1
|
Senevirathne A, Lloren KKS, Aganja RP, Kwon J, Lee JH. Transforming bacterial pathogens into wonder tools in cancer immunotherapy. Mol Ther 2025; 33:866-882. [PMID: 39825565 PMCID: PMC11897747 DOI: 10.1016/j.ymthe.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Cancer immunotherapy has revolutionized cancer treatment due to its precise, target-specific approach compared with conventional therapies. However, treating solid tumors remains challenging as these tumors are inherently immunosuppressive, and their tumor microenvironment (TME) often limits therapeutic efficacy. Interestingly, certain bacterial species offer a promising alternative by exhibiting an innate ability to target and proliferate within tumor environments. Bacterial structural and functional components can activate innate and adaptive immune responses, creating tumor-suppressive conditions that reduce tumor mass. Additionally, bacteria can deliver effector molecules directly into tumor cells, inducing apoptotic and necrotic cell death. Despite their potential, the use of bacteria in cancer immunotherapy poses risks due to possible toxicities and unpredictable in vivo behavior. Advances in genetic engineering have addressed these concerns by enabling the development of attenuated bacterial strains with enhanced anticancer properties for safer medical applications. This review highlights the role of bacteria in TME modulation, recent strategies to bioengineer bacterial pathogens as therapeutic tools, and the synergistic effects of combining bacteria with other immunotherapies. It also discusses the challenges and prospects of translating this innovative approach into clinical practice, offering a comprehensive overview of bacteria-based cancer immunotherapy's potential to reshape the future of cancer treatment.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Khristine Kaith S Lloren
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
2
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
3
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
4
|
Levine MM, Barry EM, Chen WH. A roadmap for enterotoxigenic Escherichia coli vaccine development based on volunteer challenge studies. Hum Vaccin Immunother 2019; 15:1357-1378. [PMID: 30724648 PMCID: PMC6663128 DOI: 10.1080/21645515.2019.1578922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of travelers’ diarrhea and of diarrhea among young children in developing countries. Experimental challenge studies in adult volunteers have played a pivotal role in establishing ETEC as an enteric pathogen, elucidating its pathogenesis by identifying specific virulence attributes, characterizing the human immune response to clinical and sub-clinical ETEC infection and assessing preliminarily the clinical acceptability, immunogenicity and efficacy of prototype ETEC vaccines. This review provides a historical perspective of experimental challenge studies with ETEC. It summarizes pioneering early studies carried out by investigators at the University of Maryland School of Medicine to show how those studies provided key information that influenced the directions taken by many research groups to develop vaccines to prevent ETEC. In addition, key experimental challenge studies undertaken at other institutions will also be cited.
Collapse
Affiliation(s)
- Myron M Levine
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Eileen M Barry
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Wilbur H Chen
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA
| |
Collapse
|
5
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
6
|
Curtis B, Grassel C, Laufer RS, Sears KT, Pasetti MF, Barry EM, Simon R. Simple method for purification of enterotoxigenic Escherichia coli fimbriae. Protein Expr Purif 2015; 119:130-5. [PMID: 26581778 DOI: 10.1016/j.pep.2015.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/20/2015] [Accepted: 11/08/2015] [Indexed: 11/15/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are endemic pathogens in the developing world. They frequently cause illness in travelers, and are among the most prevalent causes of diarrheal disease in children. Pathogenic ETEC strains employ fimbriae as adhesion factors to bind the luminal surface of the intestinal epithelium and establish infection. Accordingly, there is marked interest in immunoprophylactic strategies targeting fimbriae to protect against ETEC infections. Multiple strategies have been reported for purification of ETEC fimbriae, however none is ideal. Purification has typically involved the use of highly virulent wild-type strains. We report here a simple and improved method to purify ETEC fimbriae, which was applied to obtain two different Class 5 fimbriae types of clinical relevance (CFA/I and CS4) expressed recombinantly in E. coli production strains. Following removal from cells by shearing, fimbriae proteins were purified by orthogonal purification steps employing ultracentrifugation, precipitation, and ion-exchange membrane chromatography. Purified fimbriae demonstrated the anticipated size and morphology by electron microscopy analysis, contained negligible levels of residual host cell proteins, nucleic acid, and endotoxin, and were recognized by convalescent human anti-sera.
