1
|
Yount KS, Chen CJ, Kollipara A, Liu C, Mokashi NV, Zheng X, Bagwell CB, Poston TB, Wiesenfeld HC, Hillier SL, O’Connell CM, Stanley N, Darville T. T cell signatures associated with reduced Chlamydia trachomatis reinfection in a highly exposed cohort. JCI Insight 2025; 10:e189388. [PMID: 40014387 PMCID: PMC11991011 DOI: 10.1172/jci.insight.189388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Chlamydia trachomatis (CT) is the most common bacterial sexually transmitted infection globally. Understanding natural immunity to CT will inform vaccine design. This study aimed to profile immune cells and associated functional features in CT-infected women and determine immune profiles associated with reduced risk of ascended endometrial CT infection and CT reinfection. PBMCs from CT-exposed women were profiled by mass cytometry, and random forest models identified key features that distinguished outcomes. CT+ participants exhibited higher frequencies of CD4+ Th2, Th17, and Th17 double-negative (Th17 DN) CD4+ T effector memory (TEM) cells than uninfected participants with decreased expression of T cell activation and differentiation markers. Minimal differences were detected between women with or without endometrial CT infection. Participants who remained follow-up negative (FU-) showed higher frequencies of CD4+ T central memory (TCM) Th1, Th17, Th1/17, and Th17 DN but reduced CD4+ TEM Th2 cells than FU+ participants. Expression of markers associated with central memory and Th17 lineage was increased on T cell subsets among FU- participants. These data indicate that peripheral T cells exhibit distinct features associated with resistance to CT reinfection. The highly plastic Th17 lineage appears to contribute to protection. Addressing these immune nuances could promote efficacy of CT vaccines.
Collapse
Affiliation(s)
| | | | | | - Chuwen Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Neha V. Mokashi
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaojing Zheng
- Department of Pediatrics, School of Medicine
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Harold C. Wiesenfeld
- University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Sharon L. Hillier
- University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | | | - Natalie Stanley
- Department of Computer Science; and
- Computational Medicine Program and
| | - Toni Darville
- Department of Pediatrics, School of Medicine
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Yount KS, Chen CJ, Kollipara A, Liu C, Mokashi NV, Zheng X, Bagwell CB, Poston TB, Wiesenfeld HC, Hillier SL, O'Connell CM, Stanley N, Darville T. Unique T cell signatures associated with reduced Chlamydia trachomatis reinfection in a highly exposed cohort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551709. [PMID: 37577476 PMCID: PMC10418240 DOI: 10.1101/2023.08.02.551709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Chlamydia trachomatis (CT) is the most common bacterial sexually transmitted infection globally. Understanding natural immunity to CT will inform vaccine design. This study aimed to profile immune cells and associated functional features in CT-infected women, and determine immune profiles associated with reduced risk of ascended endometrial CT infection and CT reinfection. PBMCs from CT-exposed women were profiled by mass cytometry and random forest models identified key features that distinguish outcomes. CT+ participants exhibited higher frequencies of CD4+ Th2, Th17, and Th17 DN CD4 T effector memory (TEM) cells than uninfected participants with decreased expression of T cell activation and differentiation markers. No significant differences were detected between women with or without endometrial CT infection. Participants who remained follow-up negative (FU-) showed higher frequencies of CD4 T central memory (TCM) Th1, Th17, Th1/17, and Th17 DN but reduced CD4 TEM Th2 cells than FU+ participants. Expression of markers associated with central memory and Th17 lineage were increased on T cell subsets among FU- participants. These data indicate that peripheral T cells exhibit distinct features associated with resistance to CT reinfection. The highly plastic Th17 lineage appears to contribute to protection. Addressing these immune nuances could promote efficacy of CT vaccines. GRAPHICAL ABSTRACT
Collapse
|
3
|
Livingstone M, Aitchison K, Palarea-Albaladejo J, Chianini F, Rocchi MS, Caspe SG, Underwood C, Flockhart A, Wheelhouse N, Entrican G, Wattegedera SR, Longbottom D. Evaluation of the Protective Efficacy of Different Doses of a Chlamydia abortus Subcellular Vaccine in a Pregnant Sheep Challenge Model for Ovine Enzootic Abortion. Animals (Basel) 2024; 14:3004. [PMID: 39457934 PMCID: PMC11504442 DOI: 10.3390/ani14203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Chlamydia abortus causes the disease ovine enzootic abortion, which is one of the most infectious causes of foetal death in small ruminants worldwide. While the disease can be controlled using live and inactivated commercial vaccines, there is scope for improvements in safety for both sheep and human handlers of the vaccines. We have previously reported the development of a new prototype vaccine based on a detergent-extracted outer membrane protein preparation of C. abortus that was determined to be more efficacious and safer than the commercial vaccines when administered in two inoculations three weeks apart. In this new study, we have developed this vaccine further by comparing its efficacy when delivered in one or two (1 × 20 µg and 2 × 10 µg) doses, as well as also comparing the effect of reducing the antigen content of the vaccine by 50% (2 × 5 µg and 1 × 10 µg). All vaccine formulations performed well in comparison to the unvaccinated challenge control group, with no significant differences observed between vaccine groups, demonstrating that the vaccine can be administered as a single inoculation and at a lower dose without compromising efficacy. Future studies should focus on further defining the optimal antigen dose to increase the commercial viability of the vaccine.
Collapse
Affiliation(s)
- Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - Kevin Aitchison
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | | | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - Mara Silvia Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - Sergio Gastón Caspe
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - Clare Underwood
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - Allen Flockhart
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - Nicholas Wheelhouse
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - Sean Ranjan Wattegedera
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK; (M.L.); (K.A.); (F.C.); (M.S.R.); (S.G.C.); (C.U.); (A.F.); (N.W.); (G.E.); (S.R.W.)
| |
Collapse
|
4
|
Häcker G. Chlamydia in pigs: intriguing bacteria associated with sub-clinical carriage and clinical disease, and with zoonotic potential. Front Cell Dev Biol 2024; 12:1301892. [PMID: 39206090 PMCID: PMC11349706 DOI: 10.3389/fcell.2024.1301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydiae are bacteria that are intriguing and important at the same time. The genus Chlamydia encompasses many species of obligate intracellular organisms: they can multiply only inside the cells of their host organism. Many, perhaps most animals have their own specifically adapted chlamydial species. In humans, the clinically most relevant species is Chlamydia trachomatis, which has particular importance as an agent of sexually transmitted disease. Pigs are the natural host of Chlamydia suis but may also carry Chlamydia abortus and Chlamydia pecorum. C. abortus and possibly C. suis have anthropozoonotic potential, which makes them interesting to human medicine, but all three species bring a substantial burden of disease to pigs. The recent availability of genomic sequence comparisons suggests adaptation of chlamydial species to their respective hosts. In cell biological terms, many aspects of all the species seem similar but non-identical: the bacteria mostly replicate within epithelial cells; they are taken up by the host cell in an endosome that they customize to generate a cytosolic vacuole; they have to evade cellular defences and have to organize nutrient transport to the vacuole; finally, they have to organize their release to be able to infect the next cell or the next host. What appears to be very difficult and challenging to achieve, is in fact a greatly successful style of parasitism. I will here attempt to cover some of the aspects of the infection biology of Chlamydia, from cell biology to immune defence, epidemiology and possibilities of prevention. I will discuss the pig as a host species and the species known to infect pigs but will in particular draw on the more detailed knowledge that we have on species that infect especially humans.
Collapse
Affiliation(s)
- Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Yount KS, Darville T. Immunity to Sexually Transmitted Bacterial Infections of the Female Genital Tract: Toward Effective Vaccines. Vaccines (Basel) 2024; 12:863. [PMID: 39203989 PMCID: PMC11359697 DOI: 10.3390/vaccines12080863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Sexually transmitted infections (STIs) caused by bacterial pathogens Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum present significant public health challenges. These infections profoundly impact reproductive health, leading to pelvic inflammatory disease, infertility, and increased susceptibility to other infections. Prevention measures, including antibiotic treatments, are limited by the often-asymptomatic nature of these infections, the need for repetitive and continual screening of sexually active persons, antibiotic resistance for gonorrhea, and shortages of penicillin for syphilis. While vaccines exist for viral STIs like human papillomavirus (HPV) and hepatitis B virus (HBV), there are no vaccines available for bacterial STIs. This review examines the immune responses in the female genital tract to these bacterial pathogens and the implications for developing effective vaccines against bacterial STIs.
Collapse
Affiliation(s)
| | - Toni Darville
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
6
|
Waters MB, Hybiske K, Ikeda R, Kaltenboeck B, Manhart LE, Kreisel KM, Khosropour CM. Chlamydia trachomatis Seroassays Used in Epidemiologic Research: A Narrative Review and Practical Considerations. J Infect Dis 2024; 230:250-262. [PMID: 39052727 PMCID: PMC11272089 DOI: 10.1093/infdis/jiae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024] Open
Abstract
Chlamydia trachomatis (CT) is a sexually transmitted infection that can lead to adverse reproductive health outcomes. CT prevalence estimates are primarily derived from screening using nucleic acid amplification tests (NAATs). However, screening guidelines in the United States only include particular subpopulations, and NAATs only detect current infections. In contrast, seroassays identify past CT infections, which is important for understanding the public health impacts of CT, including pelvic inflammatory disease and tubal factor infertility. Older seroassays have been plagued by low sensitivity and specificity and have not been validated using a consistent reference measure, making it challenging to compare studies, define the epidemiology of CT, and determine the effectiveness of control programs. Newer seroassays have better performance characteristics. This narrative review summarizes the "state of the science" for CT seroassays that have been applied in epidemiologic studies and provides practical considerations for interpreting the literature and employing seroassays in future research.
