1
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
2
|
Kuiper JWP, Gregg HL, Schüber M, Klein J, Hauck CR. Controling the cytoskeleton during CEACAM3-mediated phagocytosis. Eur J Cell Biol 2024; 103:151384. [PMID: 38215579 DOI: 10.1016/j.ejcb.2024.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Phagocytosis, an innate defense mechanism of multicellular animals, is initiated by specialized surface receptors. A phagocytic receptor expressed by human polymorphonuclear granulocytes, the major professional phagocytes in our body, is one of the fastest evolving human proteins implying a special role in human biology. This receptor, CEACAM3, is a member of the CarcinoEmbryonic Antigen-related Cell Adhesion Molecule (CEACAM) family and dedicated to the immediate recognition and rapid internalization of human-restricted pathogens. In this focused contribution, we will review the special adaptations of this protein, which co-evolves with different species of mucosa-colonizing bacteria. While the extracellular Immunoglobulin-variable (IgV)-like domain recognizes various bacterial adhesins, an Immunoreceptor Tyrosine-based Activation Motif (ITAM)-like sequence in the cytoplasmic tail of CEACAM3 constitutes the central signaling hub to trigger actin rearrangements needed for efficient phagocytosis. A major emphasis of this review will be placed on recent findings, which have revealed the multi-level control of this powerful phagocytic device. As tyrosine phosphorylation and small GTPase activity are central for CEACAM3-mediated phagocytosis, the counterregulation of CEACAM3 activity involves the receptor-type protein tyrosine phosphatase J (PTPRJ) as well as the Rac-GTP scavenging protein Cyri-B. Interference with such negative regulatory circuits has revealed that CEACAM3-mediated phagocytosis can be strongly enhanced. In principle, the knowledge gained by studying CEACAM3 can be applied to other phagocytic systems and opens the door to treatments, which boost the phagocytic capacity of professional phagocytes.
Collapse
Affiliation(s)
| | - Helena L Gregg
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Meike Schüber
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jule Klein
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
3
|
Vassey M, Firdaus R, Aslam A, Wheldon LM, Oldfield NJ, Ala’Aldeen DAA, Wooldridge KG. G1 Cell Cycle Arrest Is Induced by the Fourth Extracellular Loop of Meningococcal PorA in Epithelial and Endothelial Cells. Cell Microbiol 2023. [DOI: 10.1155/2023/7480033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Neisseria meningitidis is the most frequent cause of bacterial meningitis and is one of the few bacterial pathogens that can breach the blood-brain barrier (BBB). The 37/67 kDa laminin receptor (LamR) was previously identified as a receptor mediating meningococcal binding to rodent and human brain microvascular endothelial cells, which form part of the BBB. The meningococcal surface proteins PorA and PilQ were identified as ligands for this receptor. Subsequently, the fourth extracellular loop of PorA (PorA-Loop4) was identified as the LamR-binding moiety. Here, we show that PorA-Loop4 targets the 37 kDa laminin receptor precursor (37LRP) on the cell surface by demonstrating that deletion of this loop abrogates the recruitment of 37LRP under meningococcal colonies. Using a circularized peptide corresponding to PorA-Loop4, as well as defined meningococcal mutants, we demonstrate that host cell interaction with PorA-Loop4 results in perturbation of p-CDK4 and Cyclin D1. These changes in cell cycle control proteins are coincident with cellular responses including inhibition of cell migration and a G1 cell cycle arrest. Modulation of the cell cycle of host cells is likely to contribute to the pathogenesis of meningococcal disease.
Collapse
|
4
|
Ghasemi M, Bakhshi B, Khashei R, Soudi S, Boustanshenas M. Vibrio cholerae toxin coregulated pilus provokes inflammatory responses in Coculture model of Caco-2 and peripheral blood mononuclear cells (PBMC) leading to increased colonization. Microbiol Immunol 2021; 65:238-244. [PMID: 33913531 DOI: 10.1111/1348-0421.12889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to assess the modulatory effect of TcpA in the expression of CEACAM1 adhesin molecule and IL-1, IL-8, and TNF-α pro-inflammatory cytokines in the Coculture model of Caco-2/PBMC (peripheral blood mononuclear cell) that can mimic the intestinal milieu. The TcpA gene from Vibrio cholerae ATCC14035 was cloned in pET-28a and transformed into Escherichia coli Bl-21. The recombinant TcpA-His6 protein was expressed and purified using Ni-column chromatography. The sequencing of transformed plasmid and Western blot analysis of purified protein confirmed the identity of rTcp. The cytotoxicity of different concentrations of recombinant protein for human colon carcinoma cell line (human colorectal adenocarcinoma cell [Caco-2 cell]) was assessed by MTT assay and showed viability of 92%, 82%, and 70%, for 10 µg/mL of TcpA after 24, 48, and 72 h, respectively. Co-cultures of Caco-2 and PBMCs were used to mimic the intestinal milieu and treated with different concentrations of rTcpA (1, 5, 10, and 50 µg/mL). Our data showed about 2.04-, 3.37-, 3.68-, and 42.7-fold increase in CEACAM1 gene expression, respectively, compared with the nontreated Caco-2/PBMC Coculture. Moreover, the expression of IL-1, IL-8, and TNF-α genes was significantly increased up to 15.75-, 7.04-, and 80.95-folds, respectively. In conclusion, V. cholerae TcpA induces statistically significant dose-dependent stimulatory effect on TNF-α, IL-,1, and IL-8 pro-inflammatory cytokines expression. Of these, TNF-α was much more affected which, consequently, elevated the CEACAM1 expression level in IECs. This suggests that TcpA protein is a critical effector as an inducer of increased adhesion potential of V. cholera as well as inflammatory responses of host intestinal tissue.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Khashei
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kulkarni A, Mochnáčová E, Majerova P, Čurlík J, Bhide K, Mertinková P, Bhide M. Single Domain Antibodies Targeting Receptor Binding Pockets of NadA Restrain Adhesion of Neisseria meningitidis to Human Brain Microvascular Endothelial Cells. Front Mol Biosci 2020; 7:573281. [PMID: 33425985 PMCID: PMC7785856 DOI: 10.3389/fmolb.2020.573281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Neisseria adhesin A (NadA), one of the surface adhesins of Neisseria meningitides (NM), interacts with several cell types including human brain microvascular endothelial cells (hBMECs) and play important role in the pathogenesis. Receptor binding pockets of NadA are localized on the globular head domain (A33 to K69) and the first coiled-coil domain (L121 to K158). Here, the phage display was used to develop a variable heavy chain domain (VHH) that can block receptor binding sites of recombinant NadA (rec-NadA). A phage library displaying VHH was panned against synthetic peptides (NadA-gdA33−K69 or NadA-ccL121−K158), gene encoding VHH was amplified from bound phages and re-cloned in the expression vector, and the soluble VHHs containing disulfide bonds were overexpressed in the SHuffle E. coli. From the repertoire of 96 clones, two VHHs (VHHF3–binding NadA-gdA33−K69 and VHHG9–binding NadA-ccL121−K158) were finally selected as they abrogated the interaction between rec-NadA and the cell receptor. Preincubation of NM with VHHF3 and VHHG9 significantly reduced the adhesion of NM on hBMECs in situ and hindered the traversal of NM across the in-vitro BBB model. The work presents a phage display pipeline with a single-round of panning to select receptor blocking VHHs. It also demonstrates the production of soluble and functional VHHs, which blocked the interaction between NadA and its receptor, decreased adhesion of NM on hBMECs, and reduced translocation of NM across BBB in-vitro. The selected NadA blocking VHHs could be promising molecules for therapeutic translation.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Čurlík
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
Azimi S, Wheldon LM, Oldfield NJ, Ala'Aldeen DAA, Wooldridge KG. A role for fibroblast growth factor receptor 1 in the pathogenesis of Neisseria meningitidis. Microb Pathog 2020; 149:104534. [PMID: 33045339 DOI: 10.1016/j.micpath.2020.104534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Neisseria meningitidis (the meningococcus) remains an important cause of human disease, including meningitis and sepsis. Adaptation to the host environment includes many interactions with specific cell surface receptors, resulting in intracellular signalling and cytoskeletal rearrangements that contribute to pathogenesis. Here, we assessed the interactions between meningococci and Fibroblast Growth Factor Receptor 1-IIIc (FGFR1-IIIc): a receptor specific to endothelial cells of the microvasculature, including that of the blood-brain barrier. We show that the meningococcus recruits FGFR1-IIIc onto the surface of human blood microvascular endothelial cells (HBMECs). Furthermore, we demonstrate that expression of FGFR1-IIIc is required for optimal invasion of HBMECs by meningococci. We show that the ability of N. meningitidis to interact with the ligand-binding domain of FGFR1-IIIc is shared with the other pathogenic Neisseria species, N. gonorrhoeae, but not with commensal bacteria including non-pathogenic Neisseria species.
