1
|
van Elsas MJ, Middelburg J, Labrie C, Roelands J, Schaap G, Sluijter M, Tonea R, Ovcinnikovs V, Lloyd K, Schuurman J, Riesenfeld SJ, Gajewski TF, de Miranda NFCC, van Hall T, van der Burg SH. Immunotherapy-activated T cells recruit and skew late-stage activated M1-like macrophages that are critical for therapeutic efficacy. Cancer Cell 2024; 42:1032-1050.e10. [PMID: 38759656 DOI: 10.1016/j.ccell.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/23/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Total tumor clearance through immunotherapy is associated with a fully coordinated innate and adaptive immune response, but knowledge on the exact contribution of each immune cell subset is limited. We show that therapy-induced intratumoral CD8+ T cells recruited and skewed late-stage activated M1-like macrophages, which were critical for effective tumor control in two different murine models of cancer immunotherapy. The activated CD8+ T cells summon these macrophages into the tumor and their close vicinity via CCR5 signaling. Exposure of non-polarized macrophages to activated T cell supernatant and tumor lysate recapitulates the late-stage activated and tumoricidal phenotype in vitro. The transcriptomic signature of these macrophages is also detected in a similar macrophage population present in human tumors and coincides with clinical response to immune checkpoint inhibitors. The requirement of a functional co-operation between CD8+ T cells and effector macrophages for effective immunotherapy gives warning to combinations with broad macrophage-targeting strategies.
Collapse
Affiliation(s)
- Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Camilla Labrie
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Jessica Roelands
- Department of Pathology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Ruxandra Tonea
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, Chicago, IL 60637, USA
| | | | | | | | | | - Thomas F Gajewski
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands.
| |
Collapse
|
2
|
Sinha BP, Mehta P, Hoque MA, Bandopadhyay P, Nandi A, Saha I, Nandi Mitra A, Mondal A, Bhattacharjee B, Chamilos G, Pandey R, Basu K, Ganguly D. Deficient Phagocytosis in Circulating Monocytes from Patients with COVID-19-Associated Mucormycosis. mBio 2023:e0059023. [PMID: 37052373 DOI: 10.1128/mbio.00590-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Cases of rhino-orbital mucormycosis in patients suffering from severe coronavirus disease 2019 (COVID-19) were reported in different parts of the world, especially in India. However, specific immune mechanisms that are linked to susceptibility to COVID-19-associated mucormycosis (CAM) remain largely unexplored. We aimed to explore whether the differential regulation of circulating cytokines in CAM patients had any potential pathogenic links with myeloid phagocyte function and susceptibility to mucormycosis. A small cohort of Indian patients suffering from CAM (N = 9) as well as COVID-19 patients with no evidence of mucormycosis (N = 5) were recruited in the study. Venous blood was collected from the patients as well as from healthy volunteers (N = 8). Peripheral blood mononuclear cells and plasma were isolated. Plasma samples were used to measure a panel of 48 cytokines. CD14+ monocytes were isolated and used for a flow cytometric phagocytosis assay as well as a global transcriptome analysis via RNA-sequencing. A multiplex cytokine analysis of the plasma samples revealed reduction in a subset of cytokines in CAM patients, which is known to potentiate the activation, migration, or phagocytic activity of myeloid cells, compared to the COVID-19 patients who did not contract mucormycosis. Compared to monocytes from healthy individuals, peripheral blood CD14+ monocytes from CAM patients were significantly deficient in phagocytic function. The monocyte transcriptome also revealed that pathways related to endocytic pathways, phagosome maturation, and the cytoskeletal regulation of phagocytosis were significantly downregulated in CAM patients. Thus, the study reports a significant deficiency in the phagocytic activity of monocytes, which is a critical effector mechanism for the antifungal host defense, in patients with CAM. This result is in concordance with results regarding the specific cytokine signature and monocyte transcriptome. IMPORTANCE A number of cases of mucormycosis, often fatal, were reported among severe COVID-19 patients from India as well as from some other parts of the world. However, specific immunocellular mechanisms that underlie susceptibility to this fungal infection in COVID-19 remain largely unexplored. Our study reports a deficiency in phagocytosis by monocytes in COVID-19 patients who are concomitantly afflicted with mucormycosis, with this deficiency being linked to a characteristic monocyte transcriptome as well as a circulating cytokine signature. The functional phenotype and cytokine signature of the monocytes may provide useful biomarkers for detecting potential susceptibility to mucormycosis in COVID-19 as well as in other viral infections.
Collapse
Affiliation(s)
- Bishnu Prasad Sinha
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Md Asmaul Hoque
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ayandip Nandi
- Department of Pathology, Medical College, Kolkata, India
| | - Ipsita Saha
- Department of Pathology, Medical College, Kolkata, India
| | | | - Asish Mondal
- Department of General Medicine, Medical College, Kolkata, India
| | | | - Georgios Chamilos
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas (IMBB FoRTH), Heraklion, Greece
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kaushik Basu
- Department of General Medicine, Medical College, Kolkata, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
3
|
Jung BG, Dean K, Wadle C, Samten B, Tripathi D, Wallace RJ, Brown-Elliott BA, Tucker T, Idell S, Philley JV, Vankayalapati R. Decreased Interleukin-1 Family Cytokine Production in Patients with Nontuberculous Mycobacterial Lung Disease. Microbiol Spectr 2022; 10:e0311022. [PMID: 36255321 PMCID: PMC9769609 DOI: 10.1128/spectrum.03110-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/01/2022] [Indexed: 01/09/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) cause pulmonary disease in individuals without obvious immunodeficiency. This study was initiated to gain insight into the immunological factors that predispose persons to NTM pulmonary disease (NTMPD). Blood was obtained from 15 pairs of NTMPD patients and their healthy household contacts. Peripheral blood mononuclear cells (PBMCs) were stimulated with the Mycobacterium avium complex (MAC). A total of 34 cytokines and chemokines were evaluated in plasma and PBMC culture supernatants using multiplex immunoassays, and gene expression in the PBMCs was determined using real-time PCR. PBMCs from NTMPD patients produced significantly less interleukin-1β (IL-1β), IL-18, IL-1α, and IL-10 than PBMCs from their healthy household contacts in response to MAC. Although plasma RANTES levels were high in NTMPD patients, they had no effect on IL-1β production by macrophages infected with MAC. Toll-like receptor 2 (TLR2) and TWIK2 (a two-pore domain K+ channel) were impaired in response to MAC in PBMCs of NTMPD patients. A TLR2 inhibitor decreased all four cytokines, whereas a two-pore domain K+ channel inhibitor decreased the production of IL-1β, IL-18, and IL-1α, but not IL-10, by MAC-stimulated PBMCs and monocytes. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. A reduced monocyte ratio might contribute to the attenuated production of IL-1 family cytokines by PBMCs of NTMPD patients in response to MAC stimulations. Collectively, our findings suggest that the attenuated IL-1 response may increase susceptibility to NTM pulmonary infection through multiple factors, including impaired expression of the TLR2 and TWIK2 and reduced monocyte ratio. IMPORTANCE Upon MAC stimulation, the production of IL-1 family cytokines and IL-10 by PBMCs of NTMPD patients was attenuated compared with that of healthy household contacts. Upon MAC stimulation, the expression of TLR2 and TWIK2 (one of the two-pore domain K+ channels) was attenuated in PBMCs of NTMPD patients compared with that of healthy household contacts. The production of IL-1 family cytokines by MAC-stimulated PBMCs and MAC-infected monocytes of healthy donors was reduced by a TLR2 inhibitor and two-pore domain K+ channel inhibitor. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. Collectively, our data suggest that defects in the expression of TLR2 and TWIK2 in human PBMCs or monocytes and reduced monocyte ratio are involved in the reduced production of IL-1 family cytokines, and it may increase susceptibility to NTM pulmonary infection.
Collapse
Affiliation(s)
- Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kristin Dean
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Carly Wadle
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Deepak Tripathi
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Richard J. Wallace
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Barbara A. Brown-Elliott
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Torry Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- The Texas Lung Injury Institute, Tyler, Texas, USA
| | - Julie V. Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
4
|
De Simone G, di Masi A, Ascenzi P. Strategies of Pathogens to Escape from NO-Based Host Defense. Antioxidants (Basel) 2022; 11:2176. [PMID: 36358549 PMCID: PMC9686644 DOI: 10.3390/antiox11112176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/22/2024] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule present in most living organisms including bacteria, fungi, plants, and animals. NO participates in a wide range of biological processes including vasomotor tone, neurotransmission, and immune response. However, NO is highly reactive and can give rise to reactive nitrogen and oxygen species that, in turn, can modify a broad range of biomolecules. Much evidence supports the critical role of NO in the virulence and replication of viruses, bacteria, protozoan, metazoan, and fungi, thus representing a general mechanism of host defense. However, pathogens have developed different mechanisms to elude the host NO and to protect themselves against oxidative and nitrosative stress. Here, the strategies evolved by viruses, bacteria, protozoan, metazoan, and fungi to escape from the NO-based host defense are overviewed.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Via della Vasca Navale 79, 00146 Roma, Italy
| |
Collapse
|
5
|
Kumar R, Bhatia M, Pai K. Role of Chemokines in the Pathogenesis of Visceral Leishmaniasis. Curr Med Chem 2022; 29:5441-5461. [PMID: 35579167 DOI: 10.2174/0929867329666220509171244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Visceral leishmaniasis (VL; also known as kala-azar), caused by the protozoan parasite Leishmania donovani, is characterized by the inability of the host to generate an effective immune response. The manifestations of the disease depend on the involvement of various immune components such as activation of macrophages, cell mediated immunity, secretion of cytokines and chemokines, etc. Macrophages are the final host cells for Leishmania parasites to multiply, and they are the key to a controlled or aggravated response that leads to clinical symptoms. The two most common macrophage phenotypes are M1 and M2. The pro-inflammatory microenvironment (mainly by IL-1β, IL-6, IL-12, IL-23, and TNF-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (mainly by IL-10, TGF-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). Moreover, on polarized Th cells, chemokine receptors are expressed differently. Typically, CXCR3 and CCR5 are preferentially expressed on polarized Th1 cells, whereas CCR3, CCR4, and CCR8 have been associated with the Th2 phenotype. Further, the ability of the host to produce a cell-mediated immune response capable of regulating and/or eliminating the parasite is critical in the fight against the disease. Here, we review the interactions between parasites and chemokines and chemokine receptors in the pathogenesis of VL.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi (UP), India
| | - Madhav Bhatia
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
6
|
Pattanaik KP, Ganguli G, Naik SK, Sonawane A. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways. Mol Immunol 2021; 130:133-141. [PMID: 33419561 DOI: 10.1016/j.molimm.2020.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) employs distinct strategies to circumvent host immune responses during the infection process. Various Mtb cell-wall associated and secretory proteins are known to play a critical role in the orchestration of host innate immune responses through modulation of signaling pathways. Mtb genome encodes for 23 (EsxA-EsxW) proteins belonging to the ESAT-6 like family; however, most of them are functionally unknown. Here, we show that Mtb EsxL induces tumor necrosis factor-alpha (TNF-α) production by activating nuclear translocation of nuclear factor-κB (NF-κB) via interaction with Toll-like Receptor 2 (TLR2). Blocking or silencing of TLR2 abrogated nuclear translocation of NF-kB and TNF-α production. Treatment with recombinant purified EsxL (rEsxL) activated mitogen-activated protein kinase (MAPK) pathway by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) pathways. At the same time, inhibition of ERK and p38 down-regulated the expression of TNF-α in rEsxL exposed murine macrophages. Besides TNF-α, EsxL also induced the production of IL-6 proinflammatory cytokine. Taken together, these results suggest that EsxL is able to induce TNF-α secretion via TLR2 through activation of NF-κB and MAPK signaling. This study will help in deducing therapeutic strategies for better control of the disease.
