1
|
Wang H, Yi W, Qin H, Wang Q, Guo R, Pan Z. A Genetically Engineered Bivalent Vaccine Coexpressing a Molecular Adjuvant against Classical Swine Fever and Porcine Epidemic Diarrhea. Int J Mol Sci 2023; 24:11954. [PMID: 37569329 PMCID: PMC10419043 DOI: 10.3390/ijms241511954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Classical swine fever (CSF) and porcine epidemic diarrhea (PED) are highly contagious viral diseases that pose a significant threat to piglets and cause substantial economic losses in the global swine industry. Therefore, the development of a bivalent vaccine capable of targeting both CSF and PED simultaneously is crucial. In this study, we genetically engineered a recombinant classical swine fever virus (rCSFV) expressing the antigenic domains of the porcine epidemic diarrhea virus (PEDV) based on the modified infectious cDNA clone of the vaccine strain C-strain. The S1N and COE domains of PEDV were inserted into C-strain cDNA clone harboring the mutated 136th residue of Npro and substituted 3'UTR to generate the recombinant chimeric virus vC/SM3'UTRN-S1NCOE. To improve the efficacy of the vaccine, we introduced the tissue plasminogen activator signal (tPAs) and CARD domain of the signaling molecule VISA into vC/SM3'UTRN-S1NCOE to obtain vC/SM3'UTRN-tPAsS1NCOE and vC/SM3'UTRN-CARD/tPAsS1NCOE, respectively. We characterized three vaccine candidates in vitro and investigated their immune responses in rabbits and pigs. The NproD136N mutant exhibited normal autoprotease activity and mitigated the inhibition of IFN-β induction. The introduction of tPAs and the CARD domain led to the secretory expression of the S1NCOE protein and upregulated IFN-β induction in infected cells. Immunization with recombinant CSFVs expressing secretory S1NCOE resulted in a significantly increased in PEDV-specific antibody production, and coexpression of the CARD domain of VISA upregulated the PEDV-specific IFN-γ level in the serum of vaccinated animals. Notably, vaccination with vC/SM3'UTRN-CARD/tPAsS1NCOE conferred protection against virulent CSFV and PEDV challenge in pigs. Collectively, these findings demonstrate that the engineered vC/SM3'UTRN-CARD/tPAsS1NCOE is a promising bivalent vaccine candidate against both CSFV and PEDV infections.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.W.); (W.Y.); (H.Q.)
| | - Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.W.); (W.Y.); (H.Q.)
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.W.); (W.Y.); (H.Q.)
| | - Qin Wang
- World Organization for Animal Health Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.W.); (W.Y.); (H.Q.)
| |
Collapse
|
2
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
3
|
Sefidi-Heris Y, Jahangiri A, Mokhtarzadeh A, Shahbazi MA, Khalili S, Baradaran B, Mosafer J, Baghbanzadeh A, Hejazi M, Hashemzaei M, Hamblin MR, Santos HA. Recent progress in the design of DNA vaccines against tuberculosis. Drug Discov Today 2020; 25:S1359-6446(20)30345-7. [PMID: 32927065 DOI: 10.1016/j.drudis.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Current tuberculosis (TB) vaccines have some disadvantages and many efforts have been undertaken to produce effective TB vaccines. As a result of their advantages, DNA vaccines are promising future vaccine candidates. This review focuses on the design and delivery of novel DNA-based vaccines against TB.
Collapse
Affiliation(s)
- Youssof Sefidi-Heris
- Department of Biology, College of Sciences, Shiraz University, 7146713565, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, 193955487, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajaee Teacher Training University, 1678815811, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, 9516915169, Torbat Heydariyeh, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, 9196773117, Mashhad, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, 5166614731, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, 9861615881, Zabol, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
4
|
Preclinical Development and Assessment of Viral Vectors Expressing a Fusion Antigen of Plasmodium falciparum LSA1 and LSAP2 for Efficacy against Liver-Stage Malaria. Infect Immun 2020; 88:IAI.00573-19. [PMID: 31740525 PMCID: PMC6977128 DOI: 10.1128/iai.00573-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Despite promising progress in malaria vaccine development in recent years, an efficacious subunit vaccine against Plasmodium falciparum remains to be licensed and deployed. Cell-mediated protection from liver-stage malaria relies on a sufficient number of antigen-specific T cells reaching the liver during the time that parasites are present. A single vaccine expressing two antigens could potentially increase both the size and breadth of the antigen-specific response while halving vaccine production costs. Despite promising progress in malaria vaccine development in recent years, an efficacious subunit vaccine against Plasmodium falciparum remains to be licensed and deployed. Cell-mediated protection from liver-stage malaria relies on a sufficient number of antigen-specific T cells reaching the liver during the time that parasites are present. A single vaccine expressing two antigens could potentially increase both the size and breadth of the antigen-specific response while halving vaccine production costs. In this study, we investigated combining two liver-stage antigens, P. falciparum LSA1 (PfLSA1) and PfLSAP2, and investigated the induction of protective efficacy by coadministration of single-antigen vectors or vaccination with dual-antigen vectors, using simian adenovirus and modified vaccinia virus Ankara vectors. The efficacy of these vaccines was assessed in mouse malaria challenge models using chimeric P. berghei parasites expressing the relevant P. falciparum antigens and challenging mice at the peak of the T cell response. Vaccination with a combination of the single-antigen vectors expressing PfLSA1 or PfLSAP2 was shown to improve protective efficacy compared to vaccination with each single-antigen vector alone. Vaccination with dual-antigen vectors expressing both PfLSA1 and PfLSAP2 resulted in responses to both antigens, particularly in outbred mice, and most importantly, the efficacy was equivalent to that of vaccination with a mixture of single-antigen vectors. Based on these promising data, dual-antigen vectors expressing PfLSA1 and PfLSAP2 will now proceed to manufacturing and clinical assessment under good manufacturing practice (GMP) guidelines.
Collapse
|
5
|
Xu L, Qin Z, Qiao L, Wen J, Shao H, Wen G, Pan Z. Characterization of thermostable Newcastle disease virus recombinants expressing the hemagglutinin of H5N1 avian influenza virus as bivalent vaccine candidates. Vaccine 2020; 38:1690-1699. [PMID: 31937412 DOI: 10.1016/j.vaccine.2019.12.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/11/2023]
Abstract
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated the thermostable recombinant NDV (rNDV) expressing the different forms of hemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) H5N1 based on the full-length cDNA clone of thermostable TS09-C strain. The recombinant thermostable Newcastle disease viruses, rTS-HA, rTS-HA1 and rTS-tPAs/HA1, expressed the HA, HA1 or modified HA1 protein with the tissue plasminogen activator signal sequence (tPAs), respectively. The rNDVs displayed similar thermostability, growth kinetics and pathogenicity compared with the parental TS09-C virus. The tPAs facilitated the expression and secretion of HA1 protein in cells infected with rNDV. Animal studies demonstrated that immunization with rNDVs elicited effective H5N1- and NDV-specific antibody responses and conferred immune protection against lethal H5N1 and NDV challenges in chickens and mice. Importantly, vaccination of rTS-tPAs/HA1 resulted in enhanced protective immunity in chickens and mice. Our study thus provides a novel thermostable NDV-vectored vaccine candidate expressing a soluble form of a heterologous viral protein, which will greatly aid the poultry industry in developing countries.