Collapse
Affiliation(s)
- Brittany Curtis
- Center for Vaccine Development, University of Maryland Medical School, Baltimore, MD, USA; Department of Medicine, University of Maryland Medical School, Baltimore, MD, USA
| | - Christen Grassel
- Center for Vaccine Development, University of Maryland Medical School, Baltimore, MD, USA; Department of Medicine, University of Maryland Medical School, Baltimore, MD, USA
| | - Rachel S Laufer
- Center for Vaccine Development, University of Maryland Medical School, Baltimore, MD, USA; Department of Medicine, University of Maryland Medical School, Baltimore, MD, USA
| | - Khandra T Sears
- Center for Vaccine Development, University of Maryland Medical School, Baltimore, MD, USA; Department of Pediatrics, University of Maryland Medical School, Baltimore, MD, USA
| | - Marcela F Pasetti
- Center for Vaccine Development, University of Maryland Medical School, Baltimore, MD, USA; Department of Pediatrics, University of Maryland Medical School, Baltimore, MD, USA
| | - Eileen M Barry
- Center for Vaccine Development, University of Maryland Medical School, Baltimore, MD, USA; Department of Medicine, University of Maryland Medical School, Baltimore, MD, USA
| | - Raphael Simon
- Center for Vaccine Development, University of Maryland Medical School, Baltimore, MD, USA; Department of Medicine, University of Maryland Medical School, Baltimore, MD, USA.
| |
Collapse
|
7
|
Kumar A, Hays M, Lim F, Foster LJ, Zhou M, Zhu G, Miesner T, Hardwidge PR. Protective Enterotoxigenic Escherichia coli Antigens in a Murine Intranasal Challenge Model. PLoS Negl Trop Dis 2015; 9:e0003924. [PMID: 26244636 PMCID: PMC4526226 DOI: 10.1371/journal.pntd.0003924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/19/2015] [Indexed: 12/19/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an endemic health threat in underdeveloped nations. Despite the significant effort extended to vaccine trials using ETEC colonization factors, these approaches have generally not been especially effective in mediating cross-protective immunity. We used quantitative proteomics to identify 24 proteins that differed in abundance in membrane protein preparations derived from wild-type vs. a type II secretion system mutant of ETEC. We expressed and purified a subset of these proteins and identified nine antigens that generated significant immune responses in mice. Sera from mice immunized with either the MltA-interacting protein MipA, the periplasmic chaperone seventeen kilodalton protein, Skp, or a long-chain fatty acid outer membrane transporter, ETEC_2479, reduced the adherence of multiple ETEC strains differing in colonization factor expression to human intestinal epithelial cells. In intranasal challenge assays of mice, immunization with ETEC_2479 protected 88% of mice from an otherwise lethal challenge with ETEC H10407. Immunization with either Skp or MipA provided an intermediate degree of protection, 68 and 64%, respectively. Protection was significantly correlated with the induction of a secretory immunoglobulin A response. This study has identified several proteins that are conserved among heterologous ETEC strains and may thus potentially improve cross-protective efficacy if incorporated into future vaccine designs.
Collapse
Affiliation(s)
- Amit Kumar
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Mike Hays
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Francis Lim
- Department of Biochemistry & Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mingxu Zhou
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Tracy Miesner
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Philip R. Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
8
|
|
9
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) are the most common bacterial pathogens causing diarrhea in developing countries where they lead to hundreds of thousands of deaths, mostly in children. These organisms are a leading cause of diarrheal illness in travelers to endemic countries. ETEC pathogenesis, and consequently vaccine approaches, have largely focused on plasmid-encoded enterotoxins or fimbrial colonization factors. To date these approaches have not yielded a broadly protective vaccine. However, recent studies suggest that ETEC pathogenesis is more complex than previously appreciated and involves additional plasmid and chromosomally encoded virulence molecules that can be targeted in vaccines. Here, we review recent novel antigen discovery efforts, potential contribution of these proteins to the molecular pathogenesis of ETEC and protective immunity, and the potential implications for development of next generation vaccines for important pathogens. These proteins may help to improve the effectiveness of future vaccines by making them simpler and possibly broadly protective because of their conserved nature.