Collapse
Affiliation(s)
| | - Kevin Hybiske
- Department of Medicine, University of Washington, Seattle
| | - Ren Ikeda
- Department of Medicine, University of Washington, Seattle
| | - Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | | - Kristen M Kreisel
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
7
|
Hybiske K, Paktinat S, Newman K, Patton D, Khosropour C, Roxby AC, Mugo NR, Oluoch L, Ngure K, Suchland R, Hladik F, Vojtech L. Antibodies from chlamydia-infected individuals facilitate phagocytosis via Fc receptors. Infect Immun 2024; 92:e0050323. [PMID: 38451079 PMCID: PMC11003224 DOI: 10.1128/iai.00503-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Non-neutralizing functions of antibodies, including phagocytosis, may play a role in Chlamydia trachomatis (CT) infection, but these functions have not been studied and assays are lacking. We utilized a flow-cytometry-based assay to determine whether serum samples from a well-characterized cohort of CT-infected and naïve control individuals enhanced phagocytosis via Fc-receptor-expressing THP-1 cells, and whether this activity correlated with antibody titers. Fc-receptor-mediated phagocytosis was detected only in CT+ donors. Phagocytosis generally did not correlate well with antibody titer. In addition, we found that complement from both CT+ and negative individuals enhanced phagocytosis of CT into primary neutrophils. These results suggest that anti-CT antibodies can have functions that are not reflected by titer. This method could be used to quantitively measure Fc-receptor-mediated function of anti-CT antibodies or complement activity and could reveal new immune correlates of protection.
Collapse
Affiliation(s)
- Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shahrokh Paktinat
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Katherine Newman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | | | - Alison C. Roxby
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Nelly R. Mugo
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Lynda Oluoch
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Kenneth Ngure
- Department of Global Health, University of Washington, Seattle, Washington, USA
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Robert Suchland
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Tanner T, Medhavi FNU, Richardson S, Omosun YO, Eko FO. In silico design and analysis of a multiepitope vaccine against Chlamydia. Pathog Dis 2024; 82:ftae015. [PMID: 38889932 PMCID: PMC11234648 DOI: 10.1093/femspd/ftae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.
Collapse
Affiliation(s)
- Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - F N U Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| |
Collapse
|
9
|
Quigley BL, Timms P, Nyari S, McKay P, Hanger J, Phillips S. Reduction of Chlamydia pecorum and Koala Retrovirus subtype B expression in wild koalas vaccinated with novel peptide and peptide/recombinant protein formulations. Vaccine X 2023; 14:100329. [PMID: 37577264 PMCID: PMC10422670 DOI: 10.1016/j.jvacx.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023] Open
Abstract
Koalas are an endangered species under threat of extinction from several factors, including infections agents. Chlamydia pecorum infection results in morbidity and mortality from ocular and urogenital diseases while Koala Retrovirus (KoRV) infection has been linked to increased rates of cancer and chlamydiosis. Both C. pecorum and KoRV are endemic in many wild Australian koala populations, with limited treatment options available. Fortunately, vaccines for these pathogens are under development and have generated effective immune responses in multiple trials. The current study aimed to improve vaccine formulations by testing a novel peptide version of the Chlamydia vaccine and a combination Chlamydia - KoRV vaccine. Utilising a monitored wild population in Southeast Queensland, this trial followed koalas given either a 'Chlamydia only' vaccine (utilising four peptides from the chlamydial Major Outer Membrane Protein, MOMP), a combination 'Chlamydia and KoRV' vaccine (comprised of the chlamydial peptides plus a KoRV recombinant envelope protein (rEnv)) or no treatment. Clinical observations, C. pecorum and KoRV gene expression, serum IgG, and mucosal immune gene expression were assessed over a 17-month period. Overall, both vaccine formulations resulted in a decrease in chlamydiosis mortality, with decreases in C. pecorum, CD4, CD8β and IL-17A gene expression observed. In addition, the combination vaccine group also showed an increase in anti-KoRV IgG production that corresponded to a decrease in detected KoRV-B expression. While these results are favourable, the chlamydial peptide vaccine did not appear to outperform the established recombinant chlamydial vaccine and suggests that a combination vaccine formulated with recombinant MOMP plus KoRV rEnv could capitalize on the demonstrated benefits of both for the betterment of koalas into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- The Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, Australia
| | - Peter Timms
- The Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, Australia
| | - Sharon Nyari
- The Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, Australia
| | - Philippa McKay
- Endeavour Veterinary Ecology, 1695 Pumicestone Rd, Toorbul, QLD, Australia
| | - Jon Hanger
- Endeavour Veterinary Ecology, 1695 Pumicestone Rd, Toorbul, QLD, Australia
| | - Samuel Phillips
- The Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, Australia
| |
Collapse
|
10
|
Prolonged B-Lymphocyte-Mediated Immune and Inflammatory Responses to Tuberculosis Infection in the Lungs of TB-Resistant Mice. Int J Mol Sci 2023; 24:ijms24021140. [PMID: 36674664 PMCID: PMC9861759 DOI: 10.3390/ijms24021140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
During tuberculosis (TB) infection, B-lymphocytes migrate to the lungs and form B-cell follicles (BCFs) in the vicinity of TB granulomata. B-cell-lacking mice display enhanced susceptibility to TB infection, and early B-cell depletion in infected non-human primates alters T-lymphocyte cytokine responses and increases bacterial burdens in the lungs. However, the role of B cells during late TB stages remained unaddressed. Here, we demonstrate that B cells and BCFs persist up to weeks 25-45 post-challenge in the lungs of TB-resistant C57BL/6 (B6) mice. In hyper-susceptible I/St mice, B-cell content markedly drops between weeks 12-16 post-infection, paralleled by diffuse lung tissue inflammation and elevated gene expression levels for pro-inflammatory cytokines IL-1, IL-11, IL-17a, and TNF-α. To check whether B-cells/BCFs control TB infection at advanced stages, we specifically depleted B-cells from B6 mice by administrating anti-CD20 mAbs at week 16 post-infection. This resulted in more rapid cachexia, a shortened lifespan of the infected animals, an increase in (i) lung-infiltrating CD8+ T cells, (ii) IL-6 production by F4/80+ macrophages, (iii) expression levels of genes for neutrophil-attracting factors CXCL1 and IL-17, and tissue-damaging factors MMP8, MMP9, and S100A8. Taken together, our results suggest that lung B cells and BCFs are moderately protective against chronic TB infection.
Collapse
|
11
|
IFNγ and Antibody Synergize To Enhance Protective Immunity against Chlamydia Dissemination and Female Reproductive Tract Reinfections. Infect Immun 2022; 90:e0032822. [PMID: 36374101 PMCID: PMC9753678 DOI: 10.1128/iai.00328-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell-dependent IFNγ production and antibody are the two best known effectors for protective immunity against Chlamydia female reproductive tract (FRT) infection. Nevertheless, mice lacking either IFNγ or B cells can clear the vast majority of Chlamydia from the FRT, while suffering from varying degrees of disseminated infection. In this study, we investigated whether IFNγ and B cells play complementary roles in host defense against Chlamydia and evaluated their relative contributions in systemic and mucosal tissues. Using mice deficient in both IFNγ and B cells (IFNγ-/- x μMT), we showed that mice lacking both effectors were highly susceptible to lethal systemic bacterial dissemination following Chlamydia muridarum intravaginal infection. Passive transfer of immune convalescent serum, but not recombinant IFNγ, reduced bacterial burden in both systemic and mucosal tissues in IFNγ-/- x μMT mice. Notably, over the course of primary infection, we observed a reduction of bacterial shedding of more than 2 orders of magnitude in IFNγ-/- x μMT mice following both C. muridarum and C. trachomatis FRT infections. In contrast, no protective immunity against C. muridarum reinfection was detected in the absence of IFNγ and B cells. Together, our results suggest that IFNγ and B cells synergize to combat systemic Chlamydia dissemination, while additional IFNγ and B cell-independent mechanisms exist for host resistance to Chlamydia in the lower FRT.
Collapse
|
12
|
Heterologous prime-boost vaccination based on Polymorphic protein D protects against intravaginal Chlamydia trachomatis infection in mice. Sci Rep 2022; 12:6664. [PMID: 35459778 PMCID: PMC9030682 DOI: 10.1038/s41598-022-10633-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
The control of the worldwide spread of sexually transmitted Chlamydia trachomatis (Ct) infection urgently demands the development of a preventive vaccine. In this work, we designed a vaccine based on a fragment of polymorphic protein D (FPmpD) that proved to be immunogenic enough to generate a robust systemic and mucosal IgG humoral immune response in two strains of mice. We used a heterologous prime-boost strategy, including simultaneous systemic and mucosal administration routes. The high titers of anti-PmpD antibodies elicited by this immunization scheme did not affect murine fertility. We tested the vaccine in a mouse model of Ct intravaginal infection. Anti-PmpD antibodies displayed potent neutralizing activity in vitro and protective effects in uterine tissues in vivo. Notably, the humoral immune response of PmpD-vaccinated mice was faster and stronger than the primary immune response of non-vaccinated mice when exposed to Ct. FPmpD-based vaccine effectively reduced Ct shedding into cervicovaginal fluids, bacterial burden at the genitourinary tract, and overall infectivity. Hence, the FPmpD-based vaccine might constitute an efficient tool to protect against Ct intravaginal infection and decrease the infection spreading.
