine of the native polypeptide, and indicates the existence of three forms which are consistent with the structures C16:0, C16:0, C16:0 glyceryl cysteine; C18:1, C16:0, C16:0 glyceryl cysteine; and C18:0, C16:0, C16:0 glyceryl cysteine. These data provide the first direct evidence that the TNF inducing lipid modification of native Borrelia lipoproteins is a structural homologue of the murein lipoprotein of Escherichia coli.
Collapse
Affiliation(s)
- I G Scragg
- University Department of Paediatrics, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD, Golenbock DT. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 1999; 274:33419-25. [PMID: 10559223 DOI: 10.1074/jbc.274.47.33419] [Citation(s) in RCA: 704] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptors (TLRs) 2 and 4 are signal transducers for lipopolysaccharide, the major proinflammatory constituent in the outer membrane of Gram-negative bacteria. We observed that membrane lipoproteins/lipopeptides from Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans activated cells heterologously expressing TLR2 but not those expressing TLR1 or TLR4. These TLR2-expressing cells were also stimulated by living motile B. burgdorferi, suggesting that TLR2 recognition of lipoproteins is relevant to natural Borrelia infection. Importantly, a TLR2 antibody inhibited bacterial lipoprotein/lipopeptide-induced tumor necrosis factor release from human peripheral blood mononuclear cells, and TLR2-null Chinese hamster macrophages were insensitive to lipoprotein/lipopeptide challenge. The data suggest a role for the native protein in cellular activation by these ligands. In addition, TLR2-dependent responses were seen using whole Mycobacterium avium and Staphylococcus aureus, demonstrating that this receptor can function as a signal transducer for a wide spectrum of bacterial products. We conclude that diverse pathogens activate cells through TLR2 and propose that this molecule is a central pattern recognition receptor in host immune responses to microbial invasion.
Collapse
Affiliation(s)
- E Lien
- Maxwell Finland Laboratory for Infectious Diseases, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Brown JP, Zachary JF, Teuscher C, Weis JJ, Wooten RM. Dual role of interleukin-10 in murine Lyme disease: regulation of arthritis severity and host defense. Infect Immun 1999; 67:5142-50. [PMID: 10496888 PMCID: PMC96863 DOI: 10.1128/iai.67.10.5142-5150.1999] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the murine model of Lyme disease, C3H/He mice exhibit severe arthritis while C57BL/6N mice exhibit mild lesions when infected with Borrelia burgdorferi. Joint tissues from these two strains of mice harbor similar concentrations of B. burgdorferi, suggesting that the difference in disease severity reflects differences in the magnitude of the inflammatory response to B. burgdorferi lipoproteins. Stimulation of bone marrow macrophages from C3H/HeN mice with the B. burgdorferi lipoprotein OspA resulted in higher-level production of the inflammatory mediators tumor necrosis factor alpha, nitric oxide, and interleukin-6 (IL-6) than that of macrophages from C57BL/6N mice. In contrast, macrophages from C57BL/6N mice consistently produced larger amounts of the anti-inflammatory cytokine IL-10 than did C3H/HeN macrophages. Addition of recombinant IL-10 suppressed the production of inflammatory mediators by macrophages from both strains. IL-10 was found to modulate B. burgdorferi-induced inflammation in vivo, since C57BL/6J mice deficient in IL-10 (IL-10-/-) developed more severe arthritis than wild-type C57BL/6J mice. The increase in arthritis severity was associated with a 10-fold decrease in the number of B. burgdorferi organisms present in ankle tissues from IL-10-/- mice. These findings suggest that in C57BL/6 mice, IL-10-dependent regulation of arthritis severity occurs at the expense of effective control of bacterial numbers.