Collapse
Affiliation(s)
- Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Wen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
Hou J, Shrivastava S, Fraser CC, Loo HL, Wong LH, Ho V, Fink K, Ooi EE, Chen J. Dengue Mosaic Vaccines Enhance Cellular Immunity and Expand the Breadth of Neutralizing Antibody Against All Four Serotypes of Dengue Viruses in Mice. Front Immunol 2019; 10:1429. [PMID: 31281322 PMCID: PMC6596366 DOI: 10.3389/fimmu.2019.01429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
An estimated 400 million people in the world are infected with any of the four types of dengue virus (DENV) annually. The only licensed dengue vaccine cannot effectively prevent infection with all of the four DENVs, especially in those immunologically naïve at baseline. In this study, we explored a mosaic vaccine approach, which utilizes an artificial recombinant sequence for each serotype to achieve maximum coverage of variant epitopes in the four DENVs. We determined the immunogenicity and cross-reactivity of DNA plasmids encoding individual mosaic sequences or the natural sequences in mice. We show that the mosaic vaccines, particularly those targeting DENV serotype 1 and 2, improved vaccine immunogenicity by increasing the percentage of antigen-specific IFNγ- or TNFα-secreting CD4 and CD8 T cells, and titers of neutralizing antibodies. The mosaic vaccine diversified and broadened anti-dengue T cell responses and cross-reactive neutralizing antibodies against all four serotypes. The mosaic vaccines also induced higher level of antigen-specific B cell responses. These results suggest that mosaic vaccines comprising of DENV serotype 1 and 2 variant epitopes could stimulate strong and broad immune responses against all four serotypes.
Collapse
Affiliation(s)
- Jue Hou
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Shubham Shrivastava
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Christopher C Fraser
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Hooi Linn Loo
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Lan Hiong Wong
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Victor Ho
- Singapore Immunology Network, AStar, Singapore, Singapore
| | - Katja Fink
- Singapore Immunology Network, AStar, Singapore, Singapore
| | - Eng Eong Ooi
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Koch Institute for Integrative Cancer Research and Departments of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, Anis FZ, Norazmi MN, Acosta A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis (Edinb) 2019; 115:26-41. [PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
Collapse
Affiliation(s)
- M E Sarmiento
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - N Alvarez
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - K L Chin
- Department of Biomedical Sciences and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Sabah, Malaysia
| | - F Bigi
- Institute of Biotechnology, INTA, Buenos Aires, Argentina
| | - Y Tirado
- Finlay Institute of Vaccines, La Habana, Cuba
| | - M A García
- Finlay Institute of Vaccines, La Habana, Cuba
| | - F Z Anis
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - M N Norazmi
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| | - A Acosta
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Schindewolf C, Menachery VD. Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism. Viruses 2019; 11:E74. [PMID: 30658390 PMCID: PMC6356267 DOI: 10.3390/v11010074] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/28/2022] Open
Abstract
Efforts towards developing a vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV) have yielded promising results. Utilizing a variety of platforms, several vaccine approaches have shown efficacy in animal models and begun to enter clinical trials. In this review, we summarize the current progress towards a MERS-CoV vaccine and highlight potential roadblocks identified from previous attempts to generate coronavirus vaccines.
Collapse
Affiliation(s)
- Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555 TX, USA.
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555 TX, USA.
| |
Collapse
|
9
|
Immunogenicity assay of KatG protein from Mycobacterium tuberculosis in mice: preliminary screening of TB vaccine. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Tang J, Cai Y, Liang J, Tan Z, Tang X, Zhang C, Cheng L, Zhou J, Wang H, Yam WC, Chen X, Wang H, Chen Z. In vivo electroporation of a codon-optimized BER opt DNA vaccine protects mice from pathogenic Mycobacterium tuberculosis aerosol challenge. Tuberculosis (Edinb) 2018; 113:65-75. [PMID: 30514515 DOI: 10.1016/j.tube.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/17/2022]
Abstract
DNA vaccines have been extensively studied as preventative and therapeutic interventions for various infectious diseases such as tuberculosis, HIV/AIDS and influenza. Despite promising progresses made, improving the immunogenicity of DNA vaccine remains a technical challenge for clinical development. In this study, we investigated a tuberculosis DNA vaccine BERopt, which contained a codon-optimized fusion immunogen Ag85B-ESAT-6-Rv2660c for enhanced mammalian cell expression and immunogenicity. BERopt immunization through in vivo electroporation in BALB/c mice induced surprisingly high frequencies of Ag85B tetramer+ CD8+ T cells in peripheral blood and IFN-γ-secreting CD8+ T cells in splenocytes. Meanwhile, the BERopt vaccine-induced long-lasting T cell immunity protected BALB/c mice from high dose viral challenge using a modified vaccinia virus Tiantan strain expressing mature Ag85B protein (MVTT-m85B) and the virulent M. tb H37Rv aerosol challenge. Since the BERopt DNA vaccine does not induce anti-vector immunity, the strong immunogenicity and protective efficacy of this novel DNA vaccine warrant its future development for M. tb prevention and immunotherapy to alleviate the global TB burden.
Collapse
Affiliation(s)
- Jiansong Tang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China; HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Yi Cai
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Jianguo Liang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Xian Tang
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Chi Zhang
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Lin Cheng
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Jingying Zhou
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Haibo Wang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xinchun Chen
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Hui Wang
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China.
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China; HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China.
| |
Collapse
|
11
|
Ajamian L, Melnychuk L, Jean-Pierre P, Zaharatos GJ. DNA Vaccine-Encoded Flagellin Can Be Used as an Adjuvant Scaffold to Augment HIV-1 gp41 Membrane Proximal External Region Immunogenicity. Viruses 2018; 10:E100. [PMID: 29495537 PMCID: PMC5869493 DOI: 10.3390/v10030100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Flagellin's potential as a vaccine adjuvant has been increasingly explored over the last three decades. Monomeric flagellin proteins are the only known agonists of Toll-like receptor 5 (TLR5). This interaction evokes a pro-inflammatory state that impacts upon both innate and adaptive immunity. While pathogen associated molecular patterns (PAMPs) like flagellin have been used as stand-alone adjuvants that are co-delivered with antigen, some investigators have demonstrated a distinct advantage to incorporating antigen epitopes within the structure of flagellin itself. This approach has been particularly effective in enhancing humoral immune responses. We sought to use flagellin as both scaffold and adjuvant for HIV gp41 with the aim of eliciting antibodies to the membrane proximal external region (MPER). Accordingly, we devised a straightforward step-wise approach to select flagellin-antigen fusion proteins for gene-based vaccine development. Using plasmid DNA vector-based expression in mammalian cells, we demonstrate robust expression of codon-optimized full length and hypervariable region-deleted constructs of Salmonella enterica subsp. enterica serovar Typhi flagellin (FliC). An HIV gp41 derived sequence including the MPER (gp41607-683) was incorporated into various positions of these constructs and the expressed fusion proteins were screened for effective secretion, TLR5 agonist activity and adequate MPER antigenicity. We show that incorporation of gp41607-683 into a FliC-based scaffold significantly augments gp41607-683 immunogenicity in a TLR5 dependent manner and elicits modest MPER-specific humoral responses in a mouse model.
Collapse
Affiliation(s)
- Lara Ajamian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada.
| | - Luca Melnychuk
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada.
| | - Patrick Jean-Pierre
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Gerasimos J Zaharatos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Division of Infectious Disease, Department of Medicine & Division of Medical Microbiology, Department of Clinical Laboratory Medicine, Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
12
|
Ong E, Wong MU, He Y. Identification of New Features from Known Bacterial Protective Vaccine Antigens Enhances Rational Vaccine Design. Front Immunol 2017; 8:1382. [PMID: 29123525 PMCID: PMC5662880 DOI: 10.3389/fimmu.2017.01382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
With many protective vaccine antigens reported in the literature and verified experimentally, how to use the knowledge mined from these antigens to support rational vaccine design and study underlying design mechanism remains unclear. In order to address the problem, a systematic bioinformatics analysis was performed on 291 Gram-positive and Gram-negative bacterial protective antigens with experimental evidence manually curated in the Protegen database. The bioinformatics analyses evaluated included subcellular localization, adhesin probability, peptide signaling, transmembrane α-helix and β-barrel, conserved domain, Clusters of Orthologous Groups, and Gene Ontology functional annotations. Here we showed the critical role of adhesins, along with subcellular localization, peptide signaling, in predicting secreted extracellular or surface-exposed protective antigens, with mechanistic explanations supported by functional analysis. We also found a significant negative correlation of transmembrane α-helix to antigen protectiveness in Gram-positive and Gram-negative pathogens, while a positive correlation of transmembrane β-barrel was observed in Gram-negative pathogens. The commonly less-focused cytoplasmic and cytoplasmic membrane proteins could be potentially predicted with the help of other selection criteria such as adhesin probability and functional analysis. The significant findings in this study can support rational vaccine design and enhance our understanding of vaccine design mechanisms.