Collapse
|
13
|
Bagri P, Anipindi VC, Kaushic C. The Role of IL-17 During Infections in the Female Reproductive Tract. Front Immunol 2022; 13:861444. [PMID: 35493460 PMCID: PMC9046847 DOI: 10.3389/fimmu.2022.861444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Interleukin-17 (IL-17A) is a cytokine involved in a complex array of both protective and detrimental processes. Although early biological studies focused on the pro-inflammatory function of IL-17 in the context of autoimmune and inflammatory disorders, it has become increasingly evident that the roles of IL-17 are far more nuanced. Recent work has demonstrated that the functions of IL-17 are highly context- and tissue-dependent, and there is a fine balance between the pathogenic and protective functions of IL-17. This is especially evident in mucosal tissues such as the female reproductive tract, where IL-17 has been shown to play an important role in the immune response generated during fungal, bacterial and viral infections associated with protection, but also with inflammation. In this review, we discuss the evolving landscape of IL-17 biology within the context of the vaginal mucosa, focusing on key findings that highlight the importance of this cytokine in genital mucosal immunity.
Collapse
Affiliation(s)
- Puja Bagri
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Varun C. Anipindi
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- *Correspondence: Charu Kaushic,
| |
Collapse
|
14
|
Johnson RM, Asashima H, Mohanty S, Shaw AC. Combining Cellular Immunology With RNAseq to Identify Novel Chlamydia T-Cell Subset Signatures. J Infect Dis 2022; 225:2033-2042. [PMID: 35172331 PMCID: PMC9159333 DOI: 10.1093/infdis/jiac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Chlamydia trachomatis serovars A-L cause important diseases of the eyes and reproductive tract by infecting epithelium lining those organs. A major hurdle for vaccine trials is finding a surrogate biomarker for protective immunity. Investigational data argues for T-cell biomarker(s) reflecting mucosal adaption, cytokine polarization, B-cell help, antibacterial effector mechanisms, or some combination thereof. A human investigation and 2 mouse studies link IL-13 to protection from infection/immunopathology. We performed RNAseq on T cells resident in spleens and genital tracts of naturally immune mice. CD4 signatures were consistent with helper function that differed by site including a genital tract-specific Fgl2 signal. The genital tract CD8 signature featured IL-10 and promotion of healing/scarring with a unique transcription of granzyme A. The RNAseq data was used to refine previously published CD4γ13 and CD8γ13 transcriptomes derived from protective T-cell clones, potentially identifying practicable T-cell subset signatures for assessing Chlamydia vaccine candidates.
Collapse
Affiliation(s)
- Raymond M Johnson
- Correspondence: Raymond M. Johnson, MD, PhD, Department of Internal Medicine, Yale University School of Medicine, PO Box 208022, TAC s169, New Haven, CT 06520-8022 ()
| | - Hiromitsu Asashima
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Th1 cells are dispensable for primary clearance of Chlamydia from the female reproductive tract of mice. PLoS Pathog 2022; 18:e1010333. [PMID: 35196366 PMCID: PMC8901068 DOI: 10.1371/journal.ppat.1010333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/07/2022] [Accepted: 02/02/2022] [Indexed: 01/20/2023] Open
Abstract
Protective immune responses to Chlamydia infection within the female reproductive tract (FRT) are incompletely understood. MHC class II-restricted CD4 Th1 responses are believed to be vital for bacterial clearance due to their capacity to secrete IFN-γ, but an essential requirement for T-bet-expressing Th1 cells has yet to be demonstrated in the mouse model of Chlamydia infection. Here, we investigated the role of T-bet and IFN-γ in primary clearance of Chlamydia after FRT infection. Surprisingly, IFN-γ producing CD4 T cells from the FRT expressed low levels of T-bet throughout infection, suggesting that classical T-bet-expressing Th1 cells are inefficiently generated and therefore unlikely to participate in bacteria clearance. Furthermore, mice deficient in T-bet expression or with a CD4-specific T-bet deficiency cleared FRT infection similarly to wild-type controls. T-bet-deficient mice displayed significant skewing of FRT CD4 T cells towards Th17 responses, demonstrating that compensatory effector pathways are generated in the absence of Th1 cells. In marked contrast, IFN-γ-, and IFN-γR-deficient mice were able to reduce FRT bacterial burdens, but suffered systemic bacterial dissemination and 100% mortality. Together, these data demonstrate that IFN-γ signaling is essential to protect mice from fatal systemic disease, but that classical T-bet-expressing Th1 cells are non-essential for primary clearance within the FRT. Exploring the protective contribution of Th1 cells versus other CD4 effector lineages could provide important information for the generation of new Chlamydia vaccines. The production of IFN-γ by CD4 Th1 cells is thought to be critical for the clearance of Chlamydia from the female reproductive tract (FRT), but this has not been formally tested. Here we demonstrate that T-bet+ Th1 cells are not essential for effective Chlamydia clearance. Furthermore, the impact of IFN-γ deficiency or depletion is largely observed as a failure to control bacterial dissemination, rather than clearance from the FRT. Together, these data suggest that different immunological mechanisms are responsible for restraining systemic spread of bacteria versus FRT control. Defining alternative non-Th1 CD4 effector mechanisms that are responsible for controlling Chlamydia replication within the FRT could be foundational for future vaccine development.
Collapse
|
16
|
Ardizzone CM, Albritton HL, Lillis RA, Bagnetto CEL, Shen L, Cavacini LA, Kozlowski PA, Quayle AJ. Human genital antibody-mediated inhibition of Chlamydia trachomatis infection and evidence for ompA genotype-specific neutralization. PLoS One 2021; 16:e0258759. [PMID: 34662351 PMCID: PMC8523062 DOI: 10.1371/journal.pone.0258759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
The endocervix, the primary site of Chlamydia trachomatis (Ct) infection in women, has a unique repertoire of locally synthesized IgG and secretory IgA (SIgA) with contributions from serum IgG. Here, we assessed the ability of genital and serum-derived IgG and IgA from women with a recent positive Ct test to neutralize Ct elementary bodies (EBs) and inhibit inclusion formation in vitro in human endocervical epithelial cells. We also determined if neutralization was influenced by the major outer membrane protein (MOMP) of the infecting strain, as indicated by ompA gene sequencing and genotyping. At equivalent low concentrations of Ct EB (D/UW-3/Cx + E/UW-5/Cx)-specific antibody, genital-derived IgG and IgA and serum IgA, but not serum IgG, significantly inhibited inclusion formation, with genital IgA being most effective, followed by genital IgG, then serum IgA. The well-characterized Ct genotype D strain, D/UW-3/Cx, was neutralized by serum-derived IgG from patients infected with genotype D strains, genital IgG from patients infected with genotype D or E strains, and by genital IgA from patients infected with genotype D, E, or F strains. Additionally, inhibition of D/UW-3/Cx infection by whole serum, rather than purified immunoglobulin, was associated with levels of serum EB-specific IgG rather than the genotype of infecting strain. In contrast, a Ct genotype Ia clinical isolate, Ia/LSU-56/Cx, was neutralized by whole serum in a genotype and genogroup-specific manner, and inhibition also correlated with EB-specific IgG concentrations in serum. Taken together, these data suggest that (i) genital IgA most effectively inhibits Ct infection in vitro, (ii) human antibody-mediated inhibition of Ct infection is significantly influenced by the ompA genotype of the infecting strain, (iii) the genital antibody repertoire develops or matures differently compared to systemic antibody, and (iv) ompA genotype-specificity of inhibition of infection by whole serum can be overcome by high concentrations of Ct-specific IgG.
Collapse
Affiliation(s)
- Caleb M. Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Rebecca A. Lillis
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Caitlyn E. L. Bagnetto
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Lisa A. Cavacini
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
17
|
Livingstone M, Wattegedera SR, Palarea-Albaladejo J, Aitchison K, Corbett C, Sait M, Wilson K, Chianini F, Rocchi MS, Wheelhouse N, Entrican G, Longbottom D. Efficacy of Two Chlamydia abortus Subcellular Vaccines in a Pregnant Ewe Challenge Model for Ovine Enzootic Abortion. Vaccines (Basel) 2021; 9:vaccines9080898. [PMID: 34452023 PMCID: PMC8402522 DOI: 10.3390/vaccines9080898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Chlamydia abortus, the aetiological agent of enzootic abortion of ewes, is a major cause of reproductive loss in small ruminants worldwide, accounting for significant economic losses to the farming industry. Disease can be managed through the use of commercial inactivated or live whole organism-based vaccines, although both have limitations particularly in terms of efficacy, safety and disease-associated outbreaks. Here we report a comparison of two experimental vaccines (chlamydial outer membrane complex (COMC) and octyl glucoside (OG)-COMC) based on detergent extracted outer membrane preparations of C. abortus and delivered as prime-boost immunisations, with the commercial live vaccine Cevac® Chlamydia in a pregnant sheep challenge model. No abortions occurred in either experimental vaccine group, while a single abortion occurred in the commercial vaccine group. Bacterial shedding, as a measure of potential risk of transmission of infection to naïve animals, was lowest in the COMC vaccinated group, with reductions of 87.5%, 86.4% and 74% observed for the COMC, OG-COMC and live commercial vaccine groups, respectively, compared to the unvaccinated challenge control group. The results show that the COMC vaccine performed the best and is a safer efficacious alternative to the commercial vaccines. However, to improve commercial viability, future studies should optimise the antigen dose and number of inoculations required.
Collapse
Affiliation(s)
- Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Sean Ranjan Wattegedera
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | | | - Kevin Aitchison
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Cecilia Corbett
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Michelle Sait
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Kim Wilson
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Mara Silvia Rocchi
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Nicholas Wheelhouse
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
| | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK; (M.L.); (S.R.W.); (K.A.); (C.C.); (M.S.); (K.W.); (F.C.); (M.S.R.); (N.W.); (G.E.)