Collapse
Affiliation(s)
- Sheyda Azimi
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Lee M Wheldon
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Neil J Oldfield
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Dlawer A A Ala'Aldeen
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Karl G Wooldridge
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK.
| |
Collapse
|
7
|
Bonsignore P, Kuiper JWP, Adrian J, Goob G, Hauck CR. CEACAM3-A Prim(at)e Invention for Opsonin-Independent Phagocytosis of Bacteria. Front Immunol 2020; 10:3160. [PMID: 32117212 PMCID: PMC7026191 DOI: 10.3389/fimmu.2019.03160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is one of the key innate defense mechanisms executed by specialized cells in multicellular animals. Recent evidence suggests that a particular phagocytic receptor expressed by human polymorphonuclear granulocytes, the carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3), is one of the fastest-evolving human proteins. In this focused review, we will try to resolve the conundrum why a conserved process such as phagocytosis is conducted by a rapidly changing receptor. Therefore, we will first summarize the biochemical and structural details of this immunoglobulin-related glycoprotein in the context of the human CEACAM family. The function of CEACAM3 for the efficient, opsonin-independent detection and phagocytosis of highly specialized, host-restricted bacteria will be further elaborated. Taking into account the decisive role of CEACAM3 in the interaction with pathogenic bacteria, we will discuss the evolutionary trajectory of the CEACAM3 gene within the primate lineage and highlight the consequences of CEACAM3 polymorphisms in human populations. From a synopsis of these studies, CEACAM3 emerges as an important component of human innate immunity and a prominent example of a dedicated receptor for professional phagocytosis.
Collapse
Affiliation(s)
- Patrizia Bonsignore
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Johannes W P Kuiper
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
8
|
Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol 2019; 27:982-996. [PMID: 31451347 DOI: 10.1016/j.tim.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Dysbiosis in the female genital tract (FGT) is characterized by the overgrowth of pathogenic bacterial, fungal, or protozoan members of the microbiota, leading to symptomatic or asymptomatic infections. In this review, we discuss recent advances in studies dealing with molecular mechanisms of pathogenicity factors of Gardnerella vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Streptococcus agalactiae, Chlamydia trachomatis, Trichomonas vaginalis, and Candida spp., as well as their interactions with the host and microbiota in the various niches of the FGT. Taking a holistic approach to identifying fundamental commonalities and differences during these infections could help us to better understand reproductive tract health and improve current prevention and treatment strategies.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany. @leibniz-hki.de
| |
Collapse
|
9
|
Kim WJ, Mai A, Weyand NJ, Rendón MA, Van Doorslaer K, So M. Neisseria gonorrhoeae evades autophagic killing by downregulating CD46-cyt1 and remodeling lysosomes. PLoS Pathog 2019; 15:e1007495. [PMID: 30753248 PMCID: PMC6388937 DOI: 10.1371/journal.ppat.1007495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/25/2019] [Accepted: 12/01/2018] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative human pathogen N. gonorrhoeae (Ngo) quickly attaches to epithelial cells, and large numbers of the bacteria remain on the cell surface for prolonged periods. Ngo invades cells but few viable intracellular bacteria are recovered until later stages of infection, leading to the assumption that Ngo is a weak invader. On the cell surface, Ngo quickly recruits CD46-cyt1 to the epithelial cell cortex directly beneath the bacteria and causes its cleavage by metalloproteinases and Presenilin/γSecretease; how these interactions affect the Ngo lifecycle is unknown. Here, we show Ngo induces an autophagic response in the epithelial cell through CD46-cyt1/GOPC, and this response kills early invaders. Throughout infection, the pathogen slowly downregulates CD46-cyt1 and remodeling of lysosomes, another key autophagy component, and these activities ultimately promote intracellular survival. We present a model on the dynamics of Ngo infection and describe how this dual interference with the autophagic pathway allows late invaders to survive within the cell.
Collapse
Affiliation(s)
- Won J. Kim
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| | - Annette Mai
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
| | - Nathan J. Weyand
- Department of Biological Sciences, Ohio University, Athens, OH, United States of America
| | - Maria A. Rendón
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Koenraad Van Doorslaer
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Magdalene So
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
10
|
Abstract
The obligate human pathogen Neisseria gonorrhoeae colonizes primarily the mucosal columnar epithelium of the male urethra and the female endocervix. In addition, gonococci can infect the anorectal, pharyngeal, and gingival mucosae and epithelial cells of the conjunctiva. More rarely, the organism can disseminate through the bloodstream, which can involve interactions with other host cell types, including blood vessel endothelial cells and innate immune cells such as dendritic cells, macrophages, and neutrophils. "Disseminated gonococcal infection" is a serious condition with various manifestations resulting from the seeding of organs and tissues with the pathogen. The host response to gonococcal infection is inflammatory. Knowledge of the biology of gonococcal interactions has been served well through the use of a wide variety of ex vivo models using host tissues and eukaryotic cell monocultures. These models have helped identify bacterial surface adhesins and invasins and the corresponding cell surface receptors that play roles in gonococcal pathogenesis. Furthermore, they have been useful for understanding virulence mechanisms as well as innate and adaptive immune responses. In this chapter, readers are provided with protocols for examining the basic interactions between gonococci and a representative human cell line.
Collapse
|
11
|
Krüger S, Eichler E, Strobel L, Schubert-Unkmeir A, Johswich KO. Differential influences of complement on neutrophil responses to Neisseria meningitidis infection. Pathog Dis 2018; 76:5195519. [PMID: 30476070 DOI: 10.1093/femspd/fty086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system is the primary innate immune determinant protecting against invasive diseases caused by the Gram-negative bacterium Neisseria meningitidis (Nme, meningococcus), as evidenced by the extreme susceptibility of individuals with complement deficiencies. In contrast, the role of phagocytes such as neutrophils is much less well understood, although they are recruited in great numbers to the cerebrospinal fluid during meningococcal meningitis. Here, we consider the interaction of Nme with primary human neutrophils using either purified cells or a whole blood model of infection. We found that neutrophils are capable of non-opsonic uptake and killing of different Nme strains. However, in the presence of immune serum featuring active complement, Nme association is strongly increased, whereas this is not the case in heat-inactivated immune serum. Blockade of complement at the level of C3 using the inhibitor compstatin Cp20 reduces the uptake dramatically. In addition, purified neutrophils did not mount an oxidative burst towards Nme unless complement was added and, vice versa, the oxidative burst was strongly reduced in whole blood upon complement inhibition. In contrast, there was no significant impact of complement on neutrophil degranulation or IL-8 secretion. Taken together, neutrophils require complement activation in order to mount a full response towards Nme.
Collapse
Affiliation(s)
- Sören Krüger
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Emma Eichler
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Lea Strobel
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | | | - Kay O Johswich
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
12
|
Tafreshi M, Guan J, Gorrell RJ, Chew N, Xin Y, Deswaerte V, Rohde M, Daly RJ, Peek RM, Jenkins BJ, Davies EM, Kwok T. Helicobacter pylori Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells. Front Cell Infect Microbiol 2018; 8:22. [PMID: 29468142 PMCID: PMC5808116 DOI: 10.3389/fcimb.2018.00022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterium, Helicobacter pylori, causes chronic gastritis, peptic ulcers, and gastric cancer in humans. Although the gastric epithelium is the primary site of H. pylori colonization, H. pylori can gain access to deeper tissues. Concurring with this notion, H. pylori has been found in the vicinity of endothelial cells in gastric submucosa. Endothelial cells play crucial roles in innate immune response, wound healing and tumorigenesis. This study examines the molecular mechanisms by which H. pylori interacts with and triggers inflammatory responses in endothelial cells. We observed that H. pylori infection of primary human endothelial cells stimulated secretion of the key inflammatory cytokines, interleukin-6 (IL-6) and interleukin-8 (IL-8). In particular, IL-8, a potent chemokine and angiogenic factor, was secreted by H. pylori-infected endothelial cells to levels ~10- to 20-fold higher than that typically observed in H. pylori-infected gastric epithelial cells. These inflammatory responses were triggered by the H. pylori type IV secretion system (T4SS) and the T4SS-associated adhesin CagL, but not the translocation substrate CagA. Moreover, in contrast to integrin α5β1 playing an essential role in IL-8 induction by H. pylori upon infection of gastric epithelial cells, both integrin α5β1 and integrin αvβ3 were dispensable for IL-8 induction in H. pylori-infected endothelial cells. However, epidermal growth factor receptor (EGFR) is crucial for mediating the potent H. pylori-induced IL-8 response in endothelial cells. This study reveals a novel mechanism by which the H. pylori T4SS and its adhesin subunit, CagL, may contribute to H. pylori pathogenesis by stimulating the endothelial innate immune responses, while highlighting EGFR as a potential therapeutic target for controlling H. pylori-induced inflammation.
