1
|
Schwartz M, Poirier N, Moreno J, Proskura A, Lelièvre M, Heydel JM, Neiers F. Microbial β C-S Lyases: Enzymes with Multifaceted Roles in Flavor Generation. Int J Mol Sci 2024; 25:6412. [PMID: 38928118 PMCID: PMC11203769 DOI: 10.3390/ijms25126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
β C-S lyases (β-CSLs; EC 4.4.1.8) are enzymes catalyzing the dissociation of β carbon-sulfur bonds of cysteine S-conjugates to produce odorant metabolites with a free thiol group. These enzymes are increasingly studied for their role in flavor generation in a variety of food products, whether these processes occur directly in plants, by microbial β-CSLs during fermentation, or in the mouth under the action of the oral microbiota. Microbial β-CSLs react with sulfur aroma precursors present in beverages, vegetables, fruits, or aromatic herbs like hop but also potentially with some precursors formed through Maillard reactions in cooked foods such as meat or coffee. β-CSLs from microorganisms like yeasts and lactic acid bacteria have been studied for their role in the release of polyfunctional thiols in wine and beer during fermentation. In addition, β-CSLs from microorganisms of the human oral cavity were shown to metabolize similar precursors and to produce aroma in the mouth with an impact on retro-olfaction. This review summarizes the current knowledge on β-CSLs involved in flavor generation with a focus on enzymes from microbial species present either in the fermentative processes or in the oral cavity. This paper highlights the importance of this enzyme family in the food continuum, from production to consumption, and offers new perspectives concerning the utilization of β-CSLs as a flavor enhancer.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Nicolas Poirier
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Jade Moreno
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Alena Proskura
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia
| | - Mélanie Lelièvre
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Jean-Marie Heydel
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| | - Fabrice Neiers
- Center for Taste and Feeding Behavior, CNRS, INRAE, Institut Agro, University of Burgundy, F-21000 Dijon, France (F.N.)
| |
Collapse
|
2
|
Wu DD, Ngowi EE, Zhai YK, Wang YZ, Khan NH, Kombo AF, Khattak S, Li T, Ji XY. Role of Hydrogen Sulfide in Oral Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1886277. [PMID: 35116090 PMCID: PMC8807043 DOI: 10.1155/2022/1886277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ahmad Fadhil Kombo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
3
|
Ku JWK, Gan YH. New roles for glutathione: Modulators of bacterial virulence and pathogenesis. Redox Biol 2021; 44:102012. [PMID: 34090244 PMCID: PMC8182430 DOI: 10.1016/j.redox.2021.102012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Low molecular weight (LMW) thiols contain reducing sulfhydryl groups that are important for maintaining antioxidant defense in the cell. Aside from the traditional roles of LMW thiols as redox regulators in bacteria, glutathione (GSH) has been reported to affect virulence and bacterial pathogenesis. The role of GSH in virulence is diverse, including the activation of virulence gene expression and contributing to optimal biofilm formation. GSH can also be converted to hydrogen sulfide (H2S) which is important for the pathogenesis of certain bacteria. Besides GSH, some bacteria produce other LMW thiols such as mycothiol and bacillithiol that affect bacterial virulence. We discuss these newer reported functions of LMW thiols modulating bacterial pathogenesis either directly or indirectly and via modulation of the host immune system.
Collapse
Affiliation(s)
- Joanne Wei Kay Ku
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore.
| |
Collapse
|
4
|
Xu S, Luo X, Huang Q, Chen W. Calcium-crosslinked alginate-encapsulated bacteria for remediating of cadmium-polluted water and production of CdS nanoparticles. Appl Microbiol Biotechnol 2021; 105:2171-2179. [PMID: 33559717 DOI: 10.1007/s00253-021-11155-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Pollution with the heavy metal cadmium (Cd2+) is a global problem. Cadmium adversely affects living organisms, highlighting the need to develop new methods for removal of this pollutant from the environment. In this study, we used a novel biomaterial based on calcium-crosslinked alginate-encapsulated bacteria to precipitate Cd2+ in polluted water. Our results show that calcium-crosslinked alginate-encapsulated bacteria effectively removed Cd2+ ions from cadmium-polluted water. Approximately 100% of Cd2+ ions were removed by 10 g (wet weight) of this biomaterial when the loading concentration of Cd2+ reached 1 mM in a volume of 50 ml water. During this process, a CdS nanoparticle, showing good crystallinity in the quantum range, was simultaneously produced. To validate the activity and stability of this biomaterial, we measured cysteine desulfhydrase activity in the stored biomaterial and whether this biomaterial could be recycled. The encapsulated bacteria maintained catalytic activity for at least 2 weeks. The capsules were easily regenerated and possessed good recyclability. Our results indicated that calcium-crosslinked alginate-encapsulated bacteria are suitable for depletion of Cd2+ in polluted water and for production of CdS nanoparticles. These calcium-crosslinked alginate-encapsulated bacteria are safe for biological manipulation and can be widely used to produce CdS nanoparticles during bioremediation of Cd2+-polluted water. KEY POINTS: • Calcium-crosslinked alginate-encapsulated bacteria can effectively precipitate Cd2+ in water coupled with production of CdS quantum dots. • The encapsulated bacteria maintained catalytic activity for at least 2 weeks. • The capsules were easily regenerated and possessed good recyclability.
Collapse
Affiliation(s)
- Shaozu Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuesong Luo
- Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Phillips L, Chu L, Kolodrubetz D. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola. Anaerobe 2020; 64:102231. [PMID: 32603680 PMCID: PMC7484134 DOI: 10.1016/j.anaerobe.2020.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Treponema denticola is a spirochete that is involved in causing periodontal diseases. This bacterium can produce H2S from thiol compounds found in the gingival crevicular fluid. Determining how H2S is made by oral bacteria is important since this molecule is present at high levels in periodontally-diseased pockets and the biological effects of H2S can explain some of the pathologies seen in periodontitis. Thus, it is of interest to identify the enzyme, or enzymes, involved in the synthesis of H2S by T. denticola. We, and others, have previously identified and characterized a T. denticola cystalysin, called HlyA, which hydrolyzes cysteine into H2S (and pyruvate and ammonia). However, there have been no studies to show that HlyA is, or is not, the only pathway that T. denticola can use to make H2S. To address this question, allelic replacement mutagenesis was used to make a deletion mutant (ΔhlyA) in the gene encoding HlyA. The mutant produces the same amount of H2S from cysteine as do wild type spirochetes, indicating that T. denticola has at least one other enzyme that can generate H2S from cysteine. To identify candidates for this other enzyme, a BLASTp search of T. denticola strain 33520 was done. There was one gene that encoded an HlyA homolog so we named it HlyB. Recombinant His-tagged HlyB was expressed in E. coli and partially purified. This enzyme was able to make H2S from cysteine in vitro. To test the role of HlyB in vivo, an HlyB deletion mutant (ΔhlyB) was constructed in T. denticola. This mutant still made normal levels of H2S from cysteine, but a strain mutated in both hly genes (ΔhlyA ΔhlyB) synthesizes significantly less H2S from cysteine. We conclude that the HlyA and HlyB enzymes perform redundant functions in vivo and are the major contributors to H2S production in T. denticola. However, at least one other enzyme can still convert cysteine to H2S in the ΔhlyA ΔhlyB mutant. An in silico analysis that identifies candidate genes for this other enzyme is presented.