- Correspondence:
| |
Collapse
|
18
|
Lanfermann C, Kohn M, Laudeley R, Rheinheimer C, Klos A. Chlamydia trachomatis Cross-Serovar Protection during Experimental Lung Reinfection in Mice. Vaccines (Basel) 2021; 9:vaccines9080871. [PMID: 34451996 PMCID: PMC8402589 DOI: 10.3390/vaccines9080871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Chlamydia trachomatis causes most bacterial sexually transmitted diseases worldwide. Different major outer membrane proteins (MOMPs) define various serovars of this intracellular pathogen: In women, D to L3 can cause urethritis, cervicitis, salpingitis, and oophoritis, and, thus, infertility. Protective immunity might be serovar-specific since chlamydial infection does not appear to induce an effective acquired immunity and reinfections occur. A better understanding of induced cross-serovar protection is essential for the selection of suitable antigens in vaccine development. In our mouse lung infection screening model, we evaluated the urogenital serovars D, E, and L2 in this regard. Seven weeks after primary infection or mock-infection, respectively, mice were infected a second time with the identical or one of the other serovars. Body weight and clinical score were monitored for 7 days. Near the peak of the second lung infection, bacterial load, myeloperoxidase, IFN-γ, and TNF-α in lung homogenate, as well as chlamydia-specific IgG levels in blood were determined. Surprisingly, compared with mice that were infected then for the first time, almost independent of the serovar combination used, all acquired parameters of disease were similarly diminished. Our reinfection study suggests that efficient cross-serovar protection could be achieved by a vaccine combining chlamydial antigens that do not include nonconserved MOMP regions.
Collapse
|
19
|
Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathog Dis 2021; 79:ftab012. [PMID: 33538819 PMCID: PMC8189015 DOI: 10.1093/femspd/ftab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
| |
Collapse
|
20
|
D Helble J, N Starnbach M. T cell responses to Chlamydia. Pathog Dis 2021; 79:6164867. [PMID: 33693620 DOI: 10.1093/femspd/ftab014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis is the most commonly reported sexually transmitted infection in the United States. The high prevalence of infection and lack of a vaccine indicate a critical knowledge gap surrounding the host's response to infection and how to effectively generate protective immunity. The immune response to C. trachomatis is complex, with cells of the adaptive immune system playing a crucial role in bacterial clearance. Here, we discuss the CD4+ and CD8+ T cell response to Chlamydia, the importance of antigen specificity and the role of memory T cells during the recall response. Ultimately, a deeper understanding of protective immune responses is necessary to develop a vaccine that prevents the inflammatory diseases associated with Chlamydia infection.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
Rijnink WF, Ottenhoff THM, Joosten SA. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front Immunol 2021; 12:640168. [PMID: 33679802 PMCID: PMC7930078 DOI: 10.3389/fimmu.2021.640168] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is still a major threat to mankind, urgently requiring improved vaccination and therapeutic strategies to reduce TB-disease burden. Most present vaccination strategies mainly aim to induce cell-mediated immunity (CMI), yet a series of independent studies has shown that B-cells and antibodies (Abs) may contribute significantly to reduce the mycobacterial burden. Although early studies using B-cell knock out animals did not support a major role for B-cells, more recent studies have provided new evidence that B-cells and Abs can contribute significantly to host defense against Mtb. B-cells and Abs exist in many different functional subsets, each equipped with unique functional properties. In this review, we will summarize current evidence on the contribution of B-cells and Abs to immunity toward Mtb, their potential utility as biomarkers, and their functional contribution to Mtb control.
Collapse
Affiliation(s)
- Willemijn F Rijnink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Innate IFN-γ Is Essential for Systemic Chlamydia muridarum Control in Mice, While CD4 T Cell-Dependent IFN-γ Production Is Highly Redundant in the Female Reproductive Tract. Infect Immun 2021; 89:IAI.00541-20. [PMID: 33257535 PMCID: PMC8097277 DOI: 10.1128/iai.00541-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Protective immunity against the obligate intracellular bacterium Chlamydia has long been thought to rely on CD4 T cell-dependent gamma interferon (IFN-γ) production. Nevertheless, whether IFN-γ is produced by other cellular sources during Chlamydia infection and how CD4 T cell-dependent and -independent IFN-γ contribute differently to host resistance have not been carefully evaluated. In this study, we dissected the requirements of IFN-γ produced by innate immune cells and CD4 T cells for resolution of Chlamydia muridarum female reproductive tract (FRT) infection. After C. muridarum intravaginal infection, IFN-γ-deficient and T cell-deficient mice exhibited opposite phenotypes for survival and bacterial shedding at the FRT mucosa, demonstrating the distinct requirements for IFN-γ and CD4 T cells in host defense against Chlamydia In Rag1-deficient mice, IFN-γ produced by innate lymphocytes (ILCs) accounted for early bacterial control and prolonged survival in the absence of adaptive immunity. Although type I ILCs are potent IFN-γ producers, we found that mature NK cells and ILC1s were not the sole sources of innate IFN-γ in response to Chlamydia By conducting T cell adoptive transfer, we showed definitively that IFN-γ-deficient CD4 T cells were sufficient for effective bacterial killing in the FRT during the first 21 days of infection and reduced bacterial burden more than 1,000-fold, although mice receiving IFN-γ-deficient CD4 T cells failed to completely eradicate the bacteria from the FRT like their counterparts receiving wild-type (WT) CD4 T cells. Together, our results revealed that innate IFN-γ is essential for preventing systemic Chlamydia dissemination, whereas IFN-γ produced by CD4 T cells is largely redundant at the FRT mucosa.
Collapse
|
23
|
Chlamydia-Specific IgA Secretion in the Female Reproductive Tract Induced via Per-Oral Immunization Confers Protection against Primary Chlamydia Challenge. Infect Immun 2020; 89:IAI.00413-20. [PMID: 33139380 DOI: 10.1128/iai.00413-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that causes sexually transmitted disease. In women, chlamydial infections may cause pelvic inflammatory disease (PID), ectopic pregnancy, and infertility. The role of antibodies in protection against a primary Chlamydia infection is unclear and was a focus of this work. Using the C. muridarum mouse infection model, we show that intestinal mucosa is infected via intranasal (i.n.) or per-oral (p.o.) Chlamydia inoculation and that unlike the female reproductive tract (FRT) mucosa, it halts systemic Chlamydia dissemination. Moreover, p.o. immunization or infection with Chlamydia confers protection against per-vaginal (p.v.) challenge, resulting in significantly decreased bacterial burden in the FRT, accelerated Chlamydia clearance, and reduced hydrosalpinx pathology. In contrast, subcutaneous (s.c.) immunization conferred no protection against the p.v. challenge. Both p.o. and s.c. immunizations induced Chlamydia-specific serum IgA. However, IgA was found only in the vaginal washes and fecal extracts of p.o.-immunized animals. Following a p.v. challenge, unimmunized control and s.c.-s.c.-immunized animals developed Chlamydia-specific intestinal IgA yet failed to develop IgA in the FRT, indicating that IgA response in the FRT relies on the FRT to gastrointestinal tract (GIT) antigen transport. Vaginal secretions of p.o.-immunized animals neutralize Chlamydia in vivo, resulting in significantly lower Chlamydia burden in the FRT and Chlamydia transport to the GIT. We also show that infection of the GIT is not necessary for induction of protective immunity in the FRT, a finding that is important for the development of p.o. subunit vaccines to target Chlamydia and possibly other sexually transmitted pathogens.
Collapse
|
24
|
Lausen M, Thomsen ME, Christiansen G, Karred N, Stensballe A, Bennike TB, Birkelund S. Analysis of complement deposition and processing on Chlamydia trachomatis. Med Microbiol Immunol 2020; 210:13-32. [PMID: 33206237 DOI: 10.1007/s00430-020-00695-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022]
Abstract
Chlamydia trachomatis (C. trachomatis) is the leading cause of sexually transmitted bacterial infections worldwide, with over 120 million annual cases. C. trachomatis infections are associated with severe reproductive complications in women such as extrauterine pregnancy and tubal infertility. The infections are often long lasting, associated with immunopathology, and fail to elicit protective immunity which makes recurrent infections common. The immunological mechanisms involved in C. trachomatis infections are only partially understood. Murine infection models suggest that the complement system plays a significant role in both protective immunity and immunopathology during primary Chlamydia infections. However, only limited structural and mechanistic evidence exists on complement-mediated immunity against C. trachomatis. To expand our current knowledge on this topic, we analyzed global complement deposition on C. trachomatis using comprehensive in-depth mass spectrometry-based proteomics. We show that factor B, properdin, and C4b bind to C. trachomatis demonstrating that C. trachomatis-induced complement activation proceeds through at least two activation pathways. Complement activation leads to cleavage and deposition of C3 and C5 activation products, causing initiation of the terminal complement pathway and deposition of C5b, C6, C7, C8, C9 on C. trachomatis. Interestingly, using immunoelectron microscopy, we show that C5b-9 deposition occurred sporadically and only in rare cases formed complete lytic terminal complexes, possibly caused by the presence of the negative regulators vitronectin and clusterin. Finally, cleavage analysis of C3 demonstrated that deposited C3b is degraded to the opsonins iC3b and C3dg and that this complement opsonization facilitates C. trachomatis binding to human B-cells.
