1
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Raeisi H, Azimirad M, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective. Front Immunol 2022; 13:972930. [PMID: 36081500 PMCID: PMC9445313 DOI: 10.3389/fimmu.2022.972930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile), known as the major cause of antibiotic-associated diarrhea, is regarded as one of the most common healthcare-associated bacterial infections worldwide. Due to the emergence of hypervirulent strains, development of new therapeutic methods for C. difficile infection (CDI) has become crucially important. In this context, antibodies have been introduced as valuable tools in the research and clinical environments, as far as the effectiveness of antibody therapy for CDI was reported in several clinical investigations. Hence, production of high-performance antibodies for treatment of CDI would be precious. Traditional approaches of antibody generation are based on hybridoma technology. Today, application of in vitro technologies for generating recombinant antibodies, like phage display, is considered as an appropriate alternative to hybridoma technology. These techniques can circumvent the limitations of the immune system and they can be exploited for production of antibodies against different types of biomolecules in particular active toxins. Additionally, DNA encoding antibodies is directly accessible in in vitro technologies, which enables the application of antibody engineering in order to increase their sensitivity and specificity. Here, we review the application of antibodies for CDI treatment with an emphasis on recombinant fragment antibodies. Also, this review highlights the current and future prospects of the aforementioned approaches for antibody-mediated therapy of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ke S, Pollock NR, Wang XW, Chen X, Daugherty K, Lin Q, Xu H, Garey KW, Gonzales-Luna AJ, Kelly CP, Liu YY. Integrating gut microbiome and host immune markers to understand the pathogenesis of Clostridioides difficile infection. Gut Microbes 2021; 13:1-18. [PMID: 34132169 PMCID: PMC8210874 DOI: 10.1080/19490976.2021.1935186] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile (C.difficile) infection is the most common cause of healthcare-associated infection and an important cause of morbidity and mortality among hospitalized patients. A comprehensive understanding of C.difficile infection (CDI) pathogenesis is crucial for disease diagnosis, treatment, and prevention. Here, we characterized gut microbial compositions and a broad panel of innate and adaptive immunological markers in 243 well-characterized human subjects (including 187 subjects with both microbiota and immune marker data), who were divided into four phenotype groups: CDI, Asymptomatic Carriage, Non-CDI Diarrhea, and Control. We found that the interactions between gut microbiota and host immune markers are very sensitive to the status of C.difficile colonization and infection. We demonstrated that incorporating both gut microbiome and host immune marker data into classification models can better distinguish CDI from other groups than can either type of data alone. Our classification models display robust diagnostic performance to differentiate CDI from Asymptomatic carriage (AUC~0.916), Non-CDI Diarrhea (AUC~0.917), or Non-CDI that combines all other three groups (AUC~0.929). Finally, we performed symbolic classification using selected features to derive simple mathematic formulas that explicitly quantify the interactions between the gut microbiome and host immune markers. These findings support the potential roles of gut microbiota and host immune markers in the pathogenesis of CDI. Our study provides new insights for a microbiome-immune marker-derived signature to diagnose CDI and design therapeutic strategies for CDI.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MassachusettsUSA,School of Animal Science and Technology, State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University 330045, China
| | - Nira R. Pollock
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xu-Wen Wang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MassachusettsUSA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kaitlyn Daugherty
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Qianyun Lin
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hua Xu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translation Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Anne J. Gonzales-Luna
- Department of Pharmacy Practice and Translation Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Ciarán P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,Ciarán P. Kelly Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MassachusettsUSA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MassachusettsUSA,CONTACT Yang-Yu Liu Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MassachusettsUSA
| |
Collapse
|
4
|
Jansen KU, Gruber WC, Simon R, Wassil J, Anderson AS. The impact of human vaccines on bacterial antimicrobial resistance. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4031-4062. [PMID: 34602924 PMCID: PMC8479502 DOI: 10.1007/s10311-021-01274-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 05/07/2023]
Abstract
At present, the dramatic rise in antimicrobial resistance (AMR) among important human bacterial pathogens is reaching a state of global crisis threatening a return to the pre-antibiotic era. AMR, already a significant burden on public health and economies, is anticipated to grow even more severe in the coming decades. Several licensed vaccines, targeting both bacterial (Haemophilus influenzae type b, Streptococcus pneumoniae, Salmonella enterica serovar Typhi) and viral (influenza virus, rotavirus) human pathogens, have already proven their anti-AMR benefits by reducing unwarranted antibiotic consumption and antibiotic-resistant bacterial strains and by promoting herd immunity. A number of new investigational vaccines, with a potential to reduce the spread of multidrug-resistant bacterial pathogens, are also in various stages of clinical development. Nevertheless, vaccines as a tool to combat AMR remain underappreciated and unfortunately underutilized. Global mobilization of public health and industry resources is key to maximizing the use of licensed vaccines, and the development of new prophylactic vaccines could have a profound impact on reducing AMR.
Collapse
Affiliation(s)
| | | | - Raphael Simon
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| | - James Wassil
- Pfizer Patient and Health Impact, Collegeville, PA USA
- Present Address: Vaxcyte, 353 Hatch Drive, Foster City, CA 94404 USA
| | | |
Collapse
|
5
|
Seeberger PH. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines Against Bacterial Infections Using a Medicinal Chemistry Approach. Chem Rev 2021; 121:3598-3626. [PMID: 33794090 PMCID: PMC8154330 DOI: 10.1021/acs.chemrev.0c01210] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The glycocalyx, a thick layer of carbohydrates, surrounds the cell wall of most bacterial and parasitic pathogens. Recognition of these unique glycans by the human immune system results in destruction of the invaders. To elicit a protective immune response, polysaccharides either isolated from the bacterial cell surface or conjugated with a carrier protein, for T-cell help, are administered. Conjugate vaccines based on isolated carbohydrates currently protect millions of people against Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitides infections. Active pharmaceutical ingredients (APIs) are increasingly discovered by medicinal chemistry and synthetic in origin, rather than isolated from natural sources. Converting vaccines from biologicals to pharmaceuticals requires a fundamental understanding of how the human immune system recognizes carbohydrates and could now be realized. To illustrate the chemistry-based approach to vaccine discovery, I summarize efforts focusing on synthetic glycan-based medicinal chemistry to understand the mammalian antiglycan immune response and define glycan epitopes for novel synthetic glycoconjugate vaccines against Streptococcus pneumoniae, Clostridium difficile, Klebsiella pneumoniae, and other bacteria. The chemical tools described here help us gain fundamental insights into how the human system recognizes carbohydrates and drive the discovery of carbohydrate vaccines.
Collapse
|
6
|
Leslie JL, Jenior ML, Vendrov KC, Standke AK, Barron MR, O'Brien TJ, Unverdorben L, Thaprawat P, Bergin IL, Schloss PD, Young VB. Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant. mBio 2021; 12:e00522-21. [PMID: 33785619 PMCID: PMC8092246 DOI: 10.1128/mbio.00522-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile, a Gram-positive, spore-forming bacterium, is the primary cause of infectious nosocomial diarrhea. Antibiotics are a major risk factor for C. difficile infection (CDI), as they disrupt the gut microbial community, enabling increased germination of spores and growth of vegetative C. difficile To date, the only single-species bacterial preparation that has demonstrated efficacy in reducing recurrent CDI in humans is nontoxigenic C. difficile Using multiple infection models, we determined that precolonization with a less virulent strain is sufficient to protect from challenge with a lethal strain of C. difficile, surprisingly even in the absence of adaptive immunity. Additionally, we showed that protection is dependent on high levels of colonization by the less virulent strain and that it is mediated by exclusion of the invading strain. Our results suggest that reduction of amino acids, specifically glycine following colonization by the first strain of C. difficile, is sufficient to decrease germination of the second strain, thereby limiting colonization by the lethal strain.IMPORTANCE Antibiotic-associated colitis is often caused by infection with the bacterium Clostridioides difficile In this study, we found that reduction of the amino acid glycine by precolonization with a less virulent strain of C. difficile is sufficient to decrease germination of a second strain. This finding demonstrates that the axis of competition for nutrients can include multiple life stages. This work is important, as it is the first to identify a possible mechanism through which precolonization with C. difficile, a current clinical therapy, provides protection from reinfection. Furthermore, our work suggests that targeting nutrients utilized by all life stages could be an improved strategy for bacterial therapeutics that aim to restore colonization resistance in the gut.