Collapse
Affiliation(s)
- James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, USA
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, USA
- Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, USA
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
10
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
11
|
The codon-optimization of cfaE gene and evaluating its high expression capacity and conserved immunogenicity in Escherichia coli. Biologicals 2013; 41:169-75. [DOI: 10.1016/j.biologicals.2013.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 01/02/2013] [Accepted: 01/05/2013] [Indexed: 01/20/2023] Open
|
12
|
Byrd W, Boedeker EC. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation. Vet Immunol Immunopathol 2013; 152:57-67. [DOI: 10.1016/j.vetimm.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Nataro JP, Barry EM. Diarrhea caused by bacteria. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Zhang W, Sack DA. Progress and hurdles in the development of vaccines against enterotoxigenic Escherichia coli in humans. Expert Rev Vaccines 2012; 11:677-94. [PMID: 22873126 DOI: 10.1586/erv.12.37] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diarrhea is the second leading cause of death in children younger than 5 years. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacterial cause of diarrhea in young children living in endemic countries and children and adults traveling to these areas. Pathogenesis of ETEC diarrhea has been well studied, and the key virulence factors are bacterial colonization factor antigens and enterotoxins produced by ETEC strains. Colonization factor antigens mediate bacteria attachment to host small intestinal epithelial cells and subsequent colonization, whereas enterotoxins including heat-labile and heat-stable toxins disrupt fluid homeostasis in host epithelial cells, which leads to fluid and electrolyte hypersecretion and diarrhea. Vaccines stimulating host anti-adhesin immunity to block ETEC attachment and colonization and also antitoxin immunity to neutralize enterotoxicity are considered optimal for prevention of ETEC diarrhea. Vaccines under development have been designed to stimulate local intestinal immunity and are either oral vaccines or transcutaneous vaccines. A cholera vaccine (Dukoral®) does stimulate anti-heat-labile toxin immunity and is licensed for short-term protection of ETEC diarrhea in travelers in some countries. Newer experimental ETEC vaccine candidates are being developed with hope to provide long-lasting and more broad-based protection against ETEC. Some have shown promising results in safety and immunogenicity studies and are approaching field trials for efficacy. A key problem is the development of a vaccine that is both practical and inexpensive so that it can be affordable for use in poor countries where it is needed.
Collapse
Affiliation(s)
- Weiping Zhang
- Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, SD, USA.
| | | |
Collapse
|
15
|
Two live attenuated Shigella flexneri 2a strains WRSf2G12 and WRSf2G15: a new combination of gene deletions for 2nd generation live attenuated vaccine candidates. Vaccine 2012; 30:5159-71. [PMID: 22658966 DOI: 10.1016/j.vaccine.2012.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/25/2012] [Accepted: 05/01/2012] [Indexed: 11/23/2022]
Abstract
Shigella infections are a major cause of inflammatory diarrhea and dysentery worldwide. First-generation virG-based live attenuated Shigella strains have been successfully tested in phase I and II clinical trials and are a leading approach for Shigella vaccine development. Additional gene deletions in senA, senB and msbB2 have been engineered into second-generation virG-based Shigella flexneri 2a strains producing WRSf2G12 and WRSf2G15. Both strains harbor a unique combination of gene deletions designed to increase the safety of live Shigella vaccines. WRSf2G12 and WRSf2G15 are genetically stable and highly attenuated in both cell culture and animal models of infection. Ocular immunization of guinea pigs with either strain induces robust systemic and mucosal immune responses that protect against homologous challenge with wild-type Shigella. The data support further evaluation of the second-generation strains in a phase I clinical trial.
Collapse
|
16
|
Live attenuated Shigella dysenteriae type 1 vaccine strains overexpressing shiga toxin B subunit. Infect Immun 2011; 79:4912-22. [PMID: 21969003 DOI: 10.1128/iai.05814-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens.