Collapse
Affiliation(s)
- Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Chu L, Wu Y, Xu X, Phillips L, Kolodrubetz D. Glutathione catabolism by Treponema denticola impacts its pathogenic potential. Anaerobe 2020; 62:102170. [PMID: 32044394 PMCID: PMC7153967 DOI: 10.1016/j.anaerobe.2020.102170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022]
Abstract
Treponema denticola is a spirochete that is etiologic for periodontal diseases. This bacterium is one of two periodontal pathogens that have been shown to have a complete three step enzymatic pathway (GTSP) that catabolizes glutathione to H2S. This pathway may contribute to the tissue pathology seen in periodontitis since diseased periodontal pockets have lower glutathione levels than healthy sites with a concomitant increase in H2S concentration. In order to be able to demonstrate that glutathione catabolism by the GTSP is critical for the pathogenic potential of T. denticola, allelic replacement mutagenesis was used to make a deletion mutant (Δggt) in the gene encoding the first enzyme in the GTSP. The mutant cannot produce H2S from glutathione since it lacks gamma-glutamyltransferase (GGT) activity. The hemolytic and hemoxidation activities of wild type T. denticola plus glutathione are reduced to background levels with the Δggt mutant and the mutant has lost the ability to grow aerobically when incubated with glutathione. The Δggt bacteria with glutathione cause less cell death in human gingival fibroblasts (hGFs) in vitro than do wild type T. denticola and the levels of hGF death correlate with the amounts of H2S produced. Importantly, the mutant spirochetes plus glutathione make significantly smaller lesions than wild type bacteria plus glutathione in a mouse back lesion model that assesses soft tissue destruction, a major symptom of periodontal diseases. Our results are the first to prove that T. denticola thiol-compound catabolism by its gamma-glutamyltransferase can play a significant role in the in the types of host tissue damage seen in periodontitis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yimin Wu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiaoping Xu
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Assessment of the role of Trichomonas tenax in the etiopathogenesis of human periodontitis: A systematic review. PLoS One 2019; 14:e0226266. [PMID: 31846467 PMCID: PMC6917263 DOI: 10.1371/journal.pone.0226266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/24/2019] [Indexed: 12/02/2022] Open
Abstract
Objective This systematic review was to assess the presence of Trichomonas tenax in patients with periodontitis and to elucidate its potential role in the onset and development of this disease. Method Systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and by consulting the five databases: Medline, Science Direct, Web of Science, Dentistry and Oral Science Sources and Cochrane Central Register of Controlled Trials. Following Koch’s postulates revisited by Socransky as PICO framework, this collection data was only including full text of clinical trials concerning patients with periodontitis, case-reports and in vitro research published between 1960 and March 2019. Results On the 376 studies identified, only 25 fulfilled our eligible criteria. Most of these studies were in vitro research articles designed to evaluate potential virulence factors, and others were clinical trials (case-control studies, randomized controlled trial) and case-reports. The analysis of these papers has shown that i) Trichomonas tenax is more frequently detected in dental biofilm from sites with periodontitis than in healthy sites; ii) this live flagellate seems capable of producing diverse enzymes that could participate in periodontal breakdown and has the capacity to adhere to epithelial cells, its lysed form could induce the synthesis of IL-8 from macrophage cell lines; iii) the impact of non-surgical treatment of periodontitis have not been thoroughly evaluated on the presence of T. tenax Conclusions This systematic review has reported the presence of T. tenax more frequently in diseased than healthy sites and the capacity of this flagellate to synthesis enzymes which could participate to the degradation of periodontal tissues. Nevertheless, these data do not meet all the postulates and are not enough to provide firm conclusions about the role of T. tenax in the etiopathogenesis of periodontitis.
Collapse
|
8
|
Basic A, Serino G, Leonhardt Å, Dahlén G. H 2S mediates increased interleukin (IL)-1β and IL-18 production in leukocytes from patients with periodontitis. J Oral Microbiol 2019; 11:1617015. [PMID: 31164964 PMCID: PMC6534246 DOI: 10.1080/20002297.2019.1617015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 11/05/2022] Open
Abstract
Background: The mechanisms involved in the interplay between the bacteria and the host cells in periodontitis are not fully understood. Aim: To investigate the effect of the bacterial metabolite H2S on the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 from periodontitis patients and healthy controls, and to evaluate the composition of the subgingival microbiota with its capacity to produce H2S. Methods: Subgingival bacterial samples from patients with periodontitis (N=32) and healthy controls (N=32) were investigated for H2S production and bacterial composition. Peripheral blood mononuclear cells (PBMCs) were cultured in the presence/absence of 1mM H2S for 24h and cytokine concentrations were measured. Results: Subgingival plaque from periodontitis patients had more H2S producing bacteria and produced more H2S, than healthy controls. PBMCs exposed to H2S secreted significantly more IL-1ß and IL-18 (p<0.0001) than untreated control PBMCs from both groups. PBMCs from the periodontitis patients secreted higher levels of the cytokines, both spontaneously (IL-1ß p=0.0001; IL-18 p=0.09) and after exposure to H2S (IL-1ß p=0.03; IL-18 p=0.04), which is a new finding not previously reported. Conclusions: H2S, from the subgingival microbiota, can contribute to a host inflammatory response through secretion of the pro-inflammatory cytokines IL-1β and IL-18. Since this response differs between individuals, it may also reflect the susceptibility of the host to develop periodontitis.
Collapse
Affiliation(s)
- Amina Basic
- Oral Microbiology and Immunology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Serino
- Department of Periodontology, Södra Älvsborgs Hospital, Borås, Sweden
| | - Åsa Leonhardt
- Oral Microbiology and Immunology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Dahlén
- Oral Microbiology and Immunology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Sakpirom J, Kantachote D, Siripattanakul-Ratpukdi S, McEvoy J, Khan E. Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110. CHEMOSPHERE 2019; 223:455-464. [PMID: 30784752 DOI: 10.1016/j.chemosphere.2019.02.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the abilities of a purple non-sulfur bacterium, Rhodopseudomonas palustris TN110 to bioremediate cadmium through the biosynthesis of CdS nanoparticles and to fix nitrogen simultaneously. Under microaerobic-light conditions, R. palustris TN110 synthesized CdS nanoparticles. The produced CdS nanoparticles had a spherical shape and an average size of 4.85 nm. The Fourier transform infrared spectrum of the nanoparticles reveals the carbonyl groups, bending vibrations of the amide I and II bands of proteins, and CN stretching vibrations of aromatic and aliphatic amines. These bands and groups suggest protein capping/binding on the surface of the nanoparticles. R. palustris TN110 converted 25.61% of 0.2 mM CdCl2 to CdS nanoparticles under optimal conditions (pH 7.5, 30 °C and 3000 lux). The half maximal inhibitory concentration (IC50) value of the produced CdS nanoparticles was 1.76 mM. The produced CdS nanoparticles at IC50 up-regulated two genes associated with nitrogen fixation: Mo-Fe nitrogenase gene (nifH) and V-Fe nitrogenase gene (vnfG) at 2.83 and 2.27 fold changes, respectively. On the contrary, the produced CdS nanoparticles slightly down-regulated Fe-Fe nitrogenase gene (anfG). The amounts of ammonia released by the strain support the gene expression results. R. palustris TN110 has great potential to serve concurrently as a cadmium bioremediation agent and a nitrogen fixer. The strain could be beneficial to paddy fields that are contaminated with Cd through run off from mining and chemical fertilizer applications.
Collapse
Affiliation(s)
- Jakkapan Sakpirom
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand.
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| | - Sumana Siripattanakul-Ratpukdi
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand; Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA.
| |
Collapse
|
10
|
Xu S, Luo X, Xing Y, Liu S, Huang Q, Chen W. Complete genome sequence of Raoultella sp. strain X13, a promising cell factory for the synthesis of CdS quantum dots. 3 Biotech 2019; 9:120. [PMID: 30854280 DOI: 10.1007/s13205-019-1649-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022] Open
Abstract
A novel cadmium-resistant bacterium, Raoultella sp. strain X13, recently isolated from heavy metal-contaminated soil, and this strain can synthesize CdS quantum dots using cadmium nitrate [Cd(NO4)2] and l-cysteine. Biomineralization of CdS by strain X13 can efficiently remove cadmium from aqueous solution. To illuminate the molecular mechanisms for the biosynthesis of CdS nanoparticle, the complete genome of Raoultella sp. strain X13 was sequenced. The whole genome sequence comprises a circular chromosome and a circular plasmid. Cysteine desulfhydrase smCSE has been previously found to be associated with the synthesis of CdS quantum dots. Bioinformatics analysis indicated that the genome of Raoultella sp. strain X13 encodes five putative cysteine desulfhydrases and all of them are located in the chromosome. The genome information may help us to determine the molecular mechanisms of the synthesis of CdS quantum dots and potentially enable us to engineer this microorganism for applications in biotechnology.
