1
|
John CM, Phillips NJ, Cardenas AJ, Criss AK, Jarvis GA. Comparison of lipooligosaccharides from human challenge strains of Neisseria gonorrhoeae. Front Microbiol 2023; 14:1215946. [PMID: 37779694 PMCID: PMC10540682 DOI: 10.3389/fmicb.2023.1215946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
The alarming rise of antibiotic resistance and the emergence of new vaccine technologies have increased the focus on vaccination to control gonorrhea. Neisseria gonorrhoeae strains FA1090 and MS11 have been used in challenge studies in human males. We used negative-ion MALDI-TOF MS to profile intact lipooligosaccharide (LOS) from strains MS11mkA, MS11mkC, FA1090 A23a, and FA1090 1-81-S2. The MS11mkC and 1-81-S2 variants were isolated from male volunteers infected with MS11mkA and A23a, respectively. LOS profiles were obtained after purification using the classical phenol water extraction method and by microwave-enhanced enzymatic digestion, which is more amenable for small-scale work. Despite detecting some differences in the LOS profiles, the same major species were observed, indicating that microwave-enhanced enzymatic digestion is appropriate for MS studies. The compositions determined for MS11mkA and mkC LOS were consistent with previous reports. FA1090 is strongly recognized by mAb 2C7, an antibody-binding LOS with both α- and β-chains if the latter is a lactosyl group. The spectra of the A23a and 1-81-S2 FA1090 LOS were similar to each other and consistent with the expression of α-chain lacto-N-neotetraose and β-chain lactosyl moieties that can both be acceptor sites for sialic acid substitution. 1-81-S2 LOS was analyzed after culture with and without media supplemented with cytidine-5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), which N. gonorrhoeae needs to sialylate its LOS. LOS sialylation reduces the infectivity of gonococci in men, although it induces serum resistance in serum-sensitive strains and reduces killing by neutrophils and antimicrobial peptides. The infectivity of FA1090 in men is much lower than that of MS11mkC, but the reason for this difference is unclear. Interestingly, some peaks in the spectra of 1-81-S2 LOS after bacterial culture with CMP-Neu5Ac were consistent with disialylation of the LOS, which could be relevant to the reduced infectivity of FA1090 in men and could have implications regarding the phase variation of the LOS and the natural history of infection.
Collapse
Affiliation(s)
- Constance M. John
- Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nancy J. Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Amaris J. Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Gary A. Jarvis
- Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
In Vitro Analysis of Matched Isolates from Localized and Disseminated Gonococcal Infections Suggests That Opa Expression Impacts Clinical Outcome. Pathogens 2022; 11:pathogens11020217. [PMID: 35215160 PMCID: PMC8880309 DOI: 10.3390/pathogens11020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Gonorrhea is the second most common sexually transmitted infection, which is primarily localized but can be disseminated systemically. The mechanisms by which a localized infection becomes a disseminated infection are unknown. We used five pairs of Neisseria gonorrhoeae isolates from the cervix/urethra (localized) and the blood (disseminated) of patients with disseminated gonococcal infection to examine the mechanisms that confine gonococci to the genital tract or enable them to disseminate to the blood. Multilocus sequence analysis found that the local and disseminated isolates from the same patients were isogenic. When culturing in vitro, disseminated isolates aggregated significantly less and transmigrated across a polarized epithelial monolayer more efficiently than localized isolates. While localized cervical isolates transmigrated across epithelial monolayers inefficiently, those transmigrated bacteria self-aggregated less and transmigrated more than cervical isolates but comparably to disseminating isolates. The local cervical isolates recruited the host receptors of gonococcal Opa proteins carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) on epithelial cells. However, the transmigrated cervical isolate and the disseminated blood isolates recruit CEACAMs significantly less often. Our results collectively suggest that switching off the expression of CEACAM-binding Opa(s), which reduces self-aggregation, promotes gonococcal dissemination.