Collapse
Affiliation(s)
- J P Brown
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
45
|
Sellati TJ, Bouis DA, Caimano MJ, Feulner JA, Ayers C, Lien E, Radolf JD. Activation of Human Monocytic Cells by Borrelia burgdorferi and Treponema pallidum Is Facilitated by CD14 and Correlates with Surface Exposure of Spirochetal Lipoproteins. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Here we examined the involvement of CD14 in monocyte activation by motile Borrelia burgdorferi and Treponema pallidum. B. burgdorferi induced secretion of IL-8 by vitamin D3-matured THP-1 cells, which was inhibited by a CD14-specific mAb known to block cellular activation by LPS and the prototypic spirochetal lipoprotein, outer surface protein A. Enhanced responsiveness to B. burgdorferi also was observed when THP-1 cells were transfected with CD14. Because borreliae within the mammalian host and in vitro-cultivated organisms express different lipoproteins, experiments also were performed with “host-adapted” spirochetes grown within dialysis membrane chambers implanted into the peritoneal cavities of rabbits. Stimulation of THP-1 cells by host-adapted organisms was CD14 dependent and, interestingly, was actually greater than that observed with in vitro-cultivated organisms grown at either 34°C or following temperature shift from 23°C to 37°C. Consistent with previous findings that transfection of Chinese hamster ovary cells with CD14 confers responsiveness to LPS but not to outer surface protein A, B. burgdorferi failed to stimulate CD14-transfected Chinese hamster ovary cells. T. pallidum also activated THP-1 cells in a CD14-dependent manner, although its stimulatory capacity was markedly less than that of B. burgdorferi. Moreover, cell activation by motile T. pallidum was considerably less than that induced by treponemal sonicates. Taken together, these findings support the notion that lipoproteins are the principle component of intact spirochetes responsible for monocyte activation, and they indicate that surface exposure of lipoproteins is an important determinant of a spirochetal pathogen’s proinflammatory capacity.
Collapse
Affiliation(s)
- Timothy J. Sellati
- *Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Deborah A. Bouis
- *Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Melissa J. Caimano
- *Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - J. Amelia Feulner
- †Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Christopher Ayers
- *Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Egil Lien
- ‡Cell and Molecular Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Justin D. Radolf
- *Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235
- §Maxwell Finland Laboratory for Infectious Diseases, Boston University School of Medicine/Boston Medical Center, Boston, MA 02118
| |
Collapse
|
46
|
Galdiero M, Folgore A, Molitierno M, Greco R. Porins and lipopolysaccharide (LPS) from Salmonella typhimurium induce leucocyte transmigration through human endothelial cells in vitro. Clin Exp Immunol 1999; 116:453-61. [PMID: 10361234 PMCID: PMC1905308 DOI: 10.1046/j.1365-2249.1999.00904.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/1999] [Indexed: 11/20/2022] Open
Abstract
Bacteria or bacterial products may constitute important inducers of surface molecule expression on endothelial cells and leucocytes. This study was undertaken to determine the effects of the Salmonella typhimurium porins, LPS-S and LPS-R on the transendothelial migration of leucocytes through human umbilical vein endothelial cells (HUVEC). Treatment of the HUVEC with either porins or LPS-S or LPS-R increased the transmigration of different leucocyte populations, in particular that of neutrophils. The maximal increase occurred using LPS-S treatment, whereas porin stimulation fell between LPS-S and LPS-R. The transmigration increase was dose-dependent and reached its maximum at about 100-1000 ng/ml of stimulus. Optimal endothelial activation occurred after 2-4 h and 4-6 h using LPS and porin, respectively. Stimulation of leucocytes with either porins or LPS slightly increased their transmigration through non-activated endothelial cells. Transmigration increased remarkably during the simultaneous stimulation of endothelial cells by IL-1ss together with either porins or LPS. To assess participation of E-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and leucocyte adhesion complex (CD11/18) in porin- or LPS-mediated leucocyte migration, blocking MoAbs were used. Each blocking MoAb partially and selectively decreased leucocyte transmigration. The obtained results contribute to clarify some aspects of the inflammatory process at sites of infection.