Collapse
Affiliation(s)
| | - Geetanjali Ganguli
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Sumanta Kumar Naik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Avinash Sonawane
- Discipline of Biosciences and Biomedical Engineering, IIT Indore, Madhya Pradesh, India.
| |
Collapse
|
7
|
Feng X, Ma BF, Liu B, Ding P, Wei JH, Cheng P, Li SY, Chen DX, Sun ZJ, Li Z. The Involvement of the Chemokine RANTES in Regulating Luminal Acidification in Rat Epididymis. Front Immunol 2020; 11:583274. [PMID: 33072131 PMCID: PMC7544837 DOI: 10.3389/fimmu.2020.583274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 12/03/2022] Open
Abstract
Background A complex interplay between different cell types in the epithelium leads to activation of the luminal acidifying capacity of the epididymis, a process that is crucial for sperm maturation and storage. Basal cells sense the luminal angiotensin II (ANG II) and stimulate proton secretion in clear cells through nitric oxide (NO). Our previous study has shown the chemokine regulated upon activation normal T-cell expressed and secreted (RANTES) was expressed in the F4/80 positive macrophages of human epididymis. The objective of this study was to explore the involvement of RANTES in regulating the luminal acidification in the rat epididymis. Methods The role of RANTES was investigated by in vivo perfusion with recombinant RANTES, Met-RANTES, and PBS of different pH values. Furthermore, rats vasectomy was performed to alter the epididymal luminal pH. RIA was used to measure the tissue homogenate ANG II concentration. Real time-PCR and western blot were employed to examine the expression levels of AGTR2, RANTES, CCR1, CCR5, and iNOS in epididymis. Results RANTES was restricted to the basal macrophages of epididymal ducts and co-localized with its receptors CCR1 and CCR5. Both V-ATPase and iNOS were up-regulated in the cauda epididymis after perfused with recombinant RANTES, while the antagonist Met-RANTES perfusion led to a complete abrogation of the increased expression of V-ATPase in the apical membrane of clear cells and iNOS in macrophages. Upon alkaline perfusion, RANTES expression was significantly increased and the apical accumulation of V-ATPase in the clear cells was induced in the cauda epididymis. The luminal pH in the cauda epididymis increased after vasectomy. The concentration of the ANG II and the expression levels of AGTR2, RANTES, CCR1, CCR5, and iNOS dropped in the cauda epididymis following vasectomy. Conclusion Upon the activation of basal cells, RANTES might induce the NO release from macrophages by interacting with its receptors, which increases proton secretion by adjacent clear cells. Thus, RANTES is possible to participate in the crosstalk among basal cells, macrophages and clear cells for the fine control of an optimum acidic luminal environment that is critical for male fertility.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Bin-Fang Ma
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Bo Liu
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Peng Ding
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Jin-Hua Wei
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Pang Cheng
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Sheng-Yu Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Dong-Xu Chen
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Jian Sun
- The General Hospital of Northern Theater Command, Shenyang, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Gibaldi D, Vilar-Pereira G, Pereira IR, Silva AA, Barrios LC, Ramos IP, Mata Dos Santos HA, Gazzinelli R, Lannes-Vieira J. CCL3/Macrophage Inflammatory Protein-1α Is Dually Involved in Parasite Persistence and Induction of a TNF- and IFNγ-Enriched Inflammatory Milieu in Trypanosoma cruzi-Induced Chronic Cardiomyopathy. Front Immunol 2020; 11:306. [PMID: 32194558 PMCID: PMC7063958 DOI: 10.3389/fimmu.2020.00306] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
CCL3, a member of the CC-chemokine family, has been associated with macrophage recruitment to heart tissue and parasite control in the acute infection of mouse with Trypanosoma cruzi, the causative agent of Chagas disease. Here, we approached the participation of CCL3 in chronic chagasic cardiomyopathy (CCC), the main clinical form of Chagas disease. We induced CCC in C57BL/6 (ccl3+/+) and CCL3-deficient (ccl3−/−) mice by infection with the Colombian Type I strain. In ccl3+/+ mice, high levels of CCL3 mRNA and protein were detected in the heart tissue during the acute and chronic infection. Survival was not affected by CCL3 deficiency. In comparison with ccl3+/+, chronically infected ccl3−/− mice presented reduced cardiac parasitism and inflammation due to CD8+ cells and macrophages. Leukocytosis was decreased in infected ccl3−/− mice, paralleling the accumulation of CD8+ T cells devoid of activated CCR5+ LFA-1+ cells in the spleen. Further, T. cruzi-infected ccl3−/−mice presented reduced frequency of interferon-gamma (IFNγ)+ cells and numbers of parasite-specific IFNγ-producing cells, while the T. cruzi antigen-specific cytotoxic activity was increased. Stimulation of CCL3-deficient macrophages with IFNγ improved parasite control, in a milieu with reduced nitric oxide (NOx) and tumor necrosis factor (TNF), but similar interleukin-10 (IL-10), concentrations. In comparison with chronically T. cruzi-infected ccl3+/+ counterparts, ccl3−/− mice did not show enlarged heart, loss of left ventricular ejection fraction, QTc prolongation and elevated CK-MB activity. Compared with ccl3+/+, infected ccl3−/− mice showed reduced concentrations of TNF, while IL-10 levels were not affected, in the heart milieu. In spleen of ccl3+/+ NI controls, most of the CD8+ T-cells expressing the CCL3 receptors CCR1 or CCR5 were IL-10+, while in infected mice these cells were mainly TNF+. Lastly, selective blockage of CCR1/CCR5 (Met-RANTES therapy) in chronically infected ccl3+/+ mice reversed pivotal electrical abnormalities (bradycardia, prolonged PR, and QTc interval), in correlation with reduced TNF and, mainly, CCL3 levels in the heart tissue. Therefore, in the chronic T. cruzi infection CCL3 takes part in parasite persistence and contributes to form a CD8+ T-cell and macrophage-enriched cardiac inflammation. Further, increased levels of CCL3 create a scenario with abundant IFNγ and TNF, associated with cardiomyocyte injury, heart dysfunction and QTc prolongation, biomarkers of severity of Chagas' heart disease.
Collapse
Affiliation(s)
- Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Leda Castaño Barrios
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ricardo Gazzinelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Miyauchi A, Watanabe W, Akashi T, Hashiguchi S, Yoshida H, Sugita C, Kurokawa M. Effect of inactivated Streptococcus pneumoniae as non-pathogenic particles on the severity of pneumonia caused by respiratory syncytial virus infection in mice. Toxicol Rep 2019; 6:514-520. [PMID: 31245279 PMCID: PMC6581880 DOI: 10.1016/j.toxrep.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 11/29/2022] Open
Abstract
We made inactivated Streptococcus pneumoniae (ISP) as non-pathogenic particles. We evaluated effects of ISP on development of pneumonia by RSV infection in mice. ISP didn’t show histopathological effects on lungs of RSV-infected mice. ISP reduced virus titer and infiltration of lymphocyte in the lungs. The inherent activity of ISP as particles in RSV infection is discussed.
The severity of pneumonia in respiratory syncytial virus (RSV) infection is strongly related to host immune response and external factors such as bacteria and environmental chemicals. We investigated the effect of inactivated Streptococcus pneumoniae (ISP) as non-pathogenic particles on the severity of pneumonia in RSV-infected mice. Mice were intranasally exposed to ISP before RSV infection. On day 5 post-infection, we examined tissues, virus titer, and infiltrated cells in the lungs. The ISP did not cause significant histopathological effects in the lungs of RSV infected mice, but reduced virus titer. It also reduced the ratio of lymphocyte infiltration into the lungs and consequently the ratio of macrophage increased. In addition, we found that ISP increased RANTES level in bronchoalveolar lavage fluid from RSV-infected mice on day 1 post-infection, but reduced type I interferon levels. Thus, ISP did not exacerbate pneumonia in RSV infection, rather, it might mildly reduce the severity. We characterize and discuss the inherent activity of ISP as non-pathogenic particles inducing the role of RANTES on the pneumonia in RSV infection.