Collapse
Affiliation(s)
- Jhansi L Leslie
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew L Jenior
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kimberly C Vendrov
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexandra K Standke
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Madeline R Barron
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tricia J O'Brien
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lavinia Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ingrid L Bergin
- The Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Karyal C, Hughes J, Kelly ML, Luckett JC, Kaye PV, Cockayne A, Minton NP, Griffin R. Colonisation Factor CD0873, an Attractive Oral Vaccine Candidate against Clostridioides difficile. Microorganisms 2021; 9:microorganisms9020306. [PMID: 33540694 PMCID: PMC7913071 DOI: 10.3390/microorganisms9020306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is the main cause of health-care-associated infectious diarrhoea. Toxins, TcdA and TcdB, secreted by this bacterium damage colonic epithelial cells and in severe cases this culminates in pseudomembranous colitis, toxic megacolon and death. Vaccines in human trials have focused exclusively on the parenteral administration of toxin-based formulations. These vaccines promote toxin-neutralising serum antibodies but fail to confer protection from infection in the gut. An effective route to immunise against gut pathogens and stimulate a protective mucosal antibody response (secretory immunoglobulin A, IgA) at the infection site is the oral route. Additionally, oral immunisation generates systemic antibodies (IgG). Using this route, two different antigens were tested in the hamster model: The colonisation factor CD0873 and a TcdB fragment. Animals immunised with CD0873 generated a significantly higher titre of sIgA in intestinal fluid and IgG in serum compared to naive animals, which significantly inhibited the adherence of C. difficile to Caco-2 cells. Following challenge with a hypervirulent isolate, the CD0873-immunised group showed a mean increase of 80% in time to experimental endpoint compared to naïve animals. Survival and body condition correlated with bacterial clearance and reduced pathology in the cecum. Our findings advocate CD0873 as a promising oral vaccine candidate against C. difficile.
Collapse
Affiliation(s)
- Cansu Karyal
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Jaime Hughes
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Michelle L. Kelly
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Jeni C. Luckett
- The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK;
| | - Philip V. Kaye
- Department of Histopathology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK;
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre (BRC), Nottingham NG7 2UH, UK
| | - Alan Cockayne
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Nigel P. Minton
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
| | - Ruth Griffin
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (C.K.); (J.H.); (M.L.K.); (A.C.); (N.P.M.)
- Correspondence: ; Tel.: +44-0115-7486120
| |
Collapse
|
8
|
Effect of restricted dissolved oxygen on expression of Clostridium difficile toxin A subunit from E. coli. Sci Rep 2020; 10:3059. [PMID: 32080292 PMCID: PMC7033237 DOI: 10.1038/s41598-020-59978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The repeating unit of the C. difficile Toxin A (rARU, also known as CROPS [combined repetitive oligopeptides]) C-terminal region, was shown to elicit protective immunity against C. difficile and is under consideration as a possible vaccine against this pathogen. However, expression of recombinant rARU in E. coli using the standard vaccine production process was very low. Transcriptome and proteome analyses showed that at restricted dissolved oxygen (DO) the numbers of differentially expressed genes (DEGs) was 2.5-times lower than those expressed at unrestricted oxygen. Additionally, a 7.4-times smaller number of ribosome formation genes (needed for translation) were down-regulated as compared with unrestricted DO. Higher rARU expression at restricted DO was associated with up-regulation of 24 heat shock chaperones involved in protein folding and with the up-regulation of the global regulator RNA chaperone hfq. Cellular stress response leading to down-regulation of transcription, translation, and energy generating pathways at unrestricted DO were associated with lower rARU expression. Investigation of the C. difficile DNA sequence revealed the presence of cell wall binding profiles, which based on structural similarity prediction by BLASTp, can possibly interact with cellular proteins of E. coli such as the transcriptional repressor ulaR, and the ankyrins repeat proteins. At restricted DO, rARU mRNA was 5-fold higher and the protein expression 27-fold higher compared with unrestricted DO. The report shows a strategy for improved production of C. difficile vaccine candidate in E. coli by using restricted DO growth. This strategy could improve the expression of recombinant proteins from anaerobic origin or those with cell wall binding profiles.
Collapse
|
9
|
Leslie JL, Vendrov KC, Jenior ML, Young VB. The Gut Microbiota Is Associated with Clearance of Clostridium difficile Infection Independent of Adaptive Immunity. mSphere 2019; 4:e00698-18. [PMID: 30700514 PMCID: PMC6354811 DOI: 10.1128/mspheredirect.00698-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022] Open
Abstract
Clostridium (Clostridioides) difficile, a Gram-positive, anaerobic bacterium, is the leading single cause of nosocomial infections in the United States. A major risk factor for Clostridium difficile infection (CDI) is prior exposure to antibiotics, as they increase susceptibility to CDI by altering the membership of the microbial community enabling colonization. The importance of the gut microbiota in providing protection from CDI is underscored by the reported 80 to 90% success rate of fecal microbial transplants in treating recurrent infections. Adaptive immunity, specifically humoral immunity, is also sufficient to protect from both acute and recurrent CDI. However, the role of the adaptive immune system in mediating clearance of C. difficile has yet to be resolved. Using murine models of CDI, we found that adaptive immunity is dispensable for clearance of C. difficile However, random forest analysis using only two members of the resident bacterial community correctly identified animals that would go on to clear the infection with 66.7% accuracy. These findings indicate that the indigenous gut microbiota independent of adaptive immunity facilitates clearance of C. difficile from the murine gastrointestinal tract.IMPORTANCEClostridium difficile infection is a major cause of morbidity and mortality in hospitalized patients in the United States. Currently, the role of the adaptive immune response in modulating levels of C. difficile colonization is unresolved. This work suggests that the indigenous gut microbiota is a main factor that promotes clearance of C. difficile from the GI tract. Our results show that clearance of C. difficile can occur without contributions from the adaptive immune response. This study also has implications for the design of preclinical studies testing the efficacy of vaccines on clearance of bacterial pathogens, as inherent differences in the baseline community structure of animals may bias findings.
Collapse
Affiliation(s)
- Jhansi L Leslie
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kimberly C Vendrov
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew L Jenior
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Marsh JW, Curry SR. Therapeutic Approaches for
Clostridium difficile
Infections. ACTA ACUST UNITED AC 2018; 30:9A.3.1-9A.3.9. [DOI: 10.1002/9780471729259.mc09a03s30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jane W. Marsh
- Epidemiology Research Unit, University of Pittsburgh Pittsburgh Pennsylvania
| | - Scott R. Curry
- Epidemiology Research Unit, University of Pittsburgh Pittsburgh Pennsylvania
| |
Collapse
|
11
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
12
|
Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312:G171-G193. [PMID: 27908847 PMCID: PMC5440615 DOI: 10.1152/ajpgi.00048.2015] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.