Collapse
|
11
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Basic A, Blomqvist M, Dahlén G, Svensäter G. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine. BMC Microbiol 2017; 17:61. [PMID: 28288582 PMCID: PMC5348791 DOI: 10.1186/s12866-017-0967-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H2S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H2S-producing enzymes; Sulfide from H2S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). RESULTS Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H2S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H2S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. CONCLUSIONS Numerous enzymes, identified as cysteine synthase, were involved in the production of H2S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H2S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.
Collapse
Affiliation(s)
- Amina Basic
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Madeleine Blomqvist
- Department of Oral Biology, Institute of Odontology, Malmö University, Malmö, Sweden
| | - Gunnar Dahlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Institute of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
13
|
Großhennig S, Ischebeck T, Gibhardt J, Busse J, Feussner I, Stülke J. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol Microbiol 2016; 100:42-54. [PMID: 26711628 DOI: 10.1111/mmi.13300] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
Abstract
Mycoplasma pneumoniae is a human pathogen causing atypical pneumonia with a minimalized and highly streamlined genome. So far, hydrogen peroxide production, cytadherence, and the ADP-ribosylating CARDS toxin have been identified as pathogenicity determinants. We have studied haemolysis caused by M. pneumoniae, and discovered that hydrogen peroxide is responsible for the oxidation of heme, but not for lysis of erythrocytes. This feature could be attributed to hydrogen sulfide, a compound that has previously not been identified as virulence factor in lung pathogens. Indeed, we observed hydrogen sulfide production by M. pneumoniae. The search for a hydrogen sulfide-producing enzyme identified HapE, a protein with similarity to cysteine desulfurases. In contrast to typical cysteine desulfurases, HapE is a bifunctional enzyme: it has both the cysteine desulfurase activity to produce alanine and the cysteine desulfhydrase activity to produce pyruvate and hydrogen sulfide. Experiments with purified HapE showed that the enzymatic activity of the protein is responsible for haemolysis, demonstrating that HapE is a novel potential virulence factor of M. pneumoniae.
Collapse
Affiliation(s)
- Stephanie Großhennig
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute, Justus-von-Liebig Weg 11, D-37077, Göttingen, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Julia Busse
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute, Justus-von-Liebig Weg 11, D-37077, Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077, Göttingen, Germany
| |
Collapse
|
14
|
Greabu M, Totan A, Miricescu D, Radulescu R, Virlan J, Calenic B. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review. Antioxidants (Basel) 2016; 5:antiox5010003. [PMID: 26805896 PMCID: PMC4808752 DOI: 10.3390/antiox5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases.
Collapse
Affiliation(s)
- Maria Greabu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Alexandra Totan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Daniela Miricescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Radu Radulescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Justina Virlan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Bogdan Calenic
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| |
Collapse
|
15
|
Han L, Schwabacher AW, Moran GR, Silvaggi NR. Streptomyces wadayamensis MppP Is a Pyridoxal 5′-Phosphate-Dependent l-Arginine α-Deaminase, γ-Hydroxylase in the Enduracididine Biosynthetic Pathway. Biochemistry 2015; 54:7029-40. [DOI: 10.1021/acs.biochem.5b01016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lanlan Han
- Department of Chemistry and
Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Alan W. Schwabacher
- Department of Chemistry and
Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Graham R. Moran
- Department of Chemistry and
Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Nicholas R. Silvaggi
- Department of Chemistry and
Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
16
|
Spyrakis F, Cellini B, Bruno S, Benedetti P, Carosati E, Cruciani G, Micheli F, Felici A, Cozzini P, Kellogg GE, Voltattorni CB, Mozzarelli A. Targeting cystalysin, a virulence factor of treponema denticola-supported periodontitis. ChemMedChem 2014; 9:1501-11. [PMID: 24616267 DOI: 10.1002/cmdc.201300527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Cystalysin from Treponema denticola is a pyridoxal 5'-phosphate dependent lyase that catalyzes the formation of pyruvate, ammonia, and sulfide from cysteine. It is a virulence factor in adult periodontitis because its reaction contributes to hemolysis, which sustains the pathogen. Therefore, it was proposed as a potential antimicrobial target. To identify specific inhibitors by structure-based in silico methods, we first validated the crystal structure of cystalysin as a reliable starting point for the design of ligands. By using single-crystal absorption microspectrophotometry, we found that the enzyme in the crystalline state, with respect to that in solution, exhibits: 1) the same absorption spectra for the catalytic intermediates, 2) a close pKa value for the residue controlling the keto enamine ionization, and 3) similar reactivity with glycine, L-serine, L-methionine, and the nonspecific irreversible inhibitor aminoethoxyvinylglycine. Next, we screened in silico a library of 9357 compounds with the Fingerprints for Ligands and Proteins (FLAP) software, by using the three-dimensional structure of cystalysin as a template. From the library, 17 compounds were selected and experimentally evaluated by enzyme assays and spectroscopic methods. Two compounds were found to competitively inhibit recombinant T. denticola cystalysin, with inhibition constant (Ki ) values of 25 and 37 μM. One of them exhibited a minimum inhibitory concentration (MIC) value of 64 μg mL(-1) on Moraxella catarrhalis ATCC 23246, which proves its ability to cross bacterial membranes.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Department of Food Sciences, University of Parma, Parma (Italy); Current address: Department of Life Sciences, University of Modena and Reggio Emilia, Modena (Italy)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Edwards CD, Beatty JC, Loiselle JBR, Vlassov KA, Lefebvre DD. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms. BMC Microbiol 2013; 13:161. [PMID: 23855952 PMCID: PMC3750252 DOI: 10.1186/1471-2180-13-161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/05/2013] [Indexed: 11/22/2022] Open
Abstract
Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus indicating that algae and cyanobacteria can produce CdS in a manner similar to that of HgS. Significant increases in sulfate assimilation as measured by SAT-OASTL activity were not detected. However, the enhanced activity of cysteine desulfhydrase indicates that it is instrumental in the provision of H2S for aerobic CdS biosynthesis.