Collapse
Affiliation(s)
- Mads Lausen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.
| | - Mikkel Eggert Thomsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.,Department of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000, Aarhus, Denmark
| | - Nichlas Karred
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| |
Collapse
|
25
|
De Clercq E, Van Gils M, Schautteet K, Devriendt B, Kiekens C, Chiers K, Van Den Broeck W, Cox E, Dean D, Vanrompay D. Chlamydia trachomatis L2c Infection in a Porcine Model Produced Urogenital Pathology and Failed to Induce Protective Immune Responses Against Re-Infection. Front Immunol 2020; 11:555305. [PMID: 33193323 PMCID: PMC7649141 DOI: 10.3389/fimmu.2020.555305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023] Open
Abstract
The current study was designed to evaluate the pathogenesis, pathology and immune response of female genital tract infection with Chlamydia trachomatis L2c, the most recently discovered lymphogranuloma venereum strain, using a porcine model of sexually transmitted infections. Pigs were mock infected, infected once or infected and re-infected intravaginally, and samples were obtained for chlamydial culture, gross and microscopic pathology, and humoral and cell-mediated immunity. Intravaginal inoculation of pigs with this bacterium resulted in an infection that was confined to the urogenital tract, where inflammation and pathology were caused that resembled what is seen in human infection. Re-infection resulted in more severe gross pathology than primary infection, and chlamydial colonization of the urogenital tract was similar for primary infected and re-infected pigs. This indicates that primary infection failed to induce protective immune responses against re-infection. Indeed, the proliferative responses of mononuclear cells from blood and lymphoid tissues to C. trachomatis strain L2c were never statistically different among groups, suggesting that C. trachomatis-specific lymphocytes were not generated following infection or re-infection. Nevertheless, anti-chlamydial antibodies were elicited in sera and vaginal secretions after primary infection and re-infection, clearly resulting in a secondary systemic and mucosal antibody response. While primary infection did not protect against reinfection, the porcine model is relevant for evaluating immune and pathogenic responses for emerging and known C. trachomatis strains to advance drug and/or vaccine development in humans.
Collapse
Affiliation(s)
- Evelien De Clercq
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Matthias Van Gils
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Katelijn Schautteet
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Celien Kiekens
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland, Research Institute, Oakland, CA, United States.,Department of Medicine, University of California, San Francisco, CA, United States.,Joint Graduate Program in Bioengineering, University of California, Berkeley, CA, United States
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Malaviarachchi PA, Mercado MAB, McSorley SJ, Li LX. Antibody, but not B-cell-dependent antigen presentation, plays an essential role in preventing Chlamydia systemic dissemination in mice. Eur J Immunol 2020; 50:676-684. [PMID: 32026472 DOI: 10.1002/eji.201948391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/06/2019] [Indexed: 12/16/2022]
Abstract
The obligate intracellular bacterium Chlamydia trachomatis causes the most prevalent bacterial sexually transmitted infection worldwide. CD4 T cells play a central role in the protective immunity against Chlamydia female reproductive tract (FRT) infection, while B cells are thought to be dispensable for resolution of primary Chlamydia infection in mouse models. We recently reported an unexpected requirement of B cells in local Chlamydia-specific CD4 T-cell priming and bacterial containment within the FRT. Here, we sought to tackle the precise effector function of B cells during Chlamydia primary infection. Using mixed bone marrow chimeras that lack B-cell-dependent Ag presentation (MHCIIB - / - ) or devoid of circulating antibodies (AID-/- × μS-/- ), we show that Chlamydia-specific CD4 T-cell expansion does not rely on Ag presentation by B cells. Importantly, we demonstrate that antibody, but not B-cell-dependent Ag presentation, is required for preventing systemic bacterial dissemination following Chlamydia FRT infection.
Collapse
Affiliation(s)
- Priyangi A Malaviarachchi
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Miguel A B Mercado
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
27
|
Sanchez LR, Godoy GJ, Gorosito Serrán M, Breser ML, Fiocca Vernengo F, Engel P, Motrich RD, Gruppi A, Rivero VE. IL-10 Producing B Cells Dampen Protective T Cell Response and Allow Chlamydia muridarum Infection of the Male Genital Tract. Front Immunol 2019; 10:356. [PMID: 30881362 PMCID: PMC6405527 DOI: 10.3389/fimmu.2019.00356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Abstract
A significant proportion of individuals develop chronic, persistent and recurrent genital tract infections with Chlamydia trachomatis, which has been attributed to the numerous strategies that the bacterium uses to subvert host immune responses. Animal chlamydia models have demonstrated that protective immune response is mediated by CD4+ Th1 cytokine responses. Herein, we demonstrate that early after infecting the male genital tract, C. muridarum triggers the production of IL-10 by splenic and lymph node cells. In addition, C. muridarum triggers IL-6 and TNFα secretion. Data obtained from in vitro and in vivo experiments revealed B cells as the major IL-10 contributors. Indeed, purified B cells produced high amounts of IL-10 and also exhibited enhanced expression of inhibitory molecules such as CD39, PD-L1 and PD1 after C. muridarum stimulation. In vitro experiments performed with sorted cell subsets revealed that Marginal Zone B cells were the main IL-10 producers. In vitro and in vivo studies using TLR-deficient mice indicated that TLR4 signaling pathway was essential for IL-10 production. In addition, in vivo treatments to neutralize IL-10 or deplete B cells indicated that IL-10 and B cells played a significant role in delaying bacterial clearance ability. Moreover, the latter was confirmed by adoptive cell transfer experiments in which the absence of IL-10-producing B cells conferred the host a greater capability to induce Th1 responses and clear the infection. Interestingly, NOD mice, which were the least efficient in clearing the infection, presented much more Marginal Zone B counts and also enhanced TLR4 expression on Marginal Zone B cells when compared to B6 and BALB/c mice. Besides, treatment with antibodies that selectively deplete Marginal Zone B cells rendered mice more capable of inducing enhanced IFNγ responses and clearing the infection. Our findings suggest that B cells play a detrimental role in C. muridarum infection and that activation by innate receptors like TLR4 and IL-10 production by these cells could be used by Chlamydia spp. as a strategy to modulate the immune response establishing chronic infections in susceptible hosts.
Collapse
Affiliation(s)
- Leonardo R Sanchez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gloria J Godoy
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
28
|
Morrison SG, Giebel AM, Toh EC, Spencer HJ, Nelson DE, Morrison RP. Chlamydia muridarum Genital and Gastrointestinal Infection Tropism Is Mediated by Distinct Chromosomal Factors. Infect Immun 2018; 86:e00141-18. [PMID: 29661932 PMCID: PMC6013670 DOI: 10.1128/iai.00141-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Some members of the genus Chlamydia, including the human pathogen Chlamydia trachomatis, infect multiple tissues, including the genital and gastrointestinal (GI) tracts. However, it is unknown if bacterial targeting to these sites is mediated by multifunctional or distinct chlamydial factors. We previously showed that disruption of individual large clostridial toxin homologs encoded within the Chlamydia muridarum plasticity zone were not critical for murine genital tract infection. Here, we assessed whether cytotoxin genes contribute to C. muridarum GI tropism. Infectivity and shedding of wild-type (WT) C. muridarum and three mutants containing nonsense mutations in different cytotoxin genes, tc0437, tc0438, and tc0439, were compared in mouse genital and GI infection models. One mutant, which had a nonsense mutation in tc0439, was highly attenuated for GI infection and had a GI 50% infectious dose (ID50) that was 1,000 times greater than that of the WT. GI inoculation with this mutant failed to elicit anti-chlamydial antibodies or to protect against subsequent genital tract infection. Genome sequencing of the tc0439 mutant revealed additional chromosomal mutations, and phenotyping of additional mutants suggested that the GI attenuation might be linked to a nonsense mutation in tc0600 The molecular mechanism underlying this dramatic difference in tissue-tropic virulence is not fully understood. However, isolation of these mutants demonstrates that distinct chlamydial chromosomal factors mediate chlamydial tissue tropism and provides a basis for vaccine initiatives to isolate chlamydia strains that are attenuated for genital infection but retain the ability to colonize the GI tract and elicit protective immune responses.
Collapse
Affiliation(s)
- Sandra G Morrison
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amanda M Giebel
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Evelyn C Toh
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - David E Nelson
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard P Morrison
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
29
|
B Cell Presentation of Chlamydia Antigen Selects Out Protective CD4γ13 T Cells: Implications for Genital Tract Tissue-Resident Memory Lymphocyte Clusters. Infect Immun 2018; 86:IAI.00614-17. [PMID: 29158429 DOI: 10.1128/iai.00614-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022] Open
Abstract
Surveillance and defense of the enormous mucosal interface with the nonsterile world are critical to protecting the host from a wide range of pathogens. Chlamydia trachomatis is an intracellular bacterial pathogen that replicates almost exclusively in the epithelium of the reproductive tract. The fallopian tubes and vagina are poorly suited to surveillance and defense, with limited immune infrastructure positioned near the epithelium. However, a dynamic process during clearing primary infections leaves behind new lymphoid clusters immediately beneath the epithelium. These memory lymphocyte clusters (MLCs) harboring tissue-resident memory (Trm) T cells are presumed to play an important role in protection from subsequent infections. Histologically, human Chlamydia MLCs have prominent B cell populations. We investigated the status of genital tract B cells during C. muridarum infections and the nature of T cells recovered from immune mice using immune B cells as antigen-presenting cells (APCs). These studies revealed a genital tract plasma B cell population and a novel genital tract CD4 T cell subset producing both gamma interferon (IFN-γ) and interleukin-13 (IL-13). A panel of CD4 T cell clones and microarray analysis showed that the molecular fingerprint of CD4γ13 T cells includes a Trm-like transcriptome. Adoptive transfer of a Chlamydia-specific CD4γ13 T cell clone completely prevented oviduct immunopathology without accelerating bacterial clearance. Existence of a CD4γ13 T cell subset provides a plausible explanation for the observation that human peripheral blood mononuclear cell (PBMC) Chlamydia-specific IFN-γ and IL-13 responses predict resistance to reinfection.
