1
|
Homer CM, Voorhies M, Walcott K, Ochoa E, Sil A. Transcriptomic atlas throughout Coccidioides development reveals key phase-enriched transcripts of this important fungal pathogen. PLoS Biol 2025; 23:e3003066. [PMID: 40233121 DOI: 10.1371/journal.pbio.3003066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Coccidioides spp. are highly understudied but significant dimorphic fungal pathogens that can infect both immunocompetent and immunocompromised people. In the environment, they grow as multicellular filaments (hyphae) that produce vegetative spores called arthroconidia. Upon inhalation by mammals, arthroconidia undergo a process called spherulation. They enlarge and undergo numerous nuclear divisions to form a spherical structure, and then internally segment until the spherule is filled with multiple cells called endospores. Mature spherules rupture and release endospores, each of which can form another spherule, in a process thought to facilitate dissemination. Spherulation is unique to Coccidioides, and its molecular determinants remain largely unknown. Here, we report the first high-density transcriptomic analyses of Coccidioides development, defining morphology-dependent transcripts and those whose expression is regulated by RYP1, a major regulator required for spherulation and virulence. Of approximately 9,000 predicted transcripts, we discovered 273 transcripts with consistent spherule-associated expression, 82 of which are RYP1-dependent, a set likely to be critical for Coccidioides virulence. ChIP-Seq revealed two distinct regulons of RYP1: one shared between hyphae and spherules and the other unique to spherules. Spherulation regulation was elaborate, with the majority of 227 predicted transcription factors in Coccidioides displaying spherule-enriched expression. We identified provocative targets, including 20 transcripts whose expression is endospore-enriched and 14 putative secreted effectors whose expression is spherule-enriched, of which six are secreted proteases. To highlight the utility of these data, we selected a cluster of RYP1-dependent, arthroconidia-associated transcripts and found that they play a role in arthroconidia cell wall biology, demonstrating the power of this resource in illuminating Coccidioides biology and virulence.
Collapse
Affiliation(s)
- Christina M Homer
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Keith Walcott
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Elena Ochoa
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, United States of America
| |
Collapse
|
2
|
Wilson A, van Dijk A, Marx B, du Plessis D, Terblanche G, Bornman S, Wilken PM, Duong TA, Licht HHDF, Wingfield BD. Extracting Protoplasts from Filamentous Fungi Using Extralyse, An Enzyme Used in the Wine Industry. Curr Protoc 2025; 5:e70122. [PMID: 40126178 PMCID: PMC11932069 DOI: 10.1002/cpz1.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The ability to extract protoplasts has contributed significantly to the study of fungi and plants. Protoplasts have historically been used to determine chromosome number via pulsed-field electrophoresis and for the functional characterization of genes via protoplast transformation. More recently, protoplasts have been used to extract the high-molecular-weight DNA required for long-read sequencing projects. The availability of efficient protoplast extraction protocols is thus integral to the study and experimental manipulation of model and non-model fungi. One major hurdle to the development of such protocols has been the discontinuation of enzymes and enzyme cocktails used to digest the fungal cell wall. Here, we provide five protoplast extraction protocols for use in various filamentous ascomycete species spanning the genera Ceratocystis, Fusarium, Metarhizium, Ophiostoma, and Sclerotinia. These protocols all use an inexpensive, readily available enzyme cocktail called Extralyse, a commercially available product commonly used in the wine making industry. Using this enzyme cocktail overcomes reliance on the laboratory-grade enzymes that have frequently been discontinued and are often cost prohibitive at the concentrations required. The protocols described here will allow further research, including genome editing, to be conducted in these fungal genera. Importantly, these protocols also provide a starting point for the development of protoplast extraction techniques in other filamentous fungi. This resource can therefore be used to expand the molecular toolkits available for fungi beyond the species described here, including those with relevance in both medical and biotechnological industries. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Protoplast extractions from Ceratocystis eucalypticola and Ceratocystis fimbriata Basic Protocol 2: Protoplast extractions from Fusarium circinatum Basic Protocol 3: Protoplast extractions from Metarhizium acridum, Metarhizium brunneum, and Metarhizium guizhouense Basic Protocol 4: Protoplast extractions from Ophiostoma novo-ulmi Basic Protocol 5: Protoplast extractions from Sclerotinia sclerotiorum.
Collapse
Affiliation(s)
- Andi Wilson
- Section for Organismal Biology, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
- These authors contributed equally to this work.
| | - Alida van Dijk
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
- These authors contributed equally to this work.
| | - Bianke Marx
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Deanne du Plessis
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Grant Terblanche
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Simoné Bornman
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - P. Markus Wilken
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Tuan A. Duong
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Henrik H. De Fine Licht
- Section for Organismal Biology, Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda D. Wingfield
- Forestry & Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
3
|
Homer CM, Voorhies M, Walcott K, Ochoa E, Sil A. Transcriptomic atlas of the morphologic development of the fungal pathogen Coccidioides reveals key phase-enriched transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618122. [PMID: 39463982 PMCID: PMC11507689 DOI: 10.1101/2024.10.13.618122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Coccidioides spp. are highly understudied but significant dimorphic fungal pathogens that can infect both immunocompetent and immunocompromised people. In the environment, they grow as multicellular filaments (hyphae) that produce vegetative spores called arthroconidia. Upon inhalation by mammals, arthroconidia undergo a process called spherulation. They enlarge and undergo numerous nuclear divisions to form a spherical structure, and then internally segment until the spherule is filled with multiple cells called endospores. Mature spherules rupture and release endospores, each of which can form another spherule, in a process thought to facilitate dissemination. Spherulation is unique to Coccidioides and its molecular determinants remain largely unknown. Here, we report the first high-density transcriptomic analyses of Coccidioides development, defining morphology-dependent transcripts and those whose expression is regulated by Ryp1, a major regulator required for spherulation and virulence. Of approximately 9000 predicted transcripts, we discovered 273 transcripts with consistent spherule-associated expression, 82 of which are RYP1-dependent, a set likely to be critical for Coccidioides virulence. ChIP-Seq revealed 2 distinct regulons of Ryp1, one shared between hyphae and spherules and the other unique to spherules. Spherulation regulation was elaborate, with the majority of 227 predicted transcription factors in Coccidioides displaying spherule-enriched expression. We identified provocative targets, including 20 transcripts whose expression is endospore-enriched and 14 putative secreted effectors whose expression is spherule-enriched, of which 6 are secreted proteases. To highlight the utility of these data, we selected a cluster of RYP1-dependent, arthroconidia-associated transcripts and found that they play a role in arthroconidia cell wall biology, demonstrating the power of this resource in illuminating Coccidioides biology and virulence.