Collapse
|
17
|
Discovery and phylogenetic analysis of novel members of class b enterotoxigenic Escherichia coli adhesive fimbriae. J Clin Microbiol 2011; 49:1403-10. [PMID: 21289147 DOI: 10.1128/jcm.02006-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is recognized to be a common cause of acute watery diarrhea in children from developing countries. Colonization factors (CFAs) have been identified predominantly in ETEC isolates secreting heat-stable enterotoxin (ST) or cosecreting ST with a heat-labile toxin (LT). We hypothesized that LT-only-secreting ETEC produces unique colonization factors not previously described in ST and LTST-secreting ETEC. A set of degenerate primers based on nucleotide sequence similarities between the major structural genes of CS20 (csnA), CS18 (fotA), CS12 (cswA), and porcine antigen 987 (fasA) was developed and used to screen a collection of 266 LT-secreting ETEC isolates in which no known CFA was detected. PCR-amplified products of different molecular masses were obtained from 49 (18.4%) isolates. Nucleotide sequence analysis of the PCR amplicons followed by GenBank nucleotide BLASTn analysis revealed five novel DNA sequences; translated amino acid BLASTx analysis confirmed sequence similarity to class 1b major structural proteins encoded by csnA, fotA, and fasA. Strains expressing the novel CFAs were phylotyped and analyzed using multilocus sequence typing (MLST; Achtman scheme), and the types detected were compared to those of a collection of archived global E. coli strains. In conclusion, application of the degenerate primer sets to ETEC isolates from surveillance studies increased the total number of ETEC isolates with detectable CFAs by almost 20%. Additionally, MLST analysis suggests that for many CFAs, there may be a requirement for certain genetic backgrounds to acquire and maintain plasmids carrying genes encoding CFAs.
Collapse
|
18
|
Over-expression of major colonization factors of enterotoxigenic Escherichia coli, alone or together, on non-toxigenic E. coli bacteria. Vaccine 2010; 28:6977-84. [DOI: 10.1016/j.vaccine.2010.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/30/2010] [Accepted: 08/07/2010] [Indexed: 11/17/2022]
|
19
|
Baker KK, Levine MM, Morison J, Phillips A, Barry EM. CfaE tip mutations in enterotoxigenic Escherichia coli CFA/I fimbriae define critical human intestinal binding sites. Cell Microbiol 2009; 11:742-54. [PMID: 19207729 PMCID: PMC2921025 DOI: 10.1111/j.1462-5822.2009.01287.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) use colonization factors to attach to the human intestinal mucosa, followed by enterotoxin expression that induces net secretion and diarrhoeal illness. ETEC strain H10407 expresses CFA/I fimbriae, which are composed of multiple CfaB structural subunits and a CfaE tip subunit. Currently, the contribution of these individual fimbrial subunits in intestinal binding remains incompletely defined. To identify the role of CfaE in attachment in the native ETEC background, an R181A single-amino-acid substitution was introduced by recombination into the H10407 genome. The substitution of R181A eliminated haemagglutination and binding of intestinal mucosa biopsies in in vitro organ culture assays, without loss of CFA/I fimbriae expression. Wild-type in trans plasmid-expressed cfaE restored the binding phenotype. In contrast, in trans expression of cfaE containing amino acid 181 substitutions with similar amino acids, lysine, methionine and glutamine did not restore the binding phenotype, indicating that the loss of the binding phenotype was due to localized areas of epitope disruption. R181 appears to have an irreplaceable role in the formation of a receptor-binding feature on CFA/I fimbriae. The results specifically indicate that the CfaE tip protein is a required binding factor in CFA/I-mediated ETEC colonization, making it a potentially important vaccine antigen.