Collapse
Affiliation(s)
- Chad D Edwards
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
18
|
Aerobic transformation of zinc into metal sulfide by photosynthetic microorganisms. Appl Microbiol Biotechnol 2013; 97:3613-23. [DOI: 10.1007/s00253-012-4636-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/02/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
19
|
Zainal-Abidin Z, Veith PD, Dashper SG, Zhu Y, Catmull DV, Chen YY, Heryanto DC, Chen D, Pyke JS, Tan K, Mitchell HL, Reynolds EC. Differential proteomic analysis of a polymicrobial biofilm. J Proteome Res 2012; 11:4449-64. [PMID: 22808953 DOI: 10.1021/pr300201c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia exist in a polymicrobial biofilm associated with chronic periodontitis. The aim of this study was to culture these three species as a polymicrobial biofilm and to determine proteins important for bacterial interactions. In a flow cell all three species attached and grew as a biofilm; however, after 90 h of culture P. gingivalis and T. denticola were closely associated and dominated the polymicrobial biofilm. For comparison, planktonic cultures of P. gingivalis and T. denticola were grown separately in continuous culture. Whole cell lysates were subjected to SDS-PAGE, followed by in-gel proteolytic H₂¹⁶O/H₂¹⁸O labeling. From two replicates, 135 and 174 P. gingivalis proteins and 134 and 194 T. denticola proteins were quantified by LC-MALDI TOF/TOF MS. The results suggest a change of strategy in iron acquisition by P. gingivalis due to large increases in the abundance of HusA and HusB in the polymicrobial biofilm while HmuY and other iron/haem transport systems decreased. Significant changes in the abundance of peptidases and enzymes involved in glutamate and glycine catabolism suggest syntrophy. These data indicate an intimate association between P. gingivalis and T. denticola in a biofilm that may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Zamirah Zainal-Abidin
- Oral Health CRC, Melbourne Dental School and the Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Tsai SL, Singh S, DaSilva NA, Chen W. Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation. Biotechnol Bioeng 2011; 109:605-8. [DOI: 10.1002/bit.23325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 11/11/2022]
|
22
|
Visser M, Ellen R. New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect 2011; 17:502-12. [DOI: 10.1111/j.1469-0691.2011.03460.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
|
24
|
Yoshida Y, Ito S, Kamo M, Kezuka Y, Tamura H, Kunimatsu K, Kato H. Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. MICROBIOLOGY-SGM 2010; 156:2260-2269. [PMID: 20413556 DOI: 10.1099/mic.0.039180-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fusobacterium nucleatum produces a large amount of the toxic metabolite hydrogen sulfide in the oral cavity. Here, we report the molecular basis of F. nucleatum H(2)S production, which is associated with two different enzymes: the previously reported Cdl (Fn1220) and the newly identified Lcd (Fn0625). SDS-PAGE analysis with activity staining revealed that crude enzyme extracts from F. nucleatum ATCC 25586 contained three major H(2)S-producing proteins. Two of the proteins with low molecular masses migrated similarly to purified Fn0625 and Fn1220. Their kinetic values suggested that Fn0625 had a lower enzymic capacity to produce H(2)S from L-cysteine (approximately 30%) than Fn1220. The Fn0625 protein degraded a variety of substrates containing betaC-S linkages to produce ammonia, pyruvate and sulfur-containing products. Unlike Fn0625, Fn1220 produced neither pyruvate nor ammonia from L-cysteine. Reversed-phase HPLC separation and mass spectrometry showed that incubation of L-cysteine with Fn1220 produced H(2)S and an uncommon amino acid, lanthionine, which is a natural constituent of the peptidoglycans of F. nucleatum ATCC 25586. In contrast, most of the sulfur-containing substrates tested, except L-cysteine, were not used by Fn1220. Real-time PCR analysis demonstrated that the fn1220 gene showed several-fold higher expression than fn0625 and housekeeping genes in exponential-phase cultures of F. nucleatum. Thus, we conclude that Fn0625 and Fn1220 produce H(2)S in distinct manners: Fn0625 carries out beta-elimination of L-cysteine to produce H(2)S, pyruvate and ammonia, whereas Fn1220 catalyses the beta-replacement of L-cysteine to produce H(2)S and lanthionine, the latter of which may be used for peptidoglycan formation in F. nucleatum.
Collapse
Affiliation(s)
- Yasuo Yoshida
- Department of Pathogenesis and Control of Oral Disease, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Shuntaro Ito
- Department of Conservative Dentistry and Oral Rehabilitation, Iwate Medical University School of Dentistry, Morioka, Japan.,Department of Pathogenesis and Control of Oral Disease, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Masaharu Kamo
- Department of Oral Biology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Yuichiro Kezuka
- Department of Structural Biology, Iwate Medical University School of Pharmacy, Yahaba, Japan
| | - Haruki Tamura
- Department of Pathogenesis and Control of Oral Disease, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Kazushi Kunimatsu
- Department of Conservative Dentistry and Oral Rehabilitation, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Hirohisa Kato
- Department of Pathogenesis and Control of Oral Disease, Iwate Medical University School of Dentistry, Morioka, Japan
| |
Collapse
|
25
|
Ito S, Shimura S, Tanaka T, Yaegaki K. Myrsinoic acid B inhibits the production of hydrogen sulfide by periodontal pathogens
in vitro. J Breath Res 2010; 4:026005. [DOI: 10.1088/1752-7155/4/2/026005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Gaibani P, Caroli F, Nucci C, Sambri V. Major surface protein complex of Treponema denticola induces the production of tumor necrosis factor alpha, interleukin-1 beta, interleukin-6 and matrix metalloproteinase 9 by primary human peripheral blood monocytes. J Periodontal Res 2010; 45:361-6. [PMID: 20337896 DOI: 10.1111/j.1600-0765.2009.01246.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Treponema denticola is a micro-organism that is involved in the pathogenesis of periodontitis. Major surface protein complex (MSPc), which is expressed on the envelope of this treponeme, plays a key role in the interaction between T. denticola and gingival cells. The peptidoglycan extracted from T. denticola induces the production of a large variety of inflammatory mediators by macrophage-like cells, suggesting that individual components of T. denticola cells induce the inflammatory response during periodontal disease. This study was designed to demonstrate that MSPc of T. denticola stimulates release of proinflammatory mediators in primary human monocytes. MATERIAL AND METHODS Primary human monocytes were separated from the blood of healthy donors and incubated for up to 24 h with varying concentrations of MSPc. The production of tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6) and matrix metalloproteinase 9 (MMP-9) was measured at different time points with commercially available enzyme-linked immunosorbent assays. RESULTS T. denticola MSPc induced the synthesis of TNF-alpha, IL-1 beta, IL-6 and MMP-9 in a dose- and time-dependent manner. Similar patterns of TNF-alpha, IL-1 beta and IL-6 release were observed when cells were stimulated with 100 and 1000 ng/mL of MSPc. The production of MMP-9 was significant only when cells were treated with 1000 ng/mL of MSPc. CONCLUSION These results indicate that T. denticola MSPc, at concentrations ranging from 100 ng/mL to 1.0 microg/mL, activates a proinflammatory response in primary human monocytes.
Collapse
Affiliation(s)
- P Gaibani
- Department of Haematology and Oncology L. and A. Seragnoli, Section of Microbiology, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
27
|
Taylor B, Greenman J. Modelling the effects of pH on tongue biofilm using a sorbarod biofilm perfusion system. J Breath Res 2010; 4:017107. [PMID: 21386212 DOI: 10.1088/1752-7155/4/1/017107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The pH of the tongue biofilm is likely to influence microbial composition and ecology with consequent effects on the metabolic activities and generation of volatile sulfur compounds (VSC) and other malodour gasses. The aim of this study was to identify the effects of pH on the development of biofilms and hydrogen sulfide production using an in vitro tongue-derived biofilm model. Community level physiological profiling (CLPP) was employed to examine the influence of pH on the collective metabolic fingerprint of each tongue-derived biofilm. A sorbarod perfusion system (n = 6 sorbarods) was inoculated from a single suspension of tongue scrape sample and mixed community tongue-derived biofilms were grown at pH 5.5, 6.0, 6.5, 7.0 7.5 and 8.0. Biofilms were perfused with medium for 120 h and gas phase samples (n = 4 per biofilm) removed and analysed with a portable sulfide gas chromatograph before being sacrificed into 10 ml sterile PBS-diluent and cells suspended by vortex mixing. Further ten-fold dilutions were made (down to 10(-7)) and dilutions plated out onto selective (fastidious anaerobic agar (FAA) + 0.0025% vancomycin) and non-selective (FAA) media for enumeration of strict and facultative anaerobes respectively. Biofilm suspensions were also mixed with Biolog inoculation fluid and distributed into 96 wells of Biolog AN plates for CLPP. Tongue biofilms developed at pH 7.5 produced significant (p < 0.05) concentrations of H(2)S (≈52.2 ± SEM 5.6 µg H(2)S per ml biofilm gas phase) followed by tongue biofilm developed at pH 7.0 and 8.0 (≈43.2 ± SEM 3.5 and ≈ 39.6 ± SEM 7.3 µg H(2)S per ml biofilm gas phase respectively). Tongue biofilm developed at pH 6.0 and 6.5 produced approximately 21.5 ± SEM 2.3 and 37.1 ± SEM 1.7 µg H(2)S per ml biofilm gas phase respectively and tongue biofilm developed at pH 5.5 produced approximately 0.19 ± SEM 0.09 µg H(2)S per ml biofilm gas phase. Highest numbers of strict and facultative anaerobes were recovered from biofilms at pH 6.5 (1.10 × 10(12) and 2.07 × 10(12) cfu ml(-1) respectively), with a reduced number recovered from pH values above and below this range. CLPP and similarity index revealed biofilms at pH 6.5 and 7.0 most similar (S(j) = 78%) and most diverse in terms of metabolic activity. The biofilm at pH 5.5 was the least related to all others and least diverse. The sorbarod perfusion system, in conjunction with H(2)S analysis and CLPP, enables some of the physiological and ecological effects of pH at a local level within the biofilm on H(2)S production to be identified.