Collapse
|
30
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
31
|
Poston TB, Qu Y, Girardi J, O'Connell CM, Frazer LC, Russell AN, Wall M, Nagarajan UM, Darville T. A Chlamydia-Specific TCR-Transgenic Mouse Demonstrates Th1 Polyfunctionality with Enhanced Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2845-2854. [PMID: 28855311 PMCID: PMC5770186 DOI: 10.4049/jimmunol.1700914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Chlamydia is responsible for millions of new infections annually, and current efforts focus on understanding cellular immunity for targeted vaccine development. The Chlamydia-specific CD4 T cell response is characterized by the production of IFN-γ, and polyfunctional Th1 responses are associated with enhanced protection. A major limitation in studying these responses is the paucity of tools available for detection, quantification, and characterization of polyfunctional Ag-specific T cells. We addressed this problem by developing a TCR-transgenic (Tg) mouse with CD4 T cells that respond to a common Ag in Chlamydia muridarum and Chlamydia trachomatis Using an adoptive-transfer approach, we show that naive Tg CD4 T cells become activated, proliferate, migrate to the infected tissue, and acquire a polyfunctional Th1 phenotype in infected mice. Polyfunctional Tg Th1 effectors demonstrated enhanced IFN-γ production compared with polyclonal cells, protected immune-deficient mice against lethality, mediated bacterial clearance, and orchestrated an anamnestic response. Adoptive transfer of Chlamydia-specific CD4 TCR-Tg T cells with polyfunctional capacity offers a powerful approach for analysis of protective effector and memory responses against chlamydial infection and demonstrates that an effective monoclonal CD4 T cell response may successfully guide subunit vaccination strategies.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Yanyan Qu
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Lauren C Frazer
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Ali N Russell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - McKensie Wall
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| |
Collapse
|
32
|
Jiang J, Maxion H, Champion CI, Liu G, Kelly KA. Expression of CXCR3 on Adaptive and Innate Immune Cells Contributes Oviduct Pathology throughout Chlamydia muridarum Infection. JOURNAL OF MUCOSAL IMMUNOLOGY RESEARCH 2017; 1:104. [PMID: 29552679 PMCID: PMC5851010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CXCR3 is a chemokine receptor expressed on a wide range of leukocytes, and it is involved in leukocyte migration throughout the blood and lymphatics. Specifically, CXCR3 is required for lymphocyte homing to the genital mucosa. When compared to wild type (WT) mice, CXCR3 deficiency (CXCR3-/-) mice infected with Chlamydia muridarum (C. muridarum) did not display impaired clearance and resolution of infection. However, they possessed significantly higher bacterial burden and lower levels of IFN-γ-producing TH1 cells. The knockouts also demonstrated a significant decrease in the level of activated conventional dendritic cells in the GT, ultimately leading to the decrease in activated TH1 cells. In addition, few activated plasmacytoid dendritic cells, which possess an inflammatory phenotype, were found in the lymph node of infected mice. This reduction in pDCs may be responsible for the decrease in neutrophils, which are acute inflammatory cells, in the CXCR3-/- mice. Due to the significantly reduced level of acute inflammation, these mice also possess a decrease in dilation and pathology in the oviduct. This demonstrates that the CXCR3-/- mice possess the ability to clear C. muridarum infections, but they do so without the increased inflammation and pathology in the GT.
Collapse
Affiliation(s)
- Janina Jiang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 1P-177, LA, CA 90095, USA
| | - Heather Maxion
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 1P-177, LA, CA 90095, USA
| | - Cheryl I. Champion
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 1P-177, LA, CA 90095, USA
| | - Guangchao Liu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 1P-177, LA, CA 90095, USA
| | - Kathleen A. Kelly
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 1P-177, LA, CA 90095, USA
- California Nano Systems, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
33
|
Li LX, Labuda JC, Imai DM, Griffey SM, McSorley SJ. CCR7 Deficiency Allows Accelerated Clearance of Chlamydia from the Female Reproductive Tract. THE JOURNAL OF IMMUNOLOGY 2017; 199:2547-2554. [PMID: 28801359 DOI: 10.4049/jimmunol.1601314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/21/2017] [Indexed: 12/24/2022]
Abstract
Immune mechanisms responsible for pathogen clearance from the female reproductive tract (FRT) are incompletely defined; in particular, the contribution of lymphocyte trafficking to this process is unclear. CCR7-deficient mice have profoundly altered lymphocyte recirculation and display ectopic formation of lymphocyte aggregates within mucosal nonlymphoid tissues, including the FRT. In this study, we investigated how altered lymphocyte distribution in CCR7-deficient mice would affect host responses to Chlamydia muridarum within the reproductive tract. As expected, CCR7-deficient mice exhibited reduced lymphocyte trafficking to lymph nodes and a corresponding increase in T cell populations within the FRT. After intravaginal infection with Chlamydia, CCR7-deficient mice displayed markedly reduced Ag-specific CD4 T cell responses within the local draining iliac lymph nodes, yet robust Th1 and Th17 responses were prominent in the FRT. In addition, Chlamydia-specific Ab responses were dysregulated in CCR7-deficient mice, displaying an unexpected increase in the systemic IgA responses. Importantly, prominent mucosal immune responses in CCR7-deficient mice increased the efficiency of bacteria clearance from the FRT while reducing tissue-associated inflammation and pathology. Thus, increased numbers of lymphocytes within the FRT result in pathogen clearance with reduced immune-mediated pathology.
Collapse
Affiliation(s)
- Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205;
| | - Jasmine C Labuda
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616; and
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| | - Stephen M Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616; and
| |
Collapse
|
34
|
Albritton HL, Kozlowski PA, Lillis RA, McGowin CL, Siren JD, Taylor SN, Ibana JA, Buckner LR, Shen L, Quayle AJ. A novel whole-bacterial enzyme linked-immunosorbant assay to quantify Chlamydia trachomatis specific antibodies reveals distinct differences between systemic and genital compartments. PLoS One 2017; 12:e0183101. [PMID: 28797112 PMCID: PMC5552291 DOI: 10.1371/journal.pone.0183101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/29/2017] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection. The continued global burden of CT infection strongly predicates the need for a vaccine to supplement current chlamydial control programs. The correlates of protection against CT are currently unknown, but they must be carefully defined to guide vaccine design. The localized nature of chlamydial infection in columnar epithelial cells of the genital tract necessitates investigation of immunity at the site of infection. The purpose of this study was to develop a sensitive whole bacterial enzyme-linked immunosorbent assay (ELISA) to quantify and compare CT-specific IgG and IgA in sera and genital secretions from CT-infected women. To achieve this, elementary bodies (EBs) from two of the most common genital serovars (D and E) were attached to poly-L-lysine-coated microtiter plates with glutaraldehyde. EB attachment and integrity were verified by the presence of outer membrane antigens and the absence of bacterial cytoplasmic antigens. EB-specific IgG and IgA standards were developed by pooling sera with high titers of CT-specific antibodies from infected women. Serum, endocervical and vaginal secretions, and endocervical cytobrush specimens from CT-infected women were used to quantify CT-specific IgG and IgA which were then normalized to total IgG and IgA, respectively. Analyses of paired serum and genital samples revealed significantly higher proportions of EB-specific antibodies in genital secretions compared to sera. Cervical and vaginal secretions and cytobrush specimens had similar proportions of EB-specific antibodies, suggesting any one of these genital sampling techniques could be used to quantify CT-specific antibodies when appropriate normalization methodologies are implemented. Overall, these results illustrate the need to investigate genital tract CT antibody responses, and our assay provides a useful quantitative tool to assess natural immunity in defined clinical groups and CT vaccine trials.
Collapse
Affiliation(s)
- Hannah L. Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Rebecca A. Lillis
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Julia D. Siren
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Stephanie N. Taylor
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Joyce A. Ibana
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Institute of Biology, University of the Philippines Diliman, Quezon City, National Capital Region, Philippines
| | - Lyndsey R. Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wern JE, Sorensen MR, Olsen AW, Andersen P, Follmann F. Simultaneous Subcutaneous and Intranasal Administration of a CAF01-Adjuvanted Chlamydia Vaccine Elicits Elevated IgA and Protective Th1/Th17 Responses in the Genital Tract. Front Immunol 2017; 8:569. [PMID: 28567043 PMCID: PMC5434101 DOI: 10.3389/fimmu.2017.00569] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022] Open
Abstract
The selection of any specific immunization route is critical when defining future vaccine strategies against a genital infection like Chlamydia trachomatis (C.t.). An optimal Chlamydia vaccine needs to elicit mucosal immunity comprising both neutralizing IgA/IgG antibodies and strong Th1/Th17 responses. A strategic tool to modulate this immune profile and mucosal localization of vaccine responses is to combine parenteral and mucosal immunizations routes. In this study, we investigate whether this strategy can be adapted into a two-visit strategy by simultaneous subcutaneous (SC) and nasal immunization. Using a subunit vaccine composed of C.t. antigens (Ags) adjuvanted with CAF01, a Th1/Th17 promoting adjuvant, we comparatively evaluated Ag-specific B and T cell responses and efficacy in mice following SC and simultaneous SC and nasal immunization (SIM). We found similar peripheral responses with regard to interferon gamma and IL-17 producing Ag-specific splenocytes and IgG serum levels in both vaccine strategies but in addition, the SIM protocol also led to Ag-specific IgA responses and increased B and CD4+ T cells in the lung parenchyma, and in lower numbers also in the genital tract (GT). Following vaginal infection with C.t., we observed that SIM immunization gave rise to an early IgA response and IgA-secreting plasma cells in the GT in contrast to SC immunization, but we were not able to detect more rapid recruitment of mucosal T cells. Interestingly, although SIM vaccination in general improved mucosal immunity we observed no improved efficacy against genital infection compared to SC, a finding that warrants for further investigation. In conclusion, we demonstrate a novel vaccination strategy that combines systemic and mucosal immunity in a two-visit strategy.