Collapse
Affiliation(s)
- Mona Tafreshi
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jyeswei Guan
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Rebecca J. Gorrell
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Nicole Chew
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Yue Xin
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Richard M. Peek
- Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Elizabeth M. Davies
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Terry Kwok
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017; 15:149-159. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier, which is one of the tightest barriers in the body, protects the brain from insults, such as infections. Indeed, only a few of the numerous blood-borne bacteria can cross the blood-brain barrier to cause meningitis. In this Review, we focus on invasive extracellular pathogens, such as Neisseria meningitidis, Streptococcus pneumoniae, group B Streptococcus and Escherichia coli, to review the obstacles that bacteria have to overcome in order to invade the meninges from the bloodstream, and the specific skills they have developed to bypass the blood-brain barrier. The medical importance of understanding how these barriers can be circumvented is underlined by the fact that we need to improve drug delivery into the brain.
Collapse
|
14
|
Simonis A, Schubert-Unkmeir A. Interactions of meningococcal virulence factors with endothelial cells at the human blood-cerebrospinal fluid barrier and their role in pathogenicity. FEBS Lett 2016; 590:3854-3867. [PMID: 27498906 DOI: 10.1002/1873-3468.12344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 01/06/2023]
Abstract
The Gram-negative extracellular bacterium Neisseria meningitidis is one of the most common aetiological agents of bacterial meningitis affecting predominantly young children worldwide. This bacterium is normally a quiescent coloniser of the upper respiratory tract, but in some individuals it enters the blood stream and causes invasive diseases, such as septicaemia and meningitis. Interactions of N. meningitidis with human endothelial cells are crucially involved in pathogencitiy, and great efforts have been made to understand these molecular interactions. The aim of this review article is to provide an overview of the interactions of meningococcal virulence factors with host endothelial cells at the blood-cerebrospinal fluid barrier.
Collapse
Affiliation(s)
- Alexander Simonis
- Division of Hematology, University Hospital Zurich, Switzerland.,Institute of Hygiene and Microbiology, University of Wuerzburg, Germany
| | | |
Collapse
|
15
|
Wachter J, Hill S. Positive Selection Pressure Drives Variation on the Surface-Exposed Variable Proteins of the Pathogenic Neisseria. PLoS One 2016; 11:e0161348. [PMID: 27532335 PMCID: PMC5020929 DOI: 10.1371/journal.pone.0161348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
Pathogenic species of Neisseria utilize variable outer membrane proteins to facilitate infection and proliferation within the human host. However, the mechanisms behind the evolution of these variable alleles remain largely unknown due to analysis of previously limited datasets. In this study, we have expanded upon the previous analyses to substantially increase the number of analyzed sequences by including multiple diverse strains, from various geographic locations, to determine whether positive selective pressure is exerted on the evolution of these variable genes. Although Neisseria are naturally competent, this analysis indicates that only intrastrain horizontal gene transfer among the pathogenic Neisseria principally account for these genes exhibiting linkage equilibrium which drives the polymorphisms evidenced within these alleles. As the majority of polymorphisms occur across species, the divergence of these variable genes is dependent upon the species and is independent of geographical location, disease severity, or serogroup. Tests of neutrality were able to detect strong selection pressures acting upon both the opa and pil gene families, and were able to locate the majority of these sites within the exposed variable regions of the encoded proteins. Evidence of positive selection acting upon the hypervariable domains of Opa contradicts previous beliefs and provides evidence for selection of receptor binding. As the pathogenic Neisseria reside exclusively within the human host, the strong selection pressures acting upon both the opa and pil gene families provide support for host immune system pressure driving sequence polymorphisms within these variable genes.
Collapse
Affiliation(s)
- Jenny Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, United States of America
| | - Stuart Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, United States of America
| |
Collapse
|
16
|
Martin JN, Ball LM, Solomon TL, Dewald AH, Criss AK, Columbus L. Neisserial Opa Protein-CEACAM Interactions: Competition for Receptors as a Means of Bacterial Invasion and Pathogenesis. Biochemistry 2016; 55:4286-94. [PMID: 27442026 DOI: 10.1021/acs.biochem.6b00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carcino-embryonic antigen-like cellular adhesion molecules (CEACAMs), members of the immunoglobulin superfamily, are responsible for cell-cell interactions and cellular signaling events. Extracellular interactions with CEACAMs have the potential to induce phagocytosis, as is the case with pathogenic Neisseria bacteria. Pathogenic Neisseria species express opacity-associated (Opa) proteins, which interact with a subset of CEACAMs on human cells, and initiate the engulfment of the bacterium. We demonstrate that recombinant Opa proteins reconstituted into liposomes retain the ability to recognize and interact with CEACAMs in vitro but do not maintain receptor specificity compared to that of Opa proteins natively expressed by Neisseria gonorrhoeae. We report that two Opa proteins interact with CEACAMs with nanomolar affinity, and we hypothesize that this high affinity is necessary to compete with the native CEACAM homo- and heterotypic interactions in the host. Understanding the mechanisms of Opa protein-receptor recognition and engulfment enhances our understanding of Neisserial pathogenesis. Additionally, these mechanisms provide insight into how human cells that are typically nonphagocytic can utilize CEACAM receptors to internalize exogenous matter, with implications for the targeted delivery of therapeutics and development of imaging agents.
Collapse
Affiliation(s)
- Jennifer N Martin
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Louise M Ball
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Tsega L Solomon
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Alison H Dewald
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Alison K Criss
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Linda Columbus
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| |
Collapse
|
17
|
Dale AP, Read RC. Genetic susceptibility to meningococcal infection. Expert Rev Anti Infect Ther 2013; 11:187-99. [PMID: 23409824 DOI: 10.1586/eri.12.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Meningococcal disease is caused by a limited range of clonal complexes of Neisseria meningitidis. The disease occurs in people who lack bactericidal antibodies to this pathogen, and therefore the patients are reliant on innate immunity or components of acquired immunity other than bactericidal antibodies. Gene variants that influence the function of innate and acquired immune response components have been associated with altered host susceptibility to meningococcal disease, and some genetic factors have also been associated with more severe disease. Identification of genetic factors associated with meningococcal disease will enhance our understanding of this rare but dangerous condition which causes death and serious morbidity in young, previously fit individuals. Genetic variations in the gene cluster encoding IL-1 and in key genes including TNF, SP-A2 and CFH have been associated with susceptibility to meningococcal disease. Understanding the mechanisms underlying genetic susceptibility to meningococcal disease will permit the development of novel therapeutic measures for the treatment of Gram-negative sepsis. To enable the discovery of new mechanisms of the disease, future research will move away from small-scale association studies and instead include analysis of large patient cohorts with accurately linked clinical and demographic information.
Collapse
Affiliation(s)
- Adam P Dale
- Department of Infection & Immunity, University of Sheffield, Medical School, Beech Hill Road, Sheffield, South Yorkshire, S10 2RX, UK.