Collapse
|
4
|
Voorhies M, Joehnk B, Uehling J, Walcott K, Dubin C, Mead HL, Homer CM, Galgiani JN, Barker BM, Brem RB, Sil A. Inferring the composition of a mixed culture of natural microbial isolates by deep sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606565. [PMID: 39149389 PMCID: PMC11326141 DOI: 10.1101/2024.08.05.606565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Next generation sequencing has unlocked a wealth of genotype information for microbial populations, but phenotyping remains a bottleneck for exploiting this information, particularly for pathogens that are difficult to manipulate. Here, we establish a method for high-throughput phenotyping of mixed cultures, in which the pattern of naturally occurring single-nucleotide polymorphisms in each isolate is used as intrinsic barcodes which can be read out by sequencing. We demonstrate that our method can correctly deconvolute strain proportions in simulated mixed-strain pools. As an experimental test of our method, we perform whole genome sequencing of 66 natural isolates of the thermally dimorphic pathogenic fungus Coccidioides posadasii and infer the strain compositions for large mixed pools of these strains after competition at 37°C and room temperature. We validate the results of these selection experiments by recapitulating the temperature-specific enrichment results in smaller pools. Additionally, we demonstrate that strain fitness estimated by our method can be used as a quantitative trait for genome-wide association studies. We anticipate that our method will be broadly applicable to natural populations of microbes and allow high-throughput phenotyping to match the rate of genomic data acquisition.
Collapse
Affiliation(s)
- Mark Voorhies
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Bastian Joehnk
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Jessie Uehling
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Keith Walcott
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Claire Dubin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Heather L. Mead
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Christina M. Homer
- Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - John N. Galgiani
- Valley Fever Center for Excellence, Department of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Bridget M. Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Rachel B. Brem
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub – San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Mendoza Barker M, Saeger S, Campuzano A, Yu JJ, Hung CY. Galleria mellonella Model of Coccidioidomycosis for Drug Susceptibility Tests and Virulence Factor Identification. J Fungi (Basel) 2024; 10:131. [PMID: 38392803 PMCID: PMC10890491 DOI: 10.3390/jof10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Coccidioidomycosis (CM) can manifest as respiratory and disseminated diseases that are caused by dimorphic fungal pathogens, such as Coccidioides species. The inhaled arthroconidia generated during the saprobic growth phase convert into multinucleated spherules in the lungs to complete the parasitic lifecycle. Research on coccidioidal virulence and pathogenesis primarily employs murine models typically associated with low lethal doses (LD100 < 100 spores). However, the Galleria model has recently garnered attention due to its immune system bearing both structural and functional similarities to the innate system of mammals. Our findings indicate that Coccidioides posadasii can convert and complete the parasitic cycle within the hemocoel of the Galleria larva. In Galleria, the LD100 is between 0.5 and 1.0 × 106 viable spores for the clinical isolate Coccidioides posadasii C735. Furthermore, we demonstrated the suitability of this model for in vivo antifungal susceptibility tests to validate the bioreactivity of newly discovered antifungals against Coccidioides. Additionally, we utilized this larva model to screen a Coccidioides posadasii mutant library showing attenuated virulence. Similarly, the identified attenuated coccidioidal mutants displayed a loss of virulence in a commonly used murine model of coccidioidomycosis. In this study, we demonstrated that Galleria larvae can be applied as a model for studying Coccidioides infection.
Collapse
Affiliation(s)
| | | | | | | | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.M.B.); (S.S.); (A.C.); (J.-J.Y.)
| |
Collapse
|
6
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Slavin YN, Bach H. Mechanisms of Antifungal Properties of Metal Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244470. [PMID: 36558323 PMCID: PMC9781740 DOI: 10.3390/nano12244470] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 05/13/2023]
Abstract
The appearance of resistant species of fungi to the existent antimycotics is challenging for the scientific community. One emergent technology is the application of nanotechnology to develop novel antifungal agents. Metal nanoparticles (NPs) have shown promising results as an alternative to classical antimycotics. This review summarizes and discusses the antifungal mechanisms of metal NPs, including combinations with other antimycotics, covering the period from 2005 to 2022. These mechanisms include but are not limited to the generation of toxic oxygen species and their cellular target, the effect of the cell wall damage and the hyphae and spores, and the mechanisms of defense implied by the fungal cell. Lastly, a description of the impact of NPs on the transcriptomic and proteomic profiles is discussed.
Collapse
|
8
|
Coccidioides Species: A Review of Basic Research: 2022. J Fungi (Basel) 2022; 8:jof8080859. [PMID: 36012847 PMCID: PMC9409882 DOI: 10.3390/jof8080859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Coccidioides immitis and posadasii are closely related fungal species that cause coccidioidomycosis. These dimorphic organisms cause disease in immunocompetent as well as immunocompromised individuals and as much as 40% of the population is infected in the endemic area. Although most infections resolve spontaneously, the infection can be prolonged and, in some instances, fatal. Coccidioides has been studied for more than 100 years and many aspects of the organism and the disease it causes have been investigated. There are over 500 manuscripts concerning Coccidioides (excluding clinical articles) referenced in PubMed over the past 50 years, so there is a large body of evidence to review. We reviewed the most accurate and informative basic research studies of these fungi including some seminal older studies as well as an extensive review of current research. This is an attempt to gather the most important basic research studies about this fungus into one publication. To focus this review, we will discuss the mycology of the organism exclusively rather than the studies of the host response or clinical studies. We hope that this review will be a useful resource to those interested in Coccidioides and coccidioidomycosis.
Collapse
|
9
|
Yu JJ, Holbrook E, Liao YR, Zarnowski R, Andes DR, Wheat LJ, Malo J, Hung CY. Characterization of an Uncinocarpus reesii-expressed recombinant tube precipitin antigen of Coccidioides posadasii for serodiagnosis. PLoS One 2019; 14:e0221228. [PMID: 31412087 PMCID: PMC6693751 DOI: 10.1371/journal.pone.0221228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022] Open
Abstract
Early and accurate diagnosis of coccidioidomycosis, also known as Valley fever, is critical for appropriate disease treatment and management. Current serodiagnosis is based on the detection of patient serum antibodies that react with tube precipitin (TP) and complement fixation (CF) antigens of Coccidioides. IgM is the first class of antibodies produced by hosts in response to coccidioidal insults. The highly glycosylated β-glucosidase 2 (BGL2) is a major active component of the TP antigen that stimulates IgM antibody responses during early Coccidioides infection. The predominant IgM epitope on BGL2 is a unique 3-O-methyl-mannose moiety that is not produced by commonly used protein expression systems. We genetically engineered and expressed a recombinant BGL2 (rBGL2ur), derived from Coccidioides, in non-pathogenic Uncinocarpus reesii, a fungus phylogenetically related to the Coccidioides pathogen. The rBGL2ur protein was purified from the culture medium of transformed U. reesii by nickel affinity chromatography, and the presence of 3-O-methyl mannose was demonstrated by gas chromatography. Seroreactivity of the purified rBGL2ur protein was tested by enzyme-linked immunosorbent assays using sera from 90 patients with coccidioidomycosis and 134 control individuals. The sensitivity and specificity of the assay with rBGL2ur were 78.8% and 87.3%, respectively. These results were comparable to those obtained using a proprietary MiraVista Diagnostic (MVD) IgM (63.3% sensitivity; 96.3% specificity), but significantly better than the ID-TP assay using non-concentrated patient sera (33.3% sensitivity; 100% specificity). Expression of rBGL2ur in U. reesii retains its antigenicity for coccidioidomycosis serodiagnosis and greatly reduces biosafety concerns for antigen production, as Coccidioides spp. are biological safety level 3 agents.