Collapse
Affiliation(s)
- Jeanette Erbo Wern
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| | - Maria Rathmann Sorensen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| | - Anja Weinreich Olsen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| |
Collapse
|
36
|
Shaw JH, Behar AR, Snider TA, Allen NA, Lutter EI. Comparison of Murine Cervicovaginal Infection by Chlamydial Strains: Identification of Extrusions Shed In vivo. Front Cell Infect Microbiol 2017; 7:18. [PMID: 28217555 PMCID: PMC5289954 DOI: 10.3389/fcimb.2017.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections (STIs) and preventable blindness. Untreated, asymptomatic infection as well as frequent re-infection are common and may drive pelvic inflammatory disease, ectopic pregnancy, and infertility. In vivo models of chlamydial infection continue to be instrumental in progress toward a vaccine and further elucidating the pathogenesis of this intracellular bacterium, however significant gaps in our understanding remain. Chlamydial host cell exit occurs via two mechanisms, lysis and extrusion, although the latter has yet to be reported in vivo and its biological role is unclear. The objective of this study was to investigate whether chlamydial extrusions are shed in vivo following infection with multiple strains of Chlamydia. We utilized an established C3H/HeJ murine cervicovaginal infection model with C. trachomatis serovars D and L2 and the Chlamydia muridarum strain MoPn to monitor the (i) time course of infection and mode of host cell exit, (ii) mucosal and systemic immune response to infection, and (iii) gross and histopathology following clearance of active infection. The key finding herein is the first identification of chlamydial extrusions shed from host cells in an in vivo model. Extrusions, a recently appreciated mode of host cell exit and potential means of dissemination, had been previously observed solely in vitro. The results of this study demonstrate that chlamydial extrusions exist in vivo and thus warrant further investigation to determine their role in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University Stillwater, OK, USA
| | - Amanda R Behar
- Department of Microbiology and Molecular Genetics, Oklahoma State University Stillwater, OK, USA
| | - Timothy A Snider
- Department of Veterinary Pathobiology, Oklahoma State University Stillwater, OK, USA
| | - Noah A Allen
- Department of Integrative Biology, Oklahoma State University Stillwater, OK, USA
| | - Erika I Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
37
|
Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory. mBio 2016; 7:mBio.01520-16. [PMID: 27999159 PMCID: PMC5181774 DOI: 10.1128/mbio.01520-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic intervention is an effective treatment strategy for many bacterial infections and liberates bacterial antigens and stimulatory products that can induce an inflammatory response. Despite the opportunity for bacterial killing to enhance the development of adaptive immunity, patients treated successfully with antibiotics can suffer from reinfection. Studies in mouse models of Salmonella and Chlamydia infection also demonstrate that early antibiotic intervention reduces host protective immunity to subsequent infection. This heightened susceptibility to reinfection correlates with poor development of Th1 and antibody responses in antibiotic-treated mice but can be overcome by delayed antibiotic intervention, thus suggesting a requirement for sustained T cell stimulation for protection. Although the contribution of memory T cell subsets is imperfectly understood in both of these infection models, a protective role for noncirculating memory cells is suggested by recent studies. Together, these data propose a model where antibiotic treatment specifically interrupts tissue-resident memory T cell formation. Greater understanding of the mechanistic basis of this phenomenon might suggest therapeutic interventions to restore a protective memory response in antibiotic-treated patients, thus reducing the incidence of reinfection.
Collapse
|
38
|
Maher IE, Higgins DP. Altered Immune Cytokine Expression Associated with KoRV B Infection and Season in Captive Koalas. PLoS One 2016; 11:e0163780. [PMID: 27706211 PMCID: PMC5051944 DOI: 10.1371/journal.pone.0163780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
Koala (Phascolarctos cinereus) populations are increasingly vulnerable and one of the main threats is chlamydial infection. Koala retrovirus (KoRV) has been proposed as an underlying cause of the koala’s susceptibility to infection with Chlamydia and high rates of lymphoid neoplasia; however, the regionally ubiquitous, endogenous nature of this virus suggests that KoRV A infection is not sufficient for immune suppression to occur. A recently discovered exogenous variant of KoRV, KoRV B, has several structural elements that cause increased pathogenicity in related retroviruses and was associated with lymphoid neoplasia in one study. The present study assesses whether KoRV B infection is associated with alterations in immune function. Cytokine gene expression by mitogen stimulated lymphocytes of KoRV B positive (n = 5–6) and negative (n = 6–7) captive koalas was evaluated by qPCR four times (April 2014-February 2015) to control for seasonal variation. Key immune genes in the Th1 pathway (IFNγ, TNFα), Th2 pathway (IL 10, IL4, IL6) and Th17 pathway (IL17A), along with CD4:CD8 ratio, were assessed. KoRV B positive koalas showed significantly increased up-regulation of IL17A and IL10 in three out of four sampling periods and IFNγ, IL6, IL4 and TNFα in two out of four. IL17A is an immune marker for chlamydial pathogenesis in the koala; increased expression of IL17A in KoRV B positive koalas, and concurrent immune dysregulation, may explain the differences in susceptibility to chlamydial infection and severity of disease seen between individuals and populations. There was also marked seasonal variation in up-regulation for most of the cytokines and the CD4:CD8 ratio. The up-regulation in both Th1 and Th2 cytokines mirrors changes associated with immune dysregulation in humans and felids as a result of retroviral infections. This is the first report of altered immune expression in koalas infected by an exogenous variant of KoRV and also the first report of seasonal variation in cytokine up-regulation and CD4:CD8 ratio in marsupials.
Collapse
Affiliation(s)
- Iona E. Maher
- School of Life and Environmental Sciences, Faculty of Veterinary Science, the University of Sydney, NSW, Australia
| | - Damien P. Higgins
- School of Life and Environmental Sciences, Faculty of Veterinary Science, the University of Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
39
|
IFNγ is Required for Optimal Antibody-Mediated Immunity against Genital Chlamydia Infection. Infect Immun 2016; 84:3232-3242. [PMID: 27600502 PMCID: PMC5067755 DOI: 10.1128/iai.00749-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Defining the mechanisms of immunity conferred by the combination of antibody and CD4+ T cells is fundamental to designing an efficacious chlamydial vaccine. Using the Chlamydia muridarum genital infection model of mice, which replicates many features of human C. trachomatis infection and avoids the characteristic low virulence of C. trachomatis in the mouse, we previously demonstrated a significant role for antibody in immunity to chlamydial infection. We found that antibody alone was not protective. Instead, protection appeared to be conferred through an undefined antibody-cell interaction. Using gene knockout mice and in vivo cellular depletion methods, our data suggest that antibody-mediated protection is dependent on the activation of an effector cell population in genital tract tissues by CD4+ T cells. Furthermore, the CD4+ T cell-secreted cytokine gamma interferon (IFN-γ) was found to be a key component of the protective antibody response. The protective function of IFN-γ was not related to the immunoglobulin class or to the magnitude of the Chlamydia-specific antibody response or to recruitment of an effector cell population to genital tract tissue. Rather, IFN-γ appears to be necessary for activation of the effector cell population that functions in antibody-mediated chlamydial immunity. Our results confirm the central role of antibody in immunity to chlamydia reinfection and demonstrate a key function for IFN-γ in antibody-mediated protection.
Collapse
|
40
|
Yu H, Karunakaran KP, Jiang X, Brunham RC. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis. Expert Rev Vaccines 2016; 15:977-88. [PMID: 26938202 DOI: 10.1586/14760584.2016.1161510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chlamydia trachomatis is the most common preventable cause of tubal infertility in women. In high-income countries, despite public health control efforts, C. trachomatis case rates continue to rise. Most medium and low-income countries lack any Chlamydia control program; therefore, a vaccine is essential for the control of Chlamydia infections. A rationally designed Chlamydia vaccine requires understanding of the immunological correlates of protective immunity, pathological responses to this mucosal pathogen, identification of optimal vaccine antigens and selection of suitable adjuvant delivery systems that engender protective immunity. Fortunately, Chlamydia vaccinology is facilitated by genomic knowledge and by murine models that reproduce many of the features of human C. trachomatis infection. This article reviews recent progress in these areas with a focus on subunit vaccine development.
Collapse
Affiliation(s)
- Hong Yu
- a Vaccine Research Laboratory , University of British Columbia Centre for Disease Control , Vancouver , British Columbia , Canada
| | - Karuna P Karunakaran
- a Vaccine Research Laboratory , University of British Columbia Centre for Disease Control , Vancouver , British Columbia , Canada
| | - Xiaozhou Jiang
- a Vaccine Research Laboratory , University of British Columbia Centre for Disease Control , Vancouver , British Columbia , Canada
| | - Robert C Brunham
- a Vaccine Research Laboratory , University of British Columbia Centre for Disease Control , Vancouver , British Columbia , Canada
| |
Collapse
|
41
|
Murthy AK, Li W, Ramsey KH. Immunopathogenesis of Chlamydial Infections. Curr Top Microbiol Immunol 2016; 412:183-215. [PMID: 27370346 DOI: 10.1007/82_2016_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlamydial infections lead to a number of clinically relevant diseases and induce significant morbidity in human populations. It is generally understood that certain components of the host immune response to infection also mediate such disease pathologies. A clear understanding of pathogenic mechanisms will enable us to devise better preventive and/or intervention strategies to mitigate the morbidity caused by these infections. Over the years, numerous studies have been conducted to explore the immunopathogenic mechanisms of Chlamydia-induced diseases of the eye, reproductive tract, respiratory tract, and cardiovascular systems. In this article, we provide an overview of the diseases caused by Chlamydia, animal models used to study disease pathology, and a historical context to the efforts to understand chlamydial pathogenesis. Furthermore, we discuss recent findings regarding pathogenesis, with an emphasis on the role of the adaptive immune response in the development of chlamydial disease sequelae. Finally, we summarize the key insights obtained from studies of chlamydial pathogenesis and avenues that remain to be explored in order to inform the next steps of vaccine development against chlamydial infections.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA.