Collapse
|
3
|
Lucío MI, Kyriazi ME, Hamilton J, Batista D, Sheppard A, Sams-Dodd E, Humbert MV, Hussain I, Christodoulides M, Kanaras AG. Bactericidal Effect of 5-Mercapto-2-nitrobenzoic Acid-Coated Silver Nanoclusters against Multidrug-Resistant Neisseria gonorrhoeae. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27994-28003. [PMID: 32530591 DOI: 10.1021/acsami.0c06163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neisseria gonorrhoeae is among the most multidrug-resistant bacteria in circulation today, and new treatments are urgently needed. In this work, we demonstrate the ability of 5-mercapto-2-nitrobenzoic acid-coated silver nanoclusters (MNBA-AgNCs) to kill strains of Neisseria gonorrhoeae. Using an in vitro bactericidal assay, MNBA-AgNCs had been found to show significantly higher anti-gonococcal bioactivity than the antibiotics ceftriaxone and azithromycin and silver nitrate. These nanoclusters were effective against both planktonic bacteria and a gonococcal infection of human cell cultures in vitro. Treatment of human cells in vitro with MNBA-AgNCs did not induce significant release of lactate dehydrogenase, suggesting minimal cytotoxicity to eukaryotic cells. Our results suggest that MNBA-AgNCs hold great potential for topical treatment of localized gonorrhoeae.
Collapse
Affiliation(s)
- María Isabel Lucío
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, U.K
| | - Maria-Eleni Kyriazi
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, U.K
| | - Joshua Hamilton
- Neisseria Research Laboratory, Molecular Microbiology, School of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K
| | - Diego Batista
- Neisseria Research Laboratory, Molecular Microbiology, School of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K
| | - Alexander Sheppard
- Neisseria Research Laboratory, Molecular Microbiology, School of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K
| | - Elisabeth Sams-Dodd
- Neisseria Research Laboratory, Molecular Microbiology, School of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K
| | - Maria Victoria Humbert
- Neisseria Research Laboratory, Molecular Microbiology, School of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt 54792, Pakistan
| | - Myron Christodoulides
- Neisseria Research Laboratory, Molecular Microbiology, School of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, U.K
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, U.K
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
4
|
Thakur SD, Obradovic M, Dillon JAR, Ng SH, Wilson HL. Development of flow cytometry based adherence assay for Neisseria gonorrhoeae using 5'-carboxyfluorosceinsuccidyl ester. BMC Microbiol 2019; 19:67. [PMID: 30909866 PMCID: PMC6434840 DOI: 10.1186/s12866-019-1438-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/19/2019] [Indexed: 12/03/2022] Open
Abstract
Background Neisseria gonorrhoeae is an obligate human pathogen and its adherence to host cells is essential for its pathogenesis. Gonococcal adherence assays are based on the enumeration of bacteria attached to human cells on solid media. Because conventional adherence assays are based on bacterial counts, they are often time consuming to perform and prone to observer bias. A flow cytometry based method, using the cell-permeable fluorescent dye 5′-carboxyfluoroscein succidyl ester (CFSE), was developed to dramatically increase the number of adherent N. gonorrhoeae quantified per assay while improving repeatability and removing observer bias. Piliated N. gonorrhoeae F62 were stained with CFSE then the staining reaction was quenched with foetal bovine serum. Human cervical ME-180 cells were infected with CFSE-stained N. gonorrhoeae (multiplicity of the infection 100:1) for 2 h. Infected cells were washed to remove loosely adhered bacteria. Flow cytometry was used to quantify the percentage of ME-180 cells associated with CFSE-stained N. gonorrhoeae and a minimum of 30,000 events were recorded. Real time-PCR analysis targeting opa gene (encoding N. gonorrhoeae opacity associated gonococcal outer membrane protein) was performed on infected ME-180 cells to confirm the flow cytometric adherence assay results. A rabbit was immunized with heat-killed N. gonorrhoeaeF62 to generate hyperimmune serum. The functional compatibility of the assay was confirmed by studying the effect of N. gonorrhoeae F62 antiserum on blocking adherence/invasion of CFSE-stained bacteria to ME-180 cells. Results We observed that 20.3% (+/− 1.0) ME-180 cells were associated with CFSE-stained N. gonorrhoeae. Heat-inactivated hyperimmune serum, at 1:10 to 1:80 dilutions, significantly inhibited gonococcal adherence by 6 and 3 fold, respectively. Real time-PCR analysis targeting opa gene confirmed that hyperimmune serum blocked adherence/invasion of N. gonorrhoeae to the ME-180 cells in a dilution-dependent manner. Conclusions Flow cytometric analysis was amenable to quick, easy and high-throughput quantification of the association of N. gonorrhoeae with ME-180 cells and was functionally confirmed using PCR analysis. These approaches may be adapted for in vitro and in vivo adherence studies related to gonococcal pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12866-019-1438-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sidharath Dev Thakur