Collapse
Affiliation(s)
- Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Eric Holbrook
- MiraVista Diagnostics, Indianapolis, Indiana, United States of America
| | - Yu-Rou Liao
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Robert Zarnowski
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David R. Andes
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - L. Joseph Wheat
- MiraVista Diagnostics, Indianapolis, Indiana, United States of America
| | - Joshua Malo
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Chiung-Yu Hung
- South Texas Center for Emerging Infectious Disease and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
10
|
Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.00532-19. [PMID: 31126941 DOI: 10.1128/aem.00532-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
The elongation growth of the mushroom stipe is a characteristic but not well-understood morphogenetic event of basidiomycetes. We found that extending native stipe cell walls of Coprinopsis cinerea were associated with the release of N-acetylglucosamine and chitinbiose and with chitinase activity. Two chitinases among all detected chitinases from C. cinerea, ChiE1 and ChiIII, reconstituted heat-inactivated stipe wall extension and released N-acetylglucosamine and chitinbiose. Interestingly, both ChiE1 and ChiIII hydrolyze insoluble crystalline chitin powder, while other C. cinerea chitinases do not, suggesting that crystalline chitin components of the stipe cell wall are the target of action for ChiE1 and ChiIII. ChiE1- or ChiIII-reconstituted heat-inactivated stipe walls showed maximal extension activity at pH 4.5, consistent with the optimal pH for native stipe wall extension in vitro; ChiE1- or ChiIII-reconstituted heat-inactivated stipe wall extension activities were associated with stipe elongation growth regions; and the combination of ChiE1 and ChiIII showed a synergism to reconstitute heat-inactivated stipe wall extension at a low action concentration. Field emission scanning electron microscopy (FESEM) images showed that the inner surface of acid-induced extended native stipe cell walls and ChiE1- or ChiIII-reconstituted extended heat-inactivated stipe cell walls exhibited a partially broken parallel microfibril architecture; however, these broken transversely arranged microfibrils were not observed in the unextended stipe cell walls that were induced by neutral pH buffer or heat inactivation. Double knockdown of ChiE1 and ChiIII resulted in the reduction of stipe elongation, mycelium growth, and heat-sensitive cell wall extension of native stipes. These results indicate a chitinase-hydrolyzing mechanism for stipe cell wall extension.IMPORTANCE A remarkable feature in the development of basidiomycete fruiting bodies is stipe elongation growth that results primarily from manifold cell elongation. Some scientists have suggested that stipe elongation is the result of enzymatic hydrolysis of cell wall polysaccharides, while other scientists have proposed the possibility that stipe elongation results from nonhydrolytic disruption of the hydrogen bonds between cell wall polysaccharides. Here, we show direct evidence for a chitinase-hydrolyzing mechanism of stipe cell wall elongation in the model mushroom Coprinopsis cinerea that is different from the expansin nonhydrolysis mechanism of plant cell wall extension. We presumed that in the growing stipe cell walls, parallel chitin microfibrils are tethered by β-1,6-branched β-1,3-glucans, and that the breaking of the tether by chitinases leads to separation of these microfibrils to increase their spacing for insertion of new synthesized chitin and β-1,3-glucans under turgor pressure in vivo.
Collapse
|
11
|
Johnson SM, Carlson EL, Pappagianis D. Determination of Ribosomal DNA Copy Number and Comparison Among Strains of Coccidioides. Mycopathologia 2014; 179:45-51. [DOI: 10.1007/s11046-014-9820-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/26/2014] [Indexed: 11/29/2022]
|
12
|
Wise HZ, Hung CY, Whiston E, Taylor JW, Cole GT. Extracellular ammonia at sites of pulmonary infection with Coccidioides posadasii contributes to severity of the respiratory disease. Microb Pathog 2013; 59-60:19-28. [PMID: 23583291 DOI: 10.1016/j.micpath.2013.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022]
Abstract
Coccidioides is the causative agent of a potentially life-threatening respiratory disease of humans. A feature of this mycosis is that pH measurements of the microenvironment of pulmonary abscesses are consistently alkaline due to ammonia production during the parasitic cycle. We previously showed that enzymatically active urease is partly responsible for elevated concentrations of extracellular ammonia at sites of lung infection and contributes to both localized host tissue damage and exacerbation of the respiratory disease in BALB/c mice. Disruption of the urease gene (URE) of Coccidioides posadasii only partially reduced the amount of ammonia detected during in vitro growth of the parasitic phase, suggesting that other ammonia-producing pathways exist that may also contribute to the virulence of this pathogen. Ureidoglycolate hydrolase (Ugh) expressed by bacteria, fungi and higher plants catalyzes the hydrolysis of ureidoglycolate to yield glyoxylate and the release CO2 and ammonia. This enzymatic pathway is absent in mice and humans. Ureidoglycolate hydrolase gene deletions were conducted in a wild type (WT) isolate of C. posadasii as well as the previously generated Δure knock-out strain. Restorations of UGH in the mutant stains were performed to generate and evaluate the respective revertants. The double mutant revealed a marked decrease in the amount of extracellular ammonia without loss of reproductive competence in vitro compared to both the WT and Δure parental strains. BALB/c mice challenged intranasally with the Δugh/Δure mutant showed 90% survival after 30 days, decreased fungal burden, and well-organized pulmonary granulomas. We conclude that loss of both Ugh and Ure activity significantly reduced the virulence of this fungal pathogen.
Collapse
Affiliation(s)
- Hua Zhang Wise
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
13
|
Hung CY, Wise HZ, Cole GT. Gene disruption in Coccidioides using hygromycin or phleomycin resistance markers. Methods Mol Biol 2012; 845:131-47. [PMID: 22328372 PMCID: PMC11530137 DOI: 10.1007/978-1-61779-539-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The following transformation protocol is based on homologous recombination that occurs between a gene disruption or gene replacement construct and a target gene of Coccidioides. The DNA constructs employed contain either the gene that encodes for hygromycin B or phleomycin resistance, which are present in the pAN7.1 or pAN8.1 plasmid vectors, respectively. Hygromycin B or phleomycin are used to select for transformants at concentrations that inhibit growth of the parental strain. Coccidioides protoplasts generated from germinated arthroconidia are used for the transformation experiments. The plasmid DNA constructs are taken up by the protoplasts in the presence of calcium and polyethylene glycol. Twenty to 100 transformants/μg DNA can be obtained in each transformation experiment. Approximately 5-10% of the transformation events are homologous recombinations. Coccidioides cells in all developmental stages, including arthroconidia, are multinucleate. Since all Coccidioides nuclei are haploid, only one run of transformation is sufficient to create a mutant strain. However, the transformed protoplasts develop into heterokaryotic cells that typically contain both the parental and mutated nuclei. To isolate a homokaryotic strain, we perform multiple subcultures of the single colonies which contain heterokaryotic cells on selection plates with hygromycin B or phleomycin to enrich for the mutated nuclei. Homokaryotic mutants can be obtained after three to four subcultures of isolated colonies. In this protocol, we describe the methodology for preparation of Coccidioides protoplasts, transformation and isolation of homokaryotic mutants.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA.