Collapse
Affiliation(s)
- K. K. Baker
- University of Maryland Baltimore, Center for Vaccine Development, 685 W. Baltimore St., Ste 480, Baltimore, MD 21201, USA
| | - M. M. Levine
- University of Maryland Baltimore, Center for Vaccine Development, 685 W. Baltimore St., Ste 480, Baltimore, MD 21201, USA
| | - J. Morison
- Centre for Paediatric Gastroenterology, Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - A. Phillips
- Centre for Paediatric Gastroenterology, Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - E. M. Barry
- University of Maryland Baltimore, Center for Vaccine Development, 685 W. Baltimore St., Ste 480, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Strategies for the development of vaccines conferring broad-spectrum protection. Int J Med Microbiol 2008; 298:379-95. [DOI: 10.1016/j.ijmm.2008.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/07/2007] [Accepted: 01/14/2008] [Indexed: 11/21/2022] Open
|
21
|
Mu XQ, Savarino SJ, Bullitt E. The three-dimensional structure of CFA/I adhesion pili: traveler's diarrhea bacteria hang on by a spring. J Mol Biol 2008; 376:614-20. [PMID: 18166195 PMCID: PMC2265596 DOI: 10.1016/j.jmb.2007.10.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/16/2007] [Accepted: 10/26/2007] [Indexed: 11/23/2022]
Abstract
To survive the harsh environment of a churning intestinal tract, bacteria attach to the host epithelium via thin fibers called pili (or fimbriae). Enterotoxigenic Escherichia coli bacteria expressing colonization factor antigen I (CFA/I) pili and related pili are the most common known bacterial cause of diarrheal disease, including traveler's diarrhea. CFA/I pili, assembled via the alternate chaperone pathway, are essential for binding and colonization of the small bowel by these pathogenic bacteria. Herein, we elucidate unique structural features of CFA/I pili that appear to optimize their function as bacterial tethers in the intestinal tract. Using transmission electron microscopy of negatively stained samples in combination with iterative three-dimensional helical reconstruction methods for image processing, we determined the structure of the CFA/I pilus filament. Our results indicate that strong end-to-end protein interactions and weak interactions between the coils of a sturdy spring-like helix provide the combination of strength, stability, and flexibility required to sustain bacterial adhesion and incite intestinal disease. We propose that CFA/I pili behave like a spring to maintain attachment to the gut lining during vortex mixing and downward flow of the intestinal contents, thereby persisting long enough for these bacteria to colonize the host epithelium and cause enteric disease.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
22
|
Tobias J, Lebens M, Bölin I, Wiklund G, Svennerholm AM. Construction of non-toxic Escherichia coli and Vibrio cholerae strains expressing high and immunogenic levels of enterotoxigenic E. coli colonization factor I fimbriae. Vaccine 2008; 26:743-52. [DOI: 10.1016/j.vaccine.2007.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/29/2022]
|
23
|
Diarrheal disease vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
24
|
Abstract
As early as 900 years ago, the Bedouins of the Negev desert were reported to kill a rabid dog, roast its liver and feed it to a dog-bitten person for three to five days according to the size and number of bites [1] . In sixteenth century China, physicians routinely prescribed pills made from the fleas collected from sick cows, which purportedly prevented smallpox. One may dismiss the wisdom of the Bedouins or Chinese but the Nobel laureate, Charles Richet, demonstrated in 1900 that feeding raw meat can cure tuberculous dogs - an approach he termed zomotherapy. Despite historical clues indicating the feasibility of oral vaccination, this particular field is notoriously infamous for the abundance of dead-end leads. Today, most commercial vaccines are delivered by injection, which has the principal limitation that recipients do not like needles. In the last few years, there has been a sharp increase in interest in needle-free vaccine delivery; new data emerges almost daily in the literature. So far, there are very few licensed oral vaccines, but many more vaccine candidates are in development. Vaccines delivered orally have the potential to take immunization to a fundamentally new level. In this review, the authors summarize the recent progress in the area of oral vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Chemistry, Pharmaceutical
- Drug Carriers
- Drug Compounding
- Gastrointestinal Tract/immunology
- Humans
- Immune Tolerance
- Immunity, Mucosal
- Vaccination/methods
- Vaccination/trends
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/chemistry
- Vaccines, Attenuated/immunology
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/chemistry
- Vaccines, Edible/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/chemistry
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Dmytro S Silin
- Queen's University Belfast, Laboratory of Molecular Virology, Medical and Biology Center, School of Biomedical Sciences, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | | | | |
Collapse
|
25
|
Parsa S, Pfeifer B. Engineering bacterial vectors for delivery of genes and proteins to antigen-presenting cells. Mol Pharm 2007; 4:4-17. [PMID: 17233543 DOI: 10.1021/mp0600889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial vectors offer a biological route to gene and protein delivery with this article featuring delivery to antigen-presenting cells (APCs). Primarily in the context of immune stimulation against infectious disease or cancer, the goal of bacterially mediated delivery is to overcome the hurdles to effective macromolecule delivery. This review will present several bacterial vectors as macromolecule (protein or gene) delivery devices with both innate and acquirable (or engineered) biological features to facilitate delivery to APCs. The review will also present topics related to large-scale manufacture, storage, and distribution that must be considered if the bacterial delivery devices are ever to be used in a global market.