Collapse
Affiliation(s)
- Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Mei U Wong
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.,Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Constructing novel chimeric DNA vaccine against Salmonella enterica based on SopB and GroEL proteins: an in silico approach. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0360-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Karbalaei Zadeh Babaki M, Soleimanpour S, Rezaee SA. Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microb Pathog 2017; 112:20-29. [PMID: 28942172 DOI: 10.1016/j.micpath.2017.08.040] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/24/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most life-threatening mycobacterial species which is increasing the death rate due to emerging multi-drug resistant (MDR) strains. Concerned health authorities worldwide are interested in developing an effective vaccine to prevent the spread of Mtb. After years of research, including successful identification of many Mtb immunogenic molecules, effective therapeutic agents or a vaccine have yet to be found. However, among the identified Mtb immunogenes, antigen 85 (Ag85) complex (Ag85A, Ag85B, and Ag85C) is receiving attention from scientists as it allows bacteria to evade the host immune response by preventing formation of phagolysosomes for eradication of infection. Due to their importance, A85 molecules are being utilized as tools in diagnostic methods and in the construction of new vaccines, such as recombinant attenuated vaccines, DNA vaccines, and subunit vaccines. This paper represents a comprehensive review of studies on Mtb molecules examining pathogenicity, biochemistry, immunology, and the role of Mtb in therapeutic or vaccine research.
Collapse
Affiliation(s)
- Mohsen Karbalaei Zadeh Babaki
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Cloning and Expression of a Secretory form of Truncated ORF2 (aa 112-607) from Hepatitis E Virus in the pVAX1 Vector. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Melnychuk L, Ajamian L, Jean-Pierre P, Liang J, Gheorghe R, Wainberg MA, Zaharatos GJ. Development of a DNA vaccine expressing a secreted HIV-1 gp41 ectodomain that includes the membrane-proximal external region. Vaccine 2017; 35:2736-2744. [PMID: 28392143 DOI: 10.1016/j.vaccine.2017.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/15/2017] [Accepted: 03/11/2017] [Indexed: 12/17/2022]
Abstract
A limited number of sites on the HIV-1 Envelope protein are vulnerable to broadly neutralizing antibodies (bnAbs). One of these sites, the membrane proximal external region (MPER), is located at the C-terminus of the gp41 ectodomain (gp41ecto). This highly conserved sequence is bound by several well-characterized bnAbs. Efforts to produce a gp41 immunogen are in part hampered by the MPER's hydrophobicity and propensity to induce aggregation. We sought to produce a DNA vaccine expressing a gp41ecto that is both secreted from mammalian cells and maintains binding by bnAbs to the MPER. Through in silico analysis, we predicted regions of gp41ecto that could induce aggregation and possibly hinder secretion. We generated deletion mutants of gp41ecto and tested their ability to be secreted by mammalian cells. Upon deletion of regions in either the fusion peptide (FP) or MPER, secretion of the gp41ecto increased. In an effort to both augment secretion and maintain binding by bnAbs, we developed constructs with the FP deletion and introduced point mutations in the MPER. Two constructs (gp41 ΔFP and gp41 ΔFP+I682E) maintained binding by gp41 MPER-specific bnAbs (4E10, Z13e1 and 10E8). These were evaluated as DNA vaccines in a mouse model. Both vaccines proved to be immunogenic and appeared to elicit some MPER-specific antibodies that bound gp41 ectodomain-derived proteins but not short peptides spanning the MPER. No neutralizing capacity was detected against a clade C virus containing a homologous MPER.
Collapse
Affiliation(s)
- Luca Melnychuk
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Lara Ajamian
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Jiaming Liang
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Romina Gheorghe
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Mark A Wainberg
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Gerasimos J Zaharatos
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada; Division of Infectious Diseases, Department of Medicine, Jewish General Hospital, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Farhadi T, Ranjbar MM. Designing and modeling of complex DNA vaccine based on MOMP of Chlamydia trachomatis: an in silico approach. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13721-016-0142-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Singh VK, Srivastava R, Srivastava BS. Manipulation of BCG vaccine: a double-edged sword. Eur J Clin Microbiol Infect Dis 2016; 35:535-43. [PMID: 26810060 DOI: 10.1007/s10096-016-2579-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG), an attenuated vaccine derived from M. bovis, is the only licensed vaccine against tuberculosis (TB). Despite its protection against TB in children, the protective efficacy in pulmonary TB is variable in adolescents and adults. In spite of the current knowledge of molecular biology, immunology and cell biology, infectious diseases such as TB and HIV/AIDS are still challenges for the scientific community. Genetic manipulation facilitates the construction of recombinant BCG (rBCG) vaccine that can be used as a highly immunogenic vaccine against TB with an improved safety profile, but, still, the manipulation of BCG vaccine to improve efficacy should be carefully considered, as it can bring in both favourable and unfavourable effects. The purpose of this review is not to comprehensively review the interaction between microorganisms and host cells in order to use rBCG expressing M. tuberculosis (Mtb) immunodominant antigens that are available in the public domain, but, rather, to also discuss the limitations of rBCG vaccine, expressing heterologous antigens, during manipulation that pave the way for a promising new vaccine approach.
Collapse
Affiliation(s)
- V K Singh
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 22184, Lund, Sweden.
| | - R Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - B S Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
19
|
Farshadpour F, Makvandi M, Taherkhani R. Design, Construction and Cloning of Truncated ORF2 and tPAsp-PADRE-Truncated ORF2 Gene Cassette From Hepatitis E Virus in the pVAX1 Expression Vector. Jundishapur J Microbiol 2015; 8:e26035. [PMID: 26865938 PMCID: PMC4744464 DOI: 10.5812/jjm.26035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Hepatitis E Virus (HEV) is the causative agent of enterically transmitted acute hepatitis and has high mortality rate of up to 30% among pregnant women. Therefore, development of a novel vaccine is a desirable goal. OBJECTIVES The aim of this study was to construct tPAsp-PADRE-truncated open reading frame 2 (ORF2) and truncated ORF2 DNA plasmid, which can assist future studies with the preparation of an effective vaccine against Hepatitis E Virus. MATERIALS AND METHODS A synthetic codon-optimized gene cassette encoding tPAsp-PADRE-truncated ORF2 protein was designed, constructed and analyzed by some bioinformatics software. Furthermore, a codon-optimized truncated ORF2 gene was amplified by the polymerase chain reaction (PCR), with a specific primer from the previous construct. The constructs were sub-cloned in the pVAX1 expression vector and finally expressed in eukaryotic cells. RESULTS Sequence analysis and bioinformatics studies of the codon-optimized gene cassette revealed that codon adaptation index (CAI), GC content, and frequency of optimal codon usage (Fop) value were improved, and performance of the secretory signal was confirmed. Cloning and sub-cloning of the tPAsp-PADRE-truncated ORF2 gene cassette and truncated ORF2 gene were confirmed by colony PCR, restriction enzymes digestion and DNA sequencing of the recombinant plasmids pVAX-tPAsp-PADRE-truncated ORF2 (aa 112-660) and pVAX-truncated ORF2 (aa 112-660). The expression of truncated ORF2 protein in eukaryotic cells was approved by an Immunofluorescence assay (IFA) and the reverse transcriptase polymerase chain reaction (RT-PCR) method. CONCLUSIONS The results of this study demonstrated that the tPAsp-PADRE-truncated ORF2 gene cassette and the truncated ORF2 gene in recombinant plasmids are successfully expressed in eukaryotic cells. The immunogenicity of the two recombinant plasmids with different formulations will be evaluated as a novel DNA vaccine in future investigations.