Collapse
Affiliation(s)
- M Galdiero
- Dipartimento di Patologia ed Ispezione degli Alimenti, Sezione di Malattie Infettive, Facoltà di Veterinaria, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | | | | | | |
Collapse
|
47
|
Weis JJ, McCracken BA, Ma Y, Fairbairn D, Roper RJ, Morrison TB, Weis JH, Zachary JF, Doerge RW, Teuscher C. Identification of Quantitative Trait Loci Governing Arthritis Severity and Humoral Responses in the Murine Model of Lyme Disease. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
A spectrum of disease severity has been observed in patients with Lyme disease, with ∼60% of untreated individuals developing arthritis. The murine model of Lyme disease has provided strong evidence that the genetic composition of the host influences the severity of arthritis following infection with Borrelia burgdorferi: infected C3H mice develop severe arthritis while infected C57BL/6N mice develop mild arthritis. Regions of the mouse genome controlling arthritis severity and humoral responses during B. burgdorferi infection were identified in the F2 intercross generation of C3H/HeNCr and C57BL/6NCr mice. Rear ankle swelling measurements identified quantitative trait loci (QTL) on chromosomes 4 and 5, while histopathological scoring identified QTL on a unique region of chromosome 5 and on chromosome 11. The identification of QTL unique for ankle swelling or histopathological severity suggests that processes under distinct genetic control are responsible for these two manifestations of Lyme arthritis. Additional QTL that control the levels of circulating Igs induced by B. burgdorferi infection were identified on chromosomes 6, 9, 11, 12, and 17. Interestingly, the magnitude of the humoral response was not correlated with the severity of arthritis in infected F2 mice. This work defines several genetic loci that regulate either the severity of arthritis or the magnitude of humoral responses to B. burgdorferi infection in mice, with implications toward understanding the host-pathogen interactions involved in disease development.
Collapse
Affiliation(s)
- Janis J. Weis
- *Department of Pathology, University of Utah, Salt Lake City, UT 84132
| | - Barbara A. McCracken
- †Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802; and
| | - Ying Ma
- *Department of Pathology, University of Utah, Salt Lake City, UT 84132
| | - Daryl Fairbairn
- †Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802; and
| | - Randall J. Roper
- †Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802; and
| | - Tom B. Morrison
- *Department of Pathology, University of Utah, Salt Lake City, UT 84132
| | - John H. Weis
- *Department of Pathology, University of Utah, Salt Lake City, UT 84132
| | - James F. Zachary
- †Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802; and
| | - R. W. Doerge
- ‡Departments of Agronomy and Statistics, Purdue University, West Lafayette, IN 47907
| | - Cory Teuscher
- †Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802; and
| |
Collapse
|
48
|
Zhang H, Niesel DW, Peterson JW, Klimpel GR. Lipoprotein release by bacteria: potential factor in bacterial pathogenesis. Infect Immun 1998; 66:5196-201. [PMID: 9784522 PMCID: PMC108648 DOI: 10.1128/iai.66.11.5196-5201.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein (LP) is a major component of the outer membrane of bacteria in the family Enterobacteriaceae. LP induces proinflammatory cytokine production in macrophages and lethal shock in LPS-responsive and -nonresponsive mice. In this study, the release of LP from growing bacteria was investigated by immuno-dot blot analysis. An immuno-dot blot assay that could detect LP at levels as low as 100 ng/ml was developed. By using this assay, significant levels of LP were detected in culture supernatants of growing Escherichia coli cells. During mid-logarithmic growth, approximately 1 to 1.5 microgram of LP per ml was detected in culture supernatants from E. coli. In contrast, these culture supernatants contained 5 to 6 microgram/ml of lipopolysaccharide (LPS). LP release was not unique to E. coli. Salmonella typhimurium, Yersinia enterocolitica, and two pathogenic E. coli strains also released LP during in vitro growth. Treatment of bacteria with the antibiotic ceftazidime significantly enhanced LP release. Culture supernatants from 5-h cultures of E. coli were shown to induce in vitro production of interleukin-6 (IL-6) by macrophages obtained from LPS-nonresponsive C3H/HeJ mice. In contrast, culture supernatants from an E. coli LP-deletion mutant were significantly less efficient at inducing IL-6 production in C3H/HeJ macrophages. These results suggest, for the first time, that LP is released from growing bacteria and that this released LP may play an important role in the induction of cytokine production and pathologic changes associated with gram-negative bacterial infections.