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - Milan Obradovic
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada.,School of Public Health, Vaccinology and Immunotherapeutics Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jo-Anne R Dillon
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada.,Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada. .,School of Public Health, Vaccinology and Immunotherapeutics Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
5
|
Wang LC, Litwin M, Sahiholnasab Z, Song W, Stein DC. Neisseria gonorrhoeae Aggregation Reduces Its Ceftriaxone Susceptibility. Antibiotics (Basel) 2018; 7:E48. [PMID: 29914058 PMCID: PMC6022932 DOI: 10.3390/antibiotics7020048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/25/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance in Neisseria gonorrhoeae (GC) has become an emerging threat worldwide and heightens the need for monitoring treatment failures. N. gonorrhoeae, a gram-negative bacterium responsible for gonorrhea, infects humans exclusively and can form aggregates during infection. While minimal inhibitory concentration (MIC) tests are often used for determining antibiotic resistance development and treatment, the knowledge of the true MIC in individual patients and how it relates to this laboratory measure is not known. We examined the effect of aggregation on GC antibiotic susceptibility and the relationship between bacterial aggregate size and their antibiotic susceptibility. Aggregated GC have a higher survival rate when treated with ceftriaxone than non-aggregated GC, with bacteria in the core of the aggregates surviving the treatment. GC lacking opacity-associated protein or pili, or expressing a truncated lipooligosaccharide, three surface molecules that mediate GC-GC interactions, reduce both aggregation and ceftriaxone survival. This study demonstrates that the aggregation of N. gonorrhoeae can reduce the susceptibility to antibiotics, and suggests that antibiotic utilization can select for GC surface molecules that promote aggregation which in turn drive pathogen evolution. Inhibiting aggregation may be a potential way of increasing the efficacy of ceftriaxone treatment, consequently reducing treatment failure.
Collapse
Affiliation(s)
- Liang-Chun Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Madeline Litwin
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Zahraossadat Sahiholnasab
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Daniel C Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| |
Collapse
|
6
|
Schmitt DM, Connolly KL, Jerse AE, Detrick MS, Horzempa J. Antibacterial activity of resazurin-based compounds against Neisseria gonorrhoeae in vitro and in vivo. Int J Antimicrob Agents 2016; 48:367-72. [PMID: 27451856 DOI: 10.1016/j.ijantimicag.2016.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/26/2016] [Accepted: 06/05/2016] [Indexed: 10/21/2022]
Abstract
Neisseria gonorrhoeae is the cause of the second most common sexually transmitted bacterial infection, with ca. 80 million new cases of gonorrhoea reported annually. The recent emergence of clinical isolates resistant to the last monotherapy against this bacterium, the cephalosporins, illustrates the need for new antigonococcal agents. Here we have characterised a new group of antimicrobials based on the compound resazurin that exhibits robust activity against N. gonorrhoeae in vitro. Resazurin inhibits the growth of a broad range of N. gonorrhoeae isolates, including those resistant to multiple antibiotics. Furthermore, treatment of human endometrial cells infected with N. gonorrhoeae with resazurin significantly reduces the number of intracellular bacteria. Whilst resazurin exhibited potent in vitro antimicrobial activity, in vivo resazurin did not limit the colonisation of mice with N. gonorrhoeae following vaginal infection. The ineffectiveness of resazurin in vivo is likely due to its interaction with serum albumin, which completely diminishes its antimicrobial activity. However, treatment of mice with a resazurin analogue (resorufin pentyl ether) that maintains its antimicrobial activity in the presence of serum albumin approached a significant decrease in the percentage of mice vaginally colonised. This treatment also decreased vaginal colonisation by N. gonorrhoeae over time. Together, these data suggest that resazurin derivatives have potential for the treatment of gonorrhoea.