| | | |
Collapse
|
18
|
Zariri A, van Dijken H, Hamstra HJ, van der Flier M, Vidarsson G, van Putten JPM, Boog CJP, van den Dobbelsteen G, van der Ley P. Expression of human CEACAM1 in transgenic mice limits the Opa-specific immune response against meningococcal outer membrane vesicles. Vaccine 2013; 31:5585-93. [PMID: 23933369 DOI: 10.1016/j.vaccine.2013.07.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Outer membrane vesicles (OMVs) have been extensively investigated as meningococcal vaccine candidates. Among their major components are the opacity (Opa) proteins, a family of surface-exposed outer membrane proteins important for bacterial adherence and entry into host cells. Many Opa-dependent interactions are mediated through the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of receptors. Importantly, binding of Opa to CEACAM1 has been reported to suppress human CD4 T cell proliferation in vitro in response to OMV preparations. This raises the question whether OMV vaccines should contain Opa proteins at all. Until now it has been difficult to answer this question, as the proposed immunosuppressive effect was only demonstrated with human cells in vitro, while immunization experiments in mice are not informative because the Opa interaction is specific for human CEACAM1. In the present study we have used Opa+ and Opa- OMVs for immunization experiments in a human CEACAM1 transgenic mouse model. OMVs were prepared from a meningococcal strain H44/76 variant expressing the CEACAM1-binding OpaJ protein, and from an isogenic variant in which all opa genes have been inactivated. Both the CEACAM1 expressing transgenic mice and their congenic littermates lacking it were immunized twice with the OMV preparations, and the sera were analyzed for bactericidal activity and ELISA antibody titres. Total IgG antibodies against the OMVs were similar in both mouse strains. Yet the titres for IgG antibodies specific for purified OpaJ protein were significantly lower in the mice expressing human CEACAM1 than in the nontransgenic mice. No significant differences were found in bactericidal titres among the four groups. Overall, these data indicate that expression of human CEACAM1 confers a reduced Opa-specific antibody response in vivo without affecting the overall immune response against other OMV antigens.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
20
|
Johswich KO, McCaw SE, Islam E, Sintsova A, Gu A, Shively JE, Gray-Owen SD. In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa. PLoS Pathog 2013; 9:e1003509. [PMID: 23935487 PMCID: PMC3723569 DOI: 10.1371/journal.ppat.1003509] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis (Nme) asymptomatically colonizes the human nasopharynx, yet can initiate rapidly-progressing sepsis and meningitis in rare instances. Understanding the meningococcal lifestyle within the nasopharyngeal mucosa, a phase of infection that is prerequisite for disease, has been hampered by the lack of animal models. Herein, we compare mice expressing the four different human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) that can bind the neisserial Opa protein adhesins, and find that expression of human CEACAM1 is necessary and sufficient to establish intranasal colonization. During infection, in vivo selection for phase variants expressing CEACAM1-specific Opa proteins occurs, allowing mucosal attachment and entry into the subepithelial space. Consistent with an essential role for Opa proteins in this process, Opa-deficient meningococci were unable to colonize the CEACAM1-humanized mice. While simple Opa-mediated attachment triggered an innate response regardless of meningococcal viability within the inoculum, persistence of viable Opa-expressing bacteria within the CEACAM1-humanized mice was required for a protective memory response to be achieved. Parenteral immunization with a capsule-based conjugate vaccine led to the accumulation of protective levels of Nme-specific IgG within the nasal mucus, yet the sterilizing immunity afforded by natural colonization was instead conferred by Nme-specific IgA without detectable IgG. Considered together, this study establishes that the availability of CEACAM1 helps define the exquisite host specificity of this human-restricted pathogen, displays a striking example of in vivo selection for the expression of desirable Opa variants, and provides a novel model in which to consider meningococcal infection and immunity within the nasopharyngeal mucosa. Neisseria meningitidis (Nme), a common cause of bacterial meningitis, are carried asymptomatically in the nasopharynx by a substantial proportion of healthy individuals. Their strict adaptation to the human as host has so far impeded the development of animal models to study the meningococcal lifestyle in vivo. While several human CEACAMs are recognized by the neisserial Opa protein adhesins, we show here that the expression of human CEACAM1 in transgenic mice is necessary and sufficient to allow nasal colonization by Nme. The dependence on human CEACAM1 is attributable to the Opa proteins, since intranasal infection with Opa-negative colonies of Nme selects for bacteria expressing Opa proteins, and genetically Opa-deficient meningococci are unable to colonize these animals. We use this new mouse model to examine how innate immune factors such as neutrophils and complement limit colonization. Furthermore, we compare how adaptive responses elicited by colonization and those generated by parenteral vaccination differentially confer sterilizing immunity. Together, this work provides the first evidence of the critical nature of Opa-CEACAM1 binding in vivo, demonstrates that this is a major determinant of the host restriction by Nme, and reveals a clear disparity between immune correlates of sterilizing immunity conferred by natural colonization versus parenteral immunization.
Collapse
Affiliation(s)
- Kay O Johswich
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Innate recognition by neutrophil granulocytes differs between Neisseria gonorrhoeae strains causing local or disseminating infections. Infect Immun 2013; 81:2358-70. [PMID: 23630956 DOI: 10.1128/iai.00128-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family serve as cellular receptors for Neisseria gonorrhoeae. More specifically, neisserial colony opacity (OpaCEA)) proteins bind to epithelial CEACAMs (CEACAM1, CEA, CEACAM6) to promote bacterial colonization of the mucosa. In contrast, recognition by CEACAM3, expressed by human granulocytes, results in uptake and destruction of Opa(CEA)-expressing bacteria. Therefore, CEACAM3-mediated uptake might limit the spread of gonococci. However, some strains can cause disseminating gonococcal infections (DGIs), and it is currently unknown how these strains escape detection by granulocyte CEACAM3. Therefore, the opa gene loci from N. gonorrhoeae strain VP1, which was derived from a patient with disseminated gonococcal disease, were cloned and constitutively expressed in Escherichia coli. Similar to Opa proteins of the nondisseminating strain MS11, the majority of Opa proteins from strain VP1 bound epithelial CEACAMs and promoted CEACAM-initiated responses by epithelial cells. In sharp contrast to the Opa proteins of strain MS11, the Opa proteins of strain VP1 failed to interact with the human granulocyte receptor CEACAM3. Accordingly, bacteria expressing VP1 Opa proteins were not taken up by primary human granulocytes and did not trigger a strong oxidative burst. Analysis of Opa variants from four additional clinical DGI isolates again demonstrated a lack of CEACAM3 binding. In summary, our results reveal that particular N. gonorrhoeae strains express an Opa protein repertoire allowing engagement of epithelial CEACAMs for successful mucosal colonization, while avoiding recognition and elimination via CEACAM3-mediated phagocytosis. A failure of CEACAM3-mediated innate immune detection might be linked to the ability of gonococci to cause disseminated infections.
Collapse
|
22
|
|
23
|
Voges M, Bachmann V, Naujoks J, Kopp K, Hauck CR. Extracellular IgC2 constant domains of CEACAMs mediate PI3K sensitivity during uptake of pathogens. PLoS One 2012; 7:e39908. [PMID: 22768164 PMCID: PMC3386982 DOI: 10.1371/journal.pone.0039908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022] Open
Abstract
Background Several pathogenic bacteria utilize receptors of the CEACAM family to attach to human cells. Binding to different members of this receptor family can result in uptake of the bacteria. Uptake of Neisseria gonorrhoeae, a Gram-negative human pathogen, via CEACAMs found on epithelial cells, such as CEACAM1, CEA or CEACAM6, differs mechanistically from phagocytosis mediated by CEACAM3, a CEACAM family member expressed selectively by human granulocytes. Principal Findings We find that CEACAM1- as well as CEACAM3-mediated bacterial internalization are accompanied by a rapid increase in phosphatidylinositol-3,4,5 phosphate (PI(3,4,5)P) at the site of bacterial entry. However, pharmacological inhibition of phosphatidylinositol-3′ kinase (PI3K) selectively affects CEACAM1-mediated uptake of Neisseria gonorrhoeae. Accordingly, overexpression of the PI(3,4,5)P phosphatase SHIP diminishes and expression of a constitutive active PI3K increases CEACAM1-mediated internalization of gonococci, without influencing uptake by CEACAM3. Furthermore, bacterial uptake by GPI-linked members of the CEACAM family (CEA and CEACAM6) and CEACAM1-mediated internalization of N. meningitidis by endothelial cells require PI3K activity. Sensitivity of CEACAM1-mediated uptake toward PI3K inhibition is independent of receptor localization in cholesterol-rich membrane microdomains and does not require the cytoplasmic or the transmembrane domain of CEACAM1. However, PI3K inhibitor sensitivity requires the IgC2-like domains of CEACAM1, which are also present in CEA and CEACAM6, but which are absent from CEACAM3. Accordingly, overexpression of CEACAM1 IgC2 domains blocks CEACAM1-mediated internalization. Conclusions Our results provide novel mechanistic insight into CEACAM1-mediated endocytosis and suggest that epithelial CEACAMs associate in cis with other membrane receptor(s) via their extracellular domains to trigger bacterial uptake in a PI3K-dependent manner.
Collapse
Affiliation(s)
- Maike Voges
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Verena Bachmann
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Jan Naujoks
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Kathrin Kopp
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
- * E-mail:
| |
Collapse
|
24
|
Defining the roles of human carcinoembryonic antigen-related cellular adhesion molecules during neutrophil responses to Neisseria gonorrhoeae. Infect Immun 2011; 80:345-58. [PMID: 22064717 DOI: 10.1128/iai.05702-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symptomatic infection of humans with Neisseria gonorrhoeae is characterized by a neutrophil-rich cervical or urethral exudate, suggesting that neutrophils are important both for the clearance of these bacteria and for the pathogenesis of gonorrhea. Neisseria interacts with neutrophils through ligation of human carcinoembryonic antigen related-cellular adhesion molecules (CEACAMs) by their surface-expressed Opa proteins, resulting in bacterial binding, engulfment, and neutrophil activation. Multiple CEACAMs are expressed by human neutrophils, and yet their coexpression has precluded understanding of the relative contribution of each CEACAM to functional responses of neutrophils during neisserial infection. In this work, we directly address the role of each CEACAM during infection by introducing individual human CEACAMs into a differentiated murine MPRO cell line-derived neutrophil model. Murine neutrophils cannot bind the human-restricted Neisseria; however, we show that introducing any of the Opa-binding CEACAMs of human neutrophils (CEACAM1, CEACAM3, and CEACAM6) allows binding and entry of Neisseria into murine neutrophils. While CEACAM1- and CEACAM6-expressing neutrophils bind more bacteria, neisserial uptake via these two receptors unexpectedly proceeds without appreciable neutrophil activation. In stark contrast, neisserial engulfment via CEACAM3 recapitulates the oxidative burst and intracellular granule release seen during human neutrophil infection. Finally, by coexpressing multiple CEACAMs in our model, we show that the expression of CEACAM1 and CEACAM6 potentiate, rather than hinder, CEACAM3-dependent responses of neutrophils, exposing a cooperative role for this family of proteins during neisserial infection of neutrophils. These observations illustrate a divergence in function of CEACAMs in neutrophils and implicate the human-restricted CEACAM3 in the neutrophil innate response to neisserial infection.