Collapse
Affiliation(s)
- H Zhang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | |
Collapse
|
49
|
Burns MJ, Furie MB. Borrelia burgdorferi and interleukin-1 promote the transendothelial migration of monocytes in vitro by different mechanisms. Infect Immun 1998; 66:4875-83. [PMID: 9746592 PMCID: PMC108603 DOI: 10.1128/iai.66.10.4875-4883.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A prominent feature of Lyme disease is the perivascular accumulation of mononuclear leukocytes. Incubation of human umbilical vein endothelial cells (HUVEC) cultured on amniotic tissue with either interleukin-1 (IL-1) or Borrelia burgdorferi, the spirochetal agent of Lyme disease, increased the rate at which human monocytes migrated across the endothelial monolayers. Very late antigen 4 (VLA-4) and CD11/CD18 integrins mediated migration of monocytes across HUVEC exposed to either B. burgdorferi or IL-1 in similar manners. Neutralizing antibodies to the chemokine monocyte chemoattractant protein 1 (MCP-1) inhibited the migration of monocytes across unstimulated, IL-1-treated, or B. burgdorferi-stimulated HUVEC by 91% +/- 3%, 65% +/- 2%, or 25% +/- 22%, respectively. Stimulation of HUVEC with B. burgdorferi also promoted a 6-fold +/- 2-fold increase in the migration of human CD4(+) T lymphocytes. Although MCP-1 played only a limited role in the migration of monocytes across B. burgdorferi-treated HUVEC, migration of CD4(+) T lymphocytes across HUVEC exposed to spirochetes was highly dependent on this chemokine. The anti-inflammatory cytokine IL-10 reduced both migration of monocytes and endothelial production of MCP-1 in response to B. burgdorferi by approximately 50%, yet IL-10 inhibited neither migration nor secretion of MCP-1 when HUVEC were stimulated with IL-1. Our results suggest that activation of endothelium by B. burgdorferi may contribute to formation of the chronic inflammatory infiltrates associated with Lyme disease. The transendothelial migration of monocytes that is induced by B. burgdorferi is significantly less dependent on MCP-1 than is migration induced by IL-1. Selective inhibition by IL-10 further indicates that B. burgdorferi and IL-1 employ distinct mechanisms to activate endothelial cells.
Collapse
Affiliation(s)
- M J Burns
- Department of Pathology, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | |
Collapse
|
50
|
Seiler KP, Ma Y, Weis JH, Frenette PS, Hynes RO, Wagner DD, Weis JJ. E and P selectins are not required for resistance to severe murine lyme arthritis. Infect Immun 1998; 66:4557-9. [PMID: 9712820 PMCID: PMC108558 DOI: 10.1128/iai.66.9.4557-4559.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi-induced arthritis in mice is characterized by tendonitis, synovitis, and inflammatory-cell infiltrate, predominantly of neutrophils. Because genetic deficiency in E and P selectins results in delayed recruitment of neutrophils to sites of inflammation, mice with this deficiency were tested for their response to infection with B. burgdorferi. E and P selectins were not required for the control of B. burgdorferi numbers, nor did deficiency in E and P selectins result in alteration of arthritis severity.
Collapse
Affiliation(s)
- K P Seiler
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | | | | |
Collapse
|