Collapse
Affiliation(s)
- Jerry M. Wells
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | - Robert J. Brummer
- 2Nutrition-Gut-Brain Interactions Research Centre, School of Medicine and Health, Örebro University, Örebro, Sweden;
| | - Muriel Derrien
- 3Centre Daniel Carasso, Danone Research, Palaiseau, France;
| | - Thomas T. MacDonald
- 4Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom;
| | - Freddy Troost
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands;
| | - Patrice D. Cani
- 6Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium;
| | - Vassilia Theodorou
- 7Neuro-Gastroenterology and Nutrition Group, Institut National de la Recherche Agronomique, Toulouse, France;
| | - Jan Dekker
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | | | - Willem M. de Vos
- 9Laboratory of Microbiology, Wageningen UR, Wageningen, The Netherlands;
| | - Annick Mercenier
- 10Institute of Nutritional Science, Nestlé Research Center, Lausanne, Switzerland; and
| | - Arjen Nauta
- 11FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
13
|
von Eichel-Streiber A, Paik W, Knight K, Gisch K, Nadjafi K, Decker C, Bosnjak O, Cheknis A, Johnson S, von Eichel-Streiber C. Induction of antitoxin responses in Clostridium-difficile-infected patients compared to healthy blood donors. Anaerobe 2016; 41:91-103. [DOI: 10.1016/j.anaerobe.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 02/08/2023]
|
14
|
Qiu H, Cassan R, Johnstone D, Han X, Joyee AG, McQuoid M, Masi A, Merluza J, Hrehorak B, Reid R, Kennedy K, Tighe B, Rak C, Leonhardt M, Dupas B, Saward L, Berry JD, Nykiforuk CL. Novel Clostridium difficile Anti-Toxin (TcdA and TcdB) Humanized Monoclonal Antibodies Demonstrate In Vitro Neutralization across a Broad Spectrum of Clinical Strains and In Vivo Potency in a Hamster Spore Challenge Model. PLoS One 2016; 11:e0157970. [PMID: 27336843 PMCID: PMC4919053 DOI: 10.1371/journal.pone.0157970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023] Open
Abstract
Clostridium difficile (C. difficile) infection (CDI) is the main cause of nosocomial antibiotic-associated colitis and increased incidence of community-associated diarrhea in industrialized countries. At present, the primary treatment of CDI is antibiotic administration, which is effective but often associated with recurrence, especially in the elderly. Pathogenic strains produce enterotoxin, toxin A (TcdA), and cytotoxin, toxin B (TcdB), which are necessary for C. difficile induced diarrhea and gut pathological changes. Administration of anti-toxin antibodies provides an alternative approach to treat CDI, and has shown promising results in preclinical and clinical studies. In the current study, several humanized anti-TcdA and anti-TcdB monoclonal antibodies were generated and their protective potency was characterized in a hamster infection model. The humanized anti-TcdA (CANmAbA4) and anti-TcdB (CANmAbB4 and CANmAbB1) antibodies showed broad spectrum in vitro neutralization of toxins from clinical strains and neutralization in a mouse toxin challenge model. Moreover, co-administration of humanized antibodies (CANmAbA4 and CANmAbB4 cocktail) provided a high level of protection in a dose dependent manner (85% versus 57% survival at day 22 for 50 mg/kg and 20 mg/kg doses, respectively) in a hamster gastrointestinal infection (GI) model. This study describes the protective effects conferred by novel neutralizing anti-toxin monoclonal antibodies against C. difficile toxins and their potential as therapeutic agents in treating CDI.
Collapse
Affiliation(s)
- Hongyu Qiu
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Robyn Cassan
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Darrell Johnstone
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Xiaobing Han
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Antony George Joyee
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Monica McQuoid
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Andrea Masi
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - John Merluza
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Bryce Hrehorak
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Ross Reid
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Kieron Kennedy
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Bonnie Tighe
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Carla Rak
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Melanie Leonhardt
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Brian Dupas
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Laura Saward
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Jody D. Berry
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Cory L. Nykiforuk
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| |
Collapse
|
15
|
Diraviyam T, He JX, Chen C, Zhao B, Michael A, Zhang X. Effect of passive immunotherapy against Clostridium difficile infection: a systematic review and meta-analysis. Immunotherapy 2016; 8:649-63. [PMID: 27140414 DOI: 10.2217/imt.16.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This systematic review aimed to determine the effect of antibody therapy against Clostridium difficile infection (CDI) using meta-analysis. In total, 28 studies (animals - 12; human - 17) were identified from the database on the basis of inclusion criteria; then selected studies were systematically reviewed and statistically analyzed. In animal experiments, the pooled relative risk of eight potential studies suggested that the antibody treatment could reduce the risk of CDI. However, the methodological heterogeneity was moderately higher. In human subjects, the majority of reports demonstrated the beneficial effect of passive immunotherapy against CDI. However, this systematic review and meta-analysis recommends that more intensive controlled studies are indispensable for legitimate confirmation.
Collapse
Affiliation(s)
| | - Jin-Xin He
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Chen Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,College of Science, Northwest A&F University, Yangling, China
| | - Antonysamy Michael
- PSG College of Arts & Science, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Xiaoying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Wang S, Rustandi RR, Lancaster C, Hong LG, Thiriot DS, Xie J, Secore S, Kristopeit A, Wang SC, Heinrichs JH. Toxicity assessment of Clostridium difficile toxins in rodent models and protection of vaccination. Vaccine 2015; 34:1319-23. [PMID: 26614590 DOI: 10.1016/j.vaccine.2015.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
Abstract
Clostridium difficile is the leading cause of hospital-acquired diarrhea, also known as C. difficile associated diarrhea. The two major toxins, toxin A and toxin B are produced by most C. difficile bacteria, but some strains, such as BI/NAP1/027 isolates, produce a third toxin called binary toxin. The precise biological role of binary toxin is not clear but it has been shown to be a cytotoxin for Vero cells. We evaluated the toxicity of these toxins in mice and hamsters and found that binary toxin causes death in both animals similar to toxins A and B. Furthermore, immunization of mice with mutant toxoids of all three toxins provided protection upon challenge with native toxins. These results support the concept that binary toxin contributes to the pathogenicity of C. difficile and provide a method for monitoring the toxicity of binary toxin components in vaccines.
Collapse
Affiliation(s)
- Su Wang
- Vaccine Basic Research, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Richard R Rustandi
- Vaccine Analytical Development, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA.
| | - Catherine Lancaster
- Vaccine Analytical Development, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Laura G Hong
- Vaccine Analytical Development, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - David S Thiriot
- Vaccine Drug Product Development, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jinfu Xie
- Vaccine Basic Research, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Susan Secore
- Vaccine Basic Research, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Adam Kristopeit
- Vaccine Process Development, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Sheng-Ching Wang
- Vaccine Process Development, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jon H Heinrichs
- Vaccine Basic Research, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
17
|
Biochemical and Immunological Characterization of Truncated Fragments of the Receptor-Binding Domains of C. difficile Toxin A. PLoS One 2015; 10:e0135045. [PMID: 26271033 PMCID: PMC4536038 DOI: 10.1371/journal.pone.0135045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/17/2015] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is an emerging pathogen responsible for opportunistic infections in hospitals worldwide and is the main cause of antibiotic-associated pseudo-membranous colitis and diarrhea in humans. Clostridial toxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) on the surface of epithelial cells in the host intestine, disrupting the intestinal barrier and ultimately leading to acute inflammation and diarrhea. The C-terminal receptor-binding domain (RBD) of TcdA, which is responsible for the initial binding of the toxin to host glycoproteins, has been predicted to contain 7 potential oligosaccharide-binding sites. To study the specific roles and functions of these 7 putative lectin-like binding regions, a consensus sequence of TcdA RBD derived from different C. difficile strains deposited in the NCBI protein database and three truncated fragments corresponding to the N-terminal (residues 1–411), middle (residues 296–701), and C-terminal portions (residues 524–911) of the RBD (F1, F2 and F3, respectively) were designed and expressed in Escherichia coli. In this study, the recombinant RBD (rRBD) and its truncated fragments were purified, characterized biologically and found to have the following similar properties: (a) are capable of binding to the cell surface of both Vero and Caco-2 cells; (b) possess Toll-like receptor agonist-like adjuvant activities that can activate dendritic cell maturation and increase the secretion of pro-inflammatory cytokines; and (c) function as potent adjuvants in the intramuscular immunization route to enhance immune responses against weak immunogens. Although F1, F2 and F3 have similar repetitive amino acid sequences and putative oligosaccharide-binding domains, they do not possess the same biological and immunological properties: (i) TcdA rRBD and its fragments bind to the cell surface, but only TcdA rRBD and F3 internalize into Vero cells within 15 min; (ii) the fragments exhibit various levels of hemagglutinin (HA) activity, with the exception of the F1 fragment, which demonstrates no HA activity; and (iii) in the presence of alum, all fragments elicit various levels of anti-toxin A-neutralizing antibody responses, but those neutralizing antibodies elicited by F2 did not protect mice against a TcdA challenge. Because TcdA rRBD, F1 and F3 formulated with alum can elicit immune protective responses against the cytotoxicity of TcdA, they represent potential components of future candidate vaccines against C. difficile-associated diseases.