Collapse
|
28
|
Zhang JH, Dong Z, Chu L. Hydrogen sulfide induces apoptosis in human periodontium cells. J Periodontal Res 2010; 45:71-8. [DOI: 10.1111/j.1600-0765.2009.01202.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Yano T, Fukamachi H, Yamamoto M, Igarashi T. Characterization of L-cysteine desulfhydrase from Prevotella intermedia. ACTA ACUST UNITED AC 2010; 24:485-92. [PMID: 19832801 DOI: 10.1111/j.1399-302x.2009.00546.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Hydrogen sulfide is responsible for lysis of red blood cells and is a major compound for oral malodor. To clarify the production mechanism of hydrogen sulfide in Prevotella intermedia, we found an L-cysteine desulfhydrase gene (lcs) homologue on the genome database of P. intermedia ATCC25611 and characterized its gene product. METHODS The lcs gene homologue cloned into pGEX6p-1 vector was expressed in Escherichia coli and purified. Lcs activity was assayed by detection of the reaction products (hydrogen sulfide and pyruvate) or its derivatives from L-cysteine. Site-directed mutagenesis was used to convert an amino acid of the Lcs molecule. RESULTS The purified lcs gene product catalysed the degradation of L-cysteine to pyruvate, ammonia, and hydrogen sulfide, indicating that the protein is L-cysteine desulfhydrase. The enzyme required pyridoxal 5'-phosphate as a cofactor, and it was highly active at pH 7.0 and completely inhibited by ZnCl(2). The K(m) and V(max) of the enzyme were 0.7 mm and 4.2 micromol/min/mg, respectively. Replacement of Tyr-59, Tyr-118, Asp-198, and Lys-233 with any of the amino acids resulted in the complete disappearance of Lcs activity, implying that these amino acids are essential for enzyme activity. In addition, hydrogen sulfide produced by this enzyme lysed sheep red blood cells and modified hemoglobin. CONCLUSION These results show the enzymatic properties of L-cysteine desulfhydrase from P. intermedia ATCC25611 and also suggest that the Lcs enzyme, which produces hydrogen sulfide from L-cysteine, is closely associated with the pathogenesis of P. intermedia.
Collapse
Affiliation(s)
- T Yano
- Department of Periodontology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
30
|
Chu L, Xu X, Su J, Song L, Lai Y, Dong Z, Cappelli D. Role of Aggregatibacter actinomycetemcomitans in glutathione catabolism. ACTA ACUST UNITED AC 2009; 24:236-42. [PMID: 19416454 DOI: 10.1111/j.1399-302x.2008.00501.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Our previous studies demonstrated that three enzymes, gamma-glutamyltransferase (GGT), cysteinylglycinase (CGase) and cystalysin, are required for the catabolism of glutathione to produce hydrogen sulfide (H(2)S) in Treponema denticola. In this study, we examined glutathione catabolism in Aggregatibacter actinomycetemcomitans. METHODS The GGT and CGase of A. actinomycetemcomitans were determined by biological methods and GGT was characterized using a molecular biological approach. RESULTS A. actinomycetemcomitans showed GGT and CGase activity, but could not produce H(2)S from glutathione. The addition of recombinant T. denticola cystalysin, an l-cysteine desulfhydrase, to whole cells of A. actinomycetemcomitans resulted in the production of H(2)S from glutathione. Subsequently, we cloned A. actinomycetemcomitans GGT gene (ggt) and overexpressed the 63 kDa GGT protein. The recombinant A. actinomycetemcomitans GGT was purified and identified. The K(cat)/K(m) of the recombinant GGT from N-gamma-l-glutamyl-4-nitroaniline as substrate was 31/microm/min. The activity of GGT was optimum at pH 6.9-7.1 and enhanced by thiol-containing compounds. CONCLUSION The results demonstrated that A. actinomycetemcomitans had GGT and CGase activities and that the GGT was characterized. The possible role of A. actinomycetemcomitans in glutathione metabolism and H(2)S production from oral bacteria was discussed.
Collapse
Affiliation(s)
- L Chu
- Department of Orthodontics, University of Texas Health Sciences Center, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Bai H, Zhang Z, Guo Y, Jia W. Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using Immobilized Rhodobacter sphaeroides. NANOSCALE RESEARCH LETTERS 2009; 4:717-723. [PMID: 20596372 PMCID: PMC2894101 DOI: 10.1007/s11671-009-9303-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 03/24/2009] [Indexed: 05/28/2023]
Abstract
Size-controlled cadmium sulfide nanoparticles were successfully synthesized by immobilized Rhodobacter sphaeroides in the study. The dynamic process that Cd(2+) was transported from solution into cell by living R. sphaeroides was characterized by transmission electron microscopy (TEM). Culture time, as an important physiological parameter for R. sphaeroides growth, could significantly control the size of cadmium sulfide nanoparticles. TEM demonstrated that the average sizes of spherical cadmium sulfide nanoparticles were 2.3 +/- 0.15, 6.8 +/- 0.22, and 36.8 +/- 0.25 nm at culture times of 36, 42, and 48 h, respectively. Also, the UV-vis and photoluminescence spectral analysis of cadmium sulfide nanoparticles were performed.
Collapse
Affiliation(s)
- Hongjuan Bai
- Chemical Industry and Ecology Institute, North University of China, Taiyuan, 030051, China
| | - Zhaoming Zhang
- College of Life Science and Technology, Shanxi University, Taiyuan, 030006, China
| | - Yu Guo
- Chemical Industry and Ecology Institute, North University of China, Taiyuan, 030051, China
| | - Wanli Jia
- Chemical Industry and Ecology Institute, North University of China, Taiyuan, 030051, China
| |
Collapse
|
32
|
Bai H, Zhang Z, Guo Y, Yang G. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 2009; 70:142-6. [DOI: 10.1016/j.colsurfb.2008.12.025] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 11/29/2022]
|
33
|
Montioli R, Cellini B, Bertoldi M, Paiardini A, Voltattorni CB. An engineered folded PLP-bound monomer ofTreponema denticolacystalysin reveals the effect of the dimeric structure on the catalytic properties of the enzyme. Proteins 2009; 74:304-17. [DOI: 10.1002/prot.22160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Bai HJ, Zhang ZM, Yang GE, Li BZ. Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. BIORESOURCE TECHNOLOGY 2008; 99:7716-7722. [PMID: 18358716 DOI: 10.1016/j.biortech.2008.01.071] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/27/2008] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
The removal kinetic characteristic and mechanism of cadmium by growing Rhodobacter sphaeroides were investigated. The removal data were fitted to the second-order equation, with a correlation coefficient, R2=0.9790-0.9916. Furthermore, it was found that the removal mechanism of cadmium was predominantly governed by bioprecipitation as cadmium sulfide with biosorption contributing to a minor extent. Also, the results revealed that the activities of cysteine desulfhydrase in strains grown in the presence of 10 and 20 mg/l of cadmium were higher than in the control, while the activities in the presence of 30 and 40 mg/l of cadmium were lower than in the control. Content analysis of subcellular fractionation showed that cadmium was mostly removed and transformed by precipitation on the cell wall.