Collapse
Key Words
- BALF, bronchoalveolar lavage fluids
- CFU, colony-forming units
- ELISA, enzyme-linked immunosorbent assay
- IFN, interferon
- ISP, inactivated S. pneumoniae
- Infiltrated cells
- Non-pathogenic pneumococcal particles
- PBS, phosphate-buffered saline
- PFU, plaque-forming units
- Pneumonia
- RSV
- RSV, respiratory syncytial virus
- S. pneumoniae, Streptococcus pneumoniae
- Streptococcus pneumonia
- TiO2, titanium dioxide
Collapse
Affiliation(s)
- Aki Miyauchi
- Departments of Biochemistry and Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Wataru Watanabe
- Departments of Biochemistry and Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Toshi Akashi
- Department of Microbiology and Infectious Diseases, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Seiko Hashiguchi
- Departments of Biochemistry and Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Hiroki Yoshida
- Departments of Biochemistry and Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Chihiro Sugita
- Departments of Biochemistry and Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| | - Masahiko Kurokawa
- Departments of Biochemistry and Microbiology, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan
| |
Collapse
|
10
|
Batista AM, Alvarado-Arnez LE, Alves SM, Melo G, Pereira IR, Ruivo LADS, da Silva AA, Gibaldi D, da Silva TDESP, de Lorena VMB, de Melo AS, de Araújo Soares AK, Barros MDS, Costa VMA, Cardoso CC, Pacheco AG, Carrazzone C, Oliveira W, Moraes MO, Lannes-Vieira J. Genetic Polymorphism at CCL5 Is Associated With Protection in Chagas' Heart Disease: Antagonistic Participation of CCR1 + and CCR5 + Cells in Chronic Chagasic Cardiomyopathy. Front Immunol 2018; 9:615. [PMID: 29696014 PMCID: PMC5904358 DOI: 10.3389/fimmu.2018.00615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
Chronic cardiomyopathy is the main clinical manifestation of Chagas disease (CD), a disease caused by Trypanosoma cruzi infection. A hallmark of chronic chagasic cardiomyopathy (CCC) is a fibrogenic inflammation mainly composed of CD8+ and CD4+ T cells and macrophages. CC-chemokine ligands and receptors have been proposed to drive cell migration toward the heart tissue of CD patients. Single nucleotide polymorphisms (SNPs) in CC-chemokine ligand and receptor genes may determine protein expression. Herein, we evaluated the association of SNPs in the CC-chemokines CCL2 (rs1024611) and CCL5 (rs2107538, rs2280788) and the CCL5/RANTES receptors CCR1 (rs3181077, rs1491961, rs3136672) and CCR5 (rs1799987) with risk and progression toward CCC. We performed a cross-sectional association study of 406 seropositive patients from endemic areas for CD in the State of Pernambuco, Northeast Brazil. The patients were classified as non-cardiopathic (A, n = 110) or cardiopathic (mild, B1, n = 163; severe, C, n = 133). Serum levels of CCL5 and CCL2/MCP-1 were elevated in CD patients but were neither associated with risk/severity of CCC nor with SNP genotypes. After logistic regression analysis with adjustment for the covariates gender and ethnicity, CCL5 -403 (rs2107538) CT heterozygotes (OR = 0.5, P-value = 0.04) and T carriers (OR = 0.5, P-value = 0.01) were associated with protection against CCC. To gain insight into the participation of the CCL5-CCR5/CCR1 axis in CCC, mice were infected with the Colombian T. cruzi strain. Increased CCL5 concentrations were detected in cardiac tissue. In spleen, frequencies of CCR1+ CD8+ T cells and CD14+ macrophages were decreased, while frequencies of CCR5+ cells were increased. Importantly, CCR1+CD14+ macrophages were mainly IL-10+, while CCR5+ cells were mostly TNF+. CCR5-deficient infected mice presented reduced TNF concentrations and injury in heart tissue. Selective blockade of CCR1 (Met-RANTES therapy) in infected Ccr5-/- mice supported a protective role for CCR1 in CCC. Furthermore, parasite antigen stimulation of CD patient blood cells increased the frequency of CCR1+CD8+ T cells and CCL5 production. Collectively, our data support that a genetic variant of CCL5 and CCR1+ cells confer protection against Chagas heart disease, identifying the CCL5-CCR1 axis as a target for immunostimulation.
Collapse
Affiliation(s)
- Angelica Martins Batista
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lucia Elena Alvarado-Arnez
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Silvia Marinho Alves
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE/UPE), Recife, Brazil
| | - Gloria Melo
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE/UPE), Recife, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Andrea Alice da Silva
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Virginia Maria Barros de Lorena
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Adriene Siqueira de Melo
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Ana Karine de Araújo Soares
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Michelle da Silva Barros
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Vláudia Maria Assis Costa
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Brazil.,Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | - Cynthia C Cardoso
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio G Pacheco
- Programa de Computação Científica, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cristina Carrazzone
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE/UPE), Recife, Brazil
| | - Wilson Oliveira
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE/UPE), Recife, Brazil
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Triquell MF, Díaz-Luján C, Romanini MC, Ramirez JC, Paglini-Oliva P, Schijman AG, Fretes RE. Nitric oxide synthase and oxidative-nitrosative stress play a key role in placental infection by Trypanosoma cruzi. Am J Reprod Immunol 2018; 80:e12852. [PMID: 29577492 DOI: 10.1111/aji.12852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/02/2018] [Indexed: 12/28/2022] Open
Abstract
PROBLEM The innate immune response of the placenta may participate in the congenital transmission of Chagas disease through releasing reactive oxygen and nitrogen intermediates. METHOD OF STUDY Placental explants were cultured with 1 × 106 and 1 × 105 trypomastigotes of Tulahuen and Lucky strains and controls without parasites, and with the addition of nitric oxide synthase inhibitor Nω-Nitro-l-arginine methyl ester (l-NAME) and N-acetyl cysteine (NAC) as the reactive oxygen species (ROS) scavenger. Detachment of the syncytiotrophoblast (STB) was examined by histological analysis, and the nitric oxide synthase, endothelial (eNOS), and nitrotyrosine expressions were analyzed by immunohistochemistry, as well as the human chorionic gonadotrophin (hCG) levels in the culture supernatant through ELISA assays. Parasite load with qPCR using Taqman primers was quantified. RESULTS The higher number of T. cruzi (106 ) increased placental infection, eNOS expression, nitrosative stress, and STB detachment, with the placental barrier being injured by oxidative stress. CONCLUSION The higher number of parasites caused deleterious consequences to the placental barrier, and the inhibitors (l-NAME and NAC) prevented the damage caused by trypomastigotes in placental villi but not that of the infection. Moreover, trophoblast eNOS played a key role in placental infection with the highest inoculum of Lucky, demonstrating the importance of the enzyme and nitrosative-oxidative stress in Chagas congenital transmission.
Collapse
Affiliation(s)
- María Fernanda Triquell
- Biología Celular, Histología y Embriología, Fac. Cs. Médicas, Universidad Nacional de Córdoba-INICSA (CONICET), Córdoba, Argentina.,Histología y Citología, Instituto de Ciencias Humanas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Cintia Díaz-Luján
- Biología Celular, Histología y Embriología, Fac. Cs. Médicas, Universidad Nacional de Córdoba-INICSA (CONICET), Córdoba, Argentina.,Histología y Citología, Instituto de Ciencias Humanas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - María Cristina Romanini
- Departamento de Anatomía-Facultad de Agronomía y Veterinaria, Universidad Nacional Río Cuarto, Córdoba, Argentina
| | - Juan Carlos Ramirez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Hector Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Patricia Paglini-Oliva
- Cátedra de Física Biomédica, Facultad Cs. Médicas, Universidad Nacional Córdoba, Córdoba-INICSA (CONICET), Córdoba, Argentina
| | - Alejandro Gabriel Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Hector Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Ricardo Emilio Fretes
- Biología Celular, Histología y Embriología, Fac. Cs. Médicas, Universidad Nacional de Córdoba-INICSA (CONICET), Córdoba, Argentina.,Histología y Citología, Instituto de Ciencias Humanas, Universidad Nacional de Villa María, Córdoba, Argentina.,IICSHUM-Histología y Embriología, Universidad Nacional de La Rioja, La Rioja, Argentina
| |
Collapse
|
12
|
Zawistowska-Deniziak A, Basałaj K, Strojny B, Młocicki D. New Data on Human Macrophages Polarization by Hymenolepis diminuta Tapeworm-An In Vitro Study. Front Immunol 2017; 8:148. [PMID: 28265273 PMCID: PMC5316519 DOI: 10.3389/fimmu.2017.00148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
Helminths and their products can suppress the host immune response to escape host defense mechanisms and establish chronic infections. Current studies indicate that macrophages play a key role in the immune response to pathogen invasion. They can be polarized into two distinct phenotypes: M1 and M2. The present paper examines the impact of the adult Hymenolepis diminuta (HD) tapeworm and its excretory/secretory products (ESP) on THP-1 macrophages. Monocytes were differentiated into macrophages and cultured with a living parasite or its ESP. Our findings indicate that HD and ESP have a considerable impact on human THP-1 macrophages. Macrophages treated with parasite ESP (with or without LPS) demonstrated reduced expression of cytokines (i.e., IL-1α, TNFα, TGFβ, IL-10) and chemokines (i.e., IL-8, MIP-1α, RANTES, and IL-1ra), while s-ICAM and CxCL10 expression rose after ESP stimulation. In addition, inflammatory factor expression rose significantly when macrophages were exposed to living parasites. Regarding induced and repressed pathways, significant differences were found between HD and ESP concerning their influence on the phosphorylation of ERK1/2, STAT2, STAT3, AMPKα1, Akt 1/2/3 S473, Hsp60, and Hck. The superior immunosuppressive properties of ESP compared to HD were demonstrated with lower levels of IL-1β, TNF-α, IL-6, IL-23, and IL-12p70 following stimulation. The presence of HD and its ESP were found to stimulate mixed M1/M2 macrophage phenotypes. Our findings indicate new molecular mechanisms involved in the response of human macrophages to tapeworm infection, this could be a valuable tool in understanding the mechanisms underlying the processes of immune regulation during cestodiasis.