Collapse
|
18
|
Staelens D, Liang S, Appeltans B, Van de Wouwer M, Van den Mooter G, Van Assche G, Himmelreich U, Vande Velde G. Visualization of delayed release of compounds from pH-sensitive capsules in vitro and in vivo in a hamster model. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:24-31. [PMID: 26190202 DOI: 10.1002/cmmi.1654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 12/23/2022]
Abstract
Delayed controlled release is an innovative strategy to locally administer therapeutic compounds (e.g. chemotherapeutics, antibodies etc.). This would improve efficiency and reduce side effects compared with systemic administration. To enable the evaluation of the efficacy of controlled release strategies both in vitro and in vivo, we investigated the release of contrast agents ((19)F-FDG and BaSO4) to the intestinal tract from capsules coated with pH-sensitive polymers (EUDRAGIT L-100) by using two complementary techniques, i.e. (19)F magnetic resonance imaging (MRI) and computed tomography (CT). Using in vitro (19)F-MRI, we were able to non-destructively and dynamically establish a time window of 2 h during which the capsules are resistant to low pH. With (19)F-MRI, we could establish the exact time point when the capsules became water permeable, before physical degradation of the capsule. This was complemented by CT imaging, which provided longitudinal information on physical degradation of the capsule at low pH that was only seen after 230 min. After oral administration to hamsters, (19)F-MRI visualized the early event whereby the capsule becomes water permeable after 2 h. Additionally, using CT, the integrity and location (stomach and small intestines) of the capsule after administration could be monitored. In conclusion, we propose combined (19)F-MRI and CT to non-invasively visualize the different temporal and spatial events regarding the release of compounds, both in an in vitro setting and in the gastrointestinal tract of small animal models. This multimodal imaging approach will enable the in vitro and in vivo evaluation of further technical improvements to controlled release strategies.
Collapse
Affiliation(s)
- Dominiek Staelens
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Sayuan Liang
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Bernard Appeltans
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Marlies Van de Wouwer
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,PharmAbs, KU Leuven, Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Wang YK, Yan YX, Kim HB, Ju X, Zhao S, Zhang K, Tzipori S, Sun X. A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters. Hum Vaccin Immunother 2015; 11:2215-22. [PMID: 26036797 PMCID: PMC4635733 DOI: 10.1080/21645515.2015.1052352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Clostridium difficile is the major cause of hospital-acquired infectious diarrhea and colitis in developed countries. The pathogenicity of C. difficile is mainly mediated by the release of 2 large potent exotoxins, toxin A (TcdA) and toxin B (TcdB), both of which require neutralization to prevent disease occurrence. We have generated a novel chimeric protein, designated mTcd138, comprised of the glucosyltransferase and cysteine proteinase domains of TcdB and the receptor binding domain of TcdA and expressed it in Bacillus megaterium. To ensure that mTcd138 is atoxic, 2 point mutations were introduced to the glucosyltransferase domain of TcdB, which essentially eliminates toxicity of mTcd138. Parenteral immunizations of mice and hamsters with mTcd138 induced protective antibodies to both toxins and provided protection against infection with the hyper-virulent C. difficile strain UK6.
Collapse
Affiliation(s)
- Yuan-Kai Wang
- a Department of Infectious Diseases and Global Health ; Tufts University Cummings School of Veterinary Medicine ; North Grafton , MA USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Clostridium difficile is a spore-forming anaerobic gram-positive organism that is the leading cause of antibiotic-associated nosocomial infectious diarrhea in the Western world. This article describes the evolving epidemiology of C difficile infection (CDI) in the twenty-first century, evaluates the importance of vaccines against the disease, and defines the roles of both innate and adaptive host immune responses in CDI. The effects of passive immunotherapy and active vaccination against CDI in both humans and animals are also discussed.
Collapse
Affiliation(s)
- Chandrabali Ghose
- Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY 10016, USA.
| | - Ciarán P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
21
|
Mathur H, Rea MC, Cotter PD, Ross RP, Hill C. The potential for emerging therapeutic options for Clostridium difficile infection. Gut Microbes 2015; 5:696-710. [PMID: 25564777 PMCID: PMC4615897 DOI: 10.4161/19490976.2014.983768] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review.
Collapse
Key Words
- ATCC, American Type Culture Collection
- CDI, Clostridium difficile infection
- CdtLoc, binary toxin locus
- Clostridium difficile
- DNA, deoxyribonucleic acid
- DPC, Dairy Products Collection
- ESCMID, European Society of Clinical Microbiology and Infectious Diseases
- ETEC, enterotoxigenic E. coli
- FDA, Food and Drug Administration
- FMT, faecal microbiota transplantation
- GIT, gastrointestinal tract
- HIV, human immunodeficiency virus
- IDSA, Infectious Diseases Society of America
- IgG, immunoglobulin G
- LTA, lipoteichoic acid
- M21V, methionine to valine substitution at residue 21
- MIC, minimum inhibitory concentration
- NGS, next generation sequencing
- NVB, Novacta Biosystems Ltd
- PMC, pseudomembranous colitis
- PaLoc, pathogenicity locus
- R027, ribotype 027
- RBD
- RBS, ribosome binding site
- RNA, ribonucleic acid
- SHEA, Society for Healthcare Epidemiology of America
- V15F, valine to phenylalanine substitution at residue 15
- antibiotics
- faecal microbiota transplantation
- receptor binding domain
- toxins
- vaccines
Collapse
Affiliation(s)
- Harsh Mathur
- School of Microbiology; University College Cork; Cork, Ireland,Teagasc Food Research Center; Moorepark; Fermoy, Ireland
| | - Mary C Rea
- Teagasc Food Research Center; Moorepark; Fermoy, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Center; Moorepark; Fermoy, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,Correspondence to: Colin Hill; ; Paul D Cotter;
| | - R Paul Ross
- Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,College of Science; Engineering and Food Science; University College Cork; Cork, Ireland
| | - Colin Hill
- School of Microbiology; University College Cork; Cork, Ireland,Alimentary Pharmabiotic Center; University College Cork; Cork, Ireland,Correspondence to: Colin Hill; ; Paul D Cotter;
| |
Collapse
|
22
|
Mizrahi A, Collignon A, Péchiné S. Passive and active immunization strategies against Clostridium difficile infections: State of the art. Anaerobe 2014; 30:210-9. [DOI: 10.1016/j.anaerobe.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
|
23
|
Rineh A, Kelso MJ, Vatansever F, Tegos GP, Hamblin MR. Clostridium difficile infection: molecular pathogenesis and novel therapeutics. Expert Rev Anti Infect Ther 2014; 12:131-50. [PMID: 24410618 DOI: 10.1586/14787210.2014.866515] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Gram-positive anaerobic bacterium Clostridium difficile produces toxins A and B, which can cause a spectrum of diseases from pseudomembranous colitis to C. difficile-associated diarrhea. A limited number of C. difficile strains also produce a binary toxin that exhibits ADP ribosyltransferase activity. Here, the structure and the mechanism of action of these toxins as well as their role in disease are reviewed. Nosocomial C. difficile infection is often contracted in hospital when patients treated with antibiotics suffer a disturbance in normal gut microflora. C. difficile spores can persist on dry, inanimate surface for months. Metronidazole and oral vancomycin are clinically used for treatment of C. difficile infection but clinical failure and concern about promotion of resistance are motivating the search for novel non-antibiotic therapeutics. Methods for controlling both toxins and spores, replacing gut microflora by probiotics or fecal transplant, and killing bacteria in the anaerobic gut by photodynamic therapy are discussed.
Collapse
Affiliation(s)
- Ardeshir Rineh
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
24
|
Clostridium difficile-induced colitis in mice is independent of leukotrienes. Anaerobe 2014; 30:90-8. [PMID: 25230329 DOI: 10.1016/j.anaerobe.2014.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 02/03/2023]
Abstract
Clostridium difficile is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis in healthcare settings. However, the host factors involved in the intestinal inflammatory response and pathogenesis of C. difficile infection (CDI) are largely unknown. Here we investigated the role of leukotrienes (LTs), a group of pro-inflammatory lipid mediators, in CDI. Notably, the neutrophil chemoattractant LTB4, but not cysteinyl (cys) LTs, was induced in the intestine of C57BL/6 mice infected with either C. difficile strain VPI 10463 or strain 630. Genetic or pharmacological ablation of LT production did not ameliorate C. difficile colitis or clinical signs of disease in infected mice. Histological analysis demonstrated that intestinal neutrophilic inflammation, edema and tissue damage in mice during acute and severe CDI were not modulated in the absence of LTs. In addition, CDI induced a burst of cytokines in the intestine of infected mice in a LT-independent manner. Serum levels of anti-toxin A immunoglobulin (Ig) G levels were also not modulated by endogenous LTs. Collectively, our results do not support a role for LTs in modulating host susceptibility to CDI in mice.