Collapse
|
25
|
Söderholm N, Vielfort K, Hultenby K, Aro H. Pathogenic Neisseria hitchhike on the uropod of human neutrophils. PLoS One 2011; 6:e24353. [PMID: 21949708 PMCID: PMC3174955 DOI: 10.1371/journal.pone.0024353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 08/05/2011] [Indexed: 11/18/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are important components of the human innate immune system and are rapidly recruited at the site of bacterial infection. Despite the effective phagocytic activity of PMNs, Neisseria gonorrhoeae infections are characterized by high survival within PMNs. We reveal a novel type IV pilus-mediated adherence of pathogenic Neisseria to the uropod (the rear) of polarized PMNs. The direct pilus-uropod interaction was visualized by scanning electron microscopy and total internal reflection fluorescence (TIRF) microscopy. We showed that N. meningitidis adhesion to the PMN uropod depended on both pilus-associated proteins PilC1 and PilC2, while N. gonorrhoeae adhesion did not. Bacterial adhesion elicited accumulation of the complement regulator CD46, but not I-domain-containing integrins, beneath the adherent bacterial microcolony. Electrographs and live-cell imaging of PMNs suggested that bacterial adherence to the uropod is followed by internalization into PMNs via the uropod. We also present data showing that pathogenic Neisseria can hitchhike on PMNs to hide from their phagocytic activity as well as to facilitate the spread of the pathogen through the epithelial cell layer.
Collapse
Affiliation(s)
- Niklas Söderholm
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Katarina Vielfort
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Helena Aro
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
26
|
Angiopoietins-1 and -2 play opposing roles in endothelial sprouting of embryoid bodies in 3D culture and their receptor Tie-2 associates with the cell-cell adhesion molecule PECAM1. Exp Cell Res 2011; 317:2171-82. [PMID: 21723278 DOI: 10.1016/j.yexcr.2011.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/15/2022]
Abstract
Angiopoietins 1 and 2, ligands for the receptor kinase Tie-2, have been proposed to play critical but opposing roles in vascular development. Since signaling by Tie-2 is likely affected by other endothelial cell receptors such as Flk-1, the receptor for VEGF, and cell-cell adhesion receptors PECAM1 and VE-cad, we explored their interactions in a 3D model of vasculogenesis. When murine embryoid bodies (EBs) were treated with VEGF in Matrigel in the presence or absence of Ang-1 or Ang-2 for eight days, Ang-1 abrogated vascular sprouting for treatments started at days 0 or 3. In contrast, Ang-2 greatly accelerated vascular sprouting compared to untreated EBs. These results were confirmed in a second model system where VEGF treated HUVECs were grown in Matrigel in the presence or absence of Ang-1 or Ang-2. Since vascular sprouting must be precisely controlled in the developing embryo, it is likely that cell-cell adhesion molecules play a role in sensing the density of vascular sprouts. In this respect, we have shown that PECAM1 and CEACAM1 play essential roles in vascular sprouting. We now show that PECAM1 is associated with Tie-2, becomes phosphorylated on its ITIMs, and recruits the inhibitory phosphatases SHP-1 and SHP-2. In addition, PECAM1 is associated with VE-cad and may similarly regulate its signaling via recruitment of SHP-1/2.
Collapse
|
27
|
Edwards JL, Butler EK. The Pathobiology of Neisseria gonorrhoeae Lower Female Genital Tract Infection. Front Microbiol 2011; 2:102. [PMID: 21747805 PMCID: PMC3129011 DOI: 10.3389/fmicb.2011.00102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/25/2011] [Indexed: 11/13/2022] Open
Abstract
Infection and disease associated with Neisseria gonorrhoeae, the gonococcus, continue to be a global health problem. Asymptomatic and subclinical gonococcal infections occur at a high frequency in females; thus, the true incidence of N. gonorrhoeae infections are presumed to be severely underestimated. Inherent to this asymptomatic/subclinical diseased state is the continued prevalence of this organism within the general population, as well as the medical, economic, and social burden equated with the observed chronic, disease sequelae. As infections of the lower female genital tract (i.e., the uterine cervix) commonly result in subclinical disease, it follows that the pathobiology of cervical gonorrhea would differ from that observed for other sites of infection. In this regard, the potential responses to infection that are generated by the female reproductive tract mucosa are unique in that they are governed, in part, by cyclic fluctuations in steroid hormone levels. The lower female genital tract has the further distinction of being able to functionally discriminate between resident commensal microbiota and transient pathogens. The expression of functionally active complement receptor 3 by the lower, but not the upper, female genital tract mucosa; together with data indicating that gonococcal adherence to and invasion of primary cervical epithelial cells and tissue are predominately aided by this surface-expressed host molecule; provide one explanation for asymptomatic/subclinical gonococcal cervicitis. However, co-evolution of the gonococcus with its sole human host has endowed this organism with variable survival strategies that not only aid these bacteria in successfully evasion of immune detection and function but also enhance cervical colonization and cellular invasion. To this end, we herein summarize current knowledge pertaining to the pathobiology of gonococcal infection of the human cervix.
Collapse
Affiliation(s)
- Jennifer L Edwards
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
28
|
Potential of recombinant opa proteins as vaccine candidates against hyperinvasive meningococci. Infect Immun 2011; 79:2810-8. [PMID: 21464082 DOI: 10.1128/iai.01338-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis causes half a million cases of septicemia and meningitis globally each year. The opacity (Opa) integral outer membrane proteins from N. meningitidis are polymorphic and highly immunogenic. Particular combinations of Opa proteins are associated with the hyperinvasive meningococcal lineages that have caused the majority of serogroup B and C meningococcal disease in industrialized countries over the last 60 years. For the first time, this genetic structuring of a diverse outer membrane protein family has been used to select a novel combination of representative antigens for immunogenicity testing. Fourteen recombinant Opa variants were produced and used in murine immunizations inducing an increase in specific antimeningococcal total IgG levels. All 14 Opa proteins elicited bactericidal antibodies against at least one hyperinvasive meningococcal isolate, and most isolates from each hyperinvasive lineage were killed by at least one Opa antiserum at a titer of 1:16 or greater. Cross-reactive bactericidal antibody responses were observed among clonal complexes. A theoretical coverage of 90% can be achieved by using a particular combination of 6 Opa proteins against an isolate collection of 227 recent United Kingdom disease cases. This study indicates the potential of Opa proteins to provide broad coverage against multiple meningococcal hyperinvasive lineages.
Collapse
|
29
|
Sadarangani M, Pollard AJ, Gray-Owen SD. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 2011; 35:498-514. [PMID: 21204865 DOI: 10.1111/j.1574-6976.2010.00260.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are globally important pathogens, which in part owe their success to their ability to successfully evade human immune responses over long periods. The phase-variable opacity-associated (Opa) adhesin proteins are a major surface component of these organisms, and are responsible for bacterial adherence and entry into host cells and interactions with the immune system. Most immune interactions are mediated via binding to members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family. These Opa variants are able to bind to different receptors of the CEACAM family on epithelial cells, neutrophils, and T and B lymphocytes, influencing the innate and adaptive immune responses. Increased epithelial cell adhesion creates the potential for prolonged infection, invasion and dissemination. Furthermore, Opa proteins may inhibit T-lymphocyte activation and proliferation, B-cell antibody production, and innate inflammatory responses by infected epithelia, in addition to conferring increased resistance to antibody-dependent, complement-mediated killing. While vaccines containing Opa proteins could induce adhesion-blocking and bactericidal antibodies, the consequence of CEACAM binding by a candidate Opa-containing vaccine requires further investigation. This review summarizes current knowledge of the immunological consequences of the interaction between meningococcal and gonococcal Opa proteins and human CEACAMs, considering the implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK.
| | | | | |
Collapse
|
30
|
Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 2010; 5:e14034. [PMID: 21124975 PMCID: PMC2987801 DOI: 10.1371/journal.pone.0014034] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.