| | | | | |
Collapse
|
14
|
Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M. The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Mol Cell Proteomics 2011; 10:M111.011213. [PMID: 21808052 DOI: 10.1074/mcp.m111.011213] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long-distance transport of mRNAs is crucial in determining spatio-temporal gene expression in eukaryotes. The RNA-binding protein Rrm4 constitutes a key component of microtubule-dependent mRNA transport in filaments of Ustilago maydis. Although a number of potential target mRNAs could be identified, cellular processes that depend on Rrm4-mediated transport remain largely unknown. Here, we used differential proteomics to show that ribosomal, mitochondrial, and cell wall-remodeling proteins, including the bacterial-type endochitinase Cts1, are differentially regulated in rrm4Δ filaments. In vivo UV crosslinking and immunoprecipitation and fluorescence in situ hybridization revealed that cts1 mRNA represents a direct target of Rrm4. Filaments of cts1Δ mutants aggregate in liquid culture suggesting an altered cell surface. In wild type cells Cts1 localizes predominantly at the growth cone, whereas it accumulates at both poles in rrm4Δ filaments. The endochitinase is secreted and associates most likely with the cell wall of filaments. Secretion is drastically impaired in filaments lacking Rrm4 or conventional kinesin Kin1 as well as in filaments with disrupted microtubules. Thus, Rrm4-mediated mRNA transport appears to be essential for efficient export of active Cts1, uncovering a novel molecular link between mRNA transport and the mechanism of secretion.
Collapse
Affiliation(s)
- Janine Koepke
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E, Latgé JP. Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol 2010; 48:418-29. [PMID: 21184840 DOI: 10.1016/j.fgb.2010.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 11/28/2022]
Abstract
A quintuple mutant was constructed to delete the entire family of the fungal/plant (class III) chitinases of Aspergillus fumigatus. Only a limited reduction in the total chitinolytic activity was seen for the different chitinase mutants including the quintuple mutant. In spite of this reduction in chitinolytic activity, no growth or germination defects were observed in these chitinase mutants. This result demonstrated that the fungal/plant chitinases do not have an essential role in the morphogenesis of A. fumigatus. A slight diminution of the growth during autolysis was seen for the quintuple mutant suggesting that class III chitinases may play only a nutritional role during this phase of the cycle, retarding fungal death.
Collapse
Affiliation(s)
- Laura Alcazar-Fuoli
- Servicio de Micologia, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km2 (28220), Majadahonda, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Szilágyi M, Pócsi I, Forgács K, Emri T. MeaB-dependent nutrition sensing regulates autolysis in carbon starved Aspergillus nidulans cultures. Indian J Microbiol 2010; 50:104-8. [PMID: 23100816 PMCID: PMC3450277 DOI: 10.1007/s12088-010-0023-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 01/24/2009] [Indexed: 11/30/2022] Open
Abstract
Carbon starvation induced autolysis is an active process of self-digestion and is under complex regulation in Aspergillus nidulans. In this study we investigated how autolysis depends on the composition of the culture medium, especially on the presence of yeast extract. We demonstrated that the rate of autolytic cell wall degradation as well as the extracellular chitinase and proteinase productions significantly decreased in the presence of this nutrient. The effect of yeast extract on carbon starved cultures was independent of loss-of-function mutations in the carbon and nitrogen regulatory genes creA and areA and in the heterotrimeric G protein signalling genes fadA and ganB. In contrast, the nitrogen regulating transcription factor MeaB was involved in the yeast-extract-mediated repression of autolysis. Reverse transcriptase - polymerase chain reaction (RT-PCR) experiments demonstrated that MeaB affects the FluG-BrlA sporulation regulatory pathway by affecting transcription of brlA, a gene also initiating the autolytic cell wall degradation in this fungus.
Collapse
Affiliation(s)
- Melinda Szilágyi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Katalin Forgács
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis. Infect Immun 2009; 77:3196-208. [PMID: 19487479 DOI: 10.1128/iai.00459-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.
Collapse
|
18
|
Pócsi I, Leiter E, Kwon NJ, Shin KS, Kwon GS, Pusztahelyi T, Emri T, Abuknesha RA, Price RG, Yu JH. Asexual sporulation signalling regulates autolysis of Aspergillus nidulans via modulating the chitinase ChiB production. J Appl Microbiol 2009; 107:514-23. [PMID: 19486415 DOI: 10.1111/j.1365-2672.2009.04237.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Elucidation of the regulation of ChiB production in Aspergillus nidulans. METHODS AND RESULTS Mutational inactivation of the A. nidulans chiB gene resulted in a nonautolytic phenotype. To better understand the mechanisms controlling both developmental progression and fungal autolysis, we examined a range of autolysis-associated parameters in A. nidulans developmental and/or autolytic mutants. Investigation of disorganization of mycelial pellets, loss of biomass, extra-/intracellular chitinase activities, ChiB production and chiB mRNA levels in various cultures revealed that, in submerged cultures, initialization of autolysis and stationary phase-induced ChiB production are intimately coupled, and that both processes are controlled by the FluG-BrlA asexual sporulation regulatory pathway. ChiB production does not affect the progression of apoptotic cell death in the aging A. nidulans cultures. CONCLUSIONS The endochitinase ChiB plays an important role in autolysis of A. nidulans, and its production is initiated by FluG-BrlA signalling. Despite the fact that apoptosis is an inseparable part of fungal autolysis, its regulation is independent to FluG-initiated sporulation signalling. SIGNIFICANCE AND IMPACT OF THE STUDY Deletion of chiB and fluG homologues in industrial filamentous fungal strains may stabilize the hyphal structures in the autolytic phase of growth and limit the release of autolytic hydrolases into the culture medium.
Collapse
Affiliation(s)
- I Pócsi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Erdei E, Pusztahelyi T, Miskei M, Barna T, Pócsi I. Characterization and heterologous expression of an age-dependent fungal/bacterial type chitinase of Aspergillus nidulans. Acta Microbiol Immunol Hung 2008; 55:351-61. [PMID: 18800599 DOI: 10.1556/amicr.55.2008.3.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Under carbon starvation, Aspergillus nidulans produced a fungal/bacterial type chitinase, ChiB. The chiB gene was cloned and subcloned into pJC40 expression vector containing a 10XHis fusion tag, and the ChiB protein was expressed heterologously in Escherichia coli. Recombinant and native ChiB enzymes shared the same optimal pH ranges and showed similar substrate specificities with endo-acting cleavage patterns.
Collapse
Affiliation(s)
- Eva Erdei
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Hungary
| | | | | | | | | |
Collapse
|
20
|
Yamazaki H, Tanaka A, Kaneko JI, Ohta A, Horiuchi H. Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet Biol 2008; 45:963-72. [PMID: 18420434 DOI: 10.1016/j.fgb.2008.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 11/26/2022]
Abstract
It is believed that chitinases play important physiological roles in filamentous fungi since chitin is one of the major cell wall components in these organisms. In this paper we investigated a chitinase gene, chiA, of Aspergillus nidulans and found that the gene product of chiA consists of a signal sequence, a region including chitinase consensus motifs, a Ser/Thr/Pro-rich region and a glycosylphosphatidylinositol (GPI)-anchor attachment motif. Phosphatidylinositol-specific phospholipase C treatment of the fusion protein of ChiA and enhanced green fluorescent protein (EGFP)-ChiA-EGFP-caused a change in its hydrophobicity, indicating that ChiA is a GPI-anchored protein. ChiA-EGFP localized at the germ tubes of conidia, at hyphal branching sites and hyphal tips. chiA expression was specifically high during conidia germination and in the marginal growth regions of colonies. These results suggest that ChiA functions as a GPI-anchored chitinase at the sites where cell wall remodeling and/or cell wall maturation actively take place.