Collapse
Affiliation(s)
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences , Warsaw , Poland
| | - Barbara Strojny
- Division of Nanobiotechnology, Faculty of Animal Sciences, Department of Animal Feeding and Biotechnology, Warsaw University of Life Sciences , Warsaw , Poland
| | - Daniel Młocicki
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland; Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Gamma Interferon-Regulated Chemokines in Leishmania donovani Infection in the Liver. Infect Immun 2016; 85:IAI.00824-16. [PMID: 27795366 DOI: 10.1128/iai.00824-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/25/2022] Open
Abstract
In the livers of C57BL/6 mice, gamma interferon (IFN-γ) controls intracellular Leishmania donovani infection and the efficacy of antimony (Sb) chemotherapy. Since both responses usually correlate with granulomatous inflammation, we tested six prominently expressed, IFN-γ-regulated chemokines-CXCL9, CXCL10, CXCL13, CXCL16, CCL2, and CCL5-for their roles in (i) mononuclear cell recruitment and granuloma assembly and maturation, (ii) initial control of infection and self-cure, and (iii) responsiveness to Sb treatment. Together, the results for the L. donovani-infected livers of chemokine-deficient mice (CXCR6-/- mice were used as CXCL16-deficient surrogates) indicated that individual IFN-γ-induced chemokines have diverse affects and (i) may be entirely dispensable (CXCL13, CXCL16), (ii) may promote (CXCL10, CCL2, CCL5) or downregulate (CXCL9) initial granuloma assembly, (iii) may enhance (CCL2, CCL5) or hinder (CXCL10) early parasite control, (iv) may promote granuloma maturation (CCL2, CCL5), (v) may exert a granuloma-independent action that enables self-cure (CCL5), and (vi) may have no role in responsiveness to chemotherapy. Despite the near absence of tissue inflammation in early-stage infection, parasite replication could be controlled (in CXCL10-/- mice) and Sb was fully active (in CXCL10-/-, CCL2-/-, and CCL5-/- mice). These results characterize chemokine action in the response to L. donovani and also reemphasize that (i) recruited mononuclear cells and granulomas are not required to control infection or respond to Sb chemotherapy, (ii) granuloma assembly, control of infection, and Sb's efficacy are not invariably linked expressions of the same T cell-dependent, cytokine-mediated antileishmanial mechanism, and (iii) granulomas are not necessarily hallmarks of protective antileishmanial immunity.
Collapse
|
14
|
de Oliveira AP, Ayo CM, Mimura KKO, Oliani SM, Bernardo CR, Camargo AVS, Ronchi LS, Borim AA, de Campos Júnior E, Brandão de Mattos CC, Castiglioni L, Bestetti RB, Cavasini CE, de Mattos LC. Plasma concentrations of CCL3 and CCL4 in the cardiac and digestive clinical forms of chronic Chagas disease. Cytokine 2016; 91:51-56. [PMID: 28002786 DOI: 10.1016/j.cyto.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/13/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the plasma levels of the CCL3 and CCL4 chemokines in patients with the cardiac and digestive clinical forms of chronic Chagas disease and in cardiac patients with and without left ventricular systolic dysfunction (LVSD). Plasma samples from 75 patients were evaluated by enzyme-linked immunosorbent assay (ELISA) to confirm infection by T. cruzi. Plasma levels of the CCL3 and CCL4 chemokines were measured using Milliplex® MAP assay (Millipore). There were no significant differences in the levels of CCL3 and CCL4 between patients with the digestive and cardiac clinical forms of Chagas disease. Moreover, no significant differences were found between patients without LVSD and those with LVSD. Higher CCL3 and CCL4 plasma levels were found in patients with LVSD compared to those with the digestive form of the disease. The CCL3 and CCL4 chemokines might not be involved in differential susceptibility to the digestive and cardiac clinical forms of chronic Chagas disease, and it seems they do not influence the development of LVSD.
Collapse
Affiliation(s)
- Amanda Priscila de Oliveira
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Christiane Maria Ayo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Kallyne Kioko Oliveira Mimura
- Immunomorphology Laboratory, Biology Department, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Immunomorphology Laboratory, Biology Department, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Cássia Rubia Bernardo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Ana Vitória Silveira Camargo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Luís Sérgio Ronchi
- Surgery Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil; Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Aldenis Albaneze Borim
- Surgery Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil; Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Eumildo de Campos Júnior
- Surgery Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil; Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Cinara Cássia Brandão de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Lilian Castiglioni
- Department of Epidemiology and Public Health, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Reinaldo Bulgarelli Bestetti
- Department of Cardiology and Cardiovascular Surgery, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil; Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Carlos Eugênio Cavasini
- Center for the Investigation of Microorganisms, Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, Avenida Brigadeiro Faria Lima, 5416, 15090-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
15
|
Díaz-Luján C, Triquell MF, Castillo C, Hardisson D, Kemmerling U, Fretes RE. Role of placental barrier integrity in infection by Trypanosoma cruzi. Acta Trop 2016; 164:360-368. [PMID: 27686961 DOI: 10.1016/j.actatropica.2016.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/10/2016] [Accepted: 09/24/2016] [Indexed: 11/17/2022]
Abstract
American trypanosomiasis has long been a neglected disease endemic in LatinAmerica, but congenital transmission has now spread Chagas disease to cause a global health problem. As the early stages of the infection of placental tissue and the vertical transmission by Trypanosoma cruzi are still not well understood, it is important to investigate the relevance of the first structure of the placental barrier in chorionic villi infection by T. cruzi during the initial stage of the infection. Explants of human chorionic villi from healthy pregnant women at term were denuded of their syncytiotrophoblast and co-cultured for 3h, 24h and 96h with 800,000 trypomastigotes (simulating acute infection). T. cruzi infected cells were identified by immunohistochemistry for cytokeratin-7 (+cytotrophoblast) and CD68 (+macrophages), and the infection was quantified. In placental tissue, the parasite load was analyzed by qPCR and microscopy, and the motile trypomastigotes were quantified in culture supernatant. In denuded chorionic villous, the total area occupied by the parasite (451.23μm2, 1.33%) and parasite load (RQ: 87) was significantly higher (p<0.05) than in the entire villous (control) (5.98μm2, 0.016%) (RQ:1) and with smaller concentration of nitric oxide. Stromal non-macrophage cells were infected as well as cytotrophoblasts and some macrophages, but with significant differences being observed. The parasite quantity in the culture supernatant was significantly higher (p<0.05) in denuded culture explants from 96h of culture. Although the human complete chorionic villi limited the infection, the detachment of the first structure of the placenta barrier (syncytiotrophoblast) increased both the infection of the villous stroma and the living trypomastigotes in the culture supernatant. Therefore structural and functional alterations to chorionic villi placental barrier reduce placental defenses and may contribute to the vertical transmission of Chagas.
Collapse
Affiliation(s)
- C Díaz-Luján
- Cell Biology, Histology and Embryology Department, Facultad Cs. Médicas. Instituto de Biología Celular, Universidad Nacional de Córdoba-INICSA (CONICET), Argentina; Histology and Cytology, Medicine, Universidad Nacional de Villa María, Córdoba, Argentina.
| | - M F Triquell
- Cell Biology, Histology and Embryology Department, Facultad Cs. Médicas. Instituto de Biología Celular, Universidad Nacional de Córdoba-INICSA (CONICET), Argentina
| | - C Castillo
- Programa de Anatomía del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - D Hardisson
- Hospital La Paz, Universidad Autónoma de Madrid, Spain
| | - U Kemmerling
- Programa de Anatomía del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - R E Fretes
- Cell Biology, Histology and Embryology Department, Facultad Cs. Médicas. Instituto de Biología Celular, Universidad Nacional de Córdoba-INICSA (CONICET), Argentina; Histology, Embryology and Genetic-IICSHUM, Health Department, Universidad Nacional de La Rioja, Argentina; Histology and Cytology, Medicine, Universidad Nacional de Villa María, Córdoba, Argentina.
| |
Collapse
|
16
|
Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis. Vet Parasitol 2015; 214:59-66. [PMID: 26412140 DOI: 10.1016/j.vetpar.2015.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/27/2015] [Accepted: 09/12/2015] [Indexed: 01/13/2023]
Abstract
Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated.
Collapse
|
17
|
Cunha-Neto E, Chevillard C. Chagas disease cardiomyopathy: immunopathology and genetics. Mediators Inflamm 2014; 2014:683230. [PMID: 25210230 PMCID: PMC4152981 DOI: 10.1155/2014/683230] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects ca. 10 million people worldwide. About 30% of Chagas disease patients develop chronic Chagas disease cardiomyopathy (CCC), a particularly lethal inflammatory cardiomyopathy that occurs decades after the initial infection, while most patients remain asymptomatic. Mortality rate is higher than that of noninflammatory cardiomyopathy. CCC heart lesions present a Th1 T-cell-rich myocarditis, with cardiomyocyte hypertrophy and prominent fibrosis. Data suggest that the myocarditis plays a major pathogenetic role in disease progression. Major unmet goals include the thorough understanding of disease pathogenesis and therapeutic targets and identification of prognostic genetic factors. Chagas disease thus remains a neglected disease, with no vaccines or antiparasitic drugs proven efficient in chronically infected adults, when most patients are diagnosed. Both familial aggregation of CCC cases and the fact that only 30% of infected patients develop CCC suggest there might be a genetic component to disease susceptibility. Moreover, previous case-control studies have identified some genes associated to human susceptibility to CCC. In this paper, we will review the immunopathogenesis and genetics of Chagas disease, highlighting studies that shed light on the differential progression of Chagas disease patients to CCC.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, Avenida Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9° Andar, 05406-000 São Paulo, SP, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, 05406-000 São Paulo, SP, Brazil
| | | |
Collapse
|
18
|
HIV-1 Nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Sci Rep 2014; 4:4450. [PMID: 24658403 PMCID: PMC3963078 DOI: 10.1038/srep04450] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/07/2014] [Indexed: 12/18/2022] Open
Abstract
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes.
Collapse
|
19
|
Nookala AR, Shah A, Noel RJ, Kumar A. HIV-1 Tat-mediated induction of CCL5 in astrocytes involves NF-κB, AP-1, C/EBPα and C/EBPγ transcription factors and JAK, PI3K/Akt and p38 MAPK signaling pathways. PLoS One 2013; 8:e78855. [PMID: 24244375 PMCID: PMC3823997 DOI: 10.1371/journal.pone.0078855] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/23/2013] [Indexed: 12/23/2022] Open
Abstract
The incidence of HIV-associated neurological disorders (HAND) has increased during recent years even though the highly active antiretroviral therapy (HAART) has significantly curtailed the virus replication and increased the life expectancy among HIV-1 infected individuals. These neurological deficits have been attributed to HIV proteins including HIV-1 Tat. HIV-1 Tat is known to up-regulate CCL5 expression in mouse astrocytes, but the mechanism of up-regulation is not known. The present study was undertaken with the objective of determining the mechanism(s) underlying HIV-1 Tat-mediated expression of CCL5 in astrocytes. SVGA astrocytes were transiently transfected with a plasmid encoding Tat, and expression of CCL5 was studied at the mRNA and protein levels using real time RT-PCR and multiplex cytokine bead array, respectively. HIV-1 Tat showed a time-dependent increase in the CCL5 expression with peak mRNA and protein levels, observed at 1 h and 48 h post-transfection, respectively. In order to explore the mechanism(s), pharmacological inhibitors and siRNA against different pathway(s) were used. Pre-treatment with SC514 (NF-κB inhibitor), LY294002 (PI3K inhibitor), AG490 (JAK2 inhibitor) and Janex-1 (JAK3 inhibitor) showed partial reduction of the Tat-mediated induction of CCL5 suggesting involvement of JAK, PI3K/Akt and NF-κB in CCL5 expression. These results were further confirmed by knockdown of the respective genes using siRNA. Furthermore, p38 MAPK was found to be involved since the knockdown of p38δ but not other isoforms showed partial reduction in CCL5 induction. This was further confirmed at transcriptional level that AP-1, C/EBPα and C/EBPγ were involved in CCL5 up-regulation.