Collapse
|
31
|
Opa+ and Opa- isolates of Neisseria meningitidis and Neisseria gonorrhoeae induce sustained proliferative responses in human CD4+ T cells. Infect Immun 2009; 77:5170-80. [PMID: 19720754 DOI: 10.1128/iai.00355-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cells may interact with a number of bacterial surface antigens, an encounter which has the potential to downmodulate host immune responses. Neisseria meningitidis, a human colonizer and an agent of septicemia and meningitis, expresses Opa proteins which interact with the CEACAM1 receptor expressed on activated T cells. Since CEACAM1 can act as an inhibitory receptor and T cells in subepithelial tissues may encounter whole bacteria, which often express Opa proteins in vivo, this study assessed primarily if Opa proteins expressed on meningococci affect T-cell functions. In addition, Opa-containing outer membrane vesicles (OMV) have been used as vaccine antigens, and therefore Opa+ and Opa- OMV were also studied. While Opa+ bacteria adhered to CEACAM-expressing T cells, both the Opa+ and Opa- phenotypes induced no to a small transient depression, followed by a prolonged increase in proliferation as well as cytokine production. Such responses were also observed with heat-killed bacteria or OMV. In addition, while anti-CEACAM antibodies alone inhibited proliferation, on coincubation of T cells with bacteria and the antibodies, bacterial effects predominated and were Opa independent. Thus, while Opa proteins of N. meningitidis can bind to T-cell-expressed CEACAM1, this is not sufficient to overcome the T-cell recognition of bacterial factors, which results in a proliferative and cytokine response, an observation consistent with the ability of the host to establish lasting immunity to Opa-expressing meningococci that it frequently encounters. The data also imply that Opa-proficient vaccine preparations may not necessarily inhibit T-cell functions via CEACAM1 binding.
Collapse
|
32
|
Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310-47. [PMID: 19487730 DOI: 10.1128/mmbr.00041-08] [Citation(s) in RCA: 620] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.
Collapse
|
33
|
Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I, Nassif X, Virji M. Meningococcal interactions with the host. Vaccine 2009; 27 Suppl 2:B78-89. [PMID: 19481311 DOI: 10.1016/j.vaccine.2009.04.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neisseria meningitidis interacts with host tissues through hierarchical, concerted and co-ordinated actions of a number of adhesins; many of which undergo antigenic and phase variation, a strategy that helps immune evasion. Three major structures, pili, Opa and Opc predominantly influence bacterial adhesion to host cells. Pili and Opa proteins also determine host and tissue specificity while Opa and Opc facilitate efficient cellular invasion. Recent studies have also implied a role of certain adhesin-receptor pairs in determining increased host susceptibility to infection. This chapter examines our current knowledge of meningococcal adhesion and invasion mechanisms particularly related to human epithelial and endothelial cells which are of primary importance in the disease process.
Collapse
Affiliation(s)
- Etienne Carbonnelle
- INSERM, unité 570, Université Paris Descartes, 156 rue de Vaugirard, Paris 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Although renowned as a lethal pathogen, Neisseria meningitidis has adapted to be a commensal of the human nasopharynx. It shares extensive genetic and antigenic similarities with the urogenital pathogen Neisseria gonorrhoeae but displays a distinct lifestyle and niche preference. Together, they pose a considerable challenge for vaccine development as they modulate their surface structures with remarkable speed. Nonetheless, their host-cell attachment and invasion capacity is maintained, a property that could be exploited to combat tissue infiltration. With the primary focus on N. meningitidis, this Review examines the known mechanisms used by these pathogens for niche establishment and the challenges such mechanisms pose for infection control.
Collapse
|
35
|
Rahmoun M, Molès JP, Pedretti N, Mathieu M, Fremaux I, Raison-Peyron N, Lecron JC, Yssel H, Pène J. Cytokine-induced CEACAM1 expression on keratinocytes is characteristic for psoriatic skin and contributes to a prolonged lifespan of neutrophils. J Invest Dermatol 2008; 129:671-81. [PMID: 18843289 DOI: 10.1038/jid.2008.303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) is a cell-surface glycoprotein, belonging to the carcinoembryonic antigen family, expressed by human neutrophils, epithelial cells, activated T and NK cells. CEACAM1 is expressed as a cell-surface molecule with different isoforms or can be secreted as a soluble protein. Here, we show that keratinocytes in the outer epidermal layer of psoriatic skin express CEACAM1, unlike those in healthy skin or in cutaneous lesions of patients with atopic or nummular dermatitis. Stimulation of primary human keratinocytes or in vitro reconstituted epidermis with culture supernatants of activated psoriatic lesion-infiltrating T cells, IFN-gamma or oncostatin M, but not IL-17, induced the expression of transcripts for the CEACAM1-long and -short isoforms and cell-surface CEACAM1, whereas soluble CEACAM1 was not produced. The uppermost layers of the epidermis in psoriatic lesions also contain neutrophils, a cell type with inflammatory and antimicrobial properties. Coculture of CEACAM1-expressing keratinocytes or CHO transfectants with neutrophils delayed spontaneous apoptosis of the latter cells. These results show that cytokine-induced cell-surface expression of CEACAM1 by keratinocytes in the context of a psoriatic environment might contribute to the persistence of neutrophils and thus to ongoing inflammation and the decreased propensity for skin infection, typical for patients with psoriasis.
Collapse
|
36
|
Lee HSW, Ostrowski MA, Gray-Owen SD. CEACAM1 dynamics during neisseria gonorrhoeae suppression of CD4+ T lymphocyte activation. THE JOURNAL OF IMMUNOLOGY 2008; 180:6827-35. [PMID: 18453603 DOI: 10.4049/jimmunol.180.10.6827] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neisseria gonorrhoeae colony opacity-associated (Opa) proteins bind to human carcinoembryonic antigen cellular adhesion molecules (CEACAM) found on host cells including T lymphocytes. Opa binding to CEACAM1 suppresses the activation of CD4(+) T cells in response to a variety of stimuli. In this study, we use primary human CD4(+) T cells isolated from peripheral blood to define the molecular events occurring subsequent to Opa-CEACAM1 binding. We establish that, in contrast to other cell types, T cells do not engulf N. gonorrhoeae upon CEACAM1 binding. Instead, the bacteria recruit CEACAM1 from intracellular stores and maintain it on the T cell surface. Upon TCR ligation, the co-engaged CEACAM1 becomes phosphorylated on tyrosine residues within the ITIMs apparent in the cytoplasmic domain. This allows the recruitment and subsequent activation of the src homology domain 2-containing tyrosine phosphatases SHP-1 and SHP-2 at the site of bacterial attachment, which prevents the normal tyrosine phosphorylation of the CD3zeta-chain and ZAP-70 kinase in response to TCR engagement. Combined, this dynamic response allows the bacteria to effectively harness the coinhibitory function of CEACAM1 to suppress the adaptive immune response at its earliest step.
Collapse
Affiliation(s)
- Hannah S W Lee
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
37
|
Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect Immun 2008; 76:3869-80. [PMID: 18559426 DOI: 10.1128/iai.00427-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dr family of Escherichia coli adhesins are virulence factors associated with diarrhea and urinary tract infections. Dr fimbriae are comprised of two subunits. DraE/AfaE represents the major structural, antigenic, and adhesive subunit, which recognizes decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) CEA, CEACAM1, CEACAM3, and CEACAM6 as binding receptors. The DraD/AfaD subunit caps fimbriae and has been implicated in the entry of Dr-fimbriated E. coli into host cells. In this study, we demonstrate that DAF or CEACAM receptors independently promote DraE-mediated internalization of E. coli by CHO cell transfectants expressing these receptors. We also found that DraE-positive recombinant bacteria adhere to and are internalized by primary human bladder epithelial cells which express DAF and CEACAMs. DraE-mediated bacterial internalization by bladder cells was inhibited by agents which disrupt lipid rafts, microtubules, and phosphatidylinositol 3-kinase (PI3K) activity. Immunofluorescence confocal microscopic examination of epithelial cells detected considerable recruitment of caveolin, beta(1) integrin, phosphorylated ezrin, phosphorylated PI3K, and tubulin, but not F-actin, by cell-associated bacteria. Finally, we demonstrate that the DraD subunit, previously implicated as an "invasin," is not required for beta(1) integrin recruitment or bacterial internalization.