Collapse
|
25
|
Abstract
Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future.
Collapse
Affiliation(s)
- Katie Solomon
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
26
|
Antibodies for treatment of Clostridium difficile infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:913-23. [PMID: 24789799 DOI: 10.1128/cvi.00116-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibodies for the treatment of Clostridium difficile infection (CDI) have been demonstrated to be effective in the research and clinical environments. Early uncertainties about molecular and treatment modalities now appear to have converged upon the systemic dosing of mixtures of human IgG1. Although multiple examples of high-potency monoclonal antibodies (MAbs) exist, significant difficulties were initially encountered in their discovery. This minireview describes historical and contemporary MAbs and highlights differences between the most potent MAbs, which may offer insight into the pathogenesis and treatment of CDI.
Collapse
|
27
|
Leuzzi R, Adamo R, Scarselli M. Vaccines against Clostridium difficile. Hum Vaccin Immunother 2014; 10:1466-77. [PMID: 24637887 DOI: 10.4161/hv.28428] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens.
Collapse
|
28
|
Spencer J, Leuzzi R, Buckley A, Irvine J, Candlish D, Scarselli M, Douce GR. Vaccination against Clostridium difficile using toxin fragments: Observations and analysis in animal models. Gut Microbes 2014; 5:225-32. [PMID: 24637800 PMCID: PMC4063849 DOI: 10.4161/gmic.27712] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile is a major cause of antibiotic associated diarrhea. Recently, we have shown that effective protection can be mediated in hamsters through the inclusion of specific recombinant fragments from toxin A and B in a systemically delivered vaccine. Interestingly while neutralizing antibodies to the binding domains of both toxin A and B are moderately protective, enhanced survival is observed when fragments from the glucosyltransferase region of toxin B replace those from the binding domain of this toxin. In this addendum, we discuss additional information that has been derived from such vaccination studies. This includes observations on efficacy and cross-protection against different ribotypes mediated by these vaccines and the challenges that remain for a vaccine which prevents clinical symptoms but not colonization. The use and value of vaccination both in the prevention of infection and for treatment of disease relapse will be discussed.
Collapse
Affiliation(s)
- Janice Spencer
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | | | - Anthony Buckley
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | - June Irvine
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | - Denise Candlish
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | | | - Gillian R Douce
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK,Correspondence to: Gillian R Douce,
| |
Collapse
|
29
|
Maynard-Smith M, Ahern H, McGlashan J, Nugent P, Ling R, Denton H, Coxon R, Landon J, Roberts A, Shone C. Recombinant antigens based on toxins A and B of Clostridium difficile that evoke a potent toxin-neutralising immune response. Vaccine 2014; 32:700-5. [PMID: 24342251 PMCID: PMC3969267 DOI: 10.1016/j.vaccine.2013.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/08/2013] [Accepted: 11/19/2013] [Indexed: 02/04/2023]
Abstract
Infection with the bacterium Clostridium difficile causes symptoms ranging from mild to severe diarrhoea with life-threatening complications and remains a significant burden to healthcare systems throughout the developed world. Two potent cytotoxins, TcdA and TcdB are the prime mediators of the syndrome and rapid neutralisation of these would afford significant benefits in disease management. In the present study, a broad range of non-toxic, recombinant fragments derived from TcdA and TcdB were designed for soluble expression in E. coli and assessed for their capacity to generate a potent toxin-neutralising immune response as assessed by cell-based assays. Significant differences between the efficacies of isolated TcdA and TcdB regions with respect to inducing a neutralising immune response were observed. While the C-terminal repeat regions played the principal role in generating neutralising antibodies to TcdA, in the case of TcdB, the central region domains dominated the neutralising immune response. For both TcdA and TcdB, fragments which comprised domains from both the central and C-terminal repeat region of the toxins were found to induce the most potent neutralising immune responses. Generated antibodies neutralised toxins produced by a range of C. difficile isolates including ribotype 027 and 078 strains. Passive immunisation of hamsters with a combination of antibodies to TcdA and TcdB fragments afforded complete protection from severe CDI induced by a challenge of bacterial spores. The results of the study are discussed with respect to the development of a cost effective immunotherapeutic approach for the management of C. difficile infection.
Collapse
Affiliation(s)
| | - Helen Ahern
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Joanna McGlashan
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Philip Nugent
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Roger Ling
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Harriet Denton
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Ruth Coxon
- MicroPharm Ltd, Station Road Industrial Estate, Newcastle Emlyn, Carmarthenshire SA38 9BY, UK
| | - John Landon
- MicroPharm Ltd, Station Road Industrial Estate, Newcastle Emlyn, Carmarthenshire SA38 9BY, UK
| | - April Roberts
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Clifford Shone
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|
30
|
Yan W, Shin KS, Wang SJ, Xiang H, Divers T, McDonough S, Bowman J, Rowlands A, Akey B, Mohamed H, Chang YF. Equine hyperimmune serum protects mice against Clostridium difficile spore challenge. J Vet Sci 2013; 15:249-58. [PMID: 24136208 PMCID: PMC4087227 DOI: 10.4142/jvs.2014.15.2.249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium (C.) difficile is a common cause of nosocomial diarrhea in horses. Vancomycin and metronidazole have been used as standard treatments but are only moderately effective, which highlights the need for a novel alternative therapy. In the current study, we prepared antiserum of equine origin against both C. difficile toxins A and B as well as whole-cell bacteria. The toxin-neutralizing activities of the antibodies were evaluated in vitro and the prophylactic effects of in vivo passive immunotherapy were demonstrated using a conventional mouse model. The data demonstrated that immunized horses generated antibodies against both toxins A and B that possessed toxin-neutralizing activity. Additionally, mice treated with the antiserum lost less weight without any sign of illness and regained weight back to a normal range more rapidly compared to the control group when challenged orally with 107C. difficile spores 1 day after serum injection. These results indicate that intravenous delivery of hyperimmune serum can protect animals from C. difficile challenge in a dose-dependent manner. Hence, immunotherapy may be a promising prophylactic strategy for preventing C. difficile infection in horses.
Collapse
Affiliation(s)
- Weiwei Yan
- Animal Health Diagnostic Center, Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lanis JM, Heinlen LD, James JA, Ballard JD. Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB. PLoS Pathog 2013; 9:e1003523. [PMID: 23935501 PMCID: PMC3731247 DOI: 10.1371/journal.ppat.1003523] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/11/2013] [Indexed: 12/18/2022] Open
Abstract
The Clostridium difficile exotoxin, TcdB, which is a major virulence factor, varies between strains of this pathogen. Herein, we show that TcdB from the epidemic BI/NAP1/027 strain of C. difficile is more lethal, causes more extensive brain hemorrhage, and is antigenically variable from TcdB produced by previously studied strains of this pathogen (TcdB003). In mouse intoxication assays, TcdB from a ribotype 027 strain (TcdB027) was at least four fold more lethal than TcdB003. TcdB027 caused a previously undescribed brain hemorrhage in mice and this correlated with a heightened sensitivity of brain microvascular endothelial cells to the toxin. TcdB003 and TcdB027 also differed in their antigenic profiles and did not share cross-neutralizing epitopes in a major immunogenic region of the protein. Solid phase humoral mapping of epitopes in the carboxy-terminal domains (CTD) of TcdB027 and TcdB003 identified 11 reactive epitopes that varied between the two forms of TcdB, and 13 epitopes that were shared or overlapping. Despite the epitope differences and absence of neutralizing epitopes in the CTD of TcdB027, a toxoid form of this toxin primed a strong protective response. These findings indicate TcdB027 is a more potent toxin than TcdB003 as measured by lethality assays and pathology, moreover the sequence differences between the two forms of TcdB alter antigenic epitopes and reduce cross-neutralization by antibodies targeting the CTD. During the past decade, the C. difficile BI/NAP1/027 strain has emerged and in some settings predominated as the cause of C. difficile infection. Moreover, in some reports C. difficile BI/NAP1/027 has been associated with more severe disease. The reasons for association of this strain with more severe disease and relapse are poorly understood. We compared the toxicity and antigenic profiles of the major C. difficile virulence factor, TcdB, from a previously studied reference strain and a BI/NAP1/027 strain. The results indicate TcdB027, the toxin from the BI/NAP1/027 strain, is more lethal and causes more extensive brain hemorrhaging than TcdB003, the toxin produced by a reference strain of C. difficile. Furthermore, the results show that the antigenic carboxy-terminal domain (CTD) encodes at least 11 epitopes that differ between the two forms of TcdB. In line with this, experiments demonstrate that antiserum against the CTD does not cross-neutralize TcdB003 and TcdB027 toxicity against CHO cells, and TcdB027 appears to be devoid of neutralizing epitopes in this domain. These findings indicate differences in TcdB003 and TcdB027 contribute to increased virulence of C. difficile BI/NAP1/027 and reduce the likelihood of acquired immunity providing cross-protection against infection by these strains.