Collapse
Affiliation(s)
- Saba Parsa
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
26
|
Walker RI, Steele D, Aguado T. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine 2006; 25:2545-66. [PMID: 17224212 DOI: 10.1016/j.vaccine.2006.12.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 12/30/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of diarrhoea in the world, annually affecting up to 400,000,000 children under 5 years of age living in developing countries (DCs). Although ETEC possesses numerous antigens, the relatively conserved colonization factor (CF) antigens and the heat labile enterotoxin (LT) have been associated with protection and most vaccine candidates have exploited these antigens. A safe and effective vaccine against ETEC is a feasible goal as supported by the acquisition of protective immunity. The success of an ETEC vaccine targeting infants and children in DCs will depend on a combination of maximally antigenic vaccine preparations and regimens for their delivery which will produce optimal immune responses to these antigens. Vaccine candidates having a high priority for accelerated development and clinical testing for eventual use in infants would include inactivated ETEC or Shigella hybrids expressing ETEC antigens as well as attenuated ETEC strains which express the major CF antigens and LT toxin B-subunit, as well as attenuated Shigella, Vibrio cholerae and Salmonella typhi hybrids engineered to deliver antigens of ETEC. Candidates for an ETEC vaccine would have to meet the minimal requirement of providing at least 50% protection against severe disease in DCs during the first 2 years of life. The critical roadblock to achieving this goal has not been the science as much as the lack of a sufficiently funded and focused effort to bring it to realization. However, a Product Development Partnership to overcome this hurdle could accelerate the time lines towards when control of ETEC disease in DCs is substantially closer.
Collapse
Affiliation(s)
- Richard I Walker
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20851-1448, USA.
| | | | | |
Collapse
|
27
|
Barry EM, Wang J, Wu T, Davis T, Levine MM. Immunogenicity of multivalent Shigella-ETEC candidate vaccine strains in a guinea pig model. Vaccine 2006; 24:3727-34. [PMID: 16169130 DOI: 10.1016/j.vaccine.2005.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shigella and enterotoxigenic Escherichia coli continue to be significant causes of diarrheal disease in infants and young children in developing countries as well as prevalent agents of traveler's diarrhea. A vaccine which provides protection against disease caused by both pathogens would serve common at-risk populations. Such a vaccine would require inclusion of multiple Shigella strains as well as multiple ETEC antigens. The use of attenuated strains of Shigella as live vectors for the expression of ETEC antigens is one strategy for the development of such a multivalent vaccine. Live attenuated strains of S. flexneri 2a, S. sonnei and S. dysenteriae 1 containing deletions in guaBA biosynthetic pathway genes as well as in genes encoding enterotoxins, were constructed. Each strain was subsequently used as a live vector for the expression of one or two critical ETEC antigens. The resulting three Shigella derivative strains were tested for immunogenicty and protective capacity alone or as mixtures in the guinea pig model. S. flexneri strain CVD 1208(pCFA/I-CS3), S. sonnei strain CVD 1233(pCS4-LThK63) and S. dysenteriae 1 strain CVD 1252(pCS2) were able to elicit serum and mucosal antibody responses against the live vector as well as the guest ETEC antigens. Vaccination with combinations of two or three of these strains was able to elicit specific immune responses against each live vector as well as each ETEC antigen represented in the mixture. These studies demonstrate the potential of the use of mixtures of live Shigella derivatives expressing ETEC antigens to serve as an immunogenic multivalent vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Disease Models, Animal
- Dysentery, Bacillary/immunology
- Escherichia coli/immunology
- Escherichia coli Infections/immunology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Escherichia coli Vaccines/administration & dosage
- Escherichia coli Vaccines/immunology
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Gene Deletion
- Guinea Pigs
- Immunity, Mucosal
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Keratoconjunctivitis/prevention & control
- Shigella Vaccines/administration & dosage
- Shigella Vaccines/immunology
- Shigella dysenteriae/immunology
- Shigella flexneri/immunology
- Shigella sonnei/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Eileen M Barry
- Center for Vaccine Development, University of Maryland, Baltimore, 685 West Baltimore Street, MD 21201, USA.