Collapse
|
38
|
Abstract
The meningococcal Opa proteins play an important role in pathogenesis by mediating invasion of human cells. The aim of this investigation was to determine whether carried and disease-associated meningococci possess different Opa repertoires and whether the diversity of these proteins is associated with clinical severity of disease. Opa repertoires in 227 disease-associated meningococci, isolated in the United Kingdom over a period of 6 years, were compared to the repertoires in 190 asymptomatically carried meningococci isolated in the United Kingdom from a contemporary, nonepidemic period. Multidimensional scaling (MDS) was employed to investigate the association between Opa repertoires and multilocus sequence typing (MLST) genotypes. Associations with clinical severity were also analyzed statistically. High levels of diversity were observed in opa alleles, variable regions, and repertoires, and MDS revealed that MLST genotypes were strongly associated with particular Opa repertoires. Individual Opa proteins or repertoires were not associated with clinical severity, though there was a trend toward an association with the opaD locus. Meningococcal Opa repertoire is strongly linked to MLST genotype irrespective of epidemiological sampling and therefore correlates with invasiveness. It is not, however, strongly associated with severity of meningococcal disease.
Collapse
|
39
|
Callaghan MJ, Buckee CO, Jolley KA, Kriz P, Maiden MCJ, Gupta S. The effect of immune selection on the structure of the meningococcal opa protein repertoire. PLoS Pathog 2008; 4:e1000020. [PMID: 18369470 PMCID: PMC2265424 DOI: 10.1371/journal.ppat.1000020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 02/01/2008] [Indexed: 11/23/2022] Open
Abstract
The opa genes of the Gram negative bacterium Neisseria meningitidis encode Opacity-associated outer membrane proteins whose role is to promote adhesion to the human host tissue during colonisation and invasion. Each meningococcus contains 3–4 opa loci, each of which may be occupied by one of a large number of alleles. We analysed the Opa repertoire structure in a large, well-characterised collection of asymptomatically carried meningococci. Our data show an association between Opa repertoire and meningococcal lineages similar to that observed previously for meningococci isolated from cases of invasive disease. Furthermore, these Opa repertoires exhibit discrete, non-overlapping structure at a population level, and yet low within-repertoire diversity. These data are consistent with the predictions of a mathematical model of strong immune selection upon a system where identical alleles may occupy different loci. Neisseria meningitidis is a globally important pathogen that causes 2,000–3,000 cases of invasive meningococcal disease annually in the United Kingdom. The meningococcal Opa proteins are important in mediating adhesion to and invasion of human tissues, and are important for evasion of the host immune response. They are encoded by a repertoire of 3–4 genomic loci in each meningococcus and exhibit high levels of sequence diversity. Here we analyzed the Opa repertoires of a large, well-characterised, asymptomatically carried meningococcal isolate collection. We found that the Opa repertoires were specific to individual meningococcal genotypes, similar to that observed in isolates from cases of invasive disease. These repertoires exhibited discrete, non-overlapping structure at a population level, and yet low within-repertoire diversity. These data were consistent with the predictions of a mathematical model of strong immune selection, suggesting that the collective immune response of the host population shapes the antigenic diversity of the meningococcal Opa repertoire. This study provides new insights into Opa-mediated meningococcal pathogenesis and the effect of host population immunity on the biodiversity and population structure of bacterial pathogens. These data may also have implications for the design of new meningococcal vaccines based on surface proteins.
Collapse
Affiliation(s)
- Martin J. Callaghan
- Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Churchill Hospital, Oxford, United Kingdom
| | | | - Keith A. Jolley
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paula Kriz
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Prague, Czech Republic
| | - Martin C. J. Maiden
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Callaghan MJ, Rockett K, Banner C, Haralambous E, Betts H, Faust S, Maiden MCJ, Kroll JS, Levin M, Kwiatkowski DP, Pollard AJ. Haplotypic diversity in human CEACAM genes: effects on susceptibility to meningococcal disease. Genes Immun 2007; 9:30-7. [PMID: 17960155 PMCID: PMC7094765 DOI: 10.1038/sj.gene.6364442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adhesion between the opacity-associated adhesin (Opa) proteins of Neisseria meningitidis and human carcino-embryonic antigen cell adhesion molecule (CEACAM) proteins is an important stage in the pathogenesis of meningococcal disease, a globally important bacterial infection. Most disease is caused by a small number of meningococcal genotypes known as hyperinvasive lineages. As these are also carried asymptomatically, acquisition of them alone cannot explain why only some hosts develop meningococcal disease. Our aim was to determine whether genetic diversity in CEACAM is associated with susceptibility to meningococcal disease. Frequency distributions of alleles, genotypes and haplotypes were compared in four CEACAM genes in 384 case samples and 190 controls. Linkage disequilibrium among polymorphic sites, haplotype structures and relationships were also analysed. A number of polymorphisms were observed in CEACAM genes but the diversity of CEACAM1, to which most Opa proteins bind, was lower, and a small number of high-frequency haplotypes were detected. Dose-dependent associations of three CEACAM haplotypes with meningococcal disease were observed, with the effect of carrying these haplotypes amplified in homozygous individuals. Two haplotypes were protective while one haplotype in CEACAM6 was associated with a twofold increase in disease susceptibility. These data imply that human CEACAM may be one determinant of human susceptibility to meningococcal disease.
Collapse
Affiliation(s)
- M J Callaghan
- Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Headington, Oxford, Oxon, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A carcinoembryonic antigen-related cell adhesion molecule 1 homologue plays a pivotal role in nontypeable Haemophilus influenzae colonization of the chinchilla nasopharynx via the outer membrane protein P5-homologous adhesin. Infect Immun 2007; 76:48-55. [PMID: 17938212 DOI: 10.1128/iai.00980-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vitro studies suggest an important role for CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1) in infection by multiple gram-negative bacteria. However, in vivo evidence supporting this role is lacking, largely because the bacterial adhesins involved in this host-microbe association do not bind to murine-derived CEACAM1. One of several adhesins expressed by nontypeable Haemophilus influenzae (NTHI), the outer membrane protein P5-homologous adhesin (or P5), is essential for colonization of the chinchilla nasopharynx and infection of the middle ear. Here we reveal that NTHI P5 binds to the chinchilla homologue of CEACAM1 and that rabbit anti-human carcinoembryonic antigen blocks NTHI colonization of the chinchilla nasopharynx, providing the first demonstration of a role for CEACAM receptor binding by any bacterial pathogen in vivo.
Collapse
|
42
|
Griffiths NJ, Bradley CJ, Heyderman RS, Virji M. IFN-gamma amplifies NFkappaB-dependent Neisseria meningitidis invasion of epithelial cells via specific upregulation of CEA-related cell adhesion molecule 1. Cell Microbiol 2007; 9:2968-83. [PMID: 17764466 PMCID: PMC3020365 DOI: 10.1111/j.1462-5822.2007.01038.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Temporal relationship between viral and bacterial infections has been observed, and may arise via the action of virus-induced inflammatory cytokines. These, by upregulating epithelial receptors targeted by bacteria, may encourage greater bacterial infiltration. In this study, human epithelial cells exposed to interferon-gamma but not tumour necrosis factor-alpha or interleukin 1-beta supported increased meningococcal adhesion and invasion. The increase was related to Opa but not Opc or pili adhesin expression. De novo synthesis of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a major Opa receptor, occurred in epithelial cells exposed to the cytokine, or when infected with Opa-expressing bacteria. Cell line-dependent differences in invasion that were observed could be correlated with CEACAM expression levels. There was also evidence for Opa/pili synergism leading to high levels of monolayer infiltration by capsulate bacteria. The use of nuclear factor-kappa B (NFκB) inhibitors, diferuloylmethane (curcumin) and SN50, abrogated bacterial infiltration of both untreated and interferon-gamma-treated cells. The studies demonstrate the importance of CEACAMs as mediators of increased cellular invasion under conditions of inflammation and bring to light the potential role of NFκB pathway in Opa-mediated invasion by meningococci. The data imply that cell-surface remodelling by virally induced cytokines could be one factor that increases host susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Natalie J Griffiths
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of BristolBristol, BS8 1TD, UK
| | | | - Robert S Heyderman
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of BristolBristol, BS8 1TD, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research ProgrammePO Box 30096, Chichiri, Blantyre 3, Malawi
| | - Mumtaz Virji
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of BristolBristol, BS8 1TD, UK
- *For correspondence. E-mail ; Tel. (+44) 1173312035; Fax (+44) 117 3312035
| |
Collapse
|
43
|
Sarantis H, Gray-Owen SD. The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway. Cell Microbiol 2007; 9:2167-80. [PMID: 17506820 DOI: 10.1111/j.1462-5822.2007.00947.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human-restricted pathogens Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and Moraxella catarrhalis colonize host tissues via carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). One such receptor, CEACAM3, acts in a host-protective manner by orchestrating the capture and engulfment of invasive bacteria by human neutrophils. Herein, we show that bacterial binding to CEACAM3 causes recruitment of the cytoplasmic tyrosine kinase Syk, resulting in the phosphorylation of both CEACAM3 and Syk. This interaction is specific for the immunoreceptor tyrosine-based activation motif (ITAM) in the CEACAM3 cytoplasmic domain. While dispensable for the phagocytic uptake of single bacteria by CEACAM3, Syk is necessary for internalization when cargo size increases or when the density of CEACAM-binding ligand on the cargo surface is below a critical threshold. Moreover, Syk engagement is required for an effective bacterial killing response, including the neutrophil oxidative burst and degranulation functions in response to N. gonorrhoeae. These data reveal CEACAM3 as a specific innate immune receptor that mediates the opsonin-independent clearance of CEACAM-binding bacteria via Syk, a molecular trigger for functional immunoreceptor responses of both the adaptive (TCR, BCR, FcR) and innate (Dectin-1, CEACAM3) immune systems.