Collapse
Affiliation(s)
- Jordi M. Lanis
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Latisha D. Heinlen
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Judith A. James
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
32
|
Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013; 4:185. [PMID: 23874333 PMCID: PMC3709412 DOI: 10.3389/fimmu.2013.00185] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 01/06/2023] Open
Abstract
Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer’s patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Department of Immunology and Allergy, University State Hospital Lausanne (CHUV) , Lausanne , Switzerland
| |
Collapse
|
33
|
Martin CE, Broecker F, Oberli MA, Komor J, Mattner J, Anish C, Seeberger PH. Immunological evaluation of a synthetic Clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. J Am Chem Soc 2013; 135:9713-9722. [PMID: 23795894 DOI: 10.1021/ja401410y] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clostridium difficile is the cause of emerging nosocomial infections that result in abundant morbidity and mortality worldwide. Thus, the development of a vaccine to kill the bacteria to prevent this disease is highly desirable. Several recently identified bacterial surface glycans, such as PS-I and PS-II, are promising vaccine candidates to preclude C. difficile infection. To circumvent difficulties with the generation of natural PS-I due to its low expression levels in bacterial cultures, improved chemical synthesis protocols for the pentasaccharide repeating unit of PS-I and oligosaccharide substructures were utilized to produce large quantities of well-defined PS-I related glycans. The analysis of stool and serum samples obtained from C. difficile patients using glycan microarrays of synthetic oligosaccharide epitopes revealed humoral immune responses to the PS-I related glycan epitopes. Two different vaccine candidates were evaluated in the mouse model. A synthetic PS-I repeating unit CRM197 conjugate was immunogenic in mice and induced immunoglobulin class switching as well as affinity maturation. Microarray screening employing PS-I repeating unit substructures revealed the disaccharide Rha-(1→3)-Glc as a minimal epitope. A CRM197-Rha-(1→3)-Glc disaccharide conjugate was able to elicit antibodies recognizing the C. difficile PS-I pentasaccharide. We herein demonstrate that glycan microarrays exposing defined oligosaccharide epitopes help to determine the minimal immunogenic epitopes of complex oligosaccharide antigens. The synthetic PS-I pentasaccharide repeating unit as well as the Rha-(1→3)-Glc disaccharide are promising novel vaccine candidates against C. difficile that are currently in preclinical evaluation.
Collapse
|
34
|
Protective efficacy induced by recombinant Clostridium difficile toxin fragments. Infect Immun 2013; 81:2851-60. [PMID: 23716610 DOI: 10.1128/iai.01341-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection.
Collapse
|
35
|
Anosova NG, Brown AM, Li L, Liu N, Cole LE, Zhang J, Mehta H, Kleanthous H. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters. J Med Microbiol 2013; 62:1394-1404. [PMID: 23518659 DOI: 10.1099/jmm.0.056796-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile infection (CDI) has been identified as the leading cause of nosocomial diarrhoea and pseudomembranous colitis associated with antibiotic therapy. Recent epidemiological changes as well as increases in the number of outbreaks of strains associated with increased virulence and higher mortality rates underscore the importance of identifying alternatives to antibiotics to manage this important disease. Animal studies have clearly demonstrated the roles that toxins A and B play in gut inflammation as well as diarrhoea; therefore it is not surprising that serum anti-toxin A and B IgG are associated with protection against recurrent CDI. In humans, strong humoral toxin-specific immune responses elicited by natural C. difficile infection is associated with recovery and lack of disease recurrence, whereas insufficient humoral responses are associated with recurrent CDI. The first generation of C. difficile vaccine that contained inactivated toxin A and B was found to be completely protective against death and diarrhoea in the hamster C. difficile challenge model. When tested in young healthy volunteers in Phase I clinical trials, this investigational vaccine was shown to be safe and immunogenic. Moreover, in a separate study this vaccine was able to prevent further relapses in three out of three patients who had previously suffered from chronic relapsing C. difficile-associated diarrhoea. Herein we examined the immunogenicity and protective activity of a next-generation Sanofi Pasteur two-component highly purified toxoid vaccine in a C. difficile hamster model. This model is widely recognized as a stringent and relevant choice for the evaluation of novel treatment strategies against C. difficile and was used in preclinical testing of the first-generation vaccine candidate. Intramuscular (i.m.) immunizations with increasing doses of this adjuvanted toxoid vaccine protected hamsters from mortality and disease symptoms in a dose-dependent manner. ELISA measurements of pre-challenge sera showed that the median anti-toxin A and anti-toxin B IgG titres in the group of surviving animals were significantly higher than the median values in the group of animals that did not survive challenge. Assessment of the neutralizing activity of these sera revealed a statistically significant difference between the levels of both toxin A and toxin B neutralizing titres in protected versus unprotected animals as the median anti-toxin A and anti-toxin B neutralizing titres from surviving animals were higher than the median values from animals that succumbed to challenge. Statistically significant correlations between the toxin-specific binding titres and toxin neutralizing titres were seen for both toxin A and toxin B responses. The role of circulating anti-toxin antibodies in immunity against disease was evaluated by passive transfer of immune sera against C. difficile toxoids to naïve hamsters. Passively immunized animals were protected against morbidity and mortality associated with C. difficile challenge. Taken together, these results indicate the ability of i.m. immunization with inactivated toxins A and B to induce robust dose-dependent anti-toxin A and anti-toxin B IgG responses, the principal role of circulating anti-toxin antibody in immunity against disease and that antibody toxin binding and neutralization titres can serve as correlates of protection in the hamster challenge model of C. difficile.
Collapse
Affiliation(s)
- Natalie G Anosova
- Sanofi Pasteur Biologics, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Anna M Brown
- Sanofi Pasteur Biologics, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Lu Li
- Sanofi Pasteur Biologics, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Nana Liu
- Sanofi Pasteur Biologics, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Leah E Cole
- Sanofi Pasteur Biologics, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Jinrong Zhang
- Sanofi Pasteur Biologics, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Hersh Mehta
- Sanofi Pasteur Biologics, 38 Sidney Street, Cambridge, MA 02139, USA
| | - Harry Kleanthous
- Sanofi Pasteur Biologics, 38 Sidney Street, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
A mixture of functionally oligoclonal humanized monoclonal antibodies that neutralize Clostridium difficile TcdA and TcdB with high levels of in vitro potency shows in vivo protection in a hamster infection model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:377-90. [PMID: 23324518 DOI: 10.1128/cvi.00625-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clostridium difficile infections are a major cause of antibiotic-associated diarrhea in hospital and care facility patients. In spite of the availability of effective antibiotic treatments, C. difficile infection (CDI) is still a major cause of patient suffering, death, and substantial health care costs. Clostridium difficile exerts its major pathological effects through the actions of two protein exotoxins, TcdA and TcdB, which bind to and disrupt gut tissue. Antibiotics target the infecting bacteria but not the exotoxins. Administering neutralizing antibodies against TcdA and TcdB to patients receiving antibiotic treatment might modulate the effects of the exotoxins directly. We have developed a mixture of three humanized IgG1 monoclonal antibodies (MAbs) which neutralize TcdA and TcdB to address three clinical needs: reduction of the severity and duration of diarrhea, reduction of death rates, and reduction of the rate of recurrence. The UCB MAb mixture showed higher potency in a variety of in vitro binding and neutralization assays (∼10-fold improvements), higher levels of protection in a hamster model of CDI (82% versus 18% at 28 days), and higher valencies of toxin binding (12 versus 2 for TcdA and 3 versus 2 for TcdB) than other agents in clinical development. Comparisons of the MAb properties also offered some insight into the potential relative importance of TcdA and TcdB in the disease process.