Collapse
Affiliation(s)
- Fatemeh Farshadpour
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, IR Iran
- Health Research Institute, Infectious and Tropical Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Manoochehr Makvandi
- Health Research Institute, Infectious and Tropical Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Reza Taherkhani
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, IR Iran
- Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, IR Iran
| |
Collapse
|
20
|
Dan X, Han L, Riaz H, Luo X, Liu X, Chong Z, Yang L. Construction and evaluation of the novel DNA vaccine harboring the inhibin α (1-32) and the RF-amide related peptide-3 genes for improving fertility in mice. Exp Anim 2015; 65:17-25. [PMID: 26437787 PMCID: PMC4783647 DOI: 10.1538/expanim.15-0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To further improve fertility of animals, a novel gene RFRP-3 (RF-amide
related peptide-3, RFRP-3) was used to construct DNA vaccines with INH
α (1–32) (inhibin, INH) fragment for the first time.
The aim of this study was to evaluate the effects of novel DNA vaccines on fertility in
mice. Synthesized SINH and SRFRP (INH and RFRP genes
were separately ligated to the C-terminus of the small envelope protein of the hepatitis B
virus (HBV-S) gene) fragments were inserted into multiple cloning site of pIRES vector to
develop p-SINH/SRFRP. The synthesized tissue plasminogen activator (TPA) signal sequence
was then inserted into the p-SINH/SRFRP to construct p-TPA-SINH/TPA-SFRFP. Meanwhile,
p-SINH was prepared and considered as positive control. Forty Kunming mice were equally
divided into four groups and respectively immunized by electroporation with p-SINH,
p-SINH/SRFRP and p-TPA-SINH/TPA-SRFRP vaccine (three times at 2 weeks interval) and saline
as control. Results showed that the average antibodies (P/N value) of anti-INH and
anti-RFRP in mice inoculated with p-TPA-SINH/TPA-SFRFP were significantly higher
(P<0.05) than those inoculated with p-SINH/SRFRP and the positive
rates were 100% (anti-INH) and 90% (anti-RFRP) respectively, at 2 weeks after the third
immunization. Litter size of mice immunized with the three recombinant plasmids was higher
(P<0.05) than that of the control, and litter size of mice immunized
with p-TPA-SINH/TPA-SRFRP significantly increased (P<0.05) compared
with p-SINH. These results suggested that the p-TPA-SINH/TPA-SRFRP harboring
INH and RFRP genes was successfully constructed and
had good immunogenicity, and might effectively increase litter size.
Collapse
Affiliation(s)
- Xingang Dan
- Key Lab of Education Ministry of China in Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | | | | | | | | | | | | |
Collapse
|
21
|
Han K, Zhao D, Liu Y, Huang X, Yang J, Liu Q, An F, Li Y. Design and evaluation of a polytope construct with multiple B and T epitopes against Tembusu virus infection in ducks. Res Vet Sci 2015; 104:174-80. [PMID: 26850557 DOI: 10.1016/j.rvsc.2015.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/27/2015] [Accepted: 09/13/2015] [Indexed: 11/25/2022]
Abstract
Tembusu virus (TMUV) is a newly emerging pathogenic flavivirus that is causing massive economic loss in Chinese poultry industry; until now, there is no effective vaccine or drug for its prevention. Epitope-based vaccination is a promising approach to achieve protective immunity and to avoid immunopathology. In present study, based on in silico epitope selection, we optimized and proposed a polytope DNA vaccine (pVAX1-rTEM) consisting B-cell and T cell epitopes from the TMUV envelope (E) protein. The immunogenicity and protective efficacy of constructed polytope DNA vaccine was assessed by in vitro and in vivo experiments. In in vitro assays, the expressed pVAX1-rTEM showed reactivity with Tembusu positive serum. Its protective efficacy against TMUV infection was evaluated in ducks. The results showed that pVAX1-rTEM was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. These results indicate that pVAX1-rTEM may be a promising candidate vaccine for prevention of TMUV infection.
Collapse
Affiliation(s)
- Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Fengjiao An
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
22
|
Khalili S, Rahbar MR, Dezfulian MH, Jahangiri A. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol 2015; 379:66-78. [DOI: 10.1016/j.jtbi.2015.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/25/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023]
|
23
|
Villarreal DO, Walters J, Laddy DJ, Yan J, Weiner DB. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. Hum Vaccin Immunother 2015; 10:2188-98. [PMID: 25424922 DOI: 10.4161/hv.29574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.
Collapse
Affiliation(s)
- Daniel O Villarreal
- a Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
24
|
Köhler SM, Baillie LW, Beyer W. BclA and toxin antigens augment each other to protect NMRI mice from lethal Bacillus anthracis challenge. Vaccine 2015; 33:2771-7. [PMID: 25917676 DOI: 10.1016/j.vaccine.2015.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/16/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022]
Abstract
While proving highly effective in controlling Anthrax in farm animals all over the world currently attenuated live anthrax vaccines employed in a veterinary context suffer from drawbacks such as residual virulence, short term protection, variation in quality and, most importantly, lack of efficacy if administered simultaneously with antibiotics. These limitations have stimulated the development of non-living component vaccines which induce a broad spectrum immune response capable of targeting both toxaemia (as in the case of PA based vaccines) and bacteraemia. To contribute to this several new approaches were tested in outbred NMRI mice for antibody titres and protectiveness. Plasmids encoding a recombinant toxin derived fusion peptide and a spore surface derived peptide were tested as DNA-vaccines in comparison to their protein counterparts utilising two adjuvant approaches and two DNA-vector backbones. The combination of two plasmids encoding LFD1PAD4-mIPS1 and TPA-BclAD1D3-LAMP1, when delivered by GeneGun, protected 90% of the animals against a lethal challenge with 25LD50 spores of the Ames strain of Bacillus anthracis. Single applications of either antigen component showed significantly lower protection rates, indicating the beneficial interaction between anti-spore and anti-toxin components for an acellular vaccine formulation.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Animals, Outbred Strains
- Anthrax/prevention & control
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/immunology
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/immunology
- Bacillus anthracis/immunology
- Biolistics
- Disease Models, Animal
- Female
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Spores, Bacterial/immunology
- Toxins, Biological/genetics
- Toxins, Biological/immunology
- Vaccines, Acellular/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Susanne M Köhler
- Institute of Environmental and Animal Hygiene, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany.
| | - Les W Baillie
- Cardiff School of Pharmacy and Pharmaceutical Science, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Wolfgang Beyer
- Institute of Environmental and Animal Hygiene, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| |
Collapse
|
25
|
Jones CH, Hakansson AP, Pfeifer BA. Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design. J Mater Chem B 2014; 46:8053-8068. [PMID: 29887986 PMCID: PMC5990286 DOI: 10.1039/c4tb01058b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| |
Collapse
|
26
|
Abstract
INTRODUCTION Tuberculosis (TB) remains a major health problem and novel vaccination regimens are urgently needed. AREAS COVERED DNA vaccines against TB have been tested in various preclinical models and strategies have been developed to increase their immunogenicity in large animal species. DNA vaccines are able to induce a wide variety of immune responses, including CD8(+) T-cell-mediated cytolytic and IFN-γ responses. DNA vaccination may be valuable in heterologous prime-boost strategies with the currently used bacillus Calmette-Guérin (BCG) vaccine. This approach could broaden the antigenic repertoire of BCG and enhance its weak induction of MHC class I-restricted immune responses. EXPERT OPINION DNA vaccines offer a number of advantages over certain other types of vaccines, such as the induction of robust MHC class I-restricted cytotoxic T lymphocyte (CTL), their generic manufacturing platform and their relatively low manufacturing costs. Because of their strong potential for inducing memory responses, DNA vaccines are particularly suited for priming immune responses. Furthermore, DNA vaccine technology may help antigen discovery by facilitating screening of candidate vaccines. Co-administration of BCG with plasmid DNA coding for immunodominant, subdominant and phase-specific antigens, poorly expressed by BCG, may lead to the development of improved TB vaccines.