Collapse
Affiliation(s)
- Anantha R. Nookala
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
| | - Ankit Shah
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
| | - Richard J. Noel
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico, United States of America
| | - Anil Kumar
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cellular response to Trypanosoma cruzi infection induces secretion of defensin α-1, which damages the flagellum, neutralizes trypanosome motility, and inhibits infection. Infect Immun 2013; 81:4139-48. [PMID: 23980110 DOI: 10.1128/iai.01459-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. Here we show that colonic epithelial model HCT116 cells respond to Trypanosoma cruzi infection by secreting defensin α-1, which reduces infection. We also report the early effects of defensin α-1 on invasive trypomastigotes that involve damage of the flagellar structure to inhibit parasite motility and reduce cellular infection. Short exposure of defensin α-1 to trypomastigotes shows that defensin α-1 binds to the flagellum, resulting in flagellar membrane and axoneme alterations, followed by breaking of the flagellar membrane connected to the trypanosome body, leading to detachment and release of the parasite flagellum. In addition, defensin α-1 induces a significant reduction in parasite motility in a peptide concentration-dependent manner, which is abrogated by anti-defensin α-1 IgG. Preincubation of trypomastigotes with a concentration of defensin α-1 that inhibits 50% trypanosome motility significantly reduced cellular infection by 80%. Thus, human defensin α-1 is an innate immune molecule that is secreted by HCT116 cells in response to T. cruzi infection, inhibits T. cruzi motility, and plays an important role in reducing cellular infection. This is the first report showing a novel cellular innate immune response to a human parasite by secretion of defensin α-1, which neutralizes the motility of a human parasite to reduce cellular infection. The mode of activity of human defensin α-1 against T. cruzi and its function may provide insights for the development of new antiparasitic strategies.
Collapse
|
21
|
Söbirk SK, Mörgelin M, Egesten A, Bates P, Shannon O, Collin M. Human chemokines as antimicrobial peptides with direct parasiticidal effect on Leishmania mexicana in vitro. PLoS One 2013; 8:e58129. [PMID: 23533582 PMCID: PMC3606167 DOI: 10.1371/journal.pone.0058129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Chemokines and chemokine receptor-mediated effects are important mediators of the immunological response and cure in human leishmaniasis. However, in addition to their signalling properties for leukocytes, many chemokines have also been shown to act directly as antimicrobial peptides on bacteria and fungi. We screened ten human chemokines (CXCL2, CXCL6, CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL20, CCL27, CCL28) for antimicrobial effects on the promastigote form of the protozoan parasite Leishmania mexicana, and observed direct parasiticidal effects of several, CCL28 being the most potent. Damage to the plasma membrane integrity could be visualised by entrance of propidium iodide, as measured with flow cytometry, and by scanning electron microscopy, which showed morphological changes and aggregation of cells. The findings were in concordance with parasiticidal activity, measured by decreased mitochondrial activity in an MTT-assay. This is the first report of direct antimicrobial activity by chemokines on parasites. This component of immunity against Leishmania parasites identified here warrants further investigation that might lead to new insight in the mechanisms of human infection and/or new therapeutic approaches.
Collapse
Affiliation(s)
- Sara K Söbirk
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
Dipterinyl calcium pentahydrate inhibits intracellular mycobacterial growth in human monocytes via the C-C chemokine MIP-1β and nitric oxide. Infect Immun 2013; 81:1974-83. [PMID: 23509148 DOI: 10.1128/iai.01393-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis remains one of the top three leading causes of morbidity and mortality worldwide, complicated by the emergence of drug-resistant Mycobacterium tuberculosis strains and high rates of HIV coinfection. It is important to develop new antimycobacterial drugs and immunomodulatory therapeutics and compounds that enhance antituberculous immunity. Dipterinyl calcium pentahydrate (DCP), a calcium-complexed pterin compound, has previously been shown to inhibit human breast cancer cells and hepatitis B virus (HBV). DCP inhibitory effects were attributed to induction of apoptosis and/or increased production of interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF). In this study, we tested the ability of DCP to mediate inhibition of intracellular mycobacteria within human monocytes. DCP treatment of infected monocytes resulted in a significant reduction in viability of intracellular but not extracellular Mycobacterium bovis BCG. The antimicrobial activity of DCP was comparable to that of pyrazinamide (PZA), one of the first-line antituberculosis drugs currently used. DCP potentiated monocyte antimycobacterial activity by induction of the cysteine-cysteine (C-C) chemokine macrophage inflammatory protein 1β (MIP-1β) and inducible nitric oxide synthase 2. Addition of human anti-MIP-1β neutralizing antibody or a specific inhibitor of the l-arginase-nitric oxide pathway (N(G)-monomethyl l-arginine [l-NMMA] monoacetate) reversed the inhibitory effects of DCP on intracellular mycobacterial growth. These findings indicate that DCP induced mycobacterial killing via MIP-1β- and nitric oxide-dependent effects. Hence, DCP acts as an immunoregulatory compound enhancing the antimycobacterial activity of human monocytes.
Collapse
|
23
|
Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy 2013; 4:807-40. [PMID: 22947009 DOI: 10.2217/imt.12.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major role of chemokines is to mediate leukocyte migration through interaction with G-protein-coupled receptors. Various delivery systems have been developed to utilize the chemokine properties for combating disease. Viral and mutant viral vectors expressing chemokines, genetically modified dendritic cells with chemokine or chemokine receptors, engineered chemokine-expressing tumor cells and pDNA encoding chemokines are among these methods. Another approach for inducing a targeted immune response is fusion of a targeting antibody or antibody fragment to a chemokine. In addition, chemokines induce more effective antitumor immunity when used as adjuvants. In this regard, chemokines are codelivered along with antigens or fused as a targeting unit with antigenic moieties. In this review, several chemokines with their role in inducing immune response against different diseases are discussed, with a major emphasis on cancer.
Collapse
Affiliation(s)
- Elham Mohit
- Molecular Immunology & Vaccine Research Lab, Pasteur Institute of Iran, Tehran 13164, Iran
| | | |
Collapse
|
24
|
Caldas S, Caldas IS, Diniz LDF, Lima WGD, Oliveira RDP, Cecílio AB, Ribeiro I, Talvani A, Bahia MT. Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection. Acta Trop 2012; 123:170-7. [PMID: 22609548 DOI: 10.1016/j.actatropica.2012.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 01/23/2023]
Abstract
The lack of an accurate diagnosis has been a serious obstacle to the advancement of the anti-Trypanosoma cruzi chemotherapy and long-term infection can result in different health risks to human. PCRs are alternative methods, more sensitive than conventional parasitological techniques, which due to their low sensitivities are considered unsuitable for these purposes. The aim of this study was to investigate a sensitive diagnostic strategy to quantify blood and cardiac tissues parasites based on real-time PCR tools during acute and chronic phases of murine Chagas disease, as well as to monitor the evolution of infection in those mice under specific treatment. In parallel, fresh blood examination, immunological analysis and quantification of cardiac inflammation were also performed to confront and improve real-time PCR data. Similar profiles of parasitemia curves were observed in both quantification techniques during the acute phase of the infection. In contrast, parasites could be quantified only by real-time PCR at 60 and 120 days of infection. In cardiac tissue, real-time PCR detected T. cruzi DNA in 100% of infected mice, and using this tool a significant Pearson correlation between parasite load in peripheral blood and in cardiac tissue during acute and chronic phases was observed. Levels of serum CCL2, CCL5 and nitric oxide were coincident with parasite load but focal and diffuse mononuclear infiltrates was observed, even with significant (p<0.05) reduction of parasitism after 60 days of infection. Later, this methodology was used to monitor the evolution of infection in animals treated with itraconazole (Itz). Itz-treatment induced a reduction of parasite load in both blood and cardiac muscle at the treatment period, but after the end of chemotherapy an increase of parasitism was detected. Interestingly, inflammatory mediators levels and heart inflammation intensity had similar evolution to the parasite load, in the group of animals treated. Taken together, our data show that real-time PCR strategy used was suitable for studies of murine T. cruzi infection and may prove useful in investigations involving experimental chemotherapy of the disease and the benefits of treatment in relation to parasitism and inflammatory response.
Collapse
|
25
|
Rezende-Oliveira K, Sarmento RR, Rodrigues Junior V. Production of cytokine and chemokines by human mononuclear cells and whole blood cells after infection with Trypanosoma cruzi. Rev Soc Bras Med Trop 2012; 45:45-50. [DOI: 10.1590/s0037-86822012000100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 09/09/2011] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC) and peripheral blood mononuclear cells (PBMC) of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.
Collapse
|
26
|
Differential susceptibility of isolated human trophoblasts to infection by Trypanosoma cruzi. Placenta 2012; 33:264-70. [PMID: 22296856 DOI: 10.1016/j.placenta.2012.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/24/2011] [Accepted: 01/03/2012] [Indexed: 11/21/2022]
Abstract
The aim of the work was to analyze the susceptibility of the placental syncytiotrophoblast (STB) and cytotrophoblast (CTB) cells to infection by the causal agent of congenital Chagas' disease, Trypanosoma cruzi, and the possible parasite route for placental invasion. Monolayers of CTB and STB and VERO as control cells were used. The infection of STB was significantly lower that of the CTB and Vero cells (p < 0.05) which coincided with a significantly increased mortality of parasite cells in the culture medium and trypanocidal levels of nitric oxide. We conclude that the syncytiotrophoblast, the first placental barrier, is the main barrier of the chorionic villous that limits the infection by T. cruzi. This work opens the possibility of a new mechanism for placental infection when there are discontinuities in the first placental barrier.