Collapse
Affiliation(s)
- Deanna M Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, USA
| | - Kristie L Connolly
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Melinda S Detrick
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, USA
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, USA.
| |
Collapse
|
7
|
Zhang S, Tu YT, Cai HH, Ding HH, Li Q, He YX, Liu XX, Wang X, Hu F, Chen T, Chen HX. Opacity proteins of neisseria gonorrhoeae in lipooligosaccharide mutants lost ability to interact with neutrophil-restricted CEACAM3 (CD66d). ACTA ACUST UNITED AC 2016; 36:344-349. [PMID: 27376801 DOI: 10.1007/s11596-016-1589-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/24/2016] [Indexed: 11/25/2022]
Abstract
Lipooligosacharide (LOS) of Neisseria gonorrhoeae (gonococci, GC) is involved in the interaction of GC with host cells. Deletion of the alpha-oligosaccharide (alpha-OS) moiety of LOS (lgtF mutant) significantly impairs invasion of GC into epithelial cell lines. GC opacity (Opa) proteins, such as OpaI, mediate phagocytosis and stimulate chemiluminescence responses in neutrophils in part through interaction with members of the carcinoembryonic antigen (CEA) family, which includes CEACAM3 (CD66d), a human neutrophil specific receptor for phagocytosis of bacteria. In the present work, we examined the effects of OpaI-expressing lgtF mutant on phagocytosis by HeLa-CEACAM3 cells and chemiluminescence responses in neutrophils. The results showed that lgtF mutant even expressing OpaI completely lost the ability to promote either phagocytosis mediated by CEACAM3 interaction in HeLa cells or chemiluminescence responses in neutrophils. These data indicated that Opa proteins in the lgtF mutant, which might result from the conformational change, cannot be functional.
Collapse
Affiliation(s)
- Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Ting Tu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Hua Cai
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Hui Ding
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiao Li
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Xia He
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Hu
- Department of Dermatology, Wuhan First Hospital, Wuhan, 430022, China
| | - Tie Chen
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hong-Xiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Matthias KA, Rest RF. Control of pili and sialyltransferase expression inNeisseria gonorrhoeaeis mediated by the transcriptional regulator CrgA. Mol Microbiol 2014; 91:1120-35. [DOI: 10.1111/mmi.12522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Kathryn A. Matthias
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia PA USA
| | - Richard F. Rest
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia PA USA
| |
Collapse
|
9
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
10
|
Edwards JL, Butler EK. The Pathobiology of Neisseria gonorrhoeae Lower Female Genital Tract Infection. Front Microbiol 2011; 2:102. [PMID: 21747805 PMCID: PMC3129011 DOI: 10.3389/fmicb.2011.00102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/25/2011] [Indexed: 11/13/2022] Open
Abstract
Infection and disease associated with Neisseria gonorrhoeae, the gonococcus, continue to be a global health problem. Asymptomatic and subclinical gonococcal infections occur at a high frequency in females; thus, the true incidence of N. gonorrhoeae infections are presumed to be severely underestimated. Inherent to this asymptomatic/subclinical diseased state is the continued prevalence of this organism within the general population, as well as the medical, economic, and social burden equated with the observed chronic, disease sequelae. As infections of the lower female genital tract (i.e., the uterine cervix) commonly result in subclinical disease, it follows that the pathobiology of cervical gonorrhea would differ from that observed for other sites of infection. In this regard, the potential responses to infection that are generated by the female reproductive tract mucosa are unique in that they are governed, in part, by cyclic fluctuations in steroid hormone levels. The lower female genital tract has the further distinction of being able to functionally discriminate between resident commensal microbiota and transient pathogens. The expression of functionally active complement receptor 3 by the lower, but not the upper, female genital tract mucosa; together with data indicating that gonococcal adherence to and invasion of primary cervical epithelial cells and tissue are predominately aided by this surface-expressed host molecule; provide one explanation for asymptomatic/subclinical gonococcal cervicitis. However, co-evolution of the gonococcus with its sole human host has endowed this organism with variable survival strategies that not only aid these bacteria in successfully evasion of immune detection and function but also enhance cervical colonization and cellular invasion. To this end, we herein summarize current knowledge pertaining to the pathobiology of gonococcal infection of the human cervix.