Collapse
|
37
|
Artiushin S, Timoney JF, Fettinger M, Fallon L, Rathgeber R. Immunisation of mares with binding domains of toxins A and B of Clostridium difficile elicits serum and colostral antibodies that block toxin binding. Equine Vet J 2012. [PMID: 23206274 DOI: 10.1111/evj.12007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
REASONS FOR PERFORMING STUDY Enterocolitis caused by Clostridium difficile (C. difficile) is a serious, sometimes fatal, disease of neonatal foals and older horses. Toxins A and B (TcdA and B) produced by C. difficile are important virulence factors. Immunisation of mares with receptor binding domains of toxins may prevent or reduce the severity of C. difficile colitis in foals. OBJECTIVES To determine whether antibodies generated in the pregnant mare to the binding regions of TcdA and B will neutralise TcdA and B toxicity. METHODS Sequences encoding the binding domains of each toxin were isolated by PCR amplification from C. difficile JF09, a foal isolate, and cloned and expressed into pET15b. Thirteen mares were immunised twice 2 weeks apart with 200 μg of each recombinant protein with Quil A 2 months prior to foaling. Antibodies were assayed in the sera and colostrum by ELISA and for ability to block the cytopathic activity of each of toxin for equine endothelial cells. RESULTS All mares produced strong serum antibody responses to the binding domain of each toxin. A high level of toxin-specific antibodies was also detected in colostrum and in most foal sera 2 days after suckling. Diluted sera and colostrum premixed with either TcdA or B had no effect on the morphology of equine endothelial cells. Application of the same concentration of toxins alone or premixed with nonimmune mare/foal serum or colostrum led to an unambiguous cytopathic effect that ranged from complete degradation to varying degrees of cell rounding. CONCLUSIONS Immunisation of pregnant mares with recombinant binding domains of TcdA and B of C. difficile resulted in the production of specific antibodies in serum and colostrum that blocked the cytopathic activity of toxins. POTENTIAL RELEVANCE Results of studies support the feasibility of a prepartum vaccine against C. difficile enterocolitis in foals.
Collapse
Affiliation(s)
- S Artiushin
- Gluck Equine Research Center, University of Kentucky, USA
| | | | | | | | | |
Collapse
|
38
|
Madan R, Petri WA. Immune responses to Clostridium difficile infection. Trends Mol Med 2012; 18:658-66. [PMID: 23084763 PMCID: PMC3500589 DOI: 10.1016/j.molmed.2012.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 08/30/2012] [Accepted: 09/14/2012] [Indexed: 01/24/2023]
Abstract
Clostridium difficile is the causal agent of antibiotic-associated diarrhea and is a leading cause of hospital-acquired infections in the US. C. difficile has been known to cause severe diarrhea and colitis for more than 30 years, but the emergence of a newer, hypervirulent strain of C. difficile (BI/NAP1) has further compounded the problem, and recently both the number of cases and mortality associated with C. difficile-associated diarrhea have been increasing. One of the major drivers of disease pathogenesis is believed to be an excessive host inflammatory response. A better understanding of the host inflammation and immune mechanisms that modulate the course of disease and control host susceptibility to C. difficile could lead to novel (host-targeted) strategies for combating the challenges posed by this deadly infection. This review summarizes our current knowledge of the host inflammatory response during C. difficile infection.
Collapse
Affiliation(s)
- Rajat Madan
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908-1337, USA
| | | |
Collapse
|
39
|
Rebeaud F, Bachmann MF. Immunization strategies for Clostridium difficile infections. Expert Rev Vaccines 2012; 11:469-79. [PMID: 22551032 DOI: 10.1586/erv.12.18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile infection is a major cause of nosocomial disease in Western countries. The recent emergence of hypervirulent strains resistant to most antibiotics correlates with increasing disease incidence, severity and lethal outcomes. Current treatments rely on metronidazol and vancomycin, but the limited ability of these antibiotics to cure infection and prevent relapse highlights the need for new strategies. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of Clostridium difficile now permits the development of new products specifically targeting the pathogen. Immune-based strategies relying on active vaccination or passive administration of antibody products are the focus of intense research and, today, the efficacy of monoclonal antibodies and of two vaccines are evaluated clinically. This review presents recent data, discusses the different strategies and highlights the challenges linked to the development of immunization strategies against this emerging threat.
Collapse
Affiliation(s)
- Fabien Rebeaud
- Cytos Biotechnology AG, Wagistrasse 25, 8952 Schlieren, Switzerland
| | | |
Collapse
|
40
|
Marozsan AJ, Ma D, Nagashima KA, Kennedy BJ, Kang YK, Arrigale RR, Donovan GP, Magargal WW, Maddon PJ, Olson WC. Protection against Clostridium difficile infection with broadly neutralizing antitoxin monoclonal antibodies. J Infect Dis 2012; 206:706-13. [PMID: 22732923 DOI: 10.1093/infdis/jis416] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The spore-forming bacterium Clostridium difficile represents the principal cause of hospital-acquired diarrhea and pseudomembranous colitis worldwide. C. difficile infection (CDI) is mediated by 2 bacterial toxins, A and B; neutralizing these toxins with monoclonal antibodies (mAbs) provides a potential nonantibiotic strategy for combating the rising prevalence, severity, and recurrence of CDI. Novel antitoxin mAbs were generated in mice and were humanized. The humanized antitoxin A mAb PA-50 and antitoxin B mAb PA-41 have picomolar potencies in vitro and bind to novel regions of the respective toxins. In a hamster model for CDI, 95% of animals treated with a combination of humanized PA-50 and PA-41 showed long-term survival relative to 0% survival of animals treated with standard antibiotics or comparator mAbs. These humanized mAbs provide insight into C. difficile intoxication and hold promise as potential nonantibiotic agents for improving clinical management of CDI.
Collapse
|
41
|
A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection. Infect Immun 2012; 80:2678-88. [PMID: 22615245 DOI: 10.1128/iai.00215-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence. However, because of their large size and complex multifunctional domain structures, it has been a challenge to produce native recombinant toxins that may serve as vaccine candidates. Here, we describe a novel chimeric toxin vaccine that retains major neutralizing epitopes from both toxins and confers complete protection against primary and recurrent CDI in mice. Using a nonpathogenic Bacillus megaterium expression system, we generated glucosyltransferase-deficient holotoxins and demonstrated their loss of toxicity. The atoxic holotoxins induced potent antitoxin neutralizing antibodies showing little cross-immunogenicity or protection between TcdA and TcdB. To facilitate simultaneous protection against both toxins, we generated an active clostridial toxin chimera by switching the receptor binding domain of TcdB with that of TcdA. The toxin chimera was fully cytotoxic and showed potent proinflammatory activities. This toxicity was essentially abolished in a glucosyltransferase-deficient toxin chimera, cTxAB. Parenteral immunization of mice or hamsters with cTxAB induced rapid and potent neutralizing antibodies against both toxins. Complete and long-lasting disease protection was conferred by cTxAB vaccinations against both laboratory and hypervirulent C. difficile strains. Finally, prophylactic cTxAB vaccination prevented spore-induced disease relapse, which constitutes one of the most significant clinical issues in CDI. Thus, the rational design of recombinant chimeric toxins provides a novel approach for protecting individuals at high risk of developing CDI.
Collapse
|
42
|
Tian JH, Fuhrmann SR, Kluepfel-Stahl S, Carman RJ, Ellingsworth L, Flyer DC. A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. Vaccine 2012; 30:4249-58. [PMID: 22537987 DOI: 10.1016/j.vaccine.2012.04.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/12/2012] [Accepted: 04/10/2012] [Indexed: 12/11/2022]
Abstract
Antibodies targeting the Clostridium difficile toxin A and toxin B confer protective immunity to C. difficile associated disease in animal models and provided protection against recurrent C. difficile disease in human subjects. These antibodies are directed against the receptor binding domains (RBD) located in the carboxy-terminal portion of both toxins and inhibit binding of the toxins to their receptors. We have constructed a recombinant fusion protein containing portions of the RBD from both toxin A and toxin B and expressed it in Escherichia coli. The fusion protein induced high levels of serum antibodies to both toxins A and B capable of neutralizing toxin activity both in vitro and in vivo. In a hamster C. difficile infection model, immunization with the fusion protein reduced disease severity and conferred significant protection against a lethal dose of C. difficile spores. Our studies demonstrate the potential of the fusion protein as a vaccine that could provide protection from C. difficile disease in humans.