| | - Weidang Li
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| |
Collapse
|
42
|
Poston TB, Darville T. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Curr Top Microbiol Immunol 2016; 412:217-237. [PMID: 27033698 DOI: 10.1007/82_2016_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Kumar P, Bhakuni DS, Rastogi S. Do IgA antibodies to Chlamydia trachomatis have protective role in humoral immunity: a study in reactive arthritis patients. Microbes Infect 2015; 17:806-10. [PMID: 26482506 DOI: 10.1016/j.micinf.2015.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023]
Abstract
Chlamydia trachomatis-induced genitourinary Reactive Arthritis (ReA) can serve as good model for host-pathogen interaction. However, due to poor antigen presentation, cell-mediated immunity does not contribute as anticipated. Present study aims to evaluate protective role of anti-C. trachomatis antibodies vis-a-vis inflammatory chlamydial Major Outer Membrane Protein (MOMP). Prospective study was undertaken in 30 patients with genitourinary ReA. 30 Rheumatoid Arthritis (RA) and 30 osteoarthritis patients constituted controls. Subjects found to be PCR-positive for C. trachomatis were investigated for presence of MOMP in Synovial Fluid (SF) by fluorescence assay while anti-C. trachomatis IgA/IgM antibodies were estimated in SF/venous blood by ELISA. C. trachomatis MOMP was evident by the presence of elementary bodies in SF of 9 ReA PCR-positive patients (30%; p < 0.05 versus controls). Local secretory IgA antibodies were detected in 12 (40%) patients with ReA (p < 0.0001 versus controls); among 12 patients with anti-chlamydial IgA antibodies, 9 showed the presence of both MOMP and IgA antibodies in SF. 58.3% ReA patients (7/12) with secretory IgA antibodies were also positive for circulatory IgA antibodies (p < 0.01 versus controls). Serum IgM antibodies were present in 4 ReA (13.3%) and in 1 RA (3.3%) patient, respectively. In conclusion, the present study suggests that in ReA patients with chronic, persistent C. trachomatis infection in synovium, the chlamydial MOMP is triggering factor for generating a protective immune response by inducing anti-C. trachomatis IgA antibodies in the SF of large number of patients.
Collapse
Affiliation(s)
- Praveen Kumar
- Microbiology Laboratory, National Institute of Pathology (ICMR), Sriramachari Bhawan, Post Box No. 4909, Safdarjung Hospital Campus, Ring Road, New Delhi 110029, India
| | - Darshan Singh Bhakuni
- Department of Rheumatology and Clinical Immunology, Army Hospital (Research & Referral), Dhaula Kuan, Delhi Cantt 110010, India
| | - Sangita Rastogi
- Microbiology Laboratory, National Institute of Pathology (ICMR), Sriramachari Bhawan, Post Box No. 4909, Safdarjung Hospital Campus, Ring Road, New Delhi 110029, India.
| |
Collapse
|
44
|
Zhang X, Starnbach MN. An Excess of the Proinflammatory Cytokines IFN-γ and IL-12 Impairs the Development of the Memory CD8+ T Cell Response to Chlamydia trachomatis. THE JOURNAL OF IMMUNOLOGY 2015; 195:1665-75. [PMID: 26179901 DOI: 10.4049/jimmunol.1500457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
The obligate intracellular bacterium Chlamydia trachomatis is the most common cause of bacterial sexually transmitted disease in the United States and the leading cause of preventable blindness worldwide. Transfer of cultured Chlamydia-specific CD8(+) T cells or vaccination with recombinant virus expressing an MHC I-restricted Chlamydia Ag confers protection, yet surprisingly a protective CD8(+) T cell response is not stimulated following natural infection. In this study, we demonstrate that the presence of excess IL-12 and IFN-γ contributes to poor memory CD8(+) T cell development during C. trachomatis infection of mice. IL-12 is required for CD8(+) T cell expansion but drives effector CD8(+) T cells into a short-lived fate, whereas IFN-γ signaling impairs the development of effector memory cells. We show that transient blockade of IL-12 and IFN-γ during priming promotes the development of memory precursor effector CD8(+) T cells and increases the number of memory T cells that participate in the recall protection against subsequent infection. Overall, this study identifies key factors shaping memory development of Chlamydia-specific CD8(+) T cells that will inform future vaccine development against this and other pathogens.
Collapse
Affiliation(s)
- Xuqing Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
45
|
Li LX, McSorley SJ. A re-evaluation of the role of B cells in protective immunity to Chlamydia infection. Immunol Lett 2015; 164:88-93. [PMID: 25704502 DOI: 10.1016/j.imlet.2015.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis is the etiological agent of the most commonly reported bacterial sexual transmitted infection (STI) in North America and Europe. The control of Chlamydia infection is hindered by the asymptomatic nature of initial infection but the consequence of untreated infection seriously threatens the reproductive health of young women. Unfortunately, there is no licensed vaccine for Chlamydia vaccine, in part due to our incomplete understanding of the immune response to Chlamydia urogenital infection. It has been well established that T cell-mediated immunity plays a dominant role in protective immunity against Chlamydia and thus the importance of B cells is somewhat underappreciated. Here, we summarize recent progress on understanding the role of B cells during Chlamydia genital tract infections and discuss how B cells and humoral immunity make an effective contribution to host defense against important intracellular pathogens, including Chlamydia.
Collapse
Affiliation(s)
- Lin-Xi Li
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, United States.
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, United States
| |
Collapse
|
46
|
Nogueira CV, Zhang X, Giovannone N, Sennott EL, Starnbach MN. Protective immunity against Chlamydia trachomatis can engage both CD4+ and CD8+ T cells and bridge the respiratory and genital mucosae. THE JOURNAL OF IMMUNOLOGY 2015; 194:2319-29. [PMID: 25637024 DOI: 10.4049/jimmunol.1402675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the cellular populations and mechanisms responsible for overcoming immune compartmentalization is valuable for designing vaccination strategies targeting distal mucosae. In this study, we show that the human pathogen Chlamydia trachomatis infects the murine respiratory and genital mucosae and that T cells, but not Abs, elicited through intranasal immunization can protect against a subsequent transcervical challenge. Unlike the genital infection where CD8(+) T cells are primed, yet fail to confer protection, we found that intranasal priming engages both CD4(+) and CD8(+) T cells, allowing for protection against genital infection with C. trachomatis. The protection is largely dependent on IFN-γ secretion by T cells. Moreover, different chemokine receptors are critical for C. trachomatis-specific CD4(+) T cells to home to the lung, rather than the CXCR3- and CCR5-dependent migration observed during genital infection. Overall, this study demonstrates that the cross-mucosa protective immunity against genital C. trachomatis infection following intranasal immunization is not dependent on Ab response but is mediated by not only CD4(+) T cells but also by CD8(+) T cells. This study provides insights for the development of vaccines against mucosal pathogens that threaten reproductive health worldwide.
Collapse
Affiliation(s)
- Catarina V Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Xuqing Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Nicholas Giovannone
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Erica L Sennott
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
47
|
Armitage CW, O'Meara CP, Harvie MCG, Timms P, Wijburg OL, Beagley KW. Evaluation of intra- and extra-epithelial secretory IgA in chlamydial infections. Immunology 2015; 143:520-30. [PMID: 24827556 DOI: 10.1111/imm.12317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022] Open
Abstract
Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR(-/-) mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection.
Collapse
Affiliation(s)
- Charles W Armitage
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
CD43-, but not CD43+, IL-10-producing CD1dhiCD5+ B cells suppress type 1 immune responses during Chlamydia muridarum genital tract infection. Mucosal Immunol 2015; 8:94-106. [PMID: 24938746 DOI: 10.1038/mi.2014.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 05/10/2014] [Indexed: 02/04/2023]
Abstract
Regulatory B (Breg) cells are known to modulate immune responses through predominantly interleukin-10 (IL-10)-dependent mechanisms and can be hypothetically divided into innate and adaptive subsets based on the nature of their activating signals. However, the specific role of different Breg subsets in modulating immune responses remains ambiguous. Here we have shown that Chlamydia induces IL-10-producing splenic B-cell populations consisting of CD43(+) and CD43(-) subsets of IgM(hi)IgD(lo) innate-like B (ILB) cells in vitro. While CD43(+)IL-10-producing B cells displayed innate type features and were readily induced by Chlamydia via Toll-like-receptor (TLR) signaling, CD43(-)IL-10-producing B cells required additional B-cell activating factor (BAFF)-mediated signals from dendritic cells (DCs) for their differentiation and activation, thereby classifying them as adaptive type Bregs. Importantly, CD43(-), but not CD43(+), IL-10-producing ILB cells displayed bona fide Breg activity by potently suppressing interferon-γ (IFN-γ) production in vitro in an IL-10-dependent manner. Furthermore, a novel CD43(-)CD1d(hi)CD5(+) IL-10-producing Breg population was predominantly induced by Chlamydia genital infection in vivo. Correspondingly, mixed bone marrow chimeric mice with B-cell-specific IL-10 deficiency exhibited significantly increased type 1 immune responses, decreased bacterial burden, and reduced oviduct pathology upon infection. Our data demonstrate for the first time a distinct role for CD43(-)CD1d(hi)CD5(+)-adaptive Bregs over CD43(+) innate counterparts in controlling mucosal responses against intracellular bacterial infection.
Collapse
|
50
|
Chan J, Mehta S, Bharrhan S, Chen Y, Achkar JM, Casadevall A, Flynn J. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Semin Immunol 2014; 26:588-600. [PMID: 25458990 PMCID: PMC4314354 DOI: 10.1016/j.smim.2014.10.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis.
Collapse
Affiliation(s)
- John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Simren Mehta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sushma Bharrhan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yong Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arturo Casadevall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - JoAnne Flynn
- Departments of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|