Collapse
Affiliation(s)
- Jennifer L Edwards
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
11
|
Wing JB, Jack DL, Lee ME, Pacey AA, Kinghorn GR, Read RC. Mannose-binding lectin is present in human semen and modulates cellular adhesion of Neisseria gonorrhoeae in vitro. Clin Exp Immunol 2009; 157:408-14. [PMID: 19664150 DOI: 10.1111/j.1365-2249.2009.03984.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Mannose-binding lectin (MBL) is an innate immune molecule present in blood and some mucosal tissues, which can influence microbial attachment and inflammatory responses of host cells during infection. In this study MBL was found to be present at a low concentration in semen samples in the range 1.2-24.9 ng/ml. Co-incubation of bacteria with semen resulted in the binding of MBL to the bacterial surface. Neisseria gonorrhoeae is a common cause of genitourinary infection. MBL bound to N. gonorrhoeae with strain-to-strain variation in the intensity of binding and nature of the bacterial receptor. Pretreatment with MBL concentrations similar to those found in human serum modulated the adhesion of N. gonorrhoeae strain FA1090 but not strain MS11 to epithelial cells. This effect was dose-dependent. This work demonstrates that MBL is present in human semen and modifies cellular responses to N. gonorrhoeae in a concentration-dependent manner.
Collapse
Affiliation(s)
- J B Wing
- Academic Unit of Infection and Immunity, University of Sheffield Medical School, Sheffield S10 2RX, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Tong L, Diebold Y, Calonge M, Gao J, Stern ME, Beuerman RW. Comparison of gene expression profiles of conjunctival cell lines with primary cultured conjunctival epithelial cells and human conjunctival tissue. Gene Expr 2009; 14:265-78. [PMID: 19630270 PMCID: PMC6042047 DOI: 10.3727/105221609788681231] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human conjunctival cell lines are useful tools for modeling ocular surface disease and evaluation of ocular drugs and cosmetics. However, gene expression in these cells may not be comparable to primary cultured cells, raising doubts that they could be used as a substitute. We aimed to ascertain the similarities of global gene expression between commonly used cell lines and primary cells using a microarray approach. The Affymetrix U133A chip (>22,000 genes) was used to investigate conjunctival tissue (CT), primary conjunctival epithelial cells (PCEC), two conjunctival epithelial cell lines (IOBA-NHC and ChWK), and HCEC-T, a human corneal epithelial cell line (control). Using principal component analysis, the PCEC profile was clustered more closely to conjunctival tissue than either of the two cell lines. Certain extracellular matrix genes were differentially upregulated in CT compared to PCEC, suggesting presence of fibroblasts in addition to epithelial cells in CT. Overall, 67.3% (95% CI: 66.7-67.9) of transcripts in IOBA-NHC were within 1.5-fold of the corresponding transcripts in PCEC, but only 62.2% (95% CI: 61.5-62.9) in the case of ChWK. In HCEC-T, the proportion was only 58.8% (95% CI 58.1-59.4), suggesting less resemblance to PCEC than the conjunctival epithelial cell lines. The IOBA-NHC profile was more similar to PCEC than ChWK, for all genes and genes concerned with membrane association, communication, development, and regulation of metabolism, especially protein and nucleic acid metabolism. The correlation of normalized gene expression levels was high between either the IOBA-NHC or ChWK and PCEC for genes concerned with cell defense, viral life cycle, antigen presentation, antioxidation, or ubiquitin ligation. In order to evaluate the functional significance of the altered gene expression in IOBA-NHC cells, we evaluated a few proteins important for epithelial differentiation or defense, corresponding to the transcripts for S100A9, TGM2, and TLR4. Protein levels of S100A9 and TGM2 were indeed raised, and TLR4 decreased, in IOBA-NHC compared to PCEC. Gene expression in conjunctival cell lines differs from primary cells, but the profile varies according to functional gene categories. Depending on the methodology of proposed studies, if there is limited availability of PCEC, NHC-IOBA may be more suitable than ChWK, but even then, epithelial differentiation and innate immunity functions in NHC-IOBA may differ from primary cells.