Collapse
Affiliation(s)
- Nicolas Bruffaerts
- Scientific Institute of Public Health, O.D. CID-Immunology , Engelandstraat 642, Brussels, B1180 , Belgium
| | | | | |
Collapse
|
27
|
Sali M, Dainese E, Morandi M, Zumbo A, Rocca S, Goussard S, Palù G, Grillot-Courvalin C, Delogu G, Manganelli R. Homologous prime boosting based on intranasal delivery of non-pathogenic invasive Escherichia coli expressing MPT64, decreases Mycobacterium tuberculosis dissemination. Vaccine 2014; 32:4051-8. [DOI: 10.1016/j.vaccine.2014.05.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 01/17/2023]
|
28
|
Hu D, Wu J, Zhang R, Chen L, Chen Z, Wang X, Xu L, Xiao J, Hu F, Wu C. Autophagy-targeted vaccine of LC3-LpqH DNA and its protective immunity in a murine model of tuberculosis. Vaccine 2014; 32:2308-14. [PMID: 24631071 DOI: 10.1016/j.vaccine.2014.02.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
The development of more effective antituberculosis vaccines would contribute to the control of the global problem of infection with Mycobacterium tuberculosis (MTB). Recently, the highlighted importance of autophagy in the host immune response against MTB has attracted the attention of researchers. However, the vaccines targeted at autophagy remain to be developed. In this study, we report on an autophagy-targeted vaccine of 19kDa MTB lipoprotein (LpqH) DNA that harbors another gene coding microtubule-associated protein light chain-3(LC3), which transports LpqH to autophagosomes and displays enhanced protective efficacy against MTB. After the transfection of pCMV-LpqH DNA, a significant increase LC3 II was detected in RAW264.7 cells, which was similar to that observed with treatment with rapamycin, a reagent used to induce autophagy. To target autophagy, the gene coding LC3, as a marked protein of autophagosome, was linked to the lpqH gene to express an LC3-LpqH fused protein. Interestingly, LC3-LpqH fused protein was determined to be transported to an autophagosome, which was demonstrated by the co-localization of GFP-LC3 with LC3-LpqH at autophagosomes. Notably, the mice immunized with LC3-LpqH/Ag85B displayed decreased mycobacterial loads in the lungs and spleen when challenged with virulent MTB by intravenous infection, which was consistent with increased IgG2a in serum and IFN-γ and IL-2 produced by splenocyte. In conclusion, our study demonstrates that an LC3-LpqH DNA vaccine could have autophagy as its target, which contributes to the enhancement of the Th1 immune response and vaccine protective efficacy.
Collapse
Affiliation(s)
- Dong Hu
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan, China; Institute of infection and immunology, Anhui University of Science and Technology, Huainan, China.
| | - Jing Wu
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan, China; Institute of infection and immunology, Anhui University of Science and Technology, Huainan, China.
| | - Rongbo Zhang
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan, China; Institute of infection and immunology, Anhui University of Science and Technology, Huainan, China.
| | - Liping Chen
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan, China; Institute of infection and immunology, Anhui University of Science and Technology, Huainan, China
| | - Zhaoquan Chen
- Institute of infection and immunology, Anhui University of Science and Technology, Huainan, China
| | - Xuefeng Wang
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan, China; Institute of infection and immunology, Anhui University of Science and Technology, Huainan, China
| | - Lifa Xu
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan, China; Institute of infection and immunology, Anhui University of Science and Technology, Huainan, China
| | - Jian Xiao
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Fengyu Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changyou Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Williams JA. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines (Basel) 2013; 1:225-49. [PMID: 26344110 PMCID: PMC4494225 DOI: 10.3390/vaccines1030225] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/25/2022] Open
Abstract
DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.
Collapse
Affiliation(s)
- James A Williams
- Nature Technology Corporation/Suite 103, 4701 Innovation Drive, Lincoln, NE 68521, USA.
| |
Collapse
|
30
|
The PPE domain of PPE17 is responsible for its surface localization and can be used to express heterologous proteins on the mycobacterial surface. PLoS One 2013; 8:e57517. [PMID: 23469198 PMCID: PMC3586085 DOI: 10.1371/journal.pone.0057517] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/23/2013] [Indexed: 01/01/2023] Open
Abstract
PPE represent a peculiar family of mycobacterial proteins characterized by a 180 aminoacids conserved N-terminal domain. Several PPE genes are co-transcribed with a gene encoding for a protein belonging to another family of mycobacterial specific proteins named PE. Only one PE-PPE couple has been extensively characterized so far (PE25-PPE41) and it was shown that these two proteins form a heterodimer and that this interaction is essential for PPE41 stability and translocation through the mycobacterial cell wall. In this study we characterize the PE11-PPE17 couple. In contrast with what was found for PE25-PPE41, we show that PPE17 is not secreted but surface exposed. Moreover, we demonstrate that the presence of PE11 is not necessary for PPE17 stability or for its localization on the mycobacterial surface. Finally, we show that the PPE domain of PPE17 targets the mycobacterial cell wall and that this domain can be used as a fusion partner to expose heterologous proteins on the mycobacterial surface.
Collapse
|
31
|
Donà V, Ventura M, Sali M, Cascioferro A, Provvedi R, Palù G, Delogu G, Manganelli R. The PPE domain of PPE17 is responsible for its surface localization and can be used to express heterologous proteins on the mycobacterial surface. PLoS One 2013. [PMID: 23469198 DOI: 10.1371/journal.pone.0057517pone-d-12-26841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
PPE represent a peculiar family of mycobacterial proteins characterized by a 180 aminoacids conserved N-terminal domain. Several PPE genes are co-transcribed with a gene encoding for a protein belonging to another family of mycobacterial specific proteins named PE. Only one PE-PPE couple has been extensively characterized so far (PE25-PPE41) and it was shown that these two proteins form a heterodimer and that this interaction is essential for PPE41 stability and translocation through the mycobacterial cell wall. In this study we characterize the PE11-PPE17 couple. In contrast with what was found for PE25-PPE41, we show that PPE17 is not secreted but surface exposed. Moreover, we demonstrate that the presence of PE11 is not necessary for PPE17 stability or for its localization on the mycobacterial surface. Finally, we show that the PPE domain of PPE17 targets the mycobacterial cell wall and that this domain can be used as a fusion partner to expose heterologous proteins on the mycobacterial surface.
Collapse
Affiliation(s)
- Valentina Donà
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Protective and therapeutic efficacy of Mycobacterium smegmatis expressing HBHA-hIL12 fusion protein against Mycobacterium tuberculosis in mice. PLoS One 2012; 7:e31908. [PMID: 22363768 PMCID: PMC3283714 DOI: 10.1371/journal.pone.0031908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/16/2012] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG), has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS) strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA) and human interleukin 12 (hIL-12). Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB) were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2) in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.
Collapse
|
33
|
Zaharatos GJ, Yu J, Pace C, Song Y, Vasan S, Ho DD, Huang Y. HIV-1 and influenza antigens synthetically linked to IgG2a Fc elicit superior humoral responses compared to unmodified antigens in mice. Vaccine 2011; 30:42-50. [PMID: 22064264 DOI: 10.1016/j.vaccine.2011.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 01/19/2023]
Abstract
Using murine IgG subclass molecules (IgG1 or IgG2a) synthetically fused to HIV-1 or influenza test antigens, we explored the potential for IgG Fc scaffolds to augment immunogenicity. Each antigen (Ag) was grafted onto a hinge-Fc scaffold containing all critical residues necessary for interaction with effector cells, thus retaining effector functions of the native IgG subclass. We hypothesized that the differential affinity of FcγRs for specific IgG subclasses would influence the magnitude of immune responses elicited by immunization with an Ag-IgG Fc fusion vaccine. We demonstrate here that the antigen-specific humoral response elicited by Ag-IgG2a fusion vaccines is at least tenfold greater than that elicited by native antigen, that this response is superior to that elicited by Ag-IgG1, and that the augmented antigen-specific humoral response elicited is Fcγ receptor-dependent.