Collapse
|
27
|
Espinoza B, Solorzano-Domínguez N, Vizcaino-Castillo A, Martínez I, Elias-López AL, Rodríguez-Martínez JA. Gastrointestinal infection with Mexican TcI Trypanosoma cruzi strains: different degrees of colonization and diverse immune responses. Int J Biol Sci 2011; 7:1357-70. [PMID: 22110387 PMCID: PMC3221943 DOI: 10.7150/ijbs.7.1357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 02/06/2023] Open
Abstract
Mexican Ninoa and Queretaro (Qro) TcI strains of Trypanosoma cruzi have shown different degrees of virulence, and the two strains produce heterogeneous immune responses in the hearts of infected mice. This work shows that the same strains can invade the intestine by an intraperitoneal route and establish an infection, mainly in the colon. The three segments of the small intestine (duodenum, jejunum and ileum) were infected to a lesser degree than the colon. Despite the fact that parasites were predominantly found in the colon, an obvious inflammatory reaction was observed in the submucosal layer along the entire intestinal tract, with the virulent Qro strain causing significantly more areas of higher immune infiltration. A clear recruitment of CD4⁺ and CD8⁺ T lymphocytes to the mesenteric ganglia was observed during infection with the virulent strain. Macrophages were also differentially distributed in the gastrointestinal tract. These later cells infiltrated fewer amastigote nests in the mice infected with the Qro strain than in the mice infected with the Ninoa strain. When IFN-γ, TNF-α, and IL-4 levels were measured, an increase in these cytokines was observed compared with the uninfected mice. The role of these inflammatory reactions in the pathogenesis of Chagas enteropathy is also discussed in this paper.
Collapse
Affiliation(s)
- Bertha Espinoza
- Departamento de Inmunología. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, Mexico City 04510.
| | | | | | | | | | | |
Collapse
|
28
|
Sullivan NL, Eickhoff CS, Zhang X, Giddings OK, Lane TE, Hoft DF. Importance of the CCR5-CCL5 axis for mucosal Trypanosoma cruzi protection and B cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1358-68. [PMID: 21715689 PMCID: PMC3150841 DOI: 10.4049/jimmunol.1100033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trypanosoma cruzi is an intracellular parasite and the causative agent of Chagas disease. Previous work has shown that the chemokine receptor CCR5 plays a role in systemic T. cruzi protection. We evaluated the importance of CCR5 and CCL5 for mucosal protection against natural oral and conjunctival T. cruzi challenges. T. cruzi-immune CCR5(-/-) and wild-type C57BL/6 mice were generated by repeated infectious challenges with T. cruzi. CCR5(-/-) and wild-type mice developed equivalent levels of cellular, humoral, and protective mucosal responses. However, CCR5(-/-)-immune mice produced increased levels of CCL5 in protected gastric tissues, suggesting compensatory signaling through additional receptors. Neutralization of CCL5 in CCR5(-/-)-immune mice resulted in decreased mucosal inflammatory responses, reduced T. cruzi-specific Ab-secreting cells, and significantly less mucosal T. cruzi protection, confirming an important role for CCL5 in optimal immune control of T. cruzi replication at the point of initial mucosal invasion. To investigate further the mechanism responsible for mucosal protection mediated by CCL5-CCR5 signaling, we evaluated the effects of CCL5 on B cells. CCL5 enhanced proliferation and IgM secretion in highly purified B cells triggered by suboptimal doses of LPS. In addition, neutralization of endogenous CCL5 inhibited B cell proliferation and IgM secretion during stimulation of highly purified B cells, indicating that B cell production of CCL5 has important autocrine effects. These findings demonstrate direct effects of CCL5 on B cells, with significant implications for the development of mucosal adjuvants, and further suggest that CCL5 may be important as a general B cell coactivator.
Collapse
Affiliation(s)
- Nicole L Sullivan
- Department of Molecular Microbiology and Immunology, Saint Louis University Medical Center, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Skuljec J, Sun H, Pul R, Bénardais K, Ragancokova D, Moharregh-Khiabani D, Kotsiari A, Trebst C, Stangel M. CCL5 induces a pro-inflammatory profile in microglia in vitro. Cell Immunol 2011; 270:164-71. [PMID: 21620385 DOI: 10.1016/j.cellimm.2011.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/20/2011] [Accepted: 05/02/2011] [Indexed: 01/07/2023]
Abstract
The chemokine receptors CCR1, CCR2, CCR3, CCR5, and CXCR2 have been found to be expressed on microglia in many neurodegenerative diseases, such as multiple sclerosis and Alzheimer's disease. There is emerging evidence that chemokines, besides chemoattraction, might directly modulate reactive profiles of microglia. To address this hypothesis we have investigated the effects of CCL2, CCL3, CCL5, and CXCL1 on cytokine and growth factor production, NO synthesis, and phagocytosis in non-stimulated and lipopolysaccharide-stimulated primary rat microglia. The respective receptors CCR1, CCR5, and CXCR2 were shown to be functionally expressed on microglia. All tested chemokines stimulated chemotaxis whereas only CCL5 increased NO secretion and attenuated IL-10 as well as IGF-1 production in activated microglia. Based on these findings we propose that besides its chemoattractant function CCL5 has a modulatory effect on activated microglia.
Collapse
Affiliation(s)
- Jelena Skuljec
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Qian X, Zhang J, Liu J. Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway. J Biol Chem 2011; 286:2111-20. [PMID: 21097507 PMCID: PMC3023508 DOI: 10.1074/jbc.m110.154971] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/25/2010] [Indexed: 11/06/2022] Open
Abstract
One of the major characteristics of tumors is their ability to evade immunosurveillance through altering the properties and functions of host stromal and/or immune cells. CCL5 has been shown to play important roles in T cell proliferation, IFN-γ, and IL-2 production, which promotes the differentiation and proliferation of Th1 cells important for immune defense against intracellular infection. In this study we found that tumor-bearing mice were more susceptible to bacterial infection and showed reduced CCL5 levels in serum during endotoxic shock. Our data further demonstrated that the soluble factors secreted by mammary gland tumor cells but not normal mammary gland epithelial cells inhibited CCL5 expression in macrophages in response to LPS, but not to TNF-α stimulation. The inhibitory effect of tumor-secreted molecules on LPS-induced CCL5 expression was regulated at the post-transcriptional level. Blocking PGE(2) synthesis by NS398 or through the use of PGE(2) receptor antagonists AH-6809 (EP2 antagonist) and AH-23848 (EP4 antagonist) completely reversed the inhibitory effect of tumor-conditioned medium (TCM) on LPS-induced CCL5 expression. Moreover, PGE(2) and the cAMP analog forskolin could mimic tumor-mediated CCL5 inhibition, and the inhibitory effects of TCM, PGE(2), and cAMP analog on LPS-induced CCL5 expression could be completely reversed by the PKA inhibitor H89. Furthermore, blocking PGE(2) synthesis in vivo led to partial recovery of CCL5 production during endotoxic shock. Taken together, our data indicate that PGE(2) secreted from breast cancer cells suppresses CCL5 secretion in LPS-activated macrophages through a cAMP/PKA signaling pathway, which may result in suppression of host immune responses against subsequent bacterial infection.
Collapse
Affiliation(s)
- Xuesong Qian
- From the Division of Immunobiology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Jidong Zhang
- From the Division of Immunobiology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Jianguo Liu
- From the Division of Immunobiology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
31
|
Maternal microbe-specific modulation of inflammatory response in extremely low-gestational-age newborns. mBio 2011; 2:e00280-10. [PMID: 21264056 PMCID: PMC3025357 DOI: 10.1128/mbio.00280-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/14/2010] [Indexed: 01/11/2023] Open
Abstract
The fetal response to intrauterine inflammatory stimuli appears to contribute to the onset of preterm labor as well as fetal injury, especially affecting newborns of extremely low gestational age. To investigate the role of placental colonization by specific groups of microorganisms in the development of inflammatory responses present at birth, we analyzed 25 protein biomarkers in dry blood spots obtained from 527 newborns delivered by Caesarean section in the 23rd to 27th gestation weeks. Bacteria were detected in placentas and characterized by culture techniques. Odds ratios for having protein concentrations in the top quartile for gestation age for individual and groups of microorganisms were calculated. Mixed bacterial vaginosis (BV) organisms were associated with a proinflammatory pattern similar to those of infectious facultative anaerobes. Prevotella and Gardnerella species, anaerobic streptococci, peptostreptococci, and genital mycoplasmas each appeared to be associated with a different pattern of elevated blood levels of inflammation-related proteins. Lactobacillus was associated with low odds of an inflammatory response. This study provides evidence that microorganisms colonizing the placenta provoke distinctive newborn inflammatory responses and that Lactobacillus may suppress these responses. Despite improved intensive care, preterm and especially extremely low-gestation-age neonates continue to be at a considerably increased risk of morbidity, mortality, and developmental problems. The fetal inflammatory response appears to contribute to the onset of preterm labor, fetal injury, and complications, underlying lifetime health challenges facing these children. This study provides evidence that bacterial colonization of the very preterm placenta is associated with distinct microorganism-specific inflammatory protein profiles in the newborn blood specimens. We also provide evidence that Lactobacillus reduces inflammatory responses in newborns. Our data support the concept that targeting of placental colonization by specific drugs or probiotics during early pregnancy holds promise for preventing not only preterm birth but also subsequent and long-lasting, inflammation-provoked late sequelae.
Collapse
|
32
|
Murthy MK, Kaliappan T, Raja A. Cytokine and chemokine responses to selected early secreted antigenic target-6 and culture filtrate protein-10 peptides in tuberculosis. J Interferon Cytokine Res 2010; 31:299-307. [PMID: 21133811 DOI: 10.1089/jir.2010.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytokine [tumor necrosis factor-α, interleukin-2 (IL-2), IL-4] and chemokine [regulated upon activation normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein-1] responses to selected early secreted antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) peptides were studied in healthy household contacts and patients with pulmonary tuberculosis (PTB). It was observed that Th1 cytokines and chemokine RANTES positive T cells were elevated in response to the peptides Esp1, Esp6, Cfp6, and Cfp8 in healthy household contacts. IL-4 positive T cells were enhanced by Esp1 and Esp6 in PTB. Monocyte chemoattractant protein-1 positive monocytes increased in response to the peptides Esp1, Esp6, Cfp8, and Cfp9 in PTB. These peptides deserve attention for further immune studies.