Collapse
Affiliation(s)
- Helen Sarantis
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
44
|
Kuespert K, Weibel S, Hauck CR. Profiling of bacterial adhesin — host receptor recognition by soluble immunoglobulin superfamily domains. J Microbiol Methods 2007; 68:478-85. [PMID: 17126432 DOI: 10.1016/j.mimet.2006.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/05/2006] [Accepted: 10/11/2006] [Indexed: 01/16/2023]
Abstract
Several gram-negative human pathogens recognize members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family. Pathogenic Neisseriae employ distinct isoforms of the colony opacity-associated proteins (Opa(CEA) proteins) to bind to the amino-terminal domains of CEACAMs. Here we present a novel approach to rapidly determine the CEACAM-binding properties of single bacteria. Expression of the isolated amino-terminal domains of various CEACAMs in eukaryotic cells yields soluble probes that selectively recognize Opa(CEA)-expressing bacteria in a pull-down assay format. Furthermore, by expressing soluble CEACAMs as fusions to green-fluorescent protein (CEACAM-N-GFP), CEACAM-binding bacteria can be decorated with a fluorescent label and analysed by flow cytometry allowing the specific detection of receptor binding events on the level of single bacteria. Besides its potential for rapid and quantitative analysis of pathogen-receptor interactions, this novel approach allows the detection of receptor recognition in heterogeneous bacterial populations and might represent a valuable tool for profiling the host binding capabilities of various microorganisms.
Collapse
Affiliation(s)
- Katharina Kuespert
- Lehrstuhl für Zellbiologie, Fachbereich Biologie X908, Universitätsstr.10, Universität Konstanz, 78457 Konstanz, Germany
| | | | | |
Collapse
|
45
|
Vićovac L, Bozić M, Bojić-Trbojević Z, Golubović S. Carcinoembryonic Antigen and Related Molecules in Normal and Transformed Trophoblast. Placenta 2007; 28:85-96. [PMID: 16574224 DOI: 10.1016/j.placenta.2006.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 02/06/2006] [Accepted: 02/07/2006] [Indexed: 12/27/2022]
Abstract
Carcinoembryonic antigen (CEA, CD66e) and CEA-related cell adhesion molecules (CEACAMs) are important mediators in remodeling of diverse human tissues, and modulators of cell proliferation and differentiation. Expression by normal and transformed trophoblast of gestational trophoblastic diseases (GTDs), isolated cytotrophoblast and choriocarcinoma cell lines is presented here. Immunocyto/histochemistry of normal placenta (n=9), invasive mole (n=8), choriocarcinoma (n=7), a placental site trophoblastic tumor, cytotrophoblast in primary culture and JAr and JEG-3 cells was performed using polyclonal anti-CEA and specific monoclonal anti-CEA antibodies. Data were analyzed and scored using Mann-Whitney Test. CEA and CEA-related molecules were identified by Western blot and immunoaffinity chromatography in JAr and JEG-3 cells and extracts of 1st and 3rd trimester of pregnancy tissue and cytotrophoblast cell lysates. CEA is expressed throughout pregnancy, in first trimester predominantly in syncytiotrophoblast, but also in villous cytotrophoblast and extravillous trophoblast. Data presented here demonstrate that CEA is significantly increased in transformed trophoblast of GTDs (p<0.05). Both cytotrophoblast in primary culture and choriocarcinoma cell lines express CEA, with staining of granular deposits in JAr and cell membrane in JEG-3. The results suggest that CEA (CD66e) and other CEA-related protein(s) could be involved in trophoblast differentiation.
Collapse
Affiliation(s)
- Lj Vićovac
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, PO Box 46, 11080, Zemun-Belgrade, Serbia and Montenegro.
| | | | | | | |
Collapse
|
46
|
Nagaishi T, Pao L, Lin SH, Iijima H, Kaser A, Qiao SW, Chen Z, Glickman J, Najjar SM, Nakajima A, Neel BG, Blumberg RS. SHP1 Phosphatase-Dependent T Cell Inhibition by CEACAM1 Adhesion Molecule Isoforms. Immunity 2006; 25:769-81. [PMID: 17081782 DOI: 10.1016/j.immuni.2006.08.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 06/26/2006] [Accepted: 08/30/2006] [Indexed: 11/20/2022]
Abstract
T cell activation through the T cell receptor (TCR) is subsequently modified by secondary signals that are either stimulatory or inhibitory. We show that CEACAM1 adhesion molecule isoforms containing a long cytoplasmic domain inhibited multiple T cell functions as a consequence of TCR ligation. Overexpression of CEACAM1 resulted in decreased proliferation, allogeneic reactivity, and cytokine production in vitro and delayed type hypersensitivity and inflammatory bowel disease in mouse models in vivo. Conditioned deletion of CEACAM1 in T cells caused increased TCR-CD3 complex signaling. This T cell regulation was dependent upon the presence of immunoreceptor tyrosine-based inhibition motifs (ITIM) within the cytoplasmic domain of CEACAM1 and the Src homology 2 domain-containing protein tyrosine-phosphatase 1 (SHP1) in the T cell. Thus, CEACAM1 overexpression or deletion in T cells resulted in T cell inhibition or activation, respectively, revealing a role for CEACAM1 as a class of inhibitory receptors potentially amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Callaghan MJ, Jolley KA, Maiden MCJ. Opacity-associated adhesin repertoire in hyperinvasive Neisseria meningitidis. Infect Immun 2006; 74:5085-94. [PMID: 16926400 PMCID: PMC1594835 DOI: 10.1128/iai.00293-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opacity (Opa) proteins mediate a variety of interactions between the bacterium Neisseria meningitidis and its human host. These interactions are thought to be of central importance in both the asymptomatic colonization of the nasopharynx and the sporadic occurrence of meningococcal disease. The receptor specificities of a limited number of Opa protein variants have been explored, but the high level of amino acid sequence diversity among variants has complicated the assignment of specific roles to individual Opa variants or combinations of variants. In addition, the distribution of Opa protein variants among diverse meningococci, information that is potentially informative for studies of Opa function, is poorly understood. A systematic survey of the genetic diversity in the four opa gene loci in each of 77 meningococcal isolates was undertaken. These isolates were representative of the seven hyperinvasive meningococcal clonal complexes that caused the majority of meningococcal disease over the last 50 years. Consistent with previous studies, a high level of sequence diversity was observed among the opa genes and the proteins that they encoded; however, particular sets of Opa protein variants were consistently associated with each of the clonal complexes over time periods often spanning decades and during global spread. These observations were consistent with the postulate that particular combinations of Opa proteins confer fitness advantages to individual clonal complexes and have implications for studies of Opa function and the inclusion of Opa proteins in novel meningococcal vaccines.
Collapse
Affiliation(s)
- Martin J Callaghan
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | |
Collapse
|
48
|
Rowe HA, Griffiths NJ, Hill DJ, Virji M. Co-ordinate action of bacterial adhesins and human carcinoembryonic antigen receptors in enhanced cellular invasion by capsulate serum resistant Neisseria meningitidis. Cell Microbiol 2006; 9:154-68. [PMID: 16889622 DOI: 10.1111/j.1462-5822.2006.00775.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.
Collapse
Affiliation(s)
- Helen A Rowe
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
49
|
Patrone JB, Bish SE, Stein DC. TNF-α-Independent IL-8 Expression: Alterations in Bacterial Challenge Dose Cause Differential Human Monocytic Cytokine Response. THE JOURNAL OF IMMUNOLOGY 2006; 177:1314-22. [DOI: 10.4049/jimmunol.177.2.1314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Abstract
The carcinoembryonic-antigen-related cell-adhesion molecule (CEACAM) family of proteins has been implicated in various intercellular-adhesion and intracellular-signalling-mediated effects that govern the growth and differentiation of normal and cancerous cells. Recent studies show that there is an important role for members of the CEACAM family in modulating the immune responses associated with infection, inflammation and cancer. In this Review, we consider the evidence for CEACAM involvement in immunity, with a particular emphasis on CEACAM1, which functions as a regulatory co-receptor for both lymphoid and myeloid cell types.
Collapse
Affiliation(s)
- Scott D Gray-Owen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | | |
Collapse
|