Collapse
Affiliation(s)
- Gerasimos J Zaharatos
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, 7th Floor, New York, NY 10016, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
[From genetics to genomics in the rational design of new Mycobacterium tuberculosis vaccines]. Enferm Infecc Microbiol Clin 2011; 29:609-14. [PMID: 21684635 DOI: 10.1016/j.eimc.2011.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease affecting people from all ages all over the world. It is estimated that one third of the world population lives infected with the causal agent: Mycobacterium tuberculosis. Despite availability and systematic administration of BCG vaccine in endemic areas, TB transmission remains elusive to control, partly because BGC efficacy has been shown to have wide variability (0-80%). Such variability in protection is attributed to factors including: the BCG strain used for immunization, pre-existing exposure to environmental saprophytic Mycobacterium species, and host genetic factors. In this context, efforts regarding to re-engineering BCG vaccines with the ability to prevent latent TB reactivation, providing long lasting protection, and devoid from collateral effects in immunosuppressed people are urgent. In this work we review the actual molecular «gene-by-gene» strategies aimed at generating BCG alternatives, and discuss the urgent necessity of high throughput technology methods for a rational design for a new TB vaccine.
Collapse
|
35
|
Improved expression of secretory and trimeric proteins in mammalian cells via the introduction of a new trimer motif and a mutant of the tPA signal sequence. Appl Microbiol Biotechnol 2011; 91:731-40. [DOI: 10.1007/s00253-011-3297-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 11/27/2022]
|
36
|
Luo M, Qu X, Pan R, Zhu D, Zhang Y, Wu J, Pan Z. The virus-induced signaling adaptor molecule enhances DNA-raised immune protection against H5N1 influenza virus infection in mice. Vaccine 2011; 29:2561-7. [PMID: 21303708 DOI: 10.1016/j.vaccine.2011.01.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 01/04/2011] [Accepted: 01/21/2011] [Indexed: 11/30/2022]
Abstract
As an adaptor molecule in the retinoic acid-inducible gene-I (RIG-I) signaling pathway, the virus-induced signaling adaptor (VISA) molecule activates NF-κB and IRF3 and thereby leads to the production of type I interferons (IFNs). To explore the potential of VISA as a genetic adjuvant for DNA vaccines, a eukaryotic expression plasmid, pVISA, was generated by cloning the VISA gene into the pVAX1vector. For comparison, the pTRIF plasmid was similarly constructed, encoding the known genetic adjuvant TRIF (TIR-domain-containing adapter-inducing interferon-β), an adapter in the Toll-like receptor (TLR) signaling pathway. Mice were immunized with the chimeric DNA vaccine pHA/NP(147-155), which encodes the HA (hemagglutinin) fused with NP (nucleoprotein) CTL epitope (NP(147-155)) of H5N1 influenza virus, either alone or in combination with pVISA or pTRIF. Antigen-specific immune responses were examined in immunized mice. Our results demonstrate that co-immunization of the pHA/NP(147-155) plasmid with the VISA adjuvant augmented DNA-raised cellular immune responses and provided protection against H5N1 influenza virus challenge in mice. In addition, our data suggest that VISA acts as a stronger adjuvant for DNA immunization than TRIF. We conclude that co-inoculation with a vector expressing the adaptor molecule VISA enhanced the protective immunity against H5N1 infection induced by pHA/NP(147-155) and that VISA could be developed as a novel genetic adjuvant for DNA vaccines.
Collapse
Affiliation(s)
- Mengcheng Luo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei Province, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Surface expression of MPT64 as a fusion with the PE domain of PE_PGRS33 enhances Mycobacterium bovis BCG protective activity against Mycobacterium tuberculosis in mice. Infect Immun 2010; 78:5202-13. [PMID: 20921146 DOI: 10.1128/iai.00267-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To improve the current vaccine against tuberculosis, a recombinant strain of Mycobacterium bovis bacillus Calmette-Guérin (rBCG) expressing a Mycobacterium tuberculosis vaccine candidate antigen (MPT64) in strong association with the mycobacterial cell wall was developed. To deliver the candidate antigen on the surface, we fused the mpt64 gene to the sequence encoding the PE domain of the PE_PGRS33 protein of M. tuberculosis (to create strain (H)PE-ΔMPT64-BCG), which we have previously shown to transport proteins to the bacterial surface. In a series of protection experiments in the mouse model of tuberculosis, we showed that (i) immunization of mice with (H)PE-ΔMPT64-BCG provides levels of protection significantly higher than those afforded by the parental BCG strain, as assessed by bacterial colonization in lungs and spleens and by lung involvement (at both 28 and 70 days postchallenge), (ii) rBCG strains expressing MPT64 provide better protection than the parental BCG strain only when this antigen is surface expressed, and (iii) the (H)PE-ΔMPT64-BCG-induced MPT64-specific T cell repertoire when characterized by β chain variable region-β chain joining region (BV-BJ) spectratyping indicates that protection is correlated with the ability to recruit gamma interferon (IFN-γ)-secreting T cells carrying the BV8.3-BJ1.5 (172 bp) shared rearrangement. These results demonstrate that (H)PE-ΔMPT64-BCG is one of the most effective new vaccines tested so far in the mouse model of tuberculosis and underscore the impact of antigen cellular localization on the induction of the specific immune response induced by rBCG.
Collapse
|
38
|
Huang JM, Sali M, Leckenby MW, Radford DS, Huynh HA, Delogu G, Cranenburgh RM, Cutting SM. Oral delivery of a DNA vaccine against tuberculosis using operator-repressor titration in a Salmonella enterica vector. Vaccine 2010; 28:7523-8. [PMID: 20851079 DOI: 10.1016/j.vaccine.2010.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/30/2010] [Accepted: 09/01/2010] [Indexed: 12/14/2022]
Abstract
Attenuated Salmonella enterica offers a vaccine delivery route that has the benefits of enhanced immunogenicity and oral delivery. The majority of immunization studies have been conducted to deliver recombinant proteins, expressed from a gene that is either chromosomally integrated or carried on a low- or medium-copy number plasmid. There are, however, an increasing number of reports demonstrating the delivery of DNA vaccines, but the high-copy number plasmids that are preferentially used for this application are unstable in Salmonella. Here, we use the Operator-Repressor Titration (ORT) plasmid maintenance system in Salmonella enterica serovar Typhimurium to deliver a high-copy number plasmid expressing the Mycobacterium tuberculosis gene mpt64 to mice. MPT64 expression was detected in phagocytes using immunofluorescence microscopy following Salmonella-mediated delivery of the DNA vaccine. The indicative CD8+ responses measured by antigen-specific IFN-γ were higher from the live bacterial vector than from injected plasmid DNA, and a reduction in the pulmonary bacterial load was seen following an aerogenic challenge. This illustrates the potential of live attenuated Salmonella as oral tuberculosis vaccine vectors.
Collapse
Affiliation(s)
- Jen-Min Huang
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mayers C, Duffield M, Rowe S, Miller J, Lingard B, Hayward S, Titball RW. Analysis of known bacterial protein vaccine antigens reveals biased physical properties and amino acid composition. Comp Funct Genomics 2010; 4:468-78. [PMID: 18629010 PMCID: PMC2447292 DOI: 10.1002/cfg.319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2003] [Revised: 07/24/2003] [Accepted: 07/28/2003] [Indexed: 11/09/2022] Open
Abstract
Many vaccines have been developed from live attenuated forms of bacterial pathogens or from killed bacterial cells. However, an increased awareness of the potential for transient side-effects following vaccination has prompted an increased emphasis on the use of sub-unit vaccines, rather than those based on whole bacterial cells. The identification of vaccine sub-units is often a lengthy process and bioinformatics approaches have recently been used to identify candidate protein vaccine antigens. Such methods ultimately offer the promise of a more rapid advance towards preclinical studies with vaccines. We have compared the properties of known bacterial vaccine antigens against randomly selected proteins and identified differences in the make-up of these two groups. A computer algorithm that exploits these differences allows the identification of potential vaccine antigen candidates from pathogenic bacteria on the basis of their amino acid composition, a property inherently associated with sub-cellular location.