Collapse
Affiliation(s)
- Harutake Yamazaki
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
21
|
Regulation of autolysis in Aspergillus nidulans. Appl Biochem Biotechnol 2008; 151:211-20. [PMID: 18975147 DOI: 10.1007/s12010-008-8174-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
In terms of cell physiology, autolysis is the centerpiece of carbon-starving fungal cultures. In the filamentous fungus model organism Aspergillus nidulans, the last step of carbon-starvation-triggered autolysis was the degradation of the cell wall of empty hyphae, and this process was independent of concomitantly progressing cell death at the level of regulation. Autolysis-related proteinase and chitinase activities were induced via FluG signaling, which initiates sporulation and inhibits vegetative growth in surface cultures of A. nidulans. Extracellular hydrolase production was also subjected to carbon repression, which was only partly dependent on CreA, the main carbon catabolite repressor in this fungus. These data support the view that one of the main functions of autolysis is supplying nutrients for sporulation, when no other sources of nutrients are available. The divergent regulation of cell death and cell wall degradation provides the fungus with the option to keep dead hyphae intact to help surviving cells to absorb biomaterials from dead neighboring cells before these are released into the extracellular space. The industrial significance of these observations is also discussed in this paper.
Collapse
|
22
|
Pusztahelyi T, Molnár Z, Emri T, Klement E, Miskei M, Kerékgyárto J, Balla J, Pócsi I. Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiol (Praha) 2007; 51:547-54. [PMID: 17455791 DOI: 10.1007/bf02931619] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Acetyl-D-glucosamine, chito-oligomers and carbon starvation regulated chiA, chiB, and nagA gene expressions in Aspergillus nidulans cultures. The gene expression patterns of the main extracellular endochitinase ChiB and the N-acetyl-beta-D-glucosaminidase NagA were similar, and the ChiB-NagA enzyme system may play a morphological and/or nutritional role during autolysis. Alterations in the levels of reactive oxygen species or in the glutathione-glutathione disulfide redox balance, characteristic physiological changes developing in ageing and autolyzing fungal cultures, did not affect the regulation of either the growth-related chiA or the autolysis-coupled chiB genes although both of them were down-regulated under diamide stress. The transcription of the chiC gene with unknown physiological function was repressed by increased intracellular superoxide concentration.
Collapse
Affiliation(s)
- T Pusztahelyi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hurtado-Guerrero R, van Aalten DMF. Structure of Saccharomyces cerevisiae chitinase 1 and screening-based discovery of potent inhibitors. ACTA ACUST UNITED AC 2007; 14:589-99. [PMID: 17524989 DOI: 10.1016/j.chembiol.2007.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 02/16/2007] [Accepted: 03/14/2007] [Indexed: 11/17/2022]
Abstract
Chitinases hydrolyse the beta(1,4)-glycosidic bonds of chitin, an essential fungal cell wall component. Genetic data on a subclass of fungal family 18 chitinases have suggested a role in cell wall morphology. Specific inhibitors of these enzymes would be useful as tools to study their role in cell wall morphogenesis and could possess antifungal properties. Here, we describe the crystallographic structure of a fungal "plant-type" family 18 chitinase, that of Saccharomyces cerevisiae CTS1. The enzyme is active against 4-methylumbelliferyl chitooligosaccharides and displays an unusually low pH optimum for activity. A library screen against ScCTS1 yielded hits with Ki 's as low as 3.2 microM. Crystal structures of ScCTS1 in complex with inhibitors from three series reveal striking mimicry of carbohydrate substrate by small aromatic moieties and a pocket that could be further exploited in optimization of these inhibitors.
Collapse
Affiliation(s)
- Ramon Hurtado-Guerrero
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|
24
|
Abstract
Most dimorphic fungal pathogens cause respiratory disease in mammals and must therefore possess virulence mechanisms to combat and overcome host pulmonary defenses. Over the past decade, advances in genetic tools have made it possible to investigate the basis of dimorphic fungal pathogenesis at the molecular level. Gene disruptions and RNA interference have now formally demonstrated the involvement of six virulence factors: CBP, alpha-(1,3)-glucan, BAD1, SOWgp, Mep1, and urease. Additional candidate virulence-associated genes have been identified on the premise that factors necessary for pathogenicity are associated specifically with the parasitic form. This principle continues to form the foundation for genomics-based analyses to further augment the list. Thus, the stage is set and the tools are in place for the next phase of medical mycology research: defining the virulence-associated factors underlying the success of dimorphic fungal pathogens.
Collapse
Affiliation(s)
- Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
25
|
Abstract
Chitin is the second most abundant organic and renewable source in nature, after cellulose. Chitinases are chitin-degrading enzymes. Chitinases have important biophysiological functions and immense potential applications. In recent years, researches on fungal chitinases have made fast progress, especially in molecular levels. Therefore, the present review will focus on recent advances of fungal chitinases, containing their nomenclature and assays, purification and characterization, molecular cloning and expression, family and structure, regulation, and function and application.
Collapse
Affiliation(s)
- Li Duo-Chuan
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
26
|
Johannesson H, Kasuga T, Schaller RA, Good B, Gardner MJ, Townsend JP, Cole GT, Taylor JW. Phase-specific gene expression underlying morphological adaptations of the dimorphic human pathogenic fungus, Coccidioides posadasii. Fungal Genet Biol 2006; 43:545-59. [PMID: 16697669 DOI: 10.1016/j.fgb.2006.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/17/2022]
Abstract
Coccidioides posadasii is a dimorphic fungal pathogen that grows as a filamentous saprobe in the soil and as endosporulating spherules within the host. To identify genes specific to the pathogenic phase of Co. posadasii, we carried out a large-scale study of gene expression in two isolates of the species. From the sequenced Co. posadasii genome, we chose 1,000 open reading frames to construct a 70-mer microarray. RNA was recovered from both isolates at three life-cycle phases: hyphae, presegmented spherules, and spherules releasing endospores. Comparative hybridizations were conducted in a circuit design, permitting comparison between both isolates at all three life-cycle phases, and among all life-cycle phases for each isolate. By using this approach, we identified 92 genes that were differentially expressed between pathogenic and saprobic phases in both fungal isolates, and 43 genes with consistent differential expression between the two parasitic developmental phases. Genes with elevated expression in the pathogenic phases of both isolates included a number of genes that were involved in the response to environmental stress as well as in the metabolism of lipids. The latter observation is in agreement with previous studies demonstrating that spherules contain a higher proportion of lipids than saprobic phase tissue. Intriguingly, we discovered statistically significant and divergent levels of gene expression between the two isolates profiled for 64 genes. The results suggest that incorporating more than one isolate in the experimental design offers a means of categorizing the large collection of candidate genes that transcriptional profiling typically identifies into those that are strain-specific and those that characterize the entire species.