Collapse
Affiliation(s)
- Hong-Juan Bai
- School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, PR China.
| | | | | | | |
Collapse
|
35
|
Chu L, Lai Y, Xu X, Eddy S, Yang S, Song L, Kolodrubetz D. A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem 2008; 283:19351-8. [PMID: 18482986 PMCID: PMC2443665 DOI: 10.1074/jbc.m801034200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/28/2008] [Indexed: 11/06/2022] Open
Abstract
The metabolism of glutathione by the periodontal pathogen Treponema denticola produces hydrogen sulfide, which may play a role in the host tissue destruction seen in periodontitis. H2S production in this organism has been proposed to occur via a three enzyme pathway, gamma-glutamyltransferase, cysteinylglycinase (CGase), and cystalysin. In this study, we describe the purification and characterization of T. denticola CGase. Standard approaches were used to purify a 52-kDa CGase activity from T. denticola, and high pressure liquid chromatography electrospray ionization tandem mass spectrometry analysis of this molecule showed that it matches the amino acid sequence of a predicted 52-kDa protein in the T. denticola genome data base. A recombinant version of this protein was overexpressed in and purified from Escherichia coli and shown to catalyze the hydrolysis of cysteinylglycine (Cys-Gly) with the same kinetics as the native protein. Surprisingly, because sequence homology indicates that this protein is a member of a family of metalloproteases called M17 leucine aminopeptidases, the preferred substrate for the T. denticola protein is Cys-Gly (k cat/Km of 8.2 microm(-1) min(-1)) not l-Leu-p-NA (k cat/Km of 1.1 microm(-1) min(-1)). The activity of CGase for Cys-Gly is optimum at pH 7.3 and is enhanced by Mn2+, Co2+, or Mg2+ but not by Zn2+ or Ca2+. Importantly, in combination with the two other previously purified T. denticola enzymes, gamma-glutamyltransferase and cystalysin, CGase mediates the in vitro degradation of glutathione into the expected end products, including H2S. These results prove that T. denticola contains the entire three-step pathway to produce H2S from glutathione, which may be important for pathogenesis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Orthodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lai Y, Chu L. Novel mechanism for conditional aerobic growth of the anaerobic bacterium Treponema denticola. Appl Environ Microbiol 2008; 74:73-9. [PMID: 17981934 PMCID: PMC2223203 DOI: 10.1128/aem.01972-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/25/2007] [Indexed: 01/08/2023] Open
Abstract
Treponema denticola, a periodontal pathogen, has recently been shown to exhibit properties of a facultative anaerobic spirochete, in contrast to its previous recognition as an obligate anaerobic bacterium. In this study, the capacity and possible mechanism of T. denticola survival and growth under aerobic conditions were investigated. Factors detrimental to the growth of T. denticola ATCC 33405, such as oxygen concentration and hydrogen sulfide (H(2)S) levels as well as the enzyme activities of gamma-glutamyltransferase, cysteinylglycinase, and cystalysin associated with the cells were monitored. The results demonstrated that T. denticola grew only at deeper levels of broth (>or=3 ml in a 10-ml tube), high inoculation ratios (>or=20% of culture in medium), and short cultivation times (
Collapse
Affiliation(s)
- Yanlai Lai
- Department of Orthodontics, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
37
|
Abstract
This review describes volatiles released into the air by bacteria growing on defined media. Their occurrence, function, and biosynthesis are discussed, and a total of 308 references are cited. An effort has been made to organize the compounds according to their biosynthetic origin.
Collapse
Affiliation(s)
- Stefan Schulz
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
| | | |
Collapse
|
38
|
Cellini B, Montioli R, Bossi A, Bertoldi M, Laurents DV, Voltattorni CB. Holo- and apo-cystalysin from Treponema denticola: Two different conformations. Arch Biochem Biophys 2006; 455:31-9. [PMID: 17014820 DOI: 10.1016/j.abb.2006.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/21/2006] [Accepted: 08/21/2006] [Indexed: 11/21/2022]
Abstract
Cystalysin, the key virulence factor in the bacterium Treponema denticola responsible for periodontis, is a pyridoxal 5'-phosphate (PLP) enzyme which catalyzes, in addition to alpha,beta-elimination of L-cysteine, racemization and transamination of both enantiomers of alanine. In this paper several indicators have been used as probes of the different conformational status of T. denticola cystalysin in the holo and apo form. Compared to holoenzyme, the apoenzyme displays an altered reactivity of cysteine residues, a significantly different pI, and a differential susceptibility to proteinase K. The site of cleavage that is accessible in apocystalysin and masked in holocystalysin has been identified by mass spectrometry as the peptide bond between Phe 360 and Gly 361. This cleavage results in the loss of the C-terminal fragment corresponding to a molecular mass of 4289.21+/-0.1Da. The major fragment of cleaved enzyme retains its dimeric structure, binds the coenzyme with an affinity approximately 5000-fold lower than that of uncleaved holoenzyme, and in the reconstituted form is able to form the external aldimine with substrates. Although the break causes the loss of lyase, racemase and transaminase activities of D-alanine, it does not abolish the transaminase activity of L-alanine. Possible mechanistic and physiological implications are proposed.
Collapse
Affiliation(s)
- Barbara Cellini
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Strada Le Grazie 8, Universita di Verona, 37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Richard P Ellen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Fukamachi H, Nakano Y, Okano S, Shibata Y, Abiko Y, Yamashita Y. High production of methyl mercaptan by l-methionine-α-deamino-γ-mercaptomethane lyase from Treponema denticola. Biochem Biophys Res Commun 2005; 331:127-31. [PMID: 15845368 DOI: 10.1016/j.bbrc.2005.03.139] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Indexed: 11/16/2022]
Abstract
Methyl mercaptan is derived from l-methionine by the action of l-methionine-alpha-deamino-gamma-mercaptomethane lyase (METase) and is a major component of oral malodor. This compound is highly toxic and is thought to play an important role in periodontal disease. We found that Treponema denticola, a member of the subgingival biofilm at periodontal disease sites, produced a large amount of methyl mercaptan even at low concentration of l-methionine. METase activity in a cell-free extract from T. denticola was detected by two-dimensional electrophoresis under non-denaturing conditions, and the protein spot that exhibited high METase activity was identified using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. The identified gene produced a METase with a K(m) value for l-methionine (0.55mM) that is much lower than those of METases previously identified in the other organisms. This result suggests that T. denticola is an important producer of methyl mercaptan in the subgingival biofilm.
Collapse
Affiliation(s)
- Haruka Fukamachi
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Auger S, Gomez MP, Danchin A, Martin-Verstraete I. The PatB protein of Bacillus subtilis is a C-S-lyase. Biochimie 2005; 87:231-8. [PMID: 15760717 DOI: 10.1016/j.biochi.2004.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
The PatB protein of Bacillus subtilis had both cystathionine beta-lyase and cysteine desulfhydrase activities in vitro. The apparent K(m) value of the PatB protein for cystathionine was threefold higher than that of the MetC protein, the previously characterized cystathionine beta-lyase of B. subtilis. In the presence of cystathionine as sole sulfur source, the patB gene present on a multicopy plasmid restored the growth of a metC mutant. In addition, the patB metC double mutant was unable to grow in the presence of sulfate or cystine while the patB or metC single mutants grew similarly to the wild-type strains in the presence of the same sulfur sources. In a metC mutant, the PatB protein can replace the MetC enzyme in the methionine biosynthetic pathway.