Collapse
Affiliation(s)
- Louis Tong
- Singapore National Eye Center, Singapore.
| | | | | | | | | | | |
Collapse
|
13
|
Bish SE, Song W, Stein DC. Quantification of bacterial internalization by host cells using a beta-lactamase reporter strain: Neisseria gonorrhoeae invasion into cervical epithelial cells requires bacterial viability. Microbes Infect 2008; 10:1182-91. [PMID: 18678271 DOI: 10.1016/j.micinf.2008.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/17/2008] [Accepted: 06/22/2008] [Indexed: 10/21/2022]
Abstract
Neisseria gonorrhoeae can invade into cervical epithelial cells to overcome this host defense barrier. We developed a beta-lactamase reporter system that allowed us to quantify at the single cell level if a host cell internalized a viable or nonviable microorganism. We autodisplayed beta-lactamase on the surface of FA1090 [FA1090Phi(bla-iga')] and demonstrated by confocal fluorescence microscopy and flow cytometry that FA1090Phi(bla-iga') cleaved the beta-lactamase substrate CCF2-AM loaded into host cells only when gonococci were internalized by these host cells. While FA1090Phi(bla-iga') adhered to almost all ME180 cells, viable N. gonorrhoeae were internalized by only a subset of cells during infection. Nonviable gonococci adhered to, but were not internalized by ME180 cells, and failed to recruit F-actin to sites of adherent bacteria. Overall, we show that epithelial cell invasion is a dynamic process that requires viable N. gonorrhoeae. We demonstrate the advantages of the beta-lactamase reporter system over the gentamicin protection assay in quantifying bacterial invasion. The reporter system that we have developed can be adapted to studying the internalization of any bacterial species into any host cell.
Collapse
Affiliation(s)
- Samuel E Bish
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
14
|
Zhang P, Snyder S, Feng P, Azadi P, Zhang S, Bulgheresi S, Sanderson KE, He J, Klena J, Chen T. Role of N-acetylglucosamine within core lipopolysaccharide of several species of gram-negative bacteria in targeting the DC-SIGN (CD209). THE JOURNAL OF IMMUNOLOGY 2006; 177:4002-11. [PMID: 16951363 DOI: 10.4049/jimmunol.177.6.4002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our recent studies have shown that the dendritic cell-specific ICAM nonintegrin CD209 (DC-SIGN) specifically binds to the core LPS of Escherichia coli K12 (E. coli), promoting bacterial adherence and phagocytosis. In this current study, we attempted to map the sites within the core LPS that are directly involved in LPS-DC-SIGN interaction. We took advantage of four sets of well-defined core LPS mutants, which are derived from E. coli, Salmonella enterica serovar Typhimurium, Neisseria gonorrhoeae, and Haemophilus ducreyi and determined interaction of each of these four sets with DC-SIGN. Our results demonstrated that N-acetylglucosamine (GlcNAc) sugar residues within the core LPS in these bacteria play an essential role in targeting the DC-SIGN receptor. Our results also imply that DC-SIGN is an innate immune receptor and the interaction of bacterial core LPS and DC-SIGN may represent a primeval interaction between Gram-negative bacteria and host phagocytic cells.