Collapse
Affiliation(s)
- Jing-Hui Tian
- Intercell, USA, 22 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Models of Clostridium difficile infection (C. difficile) have been used extensively for Clostridium difficile (C. difficile) research. The hamster model of C. difficile infection has been most extensively employed for the study of C. difficile and this has been used in many different areas of research, including the induction of C. difficile, the testing of new treatments, population dynamics and characterization of virulence. Investigations using in vitro models for C. difficile introduced the concept of colonization resistance, evaluated the role of antibiotics in C. difficile development, explored population dynamics and have been useful in the evaluation of C. difficile treatments. Experiments using models have major advantages over clinical studies and have been indispensible in furthering C. difficile research. It is important for future study programs to carefully consider the approach to use and therefore be better placed to inform the design and interpretation of clinical studies.
Collapse
Affiliation(s)
- Emma L. Best
- Leeds Teaching Hospitals NHS Trust; Microbiology Department; Old Medical School; Leeds General Infirmary; Leeds, UK,Correspondence to: Emma L. Best,
| | - Jane Freeman
- Leeds Teaching Hospitals NHS Trust; Microbiology Department; Old Medical School; Leeds General Infirmary; Leeds, UK
| | - Mark H. Wilcox
- Leeds Teaching Hospitals NHS Trust; Microbiology Department; Old Medical School; Leeds General Infirmary; Leeds, UK,University of Leeds; Leeds, UK
| |
Collapse
|
44
|
Roberts A, McGlashan J, Al-Abdulla I, Ling R, Denton H, Green S, Coxon R, Landon J, Shone C. Development and evaluation of an ovine antibody-based platform for treatment of Clostridium difficile infection. Infect Immun 2012; 80:875-82. [PMID: 22144483 PMCID: PMC3264293 DOI: 10.1128/iai.05684-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/18/2011] [Indexed: 12/18/2022] Open
Abstract
Treatment of Clostridium difficile is a major problem as a hospital-associated infection which can cause severe, recurrent diarrhea. The currently available antibiotics are not effective in all cases and alternative treatments are required. In the present study, an ovine antibody-based platform for passive immunotherapy of C. difficile infection is described. Antibodies with high toxin-neutralizing titers were generated against C. difficile toxins A and B and were shown to neutralize three sequence variants of these toxins (toxinotypes) which are prevalent in human C. difficile infection. Passive immunization of hamsters with a mixture of toxin A and B antibodies protected them from a challenge with C. difficile spores in a dose-dependent manner. Antibodies to both toxins A and B were required for protection. The administration of toxin A and B antibodies up to 24 h postchallenge was found to reduce significantly the onset of C. difficile infection compared to nonimmunized controls. Protection from infection was also demonstrated with key disease isolates (ribotypes 027 and 078), which are members of the hypervirulent C. difficile clade. The ribotype 027 and 078 strains also have the capacity to produce an active binary toxin and these data suggest that neutralization of this toxin is unnecessary for the management of infection induced by these strains. In summary, the data suggest that ovine toxin A and B antibodies may be effective in the treatment of C. difficile infection; their potential use for the management of severe, fulminant cases is discussed.
Collapse
Affiliation(s)
- April Roberts
- Health Protection Agency, Porton Down, Salisbury, Wilts, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Keessen E, Gaastra W, Lipman L. Clostridium difficile infection in humans and animals, differences and similarities. Vet Microbiol 2011; 153:205-17. [DOI: 10.1016/j.vetmic.2011.03.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 03/07/2011] [Accepted: 03/17/2011] [Indexed: 01/05/2023]
|
46
|
Siddiqui F, O'Connor JR, Nagaro K, Cheknis A, Sambol SP, Vedantam G, Gerding DN, Johnson S. Vaccination with parenteral toxoid B protects hamsters against lethal challenge with toxin A-negative, toxin B-positive clostridium difficile but does not prevent colonization. J Infect Dis 2011; 205:128-33. [PMID: 22124129 DOI: 10.1093/infdis/jir688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Toxin A has historically been regarded as the primary virulence determinant in Clostridium difficile infection, but naturally occurring toxin A-negative, toxin B-positive (A-/B+) C. difficile strains are known to be virulent. To determine the role of toxin B in these strains, we immunized hamsters with a toxoid prepared from purified toxin B to determine whether they would be protected from lethal challenge with an A-/B+ strain of C. difficile.
Collapse
|
47
|
Péchiné S, Denève C, Le Monnier A, Hoys S, Janoir C, Collignon A. Immunization of hamsters againstClostridium difficileinfection using the Cwp84 protease as an antigen. ACTA ACUST UNITED AC 2011; 63:73-81. [DOI: 10.1111/j.1574-695x.2011.00832.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Abstract
Clostridium difficile is the most common cause of nosocomial bacterial diarrhoea in the Western world. Diarrhoea and colitis are caused by the actions of toxins A and B released by pathogenic strains of C. difficile. Adaptive immune responses to these toxins influence the outcomes of C. difficile infection (CDI). Symptomless carriers of toxinogenic C. difficile and those with a single episode of CDI without recurrence show more robust antitoxin immune responses than those with symptomatic and recurrent disease. Immune-based approaches to CDI therapy and prevention have been developed using active vaccination or passive immunotherapy targeting C. difficile toxins. Innate immune responses to C. difficile and its toxins are also central to the pathophysiology of CDI. An acute intestinal inflammatory response with prominent neutrophil infiltration and associated tissue injury is characteristic of CDI. Furthermore, inhibiting this acute inflammatory response can protect against the intestinal injury that results from exposure to C. difficile toxins in animal models. Studies examining host risk factors for CDI have led to validated clinical prediction tools for risk of primary and of recurrent disease. Risk factors associated with severe CDI with poor clinical outcomes have also been identified and include marked elevation of the peripheral white blood cell count and elevated creatinine. However, further work is needed in this area to guide the clinical application of new approaches to disease prevention and treatment including new antimicrobials as well as passive and active immunization.
Collapse
Affiliation(s)
- Ciarán P Kelly
- Gastroenterology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Lorraine Kyne
- Department of Medicine for the Older Person, Mater Misericordiae University Hospital and University College, Dublin, Ireland
| |
Collapse
|
49
|
Demarest SJ, Hariharan M, Elia M, Salbato J, Jin P, Bird C, Short JM, Kimmel BE, Dudley M, Woodnutt G, Hansen G. Neutralization of Clostridium difficile toxin A using antibody combinations. MAbs 2011; 2:190-8. [PMID: 20150758 DOI: 10.4161/mabs.2.2.11220] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The pathogenicity of Clostridium difficile (C. difficile) is mediated by the release of two toxins, A and B. Both toxins contain large clusters of repeats known as cell wall binding (CWB) domains responsible for binding epithelial cell surfaces. Several murine monoclonal antibodies were generated against the CWB domain of toxin A and screened for their ability to neutralize the toxin individually and in combination. Three antibodies capable of neutralizing toxin A all recognized multiple sites on toxin A, suggesting that the extent of surface coverage may contribute to neutralization. Combination of two noncompeting antibodies, denoted 3358 and 3359, enhanced toxin A neutralization over saturating levels of single antibodies. Antibody 3358 increased the level of detectable CWB domain on the surface of cells, while 3359 inhibited CWB domain cell surface association. These results suggest that antibody combinations that cover a broader epitope space on the CWB repeat domains of toxin A (and potentially toxin B) and utilize multiple mechanisms to reduce toxin internalization may provide enhanced protection against C. difficile-associated diarrhea.
Collapse
|
50
|
Kaslow DC, Shiver JW. Clostridium difficileand Methicillin-ResistantStaphylococcus aureus:Emerging Concepts in Vaccine Development. Annu Rev Med 2011; 62:201-15. [DOI: 10.1146/annurev-med-051109-101544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David C. Kaslow
- Merck Research Laboratories, Merck & Co. Inc., North Wales, Pennsylvania 19454; ,
| | - John W. Shiver
- Merck Research Laboratories, Merck & Co. Inc., North Wales, Pennsylvania 19454; ,
| |
Collapse
|