Collapse
Affiliation(s)
- S Auger
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 28, rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
42
|
Cellini B, Bertoldi M, Paiardini A, D'Aguanno S, Voltattorni CB. Site-directed mutagenesis provides insight into racemization and transamination of alanine catalyzed by Treponema denticola cystalysin. J Biol Chem 2004; 279:36898-905. [PMID: 15210695 DOI: 10.1074/jbc.m404449200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to alpha, beta-elimination of L-cysteine, Treponema denticola cystalysin catalyzes the racemization of both enantiomers of alanine accompanied by an overall transamination. Lys-238 and Tyr-123 or a water molecule located on the si and re face of the cofactor, respectively, have been proposed to act as the acid/base catalysts in the proton abstraction/donation at Calpha/C4' of the external aldimine. In this investigation, two site-directed mutants, K238A and Y123F, have been characterized. The Lys --> Ala mutation results in the complete loss of either lyase activity or racemase activity in both directions or transaminase activity toward L-alanine. However, the K238A mutant is able to catalyze the overall transamination of D-alanine, and only D-alanine is the product of the reverse transamination. For Y123F the k(cat)/K(m) is reduced 3.5-fold for alpha, beta-elimination, whereas it is reduced 300-400-fold for racemization. Y123F has approximately 18% of wild type transaminase activity with L-alanine and an extremely low transaminase activity with D-alanine. Moreover, the catalytic properties of the Y124F and Y123F/Y124F mutants rule out the possibility that the residual racemase and transaminase activities displayed by Y123F are due to Tyr-124. All these data, together with computational results, indicate a two-base racemization mechanism for cystalysin in which Lys-238 has been unequivocally identified as the catalyst acting on the si face of the cofactor. Moreover, this study highlights the importance of the interaction of Tyr-123 with water molecules for efficient proton abstraction/donation function on the re face.
Collapse
Affiliation(s)
- Barbara Cellini
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
43
|
Cellini B, Bertoldi M, Borri Voltattorni C. Treponema denticola cystalysin catalyzes beta-desulfination of L-cysteine sulfinic acid and beta-decarboxylation of L-aspartate and oxalacetate. FEBS Lett 2003; 554:306-10. [PMID: 14623084 DOI: 10.1016/s0014-5793(03)01178-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pyridoxal 5'-phosphate-dependent cystalysin from Treponema denticola catalyzes the beta-displacement of the beta-substituent from both L-aspartate and L-cysteine sulfinic acid. The steady-state kinetic parameters for beta-desulfination of L-cysteine sulfinic acid, k(cat) and K(m), are 89+/-7 s(-1) and 49+/-9 mM, respectively, whereas those for beta-decarboxylation of L-aspartate are 0.8+/-0.1 s(-1) and 280+/-70 mM. Moreover, cystalysin in the pyridoxamine 5'-phosphate form has also been found to catalyze beta-decarboxylation of oxalacetate as shown by consumption of oxalacetate and a concomitant production of pyruvate. The k(cat) and K(m) of this reaction are 0.15+/-0.01 s(-1) and 13+/-2 mM, respectively. Possible mechanistic and physiological implications are discussed.
Collapse
Affiliation(s)
- Barbara Cellini
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | | | | |
Collapse
|
44
|
Bertoldi M, Cellini B, Paiardini A, Di Salvo M, Borri Voltattorni C. Treponema denticola cystalysin exhibits significant alanine racemase activity accompanied by transamination: mechanistic implications. Biochem J 2003; 371:473-83. [PMID: 12519070 PMCID: PMC1223284 DOI: 10.1042/bj20020875] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 12/20/2002] [Accepted: 01/08/2003] [Indexed: 11/17/2022]
Abstract
To obtain information on the reaction specificity of cystalysin from the spirochaete bacterium Treponema denticola, the interaction with L- and D-alanine has been investigated. Binding of both alanine enantiomers leads to the appearance of an external aldimine absorbing at 429 nm and of a band absorbing at 498 nm, indicative of a quinonoid species. Racemization and transamination reactions were observed to occur with both alanine isomers as substrates. The steady-state kinetic parameters for racemization, k (cat) and K (m), for L-alanine are 1.05+/-0.03 s(-1) and 10+/-1 mM respectively, whereas those for D-alanine are 1.4+/-0.1 s(-1) and 10+/-1 mM. During the reaction of cystalysin with L- or D-alanine, a time-dependent loss of beta-elimination activity occurs concomitantly with the conversion of the pyridoxal 5'-phosphate (PLP) coenzyme into pyridoxamine 5'-phosphate (PMP). The catalytic efficiency of the half-transamination of L-alanine is found to be 5.3x10(-5) mM(-1) x s(-1), 5-fold higher when compared with that of D-alanine. The partition ratio between racemization and half-transamination reactions is 2.3x10(3) for L-alanine and 1.4x10(4) for D-alanine. The pH dependence of the kinetic parameters for both the reactions shows that the enzyme possesses a single ionizing residue with p K values of 6.5-6.6, which must be unprotonated for catalysis. Addition of pyruvate converts the PMP form of the enzyme back into the PLP form and causes the concomitant recovery of beta-elimination activity. In contrast with other PLP enzymes studied so far, but similar to alanine racemases, the apoform of the enzyme abstracted tritium from C4' of both (4' S)- and (4' R)-[4'-(3)H]PMP in the presence of pyruvate. Together with molecular modelling of the putative binding sites of L- and D-alanine at the active site of the enzyme, the implications of these studies for the mechanisms of the side reactions catalysed by cystalysin are discussed.
Collapse
Affiliation(s)
- Mariarita Bertoldi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
45
|
Chu L, Xu X, Dong Z, Cappelli D, Ebersole JL. Role for recombinant gamma-glutamyltransferase from Treponema denticola in glutathione metabolism. Infect Immun 2003; 71:335-42. [PMID: 12496183 PMCID: PMC143415 DOI: 10.1128/iai.71.1.335-342.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile sulfur compounds, including hydrogen sulfide (H(2)S), have been implicated in the development of periodontal disease. Glutathione is an important thiol source for H(2)S production in periodontal pockets. Our recent studies have delineated a pathway of glutathione metabolism in Treponema denticola that releases H(2)S. In this pathway, gamma-glutamyltransferase (GGT) has been proposed to catalyze the first step of glutathione degradation. We have cloned the gene of GGT from T. denticola, which contains an open reading frame of 726 bp encoding a protein of 241 amino acids. Transformation of this gene into Escherichia coli led to the expression of a recombinant protein. After purification by chromatography, the recombinant protein showed enzymatic activity typical of GGT, catalyzing the degradation of Na-gamma-glutamyl-4-nitroaniline (GNA) and the hydrolysis of glutathione, releasing glutamic acid or glutamine and cysteinylglycine. L-Cysteine is not a substrate of GGT. Importantly, GNA, when added to T. denticola, was able to compete with glutathione and inhibit the production of H(2)S, ammonia, and pyruvate. This was accompanied by the suppression of hemoxidative and hemolytic activities of the bacteria. Purified GGT was inactivated by TLCK (Nalpha-p-tosyl-L-lysine chloromethyl ketone) and proteinase K treatment. However, higher enzymatic activity was demonstrated in the presence of 2-mercaptoethanol and dithiothreitol. Our further experiments showed that the addition of recombinant GGT to Porphyromonas gingivalis, a bacterium without significant glutathione-metabolizing capacity, drastically increased the utilization of glutathione by the bacterium, producing H(2)S, ammonia, and pyruvate. This was again accompanied by enhanced bacterial hemoxidative and hemolytic activities. Together, the results suggest an important role for GGT in glutathione metabolism in oral bacteria.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Orthodontics, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | | | | | |
Collapse
|
46
|
Yoshida Y, Nakano Y, Amano A, Yoshimura M, Fukamachi H, Oho T, Koga T. lcd from Streptococcus anginosus encodes a C-S lyase with alpha,beta-elimination activity that degrades L-cysteine. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3961-3970. [PMID: 12480900 DOI: 10.1099/00221287-148-12-3961] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogen sulfide is highly toxic to mammalian cells. It has also been postulated that hydrogen sulfide modifies haemoglobin resulting in haemolysis. The enzyme that produces hydrogen sulfide from L-cysteine was purified from Streptococcus anginosus. Using the N-terminal amino acid sequence of the purified enzyme, the lcd gene encoding L-cysteine desulfhydrase was cloned; the recombinant protein was then purified to examine its enzymic and biological characteristics. This L-cysteine desulfhydrase had the Michaelis-Menten kinetics K(m)=0.62 mM and V(max)=163 micro mol min(-1) mg(-1). DL-Cystathionine, L-cystine, S-(2-aminoethyl)-L-cysteine, 3-chloro-DL-alanine and S-methyl-L-cysteine were substrates for the enzyme, whereas D-cysteine, DL-homocysteine, L-methionine, DL-serine, DL-alanine, L-cysteine methyl ester, L-tryptophan, L-tyrosine and L-phenylalanine were not. These findings suggest that this L-cysteine desulfhydrase is a C-S lyase that catalyses the alpha,beta-elimination (alphaC-N and betaC-S) reaction. In addition, it is demonstrated that the hydrogen sulfide produced by this enzyme caused the modification and release of haemoglobin in sheep erythrocytes.