Collapse
Affiliation(s)
- Carl Mayers
- Dstl, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Bioinformatics in new generation flavivirus vaccines. J Biomed Biotechnol 2010; 2010:864029. [PMID: 20467477 PMCID: PMC2867002 DOI: 10.1155/2010/864029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/21/2009] [Accepted: 03/02/2010] [Indexed: 12/22/2022] Open
Abstract
Flavivirus infections are the most prevalent arthropod-borne infections world wide, often causing severe disease especially among children, the elderly, and the immunocompromised. In the absence of effective antiviral treatment, prevention through vaccination would greatly reduce morbidity and mortality associated with flavivirus infections. Despite the success of the empirically developed vaccines against yellow fever virus, Japanese encephalitis virus and tick-borne encephalitis virus, there is an increasing need for a more rational design and development of safe and effective vaccines. Several bioinformatic tools are available to support such rational vaccine design. In doing so, several parameters have to be taken into account, such as safety for the target population, overall immunogenicity of the candidate vaccine, and efficacy and longevity of the immune responses triggered. Examples of how bio-informatics is applied to assist in the rational design and improvements of vaccines, particularly flavivirus vaccines, are presented and discussed.
Collapse
|
41
|
Wan C, Yi L, Yang Z, Yang J, Shao H, Zhang C, Pan Z. The Toll-like receptor adaptor molecule TRIF enhances DNA vaccination against classical swine fever. Vet Immunol Immunopathol 2010; 137:47-53. [PMID: 20466439 DOI: 10.1016/j.vetimm.2010.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/19/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
To evaluate the effects of the Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-beta (TRIF) on immune responses induced by DNA vaccines, mice were immunized with the eukaryotic expression plasmid pcDNA/E2 encoding classical swine fever virus (CSFV) E2 alone or in combination with the TRIF genetic adjuvant. Immune responses were examined in immunized mice. Our data demonstrates that co-delivery of the DNA vaccine pcDNA/E2 with the TRIF adjuvant augmented specific humoral and cellular immune responses in a mouse model. Vaccination of pigs confirmed that the pcDNA/E2 in combination with TRIF conferred total protection against lethal challenge with highly virulent CSFV. We conclude that TRIF enhances the effects of the DNA vaccine against CSFV infection and could be used as a potential genetic adjuvant for DNA vaccines in large animal species.
Collapse
Affiliation(s)
- Chao Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Sharma A, Madhubala R. Ubiquitin conjugation of open reading frame F DNA vaccine leads to enhanced cell-mediated immune response and induces protection against both antimony-susceptible and -resistant strains of Leishmania donovani. THE JOURNAL OF IMMUNOLOGY 2010; 183:7719-31. [PMID: 19933862 DOI: 10.4049/jimmunol.0900132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Resistance of Leishmania donovani to sodium antimony gluconate has become a critical issue in the current, prolonged epidemic in India. Hence, there is an urgent need for a vaccine that is protective against both antimony-susceptible and -resistant strains of L. donovani. The multigene LD1 locus located on chromosome 35 of Leishmania is amplified in approximately 15% of the isolates examined. The open reading frame F (ORFF), a potential vaccine candidate against visceral leishmaniasis, is part of the multigene LD1 locus. ORFF was expressed as a chimeric conjugate of ubiquitin to elicit an Ag-specific cell-mediated immune response. Analysis of the cellular immune responses of ubiquitin-conjugated ORFF (UBQ-ORFF) DNA-immunized, uninfected BALB/c mice demonstrated that the vaccine induced enhanced IFN-gamma-producing CD4(+) and CD8(+) T cells compared with nonubiquitinated ORFF DNA vaccine. Higher levels of IL-12 and IFN-gamma and the low levels of IL-4 and IL-10 further indicated that the immune responses with UBQ-ORFF were mediated toward the Th1 rather than Th2 type. Infection of immunized mice with either the antimony-susceptible (AG83) or -resistant (GE1F8R) L. donovani strain showed that UBQ-ORFF DNA vaccine induced higher protection when compared with ORFF DNA. UBQ-ORFF DNA-immunized and -infected mice showed a significant increase in IL-12 and IFN-gamma and significant down-regulation of IL-10. High levels of production of nitrite and superoxide, two macrophage-derived oxidants that are critical in controlling Leishmania infection, were observed in protected mice. The feasibility of using ubiquitinated-conjugated ORFF DNA vaccine as a promising immune enhancer for vaccination against both antimony-susceptible and -resistant strains of L. donovani is reported.
Collapse
Affiliation(s)
- Ankur Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
43
|
Dey B, Jain R, Khera A, Rao V, Dhar N, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK. Boosting with a DNA vaccine expressing ESAT-6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs. Vaccine 2009; 28:63-70. [PMID: 19835824 DOI: 10.1016/j.vaccine.2009.09.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/25/2009] [Indexed: 12/12/2022]
Abstract
Owing to its highly immunodominant nature and ability to induce long-lived memory immunity, ESAT-6, a prominent antigen of Mycobacterium tuberculosis, has been employed in several approaches to develop tuberculosis vaccines. Here, for the first time, we combined ESAT-6 based recombinant BCG (rBCG) and DNA vaccine (DNAE6) in a prime boost approach. Interestingly, in spite of inducing an enhanced antigen specific IFN-gamma response in mice, a DNAE6 booster completely obliterated the protection imparted by rBCG against tuberculosis in guinea pigs. Analysis of immunopathology and cytokine responses suggests involvement of an exaggerated immunity behind the lack of protection imparted by this regimen.
Collapse
Affiliation(s)
- Bappaditya Dey
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kaur M, Rai A, Bhatnagar R. Rabies DNA vaccine: no impact of MHC class I and class II targeting sequences on immune response and protection against lethal challenge. Vaccine 2009; 27:2128-37. [PMID: 19356616 PMCID: PMC7115670 DOI: 10.1016/j.vaccine.2009.01.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/24/2009] [Accepted: 01/29/2009] [Indexed: 11/23/2022]
Abstract
Rabies is progressive fatal encephalitis. WHO estimates 55,000 rabies deaths and more than 10 million PEP every year world-wide. A variety of cell-culture derived vaccines are available for prophylaxis against rabies. However, their high cost restricts their usage in developing countries, where such cases are most often encountered. This is driving the quest for newer vaccine formulations; DNA vaccines being most promising amongst them. Here, we explored strategies of antigen trafficking to various cellular compartments aiming at improving both humoral and cellular immunity. These strategies include use of signal sequences namely Tissue Plasminogen Activator (TPA), Ubiquitin (UQ) and Lysosomal-Associated Membrane Protein-1 (LAMP-1). TPA, LAMP-1 and their combination were aimed at enhancing the CD4(+) T cell and antibody response. In contrast, the UQ tag was utilized for enhancing CD8(+) response. The potency of modified DNA vaccines assessed by total antibody response, antibody isotypes, cytokine profile, neutralizing antibody titer and protection conferred against in vivo challenge; was enhanced in comparison to native unmodified vaccine, but the response elicited did not pertain to the type of target sequence and the directed arm of immunity. Interestingly, the DNA vaccines that had been designed to generate different type of immune responses yielded in effect similar response. In conclusion, our data indicate that the directing target sequence is not the exclusive deciding factor for type and extent of immune response elicited and emphasizes on the antigen dependence of immune enhancement strategies.