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Rockford, IL 61107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ram S, Cox AD, Wright JC, Vogel U, Getzlaff S, Boden R, Li J, Plested JS, Meri S, Gulati S, Stein DC, Richards JC, Moxon ER, Rice PA. Neisserial lipooligosaccharide is a target for complement component C4b. Inner core phosphoethanolamine residues define C4b linkage specificity. J Biol Chem 2003; 278:50853-62. [PMID: 14525973 DOI: 10.1074/jbc.m308364200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified Neisseria meningitidis lipooligosaccharide (LOS) as an acceptor for complement component C4b (C4b). Phosphoethanolamine (PEA) residues on the second heptose (HepII) residue in the LOS core structure formed amide linkages with C4b. PEA at the 6-position of HepII (6-PEA) was more efficient than 3-PEA in binding C4b. Strains bearing 6-PEA bound more C4b than strains with 3-PEA and were more susceptible to complement-mediated killing in serum bactericidal assays. Deleting 3-PEA from a strain that expressed both 3- and 6-PEA simultaneously on HepII did not decrease C4b binding. Glycose chain extension of the first heptose residue (HepI) influenced the nature of the C4b-LOS linkage. Predominantly ester C4b-LOS bonds were seen when lacto-N-neotetraose formed the terminus of the glycose chain extension of HepI with 3-PEA on HepII in the LOS core. Related LOS species with more truncated chain extensions from HepI bound C4b via amide linkages to 3-PEA on HepII. However, 6-PEA in the LOS core bound C4b even when the glycose chain from HepI bore lacto-N-neotetraose at the terminus. The C4A isoform exclusively formed amide linkages, whereas C4B bound meningococci preferentially via ester linkages. These data may serve to explain the preponderance of 3-PEA-bearing meningococci among clinical isolates, because 6-PEA enhances C4b binding that may facilitate clearance of 6-PEA-bearing strains resulting from enhanced serum killing by the classical pathway of complement.
Collapse
Affiliation(s)
- Sanjay Ram
- Section of Infectious Diseases, Evans Biomedical Research Center, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Albiger B, Johansson L, Jonsson AB. Lipooligosaccharide-deficient Neisseria meningitidis shows altered pilus-associated characteristics. Infect Immun 2003; 71:155-62. [PMID: 12496161 PMCID: PMC143165 DOI: 10.1128/iai.71.1.155-162.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Revised: 08/08/2002] [Accepted: 10/16/2002] [Indexed: 11/20/2022] Open
Abstract
Molecular interaction between host mucosal surfaces and outer membrane components of microbes is crucial in the infection process. The outer membrane of pathogenic Neisseria contains surface molecules such as pili, PilC, and Opa and a monolayer of lipooligosaccharide (LOS), all of which are involved in the interaction with host cells. Pili mediate the initial attachment to human epithelial cells, which is followed by tight contact between bacteria and the eucaryotic cells, leading to bacterial invasion. To further examine the basis for bacterium-host cell contact, we constructed an LOS-deficient Neisseria meningitidis serogroup C mutant. LOS deficiency was without exception accompanied by altered colony opacity and morphology, which most likely represented an "on" switch for Opa540 expression, and by reduced levels of the iron-regulated proteins FetA and FbpA. We show here that LOS is essential for pilus-associated adherence but dispensable for fiber formation and twitching motility. The absence of attachment to epithelial cells could not be attributed to altered levels of piliation or defects in the pilus adhesion phenotype. Further, LOS mutants do not invade host cells and have lost the natural competence for genetic transformation.