Collapse
Affiliation(s)
- Madhan Kumar Murthy
- Department of Immunology, Tuberculosis Research Centre (ICMR) , Chetput, Chennai, India
| | | | | |
Collapse
|
33
|
Three fatal cases of pandemic 2009 influenza A virus infection in Shenzhen are associated with cytokine storm. Respir Physiol Neurobiol 2010; 175:185-7. [PMID: 21075220 DOI: 10.1016/j.resp.2010.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 11/24/2022]
Abstract
China had taken strict measures for pandemic 2009 H1N1 infection with enhanced surveillance and hospital isolation since April 2009. In Shenzhen, over 1200 confirmed cases of H1N1 infection were identified. Three young patients died of severe pneumonia. Among them, two boys developed neurological complications. Cytokine storm seemed an important cause.
Collapse
|
34
|
Kleschenko YE, Karpenko LP, Villalta F. Effects of human defensin-α(1)on Trypanosoma cruzi trypomastigotes in vitro. Bull Exp Biol Med 2010; 149:731-3. [PMID: 21165432 PMCID: PMC3053382 DOI: 10.1007/s10517-010-1038-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human defensin-α(1)is a biologically active peptide exhibiting a dose-dependent trypanocidal effect in vitro against trypomastigotes and amastigotes of Trypanosoma cruzi line Tulahuen. This effect is determined by fragmentation of parasite DNA reducing the capacity of passaged T. cruzi to invade HeLa cells.
Collapse
Affiliation(s)
- Yu E Kleschenko
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | | | | |
Collapse
|
35
|
Soares MBP, de Lima RS, Rocha LL, Vasconcelos JF, Rogatto SR, dos Santos RR, Iacobas S, Goldenberg RC, Iacobas DA, Tanowitz HB, de Carvalho ACC, Spray DC. Gene expression changes associated with myocarditis and fibrosis in hearts of mice with chronic chagasic cardiomyopathy. J Infect Dis 2010; 202:416-26. [PMID: 20565256 PMCID: PMC2897928 DOI: 10.1086/653481] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic chagasic cardiomyopathy is a leading cause of heart failure in Latin American countries. About 30% of Trypanosoma cruzi-infected individuals develop this severe symptomatic form of the disease, characterized by intense inflammatory response accompanied by fibrosis in the heart. We performed an extensive microarray analysis of hearts from a mouse model of this disease and identified significant alterations in expression of approximately 12% of the sampled genes. Extensive up-regulations were associated with immune-inflammatory responses (chemokines, adhesion molecules, cathepsins, and major histocompatibility complex molecules) and fibrosis (extracellular matrix components, lysyl oxidase, and tissue inhibitor of metalloproteinase 1). Our results indicate potentially relevant factors involved in the pathogenesis of the disease that may provide new therapeutic targets in chronic Chagas disease.
Collapse
|
36
|
Mexican Trypanosoma cruzi T. cruzi I strains with different degrees of virulence induce diverse humoral and cellular immune responses in a murine experimental infection model. J Biomed Biotechnol 2010; 2010:890672. [PMID: 20396398 PMCID: PMC2852613 DOI: 10.1155/2010/890672] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/18/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022] Open
Abstract
It is has been shown that the majority of T. cruzi strains isolated from Mexico belong to the T. cruzi I (TCI). The immune response produced in response to Mexican T. cruzi I strains has not been well characterized. In this study, two Mexican T. cruzi I strains were used to infect Balb/c mice. The Queretaro (TBAR/MX/0000/Queretaro)(Qro) strain resulted in 100% mortality. In contrast, no mortality was observed in mice infected with the Ninoa (MHOM/MX/1994/Ninoa) strain. Both strains produced extended lymphocyte infiltrates in cardiac tissue. Ninoa infection induced a diverse humoral response with a higher variety of immunoglobulin isotypes than were found in Qro-infected mice. Also, a stronger inflammatory TH1 response, represented by IL-12p40, IFNγ, RANTES, MIG, MIP-1β, and MCP-1 production was observed in Qro-infected mice when compared with Ninoa-infected mice. We propose that an exacerbated TH1 immune response is a likely cause of pathological damage observed in cardiac tissue and the primary cause of death in Qro-infected mice.
Collapse
|
37
|
Li Z, Sun ZJ, Liao CG, Ma L, Ma BF, Zhang YQ. Regulated upon activation normal T-cell expressed and secreted originating from the epididymis differentially associates with viable and defective spermatozoa. Fertil Steril 2010; 93:2661-7. [PMID: 20189554 DOI: 10.1016/j.fertnstert.2010.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the expression and cellular distribution of regulated upon activation normal T-cell expressed and secreted (RANTES) in the male reproductive system. DESIGN Basic research. SETTING University academic medical center. PATIENT(S) Three adult male organ donors. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Reverse transcriptase-polymerase chain reaction (RT-PCR), in situ hybridization, immunohistochemical staining, and immunofluorescence staining were used to examine the distribution of RANTES in human and mouse epididymis. Western blot was used to quantitate the levels of RANTES expression in mouse epididymis on postnatal days. Immunofluorescence staining was applied to detect RANTES association with spermatozoa from mouse epididymis. RESULT(S) The location of RANTES was restricted to ciliated cells of the efferent duct and apical, narrow, and basal cells of the epididymal ducts, in both humans and mouse. RANTES-positive basal cells were only identified in the epididymal ducts in humans. The signals of RANTES were first detected on day 28 and increased during mouse sexual maturation. We also observed that RANTES was bound on both normal and defective epididymal sperm, but in different patterns. CONCLUSION(S) RANTES is constitutively expressed in the epididymis and secreted into the lumen of epididymis throughout sexual maturity, and differentially associates with viable and defective spermatozoa.
Collapse
Affiliation(s)
- Zhen Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Gutierrez FRS, Guedes PMM, Gazzinelli RT, Silva JS. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol 2010; 31:673-85. [PMID: 19825107 DOI: 10.1111/j.1365-3024.2009.01108.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chagas disease (CD) is caused by the infection with the protozoan haemoflagellate Trypanosoma cruzi. This disease is still a great menace to public health, and is largely neglected as it affects mostly the poorest populations of Latin America. Nonetheless, there are neither effective diagnostic markers nor therapeutic options to accurately detect and efficiently cure this chronic infection. In spite of the great advances in the knowledge of the biology of natural transmission, as well as the immunobiology of the host-parasite interaction, the understanding of the pathogenesis of CD remains largely elusive. In the recent decades, a controversy in the research community has developed about the relevance of parasite persistence or autoimmune phenomena in the development of chronic cardiac pathology. One of the most notable aspects of chronic CD is the progressive deterioration of cardiac function, derived mostly from structural derangement, as a consequence of the intense inflammatory process. Here we review the evidence supporting the multifactorial nature of Chagas heart disease comprising pathogen persistence and altered host immunoregulatory mechanisms.
Collapse
Affiliation(s)
- F R S Gutierrez
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
39
|
Lannes-Vieira J, Silverio JC, Pereira IR, Vinagre NF, Carvalho CME, Paiva CN, Silva AAD. Chronic Trypanosoma cruzi-elicited cardiomyopathy: from the discovery to the proposal of rational therapeutic interventions targeting cell adhesion molecules and chemokine receptors - how to make a dream come true. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:226-35. [DOI: 10.1590/s0074-02762009000900029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/01/2009] [Indexed: 01/13/2023] Open
|
40
|
Scharfstein J, Gomes JDAS, Correa-Oliveira R. Back to the future in Chagas disease: from animal models to patient cohort studies, progress in immunopathogenesis research. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:187-98. [DOI: 10.1590/s0074-02762009000900025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022] Open
|
41
|
|
42
|
Triquell MF, Díaz-Luján C, Freilij H, Paglini P, Fretes RE. Placental infection by two subpopulations of Trypanosoma cruzi is conditioned by differential survival of the parasite in a deleterious placental medium and not by tissue reproduction. Trans R Soc Trop Med Hyg 2009; 103:1011-8. [PMID: 19339029 DOI: 10.1016/j.trstmh.2009.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 11/17/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi, which can be transmitted to the fetus via the transplacental route. Factors that may be involved in transplacental transmission include parasite strain and placental immunological competence. The aim of this work was to compare the biological differences between two subpopulations of T. cruzi with respect to their interaction with the human placenta in vitro. We found that the Tulahuen strain (sublineage TcIIe) and another strain isolated from a congenitally infected newborn child had similar rates of productive infection in human chorionic villi in vitro, with similar deleterious nitric oxide levels between the two strains. We also found that the congenital T. cruzi stock had a greater ability than the Tulahuen strain to survive in the placental deleterious media, with the difference acquiring more importance considering the low reproductive rate of both subpopulations of T. cruzi within placental cells. As the presence of T. cruzi is a necessary condition to produce congenital transmission, we propose that the different survival rates of strains of T. cruzi in an adverse placental environment offer an opportunity for the parasite to infect the placenta in order to produce a sustainable infection during pregnancy, with the subsequent possibility of infecting the fetus.
Collapse
Affiliation(s)
- María F Triquell
- Biología Celular, Histología y Embriología, Facultad Cs. Médicas Universidad Nacional de Córdoba, Enrique Barros y Enfermera Gordillo s/n, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
43
|
Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite. Biochem J 2008; 410:359-68. [PMID: 17973627 DOI: 10.1042/bj20071138] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that Trypanosoma cruzi antioxidant enzymes play a key immune evasion role by protecting the parasite against macrophage-derived reactive oxygen and nitrogen species. Using T. cruzi transformed to overexpress the peroxiredoxins TcCPX (T. cruzi cytosolic tryparedoxin peroxidase) and TcMPX (T. cruzi mitochondrial tryparedoxin peroxidase), we found that both cell lines readily detoxify cytotoxic and diffusible reactive oxygen and nitrogen species generated in vitro or released by activated macrophages. Parasites transformed to overexpress TcAPX (T. cruzi ascorbate-dependent haemoperoxidase) were also more resistant to H2O2 challenge, but unlike TcMPX and TcCPX overexpressing lines, the TcAPX overexpressing parasites were not resistant to peroxynitrite. Whereas isolated tryparedoxin peroxidases react rapidly (k=7.2 x 10(5) M(-1) x s(-1)) and reduce peroxynitrite to nitrite, our results demonstrate that both TcMPX and TcCPX peroxiredoxins also efficiently decompose exogenous- and endogenously-generated peroxynitrite in intact cells. The degree of protection provided by TcCPX against peroxynitrite challenge results in higher parasite proliferation rates, and is demonstrated by inhibition of intracellular redox-sensitive fluorescence probe oxidation, protein 3-nitrotyrosine and protein-DMPO (5,5-dimethylpyrroline-N-oxide) adduct formation. Additionally, peroxynitrite-mediated over-oxidation of the peroxidatic cysteine residue of peroxiredoxins was greatly decreased in TcCPX overexpressing cells. The protective effects generated by TcCPX and TcMPX after oxidant challenge were lost by mutation of the peroxidatic cysteine residue in both enzymes. We also observed that there is less peroxynitrite-dependent 3-nitrotyrosine formation in infective metacyclic trypomastigotes than in non-infective epimastigotes. Together with recent reports of up-regulation of antioxidant enzymes during metacyclogenesis, our results identify components of the antioxidant enzyme network of T. cruzi as virulence factors of emerging importance.