Collapse
Key Words
- ab, antibody
- ig, immunoglobulin
- elisa, enzyme linked immunosorbent assay
- gp, glycoprotein
- lamp-1, lysosomal-associated membrane protein-1
- mhc, major histocompatibility complex
- mq, milli quartz water
- pmsf, phenyl methyl sulphonyl fluoride
- ripa, radioimmunoprecipitation assay buffer
- rffit, rapid fluorescence focus inhibition test
- tm, transmembrane
- tpa, tissue plasminogen activator
- tris, tris(hydroxymethyl) aminomethane
- uq, ubiquitin
- targeting sequence
- rabies virus-neutralizing antibody (rvna)
- survival
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory Of Molecular Biology And Genetic Engineering, School Of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | |
Collapse
|
45
|
Genetic immunization with GPI-anchored anthrax protective antigen raises combined CD1d- and MHC II-restricted antibody responses by natural killer T cell-mediated help. Vaccine 2009; 27:1700-9. [DOI: 10.1016/j.vaccine.2009.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 01/02/2009] [Accepted: 01/14/2009] [Indexed: 11/21/2022]
|
46
|
Williams JA, Carnes AE, Hodgson CP. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 2009; 27:353-70. [PMID: 19233255 DOI: 10.1016/j.biotechadv.2009.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/02/2009] [Accepted: 02/07/2009] [Indexed: 10/21/2022]
Abstract
Critical molecular and cellular biological factors impacting design of licensable DNA vaccine vectors that combine high yield and integrity during bacterial production with increased expression in mammalian cells are reviewed. Food and Drug Administration (FDA), World Health Organization (WHO) and European Medical Agencies (EMEA) regulatory guidance's are discussed, as they relate to vector design and plasmid fermentation. While all new vectors will require extensive preclinical testing to validate safety and performance prior to clinical use, regulatory testing burden for follow-on products can be reduced by combining carefully designed synthetic genes with existing validated vector backbones. A flowchart for creation of new synthetic genes, combining rationale design with bioinformatics, is presented. The biology of plasmid replication is reviewed, and process engineering strategies that reduce metabolic burden discussed. Utilizing recently developed low metabolic burden seed stock and fermentation strategies, optimized vectors can now be manufactured in high yields exceeding 2 g/L, with specific plasmid yields of 5% total dry cell weight.
Collapse
|
47
|
Midha S, Bhatnagar R. Anthrax protective antigen administered by DNA vaccination to distinct subcellular locations potentiates humoral and cellular immune responses. Eur J Immunol 2009; 39:159-77. [PMID: 19130551 DOI: 10.1002/eji.200838058] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Based on the hypothesis that immune outcome can be influenced by the form of antigen administered and its ability to access various antigen-processing pathways, we targeted the 63 kDa fragment of protective antigen (PA) of Bacillus anthracis to various subcellular locations by DNA chimeras bearing a set of signal sequences. These targeting signals, namely, lysosome-associated membrane protein 1 (LAMP1), tissue plasminogen activator (TPA) and ubiquitin, encoded various forms of PA viz. lysosomal, secreted and cytosolic, respectively. Examination of IgG subclass distribution arising as a result of DNA vaccination indicated a higher IgG1:IgG2a ratio whenever the groups were immunized with chimeras bearing TPA, LAMP1 signals alone or when combined together. Importantly, high end-point titers of IgG antibodies were maintained until 24 wk. It was paralleled by high avidity toxin neutralizing antibodies (TNA) and effective cellular adaptive immunity in the systemic compartment. Anti-PA and TNA titers of approximately 10(5) and approximately 10(3), respectively, provided protection to approximately 90% of vaccinated animals in the group pTPA-PA63-LAMP1. A significant correlation was found between survival percentage and post-challenge anti-PA titers and TNA titers. Overall, immune kinetics pointed that differential processing through various compartments gave rise to qualitative differences in the immune response generated by various chimeras.
Collapse
Affiliation(s)
- Shuchi Midha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
48
|
Li P, Cao RB, Zheng QS, Liu JJ, Li Y, Wang EX, Li F, Chen PY. Enhancement of humoral and cellular immunity in mice against Japanese encephalitis virus using a DNA prime-protein boost vaccine strategy. Vet J 2008; 183:210-6. [PMID: 19008134 DOI: 10.1016/j.tvjl.2008.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 09/17/2008] [Accepted: 09/27/2008] [Indexed: 11/17/2022]
Abstract
A synthetic multi-epitope gene containing critical epitopes of the Japanese encephalitis virus (JEV) envelope gene was cloned into both prokaryotic and eukaryotic expression vectors. The recombinant plasmid and purified recombinant protein (heterologously expressed in Escherichia coli) were used as immunogens in a mouse model. The results indicate that both the recombinant protein and the DNA vaccine induce humoral and cellular immune responses. Neutralising antibody titres in mice in the pcDNA-TEP plus rEP group increased considerably relative to mice immunised using either pcDNA-TEP or rEP alone (P<0.05). Furthermore, the highest levels of interleukin (IL)-2, interferon-gamma and IL-4 were induced following priming with the DNA vaccine and boosting with the recombinant protein. Together these findings demonstrate that a DNA-recombinant protein prime-boost vaccination strategy can produce high levels of antibody and trigger significant T cell responses in mice, highlighting the potential value of such an approach in the prevention of JEV infection.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Animal Disease Diagnosis and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Luo M, Tao P, Li J, Zhou S, Guo D, Pan Z. Immunization with plasmid DNA encoding influenza A virus nucleoprotein fused to a tissue plasminogen activator signal sequence elicits strong immune responses and protection against H5N1 challenge in mice. J Virol Methods 2008; 154:121-7. [PMID: 18789973 DOI: 10.1016/j.jviromet.2008.08.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 11/16/2022]
Abstract
DNA vaccination is an effective means of eliciting both humoral and cellular immunity. Most of influenza vaccines targeted at hemagglutinin (HA) show efficient immunogenicity for protecting subjects against influenza virus infection. However, major antigenic variations of HA may facilitate the virus in developing resistance against such vaccines. DNA vaccines encoding conserved antigens protect animals against diverse viral subtypes, but their potency requires further improvement. In the present study, a DNA vaccine encoding the conserved nucleoprotein (NP) with a tissue plasminogen activator (tPA) signal sequence (ptPAs/NP) was generated, and immune responses were examined in vaccinated mice. A higher level of NP expression and secretion was observed in lysates and supernatants of the cells transfected with ptPAs/NP when compared to a plasmid encoding the wild-type full-length NP (pflNP). Immunofluorescence studies showed the cytoplasmic localization of the NP protein expressed from ptPAs/NP, but not from pflNP. In mice, the ptPAs/NP vaccine elicited higher levels of the NP-specific IgG and CD8(+) T cell-stimulating responses than that of pflNP. Vaccination with ptPAs/NP efficiently cleared the homologous H5N1 influenza virus in the infected lungs and induced partial cross-protection against heterologous, highly pathogenic H5N1 strains in mice. Our results may contribute to the development of protective immunity against diverse, highly pathogenic H5N1 virus subtypes.
Collapse
Affiliation(s)
- Mengcheng Luo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
50
|
Park SU, Kathaperumal K, McDonough S, Akey B, Huntley J, Bannantine JP, Chang YF. Immunization with a DNA vaccine cocktail induces a Th1 response and protects mice against Mycobacterium avium subsp. paratuberculosis challenge. Vaccine 2008; 26:4329-37. [PMID: 18582521 DOI: 10.1016/j.vaccine.2008.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Several antigens of Mycobacterium avium subsp. paratuberculosis have been studied as vaccine components and their immunogenicity has been evaluated. Previously, we reported that 85 antigen complex (85A, 85B, and 85C), superoxide dismutase (SOD), and 35kDa protein could induce significant lymphocyte proliferation as well as the elaboration of Th1-associated cytokines including interferon gamma (IFN-gamma), interleukin-2 (IL-2), IL-12 and tumor necrosis factor alpha (TNF-alpha). Based on these results, we cloned and expressed 85A, 85B, 85C, SOD, and 35kDa-protein genes into the eukaryotic expression plasmid pVR1020. C57BL/6 mice were immunized three times intramuscularly with the recombinant DNA cocktail and pVR1020 DNA alone as control. A significant reduction in the bacterial burden in the spleen and liver of mice immunized with the DNA cocktail as compared to the vector control group was found. Also, the relative severity of the liver and spleen histopathology paralleled the MAP culture results, more granulomas and acid-fast bacilli in the vector control animals. Moreover, mice immunized with the DNA cocktail developed both CD4(+) and CD8(+) T cell responses to the recombinant antigens and showed significant lymphocyte proliferation. The Th1 response related cytokine (IFN-gamma) levels increased in splenocytes obtained from immunized animals. These results indicate that the use of a recombinant DNA vaccine can provide protective immunity against mycobacterial infection by inducing a Th1 response.
Collapse
Affiliation(s)
- Sung-Un Park
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|