Collapse
Affiliation(s)
- Yasuo Yoshida
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan1
| | - Yoshio Nakano
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan1
| | - Akiko Amano
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan1
| | - Mamiko Yoshimura
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan1
| | - Haruka Fukamachi
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan1
| | - Takahiko Oho
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan1
| | - Toshihiko Koga
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan1
| |
Collapse
|
47
|
Fukamachi H, Nakano Y, Yoshimura M, Koga T. Cloning and characterization of the L-cysteine desulfhydrase gene of Fusobacterium nucleatum. FEMS Microbiol Lett 2002; 215:75-80. [PMID: 12393204 DOI: 10.1111/j.1574-6968.2002.tb11373.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hydrogen sulfide and methyl mercaptan are the two major compounds associated with oral malodor. These compounds are highly toxic, and are thought to play an important role in periodontal disease. Fusobacterium nucleatum, an oral bacterium, produces large amounts of hydrogen sulfide from L-cysteine by the enzymatic action of L-cysteine desulfhydrase. We cloned and sequenced the cdl gene encoding L-cysteine desulfhydrase from F. nucleatum ATCC 10953, and revealed that the structural cdl gene consists of 921 bp and encodes a 33.4-kDa protein. The cloned gene was inserted into an expression vector, pDEST17, and expressed in Escherichia coli as a fused protein. The purified enzyme was tested for substrate specificity using various SH-containing compounds. Only L-cysteine served as a substrate for L-cysteine desulfhydrase to produce hydrogen sulfide.
Collapse
Affiliation(s)
- Haruka Fukamachi
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
48
|
Sela MN. Role of Treponema denticola in periodontal diseases. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:399-413. [PMID: 12002822 DOI: 10.1177/10454411010120050301] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among periodontal anaerobic pathogens, the oral spirochetes, and especially Treponema denticola, have been associated with periodontal diseases such as early-onset periodontitis, necrotizing ulcerative gingivitis, and acute pericoronitis. Basic research as well as clinical evidence suggest that the prevalence of T denticola, together with other proteolytic gram-negative bacteria in high numbers in periodontal pockets, may play an important role in the progression of periodontal disease. The accumulation of these bacteria and their products in the pocket may render the surface lining periodontal cells highly susceptible to lysis and damage. T. denticola has been shown to adhere to fibroblasts and epithelial cells, as well as to extracellular matrix components present in periodontal tissues, and to produce several deleterious factors that may contribute to the virulence of the bacteria. These bacterial components include outer-sheath-associated peptidases, chymotrypsin-like and trypsin-like proteinases, hemolytic and hemagglutinating activities, adhesins that bind to matrix proteins and cells, and an outer-sheath protein with pore-forming properties. The effects of T. denticola whole cells and their products on a variety of host mucosal and immunological cells has been studied extensively (Fig. 1). The clinical data regarding the presence of T. denticola in periodontal health and disease, together with the basic research results involving the role of T. denticola factors and products in relation to periodontal diseases, are reviewed and discussed in this article.
Collapse
Affiliation(s)
- M N Sela
- Deportment of Oral Biology, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
49
|
Chu L, Dong Z, Xu X, Cochran DL, Ebersole JL. Role of glutathione metabolism of Treponema denticola in bacterial growth and virulence expression. Infect Immun 2002; 70:1113-20. [PMID: 11854190 PMCID: PMC127775 DOI: 10.1128/iai.70.3.1113-1120.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogen sulfide (H(2)S) is a major metabolic end product detected in deep periodontal pockets that is produced by resident periodontopathic microbiota associated with the progression of periodontitis. Treponema denticola, a member of the subgingival biofilm at disease sites, produces cystalysin, an enzyme that catabolizes cysteine, releasing H(2)S. The metabolic pathway leading to H(2)S formation in periodontal pockets has not been determined. We used a variety of thiol compounds as substrates for T. denticola to produce H(2)S. Our results indicate that glutathione, a readily available thiol source in periodontal pockets, is a suitable substrate for H(2)S production by this microorganism. In addition to H(2)S, glutamate, glycine, ammonia, and pyruvate were metabolic end products of metabolism of glutathione. Cysteinyl glycine (Cys-Gly) was also catabolized by the bacteria, yielding glycine, H(2)S, ammonia, and pyruvate. However, purified cystalysin could not catalyze glutathione and Cys-Gly degradation in vitro. Moreover, the enzymatic activity(ies) in T. denticola responsible for glutathione breakdown was inactivated by trypsin or proteinase K, by heating (56 degrees C) and freezing (-20 degrees C), by sonication, and by exposure to N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK). These treatments had no effect on degradation of cysteine by the purified enzyme. In this study we delineated an enzymatic pathway for glutathione metabolism in the oral spirochete T. denticola; our results suggest that glutathione metabolism plays a role in bacterial nutrition and potential virulence expression.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Periodontics, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Mycoplasma penetrans is a newly isolated Mollicute from the urine of patients infected with human immunodeficiency virus that demonstrates the capacity to adhere to and invade human cells. A previous report, based on assays with mouse red blood cells (RBCs), indicated that M. penetrans lacked hemolytic activity. In our studies, we incubated different isolates of M. penetrans with various RBC species and observed hemolytic zones surrounding individual mycoplasma colonies. All M. penetrans strains displayed hemolysis after 2 to 3 days of incubation. Hemolytic activity diffused from single colonies, eventually causing complete lysis. Hemolysis was most pronounced with sheep RBCs, followed by horse, chicken, and human cells. Furthermore, hemolytic activity was demonstrable in both intact mycoplasma cell preparations and spent culture supernatant. However, unlike intact mycoplasmas, the hemolytic activity in the supernatant was dependent on the reducing agent, cysteine. In addition to hemolysis, a brown precipitate was closely associated with mycoplasma colonies, suggesting oxidation of hemoglobin. Absorption spectra indicated that hemoglobin was oxidized to methemoglobin, and the addition of catalase demonstrated H(2)O(2)-mediated hemoxidation. Other experiments suggested that hemoxidation enhanced total hemolysis, providing the first evidence of both hemolytic and hemoxidative activities in M. penetrans.
Collapse
Affiliation(s)
- T R Kannan
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|