Collapse
|
44
|
Nishimura K, Sakakibara S, Mitani K, Yamate J, Ohnishi Y, Yamasaki S. Inhibition of Interleukin-12 Production by Trypanosoma brucei in Rat Macrophages. J Parasitol 2008; 94:99-106. [DOI: 10.1645/ge-1322.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Kmonícková E, Melkusová P, Farghali H, Holý A, Zídek Z. Nitric oxide production in mouse and rat macrophages: A rapid and efficient assay for screening of drugs immunostimulatory effects in human cells. Nitric Oxide 2007; 17:160-9. [PMID: 17723311 DOI: 10.1016/j.niox.2007.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/21/2007] [Accepted: 06/22/2007] [Indexed: 01/28/2023]
Abstract
Activation of inducible nitric oxide (NO) synthase (iNOS) and resulting high-output NO release is known to depend on the action of cytokines. We investigated in vitro production of NO by resident peritoneal macrophages from mice and rats, and secretion of cytokines by these cells as well as by human peripheral blood mononuclear cells (PBMC). The cells were cultured in the presence of a selected group of acyclic nucleoside phosphonates that have previously been shown to possess immunobiological potential. Several of the compounds enhanced production of NO in animal macrophages. This activity was associated with stimulatory effects on secretion of cytokines such as TNF-alpha in all mouse and rat macrophages and human PBMC, and IL-10 in mouse and human cells. Statistically highly significant correlation between the range of NO biosynthesis in rodent cells and extent of cytokine stimulation in human PBMC has been observed. It is suggested that the NO assay may be regarded as an efficient, economical and relatively reliable tool in primary screening for intrinsic immunostimulatory activity of compounds in human cell system, at least from the point of view of cytokine secretion.
Collapse
MESH Headings
- Adenine/pharmacology
- Adjuvants, Immunologic/pharmacology
- Animals
- Cells, Cultured
- Drug Evaluation, Preclinical/methods
- Female
- Humans
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Interleukin-10/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/pharmacology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Nitric Oxide/metabolism
- Nitrites/metabolism
- Organophosphonates/pharmacology
- Rats
- Rats, Inbred Lew
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Eva Kmonícková
- Institute of Experimental Medicine, Department of Pharmacology, Academy of Sciences, v.v.i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
46
|
Madison MN, Kleshchenko YY, Nde PN, Simmons KJ, Lima MF, Villalta F. Human defensin alpha-1 causes Trypanosoma cruzi membrane pore formation and induces DNA fragmentation, which leads to trypanosome destruction. Infect Immun 2007; 75:4780-91. [PMID: 17635867 PMCID: PMC2044533 DOI: 10.1128/iai.00557-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. Here we show that human defensin alpha-1 displays a trypanocidal role against Trypanosoma cruzi, the causative agent of Chagas' disease. The toxicity of human defensin alpha-1 against T. cruzi is mediated by membrane pore formation and the induction of nuclear and mitochondrial DNA fragmentation, leading to trypanosome destruction. Exposure of trypomastigote and amastigote forms of T. cruzi to defensin alpha-1 significantly reduced parasite viability in a peptide concentration-dependent and saturable manner. The toxicity of defensin alpha-1 against T. cruzi is blocked by anti-defensin alpha-1 immunoglobulin G. Electron microscopic analysis of trypomastigotes exposed to defensin alpha-1 revealed pore formation in the cellular and flagellar membranes, membrane disorganization, and blebbing as well as cytoplasmic vacuolization. Furthermore, human defensin alpha-1 enters the trypanosome when membrane pores are present and is associated with later intracellular damage. Trypanosome membrane depolarization abolished the toxicity of defensin alpha-1 against the parasite. Preincubation of trypomastigotes with defensin alpha-1 followed by exposure to human epithelial cells significantly reduced T. cruzi infection in these cells. Thus, human defensin alpha-1 is an innate immune molecule that causes severe toxicity to T. cruzi and plays an important role in reducing cellular infection. This is the first report showing that human defensin alpha-1 causes membrane pore formation in a human parasite, leading to trypanosome destruction.
Collapse
Affiliation(s)
- M Nia Madison
- Department of Microbial Pathogenesis and Immune Response, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | | | | | | | | | | |
Collapse
|
47
|
Leiro JM, Castro R, Arranz JA, Lamas J. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 2007; 7:879-88. [PMID: 17499190 DOI: 10.1016/j.intimp.2007.02.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 02/16/2007] [Accepted: 02/16/2007] [Indexed: 01/02/2023]
Abstract
Water-soluble acidic polysaccharides from the cell walls of Ulva rigida are mainly composed of disaccharides that contain glucuronic acid and sulphated rhamnose. The structure of disaccharides resembles that of glycosaminoglycans (GAGs) as they both contain glucuronic acid and sulphated sugars. Glycosaminoglycans occur in the extracellular matrix of animal connective tissues but can also be produced by leucocytes at inflammatory sites. Certain types of GAGs can even activate macrophages and therefore the acidic polysaccharides from U. rigida probably modulate macrophage activity. In the present study, we evaluated the effects of U. rigida polysaccharides on several RAW264.7 murine macrophage activities, including expression of inflammatory cytokines and receptors, nitric oxide and prostaglandin E2 (PGE(2)) production, and nitric oxide synthase 2 (NOS-2) and cyclooxygenase-2 (COX-2) gene expression. U. rigida acidic polysaccharides induced a more than two-fold increase in the expression of several chemokines (chemokine (C motif) ligand 1, chemokine (C-X-C motif) ligand 12, chemokine (C-C motif) ligand 22 and chemokine (C-X-C motif) ligand 14 (Cxcl14)) and in the expression of IL6 signal transducer and IL12 receptor beta 1. Incubation of macrophages with U. rigida polysaccharides also induced an increase in nitrite production, although this effect decreased considerably after desulphation of polysaccharides, suggesting that the sulphate group is important for the stimulatory capacity of these molecules. U. rigida polysaccharides also stimulated macrophage secretion of PGE(2) and induced an increase in COX-2 and NOS-2 expression. The results indicate that U. rigida acid polysaccharide can be used as an experimental immunostimulant for analysing inflammatory responses related to macrophage functions. In addition, these polysaccharides may also be of clinical interest for modifying certain macrophage activities in diseases where macrophage function is impaired or needs to be boosted.
Collapse
Affiliation(s)
- José M Leiro
- Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
48
|
Duff MD, Mestre J, Maddali S, Yan ZP, Stapleton P, Daly JM. Analysis of gene expression in the tumor-associated macrophage. J Surg Res 2007; 142:119-28. [PMID: 17597158 DOI: 10.1016/j.jss.2006.12.542] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/15/2006] [Accepted: 12/08/2006] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The tumor-associated macrophage (TAM) is at the front line of the host's defense against malignancy and provides an attractive target for immune-modulatory therapy. However, factors present within the tumor microenvironment can alter macrophage phenotype, preventing its cytotoxic activity and reducing its susceptibility to interferon-gamma and lipopolysaccharide-mediated stimulation. METHODS Macrophages were isolated from subcutaneous B16 melanoma tumors implanted in C57 BL/6 mice. Wound macrophages were harvested from subcutaneously-implanted PVA sponges, and resting peritoneal macrophages were harvested by peritoneal lavage. Gene expression was analyzed using an Atlas cDNA array (Clontech, Mountain View, CA). RESULTS TAM demonstrated a pattern of gene expression distinct from both wound and peritoneal macrophage. There is an increase in proliferation-associated genes and in genes encoding the ultrastructural proteins cofillin, zyxin, and vimentin more commonly associated with fibroblast-like cells. In addition, an observed decrease in expression of the CD14 gene, and increase in inhibitory pathways including osteopontin and its receptor CD44, the inositol 1,4,5-triphosphate receptor, and the receptors for interleukin-4 and granulocyte monocyte-colony stimulating factor could explain the resistance of TAM to lipopolysaccharide-mediated stimulation. There was also a significant decrease in the expression of the interferon-gamma second messenger, IRF-1. CONCLUSIONS This study has identified a number of pathways involved in the suppression of TAM function. Targeting of these pathways may allow for the generation of more effective immune-modulatory anti-neoplastic therapy.
Collapse
Affiliation(s)
- Michael D Duff
- Department of Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Kittleson MM, Lowenstein CJ, Hare JM. Novel pathogenetic mechanisms in myocarditis: nitric oxide signaling. Heart Fail Clin 2007; 1:345-61. [PMID: 17386859 DOI: 10.1016/j.hfc.2005.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Savino W, Villa-Verde DMS, Mendes-da-Cruz DA, Silva-Monteiro E, Perez AR, Aoki MDP, Bottasso O, Guiñazú N, Silva-Barbosa SD, Gea S. Cytokines and cell adhesion receptors in the regulation of immunity to Trypanosoma cruzi. Cytokine Growth Factor Rev 2007; 18:107-24. [PMID: 17339126 DOI: 10.1016/j.cytogfr.2007.01.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pathophysiology of Chagas' disease is not completely defined, although innate and adaptative immune responses are crucial. In acute infection some parasite antigens can activate macrophages, and this may result in pro-inflammatory cytokine production, nitric oxide synthesis, and consequent control of parasitemia and mortality. Cell-mediated immunity in Trypanosoma cruzi infection is also modulated by cytokines, but in addition to parasite-specific responses, autoimmunity can be also triggered. Importantly, cytokines may also play a role in the cell-mediated immunity of infected subjects. Finally, leukocyte influx towards target tissues is regulated by cytokines, chemokines, and extracellular matrix components which may represent potential therapeutic targets in infected patients. Here we will discuss recent findings on the role of cytokines, chemokines and extracellular matrix components in the regulation of innate and adaptive immunity during T. cruzi infection.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory of Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ave. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|