Collapse
Affiliation(s)
- H Johannesson
- Department of Evolution, Genomics and Systematics, Uppsala University, SE-752 36 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bonfim SMRC, Cruz AHS, Jesuino RSA, Ulhoa CJ, Molinari-Madlum EEWI, Soares CMA, Pereira M. Chitinase fromParacoccidioides brasiliensis: molecular cloning, structural, phylogenetic, expression and activity analysis. ACTA ACUST UNITED AC 2006; 46:269-83. [PMID: 16487309 DOI: 10.1111/j.1574-695x.2005.00036.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A full-length cDNA encoding a chitinase (Pbcts1) was cloned by screening a cDNA library from the yeast cells of Paracoccidioides brasiliensis. The cDNA consists of 1888 bp and encodes an ORF of 1218 bp corresponding to a protein of 45 kDa with 406 amino acid residues. The deduced PbCTS1 is composed of two signature family 18 catalytic domains and seems to belong to fungal/bacterial class. Phylogenetic analysis of PbCTS1 and other chitinases suggests the existence of paralogs of several chitinases to be grouped based on specialized functions, which may reflect the multiple and diverse roles played by fungi chitinases. Glycosyl hydrolase activity assays demonstrated that P. brasiliensis is able to produce and secrete these enzymes mainly during transition from yeast to mycelium. The fungus should be able to use chitin as a carbon source. The presence of an endocytic signal in the deduced protein suggests that it could be secreted by a vesicular nonclassical export pathway. The Pbcts1 expression in mycelium, yeast, during differentiation from mycelium to yeast and in yeast cells obtained from infected mice suggests the relevance of this molecule in P. brasiliensis electing PbCTS1 as an attractive drug target.
Collapse
Affiliation(s)
- Sheyla M R C Bonfim
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-Goiás, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Mirbod-Donovan F, Schaller R, Hung CY, Xue J, Reichard U, Cole GT. Urease produced by Coccidioides posadasii contributes to the virulence of this respiratory pathogen. Infect Immun 2006; 74:504-15. [PMID: 16369007 PMCID: PMC1346605 DOI: 10.1128/iai.74.1.504-515.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urease activity during in vitro growth in the saprobic and parasitic phases of Coccidioides spp. is partly responsible for production of intracellular ammonia released into the culture media and contributes to alkalinity of the external microenvironment. Although the amino acid sequence of the urease of Coccidioides posadasii lacks a predicted signal peptide, the protein is transported from the cytosol into vesicles and the central vacuole of parasitic cells (spherules). Enzymatically active urease is released from the contents of mature spherules during the parasitic cycle endosporulation stage. The endospores, together with the urease and additional material which escape from the ruptured parasitic cells, elicit an intense host inflammatory response. Ammonia production by the spherules of C. posadasii is markedly increased by the availability of exogenous urea found in relatively high concentrations at sites of coccidioidal infection in the lungs of mice. Direct measurement of the pH at these infection sites revealed an alkaline microenvironment. Disruption of the urease gene of C. posadasii resulted in a marked reduction in the amount of ammonia secreted in vitro by the fungal cells. BALB/c mice challenged intranasally with the mutant strain showed increased survival, a well-organized granulomatous response to infection, and better clearance of the pathogen than animals challenged with either the parental or the reconstituted (revertant) strain. We conclude that ammonia and enzymatically active urease released from spherules during the parasitic cycle of C. posadasii contribute to host tissue damage, which exacerbates the severity of coccidioidal infection and enhances the virulence of this human respiratory pathogen.
Collapse
Affiliation(s)
- Fariba Mirbod-Donovan
- Department of Biology, Margaret Batts Tobin Building, Room 1.308E, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
29
|
Yu JJ, Kirkland TN, Hall LK, Wopschall J, Smith RC, Hung CY, Chen X, Tarcha E, Thomas PW, Cole GT. Characterization of a serodiagnostic complement fixation antigen of Coccidioides posadasii expressed in the nonpathogenic Fungus Uncinocarpus reesii. J Clin Microbiol 2005; 43:5462-9. [PMID: 16272471 PMCID: PMC1287831 DOI: 10.1128/jcm.43.11.5462-5469.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coccidioides spp. (immitis and posadasii) are the causative agents of human coccidioidomycosis. In this study, we developed a novel system to overexpress coccidioidal proteins in a nonpathogenic fungus, Uncinocarpus reesii, which is closely related to Coccidioides. A promoter derived from the heat shock protein gene (HSP60) of Coccidioides posadasii was used to control the transcription of the inserted gene in the constructed coccidioidal protein expression vector (pCE). The chitinase gene (CTS1) of C. posadasii, which encodes the complement fixation antigen, was expressed using this system. The recombinant Cts1 protein (rCts1(Ur)) was induced in pCE-CTS1-transformed U. reesii by elevating the cultivation temperature. The isolated rCts1(Ur) showed chitinolytic activity that was identical to that of the native protein and had serodiagnostic efficacy comparable to those of the commercially available antigens in immunodiffusion-complement fixation tests. Using the purified rCts1(Ur), 74 out of the 77 coccidioidomycosis patients examined (96.1%) were positively identified by enzyme-linked immunosorbent assay. The rCts1(Ur) protein showed higher chitinolytic activity and slightly greater seroreactivity than the bacterially expressed recombinant Cts1. These data suggest that this novel expression system is a useful tool to produce coccidioidal antigens for use as diagnostic antigens.
Collapse
Affiliation(s)
- J-J Yu
- Department of Medical Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hung CY, Seshan KR, Yu JJ, Schaller R, Xue J, Basrur V, Gardner MJ, Cole GT. A metalloproteinase of Coccidioides posadasii contributes to evasion of host detection. Infect Immun 2005; 73:6689-703. [PMID: 16177346 PMCID: PMC1230962 DOI: 10.1128/iai.73.10.6689-6703.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coccidioides posadasii is a fungal respiratory pathogen of humans that can cause disease in immunocompetent individuals. Coccidioidomycosis ranges from a mild to a severe infection. It is frequently characterized either as a persistent disease that requires months to resolve or as an essentially asymptomatic infection that can reactivate several years after the original insult. In this report we describe a mechanism by which the pathogen evades host detection during the pivotal reproductive (endosporulation) phase of the parasitic cycle. A metalloproteinase (Mep1) secreted during endospore differentiation digests an immunodominant cell surface antigen (SOWgp) and prevents host recognition of endospores during the phase of development when these fungal cells are most vulnerable to phagocytic cell defenses. C57BL/6 mice were immunized with recombinant SOWgp and then challenged with a mutant strain of C. posadasii in which the MEP1 gene was disrupted. The animals showed a significant increase in percent survival compared to SOWgp-immune mice challenged with the parental strain. To explain these results, we proposed that retention of SOWgp on the surfaces of endospores of the mutant strain in the presence of high titers of antibody to the immunodominant antigen contributes to opsonization, increased phagocytosis, and killing of the fungal cells. In vitro studies of the interaction between a murine alveolar macrophage cell line and parasitic cells coated with SOWgp showed that the addition of anti-SOWgp antibody could enhance phagocytosis and killing of Coccidioides. We suggest that Mep1 plays a pivotal role as a pathogenicity determinant during coccidioidal infections and contributes to the ability of the pathogen to persist within the mammalian host.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Medical Microbiology and Immunology, Medical College of Ohio, Toledo, 43614-5806, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Voigt CA, Schäfer W, Salomon S. A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:364-75. [PMID: 15842622 DOI: 10.1111/j.1365-313x.2005.02377.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fusarium graminearum is the causal agent of the Fusarium head blight (FHB) and a destructive pathogen of cereals accounting for high grain yield losses especially on wheat and maize. Like other fungal pathogens, F. graminearum secretes various extracellular enzymes, which are hypothesized to be involved in host infection. Extracellular lipolytic activity of F. graminearum was strongly induced in culture by wheat germ oil; this allowed us to isolate, clone, and characterize a gene (FGL1) encoding a secreted lipase. Expression analysis indicated that FGL1 is induced by lipid-containing substrates and repressed by glucose. In planta, FGL1 transcription was detected 1 day post-infection of wheat spikes. The function of the FGL1 gene product was verified by specifically demonstrating lipase activity after expression in a heterologous host. Ebelactone B, a known lipase inhibitor, repressed the lipolytic activity of the enzyme. Disease severity was strongly reduced when wild-type conidia were supplemented with ebelactone B. Transformation-mediated disruption of FGL1 led to reduced extracellular lipolytic activity in culture and to reduced virulence to both wheat and maize.