Collapse
Affiliation(s)
- Barbara Albiger
- Microbiology and Tumor Biology Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
17
|
Banerjee A, Wang R, Supernavage SL, Ghosh SK, Parker J, Ganesh NF, Wang PG, Gulati S, Rice PA. Implications of phase variation of a gene (pgtA) encoding a pilin galactosyl transferase in gonococcal pathogenesis. J Exp Med 2002; 196:147-62. [PMID: 12119340 PMCID: PMC2193922 DOI: 10.1084/jem.20012022] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The pilin glycoprotein (PilE) is the main building block of the pilus of Neisseria gonorrhoeae (gonococcus [GC]). GC pilin is known to carry a disaccharide O-glycan, which has an alphaGal attached to the O-linked GlcNAc by a 1-3 glycosidic bond. In this report, we describe the cloning and characterization of the GC gene, pilus glycosyl transferase A (pgtA), which encodes the galactosyl transferase that catalyzes the synthesis of this Gal-GlcNAc bond of pilin glycan. A homopolymeric tract of Gs (poly-G) is present in the pgtA gene of many GC strains, and this pgtA with poly-G can undergo phase variation (Pv). However, in many other GC, pgtA lacks the poly-G and is expressed constitutively without Pv. Furthermore, by screening a large number of clinical isolates, a significant correlation was observed between the presence of poly-G in pgtA and the dissemination of GC infection. Poly-G was found in pgtA in all (24 out of 24) of the isolates from patients with disseminated gonococcal infection (DGI). In contrast, for the vast majority (20 out of 28) of GC isolated from uncomplicated gonorrhea (UG) patients, pgtA lacked the poly-G. These results indicate that Pv of pgtA is likely to be involved in the conversion of UG to DGI.
Collapse
Affiliation(s)
- Asesh Banerjee
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhu P, Klutch MJ, Bash MC, Tsang RSW, Ng LK, Tsai CM. Genetic diversity of three lgt loci for biosynthesis of lipooligosaccharide (LOS) in Neisseria species. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1833-1844. [PMID: 12055303 DOI: 10.1099/00221287-148-6-1833] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipooligosaccharide (LOS) is a major virulence factor of the pathogenic Neisseria. Nine lgt genes at three chromosomal loci (lgt-1, 2, 3) encoding the glycosyltransferases responsible for the biosynthesis of LOS oligosaccharide chains were examined in 26 Neisseria meningitidis, 51 Neisseria gonorrhoeae and 18 commensal Neisseria strains. DNA hybridization, PCR and nucleotide sequence data were compared to previously reported lgt genes. Analysis of the genetic organization of the lgt loci revealed that in N. meningitidis, the lgt-1 and lgt-3 loci were hypervariable genomic regions, whereas the lgt-2 locus was conserved. In N. gonorrhoeae, no variability in the composition or organization of the three lgt loci was observed. lgt genes were detected only in some commensal Neisseria species. The genetic organization of the lgt-1 locus was classified into eight types and the lgt-3 locus was classified into four types. Two types of arrangement at lgt-1 (II and IV) and one type of arrangement at lgt-3 (IV) were novel genetic organizations reported in this study. Based on the three lgt loci, 10 LOS genotypes of N. meningitidis were distinguished. Phylogenetic analysis revealed a gene cluster, lgtH, which separated from the homologous genes lgtB and lgtE. The lgtH and lgtE genes were mutually exclusive and were located at the same position in lgt-1. The data demonstrated that pathogenic and commensal Neisseria share a common lgt gene pool and horizontal gene transfer appears to contribute to the genetic diversity of the lgt loci in Neisseria.
Collapse
Affiliation(s)
- Peixuan Zhu
- Division of Bacterial, Parasitic and Allergenic Products1 and Division of Viral Products2, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | - Michael J Klutch
- Division of Bacterial, Parasitic and Allergenic Products1 and Division of Viral Products2, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | - Margaret C Bash
- Division of Bacterial, Parasitic and Allergenic Products1 and Division of Viral Products2, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | - Raymond S W Tsang
- National Microbiology Laboratory, Population and Public Health Branch, Health Canada, Canada3
| | - Lai-King Ng
- National Microbiology Laboratory, Population and Public Health Branch, Health Canada, Canada3
| | - Chao-Ming Tsai
- Division of Bacterial, Parasitic and Allergenic Products1 and Division of Viral Products2, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|