Collapse
Affiliation(s)
- Christian A Voigt
- Department of Molecular Phytopathology and Genetics, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | | | | |
Collapse
|
32
|
da Silva MV, Santi L, Staats CC, da Costa AM, Colodel EM, Driemeier D, Vainstein MH, Schrank A. Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Res Microbiol 2005; 156:382-92. [PMID: 15808943 DOI: 10.1016/j.resmic.2004.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/20/2004] [Accepted: 10/25/2004] [Indexed: 11/27/2022]
Abstract
The characterization of chitinase genes and enzymes is an important step toward global understanding of the chitinolytic system in entomopathogenic fungi. Chitinase CHIT30 from Metarhizium anisopliae var. anisopliae (strain E6) has both endo- and exochitinase activities and is a potential determinant of pathogenicity. Serum anti-CHIT30 specifically detected this chitinase amongst five isoenzymes shown in glycol-chitin activity gels. Chitinase CHIT30 secretion is upregulated by chitin, tick cuticle and low concentrations of N-acetylglucosamine (0.25%) and is downregulated by both high N-acetylglucosamine (1%) and glucose (1%) concentrations. Chitinase CHIT30 was produced at tick cuticle during fungal infection. The chi3 gene was assigned to code chitinase CHIT30 in M. anisopliae var. anisopliae.
Collapse
Affiliation(s)
- Márcia Vanusa da Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Campus do Vale, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xue T, Nguyen CK, Romans A, Kontoyiannis DP, May GS. Isogenic auxotrophic mutant strains in the Aspergillus fumigatus genome reference strain AF293. Arch Microbiol 2004; 182:346-53. [PMID: 15365692 DOI: 10.1007/s00203-004-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/28/2004] [Accepted: 07/02/2004] [Indexed: 11/25/2022]
Abstract
Aspergillus fumigatus is a ubiquitous fungus that is a frequent opportunistic pathogen in immunosuppressed patients. Because of its role as a pathogen, it is of considerable experimental interest. A set of auxotrophic isogenic strains in the A. fumigatus genome reference strain AF293 has been developed. Using molecular genetic methods, arginine and lysine auxotrophs were made by deletion of argB and lysB, respectively. Transformation of these auxotrophic strains with plasmids carrying argB or lysB, respectively, results in efficient integration at these loci. Finally, these strains are able to form stable diploids, which should further facilitate analysis of gene functions in this fungus. Furthermore, the development of this isogenic set of auxotrophic strains in the AF293 background will enable investigators to study this important opportunistic human pathogen with greater facility.
Collapse
Affiliation(s)
- Tao Xue
- The Genes and Development Graduate Program, Division of Pathology and Laboratory Medicine, The University of Texas Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
The fungal cell wall is a complex structure composed of chitin, glucans and other polymers, and there is evidence of extensive cross-linking between these components. The wall structure is highly dynamic, changing constantly during cell division, growth and morphogenesis. Hydrolytic enzymes, closely associated with the cell wall, have been implicated in the maintenance of wall plasticity and may have roles during branching and cross-linking of polymers. Most fungal cell wall hydrolases identified to date have chitinase or glucanase activity and this short article reviews the apparent functions of these enzymes in unicellular and filamentous fungi, and the mechanisms that regulate enzyme activity in yeasts.
Collapse
Affiliation(s)
- David J Adams
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
35
|
Jaques AK, Fukamizo T, Hall D, Barton RC, Escott GM, Parkinson T, Hitchcock CA, Adams DJ. Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. MICROBIOLOGY-SGM 2003; 149:2931-2939. [PMID: 14523125 DOI: 10.1099/mic.0.26476-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene encoding a major, inducible 45 kDa chitinase of Aspergillus fumigatus was cloned and analysis of the deduced amino acid sequence identified a chitinase of the fungal/bacterial class which was designated ChiB1. Recombinant ChiB1, expressed in Pichia pastoris, was shown to function by a retaining mechanism of action. That is, the beta-conformation of the chitin substrate linkage was preserved in the product in a manner typical of family 18 chitinases. Cleavage patterns with the N-acetylglucosamine (GlcNAc) oligosaccharide substrates GlcNAc(4), GlcNAc(5) and GlcNAc(6) indicated that the predominant reaction involved hydrolysis of GlcNAc(2) from the non-reducing end of each substrate. Products of transglycosylation were also identified in each incubation. Following disruption of chiB1 by gene replacement, growth and morphology of disruptants and of the wild-type strain were essentially identical. However, during the autolytic phase of batch cultures the level of chitinase activity in culture filtrate from a disruptant was much lower than the activity from the wild-type. The search for chitinases with morphogenetic roles in filamentous fungi should perhaps focus on chitinases of the fungal/plant class although such an investigation will be complicated by the identification of at least 11 putative active site domains for family 18 chitinases in the A. fumigatus TIGR database (http://www.tigr.org/).
Collapse
Affiliation(s)
- Alex K Jaques
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Tamo Fukamizo
- Laboratory of Enzyme System Science, Department of Food and Nutrition, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Diana Hall
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Richard C Barton
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Gemma M Escott
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Tanya Parkinson
- Department of Discovery Biology, Pfizer Global Research and Development, Sandwich Laboratories, Kent CT13 9NJ, UK
| | - Christopher A Hitchcock
- Department of Discovery Biology, Pfizer Global Research and Development, Sandwich Laboratories, Kent CT13 9NJ, UK
| | - David J Adams
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
36
|
Magee PT, Gale C, Berman J, Davis D. Molecular genetic and genomic approaches to the study of medically important fungi. Infect Immun 2003; 71:2299-309. [PMID: 12704098 PMCID: PMC153231 DOI: 10.1128/iai.71.5.2299-2309.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P T Magee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
37
|
Abuodeh RO, Galgiani JN, Scalarone GM. Molecular approaches to the study of Coccidioides immitis. Int J Med Microbiol 2002; 292:373-80. [PMID: 12452283 DOI: 10.1078/1438-4221-00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study of the molecular biology of Coccidioides sp. is only just beginning. As the importance of coccidioidomycosis grows as a public health problem, our need for understanding of pathogenesis, immune responses, and improved antifungal therapy also increases in proportion. Tools have now become available to study gene manipulation in this pathogen and this will allow molecular approaches to be used. Genetic experiments will also be accelerated by the availability of the whole coccidioidal genome, expected to be made public in the spring of 2003 (see http://www.tigr.org/tdb/tgi/cigi/GenInfo.html). Thus, there seems to be several reasons to expect considerable progress in the coming years.
Collapse
Affiliation(s)
- Raed O Abuodeh
- University of Sharjah, College of Health Sciences, Sharjah, United Arab Emirates.
| | | | | |
Collapse
|
38
|
Hung CY, Yu JJ, Seshan KR, Reichard U, Cole GT. A parasitic phase-specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory Fungal pathogen. Infect Immun 2002; 70:3443-56. [PMID: 12065484 PMCID: PMC128074 DOI: 10.1128/iai.70.7.3443-3456.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2001] [Revised: 10/22/2001] [Accepted: 04/02/2002] [Indexed: 11/20/2022] Open
Abstract
We report the isolation of a Coccidioides immitis gene (SOWgp) which encodes an immunodominant, spherule outer wall glycoprotein that is presented as a component of a parasitic phase-specific, membranous layer at the cell surface. The open reading frame of the gene from C. immitis isolate C735 translates a 422-amino-acid (aa) polypeptide that contains 6 copies of a 41- to 47-residue tandem repeat enriched in proline (20.4 mol%) and aspartate (19.7%). Two additional isolates of C. immitis produce SOWgps of different molecular sizes (328 and 375 aa) and show a corresponding difference in the number of tandem repeats (four and five, respectively). The accurate molecular sizes of these proline-rich antigens, as determined by surface-enhanced laser desorption/ionization mass spectrometry, are comparable to the predicted sizes from the translated protein sequences rather than the estimated sizes based on gel-electrophoretic separation. The results of Northern hybridization confirmed that SOWgp expression is parasitic phase specific, and immunoblot studies showed that elevated levels of production of this antigen occurred during early spherule development. The recombinant polypeptide (rSOWp) was shown to bind to mammalian extracellular matrix (ECM) proteins in an in vitro assay (laminin > fibronectin > collagen type IV), suggesting that the parasitic cell surface antigen may function as an adhesin. Deletion of the SOWgp gene by using a targeted gene replacement strategy resulted in partial loss of the ability of intact spherules to bind to ECM proteins and a significant reduction in virulence of the mutant strain. The wild-type gene was restored in the mutant by homologous recombination, and the revertant strain was shown to be as virulent as the parental isolate in our murine model of coccidioidomycosis. The parasitic cell surface glycoprotein encoded by the SOWgp gene appears to function as an adhesin and contributes to the virulence of C. immitis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Fungal/genetics
- Antigens, Fungal/metabolism
- Antigens, Fungal/physiology
- Blotting, Southern/methods
- Coccidioides/genetics
- Coccidioides/pathogenicity
- Coccidioidomycosis/microbiology
- Collagen Type IV/metabolism
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Extracellular Matrix/microbiology
- Female
- Fibronectins/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Fungal Proteins/physiology
- Gene Expression
- Genes, Fungal
- Laminin/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Molecular Weight
- Mutagenesis
- Respiratory System/microbiology
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Transformation, Genetic
- Virulence
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614-5086, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Pathogenic fungi have become an increasingly common cause of systemic disease in healthy people and those with impaired immune systems. Although a vast number of fungal species inhabit our planet, just a small number are pathogens, and one feature that links many of them is the ability to differentiate morphologically from mould to yeast, or yeast to mould. Morphological differentiation between yeast and mould forms has commanded attention for its putative impact on the pathogenesis of invasive fungal infections. This review explores the current body of evidence linking fungal morphogenesis and virulence. The topics addressed cover work on phase-locked fungal cells, expression of phase-specific virulence traits and modulation of host responses by fungal morphotypes. The effect of morphological differentiation on fungal interaction with host cells, immune modulation and the net consequence on pathogenesis of disease in animal model systems are considered. The evidence argues strongly that morphological differentiation plays a vital role in the pathogenesis of fungal infection, suggesting that factors associated with this conversion process represent promising therapeutic targets.
Collapse
Affiliation(s)
- Peggy J Rooney
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | | |
Collapse
|
40
|
Hung CY, Yu JJ, Lehmann PF, Cole GT. Cloning and expression of the gene which encodes a tube precipitin antigen and wall-associated beta-glucosidase of Coccidioides immitis. Infect Immun 2001; 69:2211-22. [PMID: 11254576 PMCID: PMC98148 DOI: 10.1128/iai.69.4.2211-2222.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the structure and expression of the Coccidioides immitis BGL2 gene which encodes a previously characterized 120-kDa glycoprotein of this fungal respiratory pathogen. The glycoprotein is recognized by immunoglobulin M tube precipitin (TP) antibody present in sera of patients with coccidioidomycosis, a reaction which has been used for serodiagnosis of early coccidioidal infection. The deduced amino acid sequence of BGL2 shows 12 potential N glycosylation sites and numerous serine-threonine-rich regions which could function as sites for O glycosylation. In addition, the protein sequence includes a domain which is characteristic of family 3 glycosyl hydrolases. Earlier biochemical studies of the purified 120-kDa TP antigen revealed that it functions as a beta-glucosidase (EC 3.2.1.21). Its amino acid sequence shows high homology to several other reported fungal beta-glucosidases which are members of the family 3 glycosyl hydrolases. Results of previous studies have also suggested that the 120-kDa beta-glucosidase participates in wall modification during differentiation of the parasitic cells (spherules) of C. immitis. In this study we showed that expression of the BGL2 gene is elevated during isotropic growth of spherules and the peak of wall-associated BGL2 enzyme activity correlates with this same phase of parasitic cell differentiation. These data support our hypothesis that the 120-kDa beta-glucosidase plays a morphogenetic role in the parasitic cycle of C. immitis.
Collapse
Affiliation(s)
- C Y Hung
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Many fungal pathogens are opportunistic, that is, they infect individuals who have a compromised immune system. Histoplasma capsulatum is a common pathogenic fungus that lives happily inside the phagosomes of macrophages. As Klein explains in his Perspective, an important H. capsulatum virulence factor, CBP1, has been found, which mops up free calcium ions within the phagosome, enabling the yeast to live under calcium-poor conditions (Sebhgati et al.). Chelating calcium ions may also have the added benefit that when the phagosome fuses with the lysosome, destructive lysosomal enzymes that require calcium ions for activity remain inactive.
Collapse
Affiliation(s)
- B S Klein
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| |
Collapse
|