| | | | | | | | | |
Collapse
|
28
|
Favre D, Lüdi S, Stoffel M, Frey J, Horn MP, Dietrich G, Spreng S, Viret JF. Expression of enterotoxigenic Escherichia coli colonization factors in Vibrio cholerae. Vaccine 2006; 24:4354-68. [PMID: 16581160 DOI: 10.1016/j.vaccine.2006.02.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/22/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
As a first step towards a vaccine against diarrhoeal disease caused by enterotoxigenic Escherichia coli (ETEC), we have studied the expression of several ETEC antigens in the live attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Colonization factors (CF) CFA/I, CS3, and CS6 were expressed at the surface of V. cholerae CVD 103-HgR. Both CFA/I and CS3 required the co-expression of a positive regulator for expression, while CS6 was expressed without regulation. Up-regulation of CF expression in V. cholerae was very efficient, so that high amounts of CFA/I and CS3 similar to those in wild-type ETEC were synthesized from chromosomally integrated CF and positive regulator loci. Increasing either the operon and/or the positive regulator gene dosage resulted in only a small increase in CFA/I and CS3 expression. In contrast, the level of expression of the non-regulated CS6 fimbriae appeared to be more dependent on gene dosage. While CF expression in wild-type ETEC is known to be tightly thermoregulated and medium dependent, it seems to be less stringent in V. cholerae. Finally, co-expression of two or three CFs in the same strain was efficient even under the control of one single regulator gene.
Collapse
Affiliation(s)
- Didier Favre
- Berna Biotech Ltd., Department of Live Bacterial Vaccines, Rehhagstrasse 79, 3018 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sánchez J, Holmgren J. Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Curr Opin Immunol 2005; 17:388-98. [PMID: 15963708 DOI: 10.1016/j.coi.2005.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/03/2005] [Indexed: 11/18/2022]
Abstract
Recent work has provided new insights into the pathogenesis of the potentially life-threatening diarrheas caused by Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC): a new mechanism (post-translational degradation), which is involved in the control of cholera toxin expression, has been discovered. Recent evidence also suggests that vibrios upregulate cholera toxin expression in response to intestinal fluid components, and enterotoxin-carrying bacterial outer membrane vesicles might have a function in ETEC pathogenesis. An important role of the environment is supported by the correlation between cholera incidence and elevated sea surface temperature, which supports the notion that the zooplankton is a V. cholerae reservoir. Additionally, environmental lytic cholera phages could influence cholera seasonality by 'terminating' the seasonal epidemic. Finally, the strong herd immunity elicited by an oral cholera vaccine indicates that cholera vaccination could have a significant public health impact.
Collapse
Affiliation(s)
- Joaquín Sánchez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP62210, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
30
|
Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine 2005; 23:3369-85. [PMID: 15837361 DOI: 10.1016/j.vaccine.2004.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/23/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Enteric pathogens constitute a major pediatric threat in the developing world through their impact on morbidity and mortality, physical and cognitive development and cause and effect relationship with malnutrition. Although many bacterial pathogens can cause diarrheal diseases, a group of less than 10 including Shigella spp., enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae, and possibly, Campylobacter jejuni account for a significant percentage of these diseases in developing countries. Rotavirus is also a major cause of diarrheal diseases. Vaccines against these agents offer a potentially effective control measure against these diseases, but safe, practical, and effective vaccines for many of these agents have yet to be realized. Many vaccine development approaches are under investigation, but the one that is currently most advanced and that has been most widely applied to enteric pathogens is the use of orally administered live or killed whole pathogen preparations. If inactivated, these vaccines will probably be administered as multiple doses with approximately 10(10) to 10(11) total particles per dose, but they are relatively safe for oral administration. Further, they may not require a buffer for delivery and can be stored in liquid formulations. Fewer doses may be required for some live attenuated pathogen vaccines, but a buffer will most likely be required for oral delivery and the product must be stored in a dried formulation. Also, safety becomes more of a concern with live pathogens depending on the degree of attenuation, host immunocompetence, and the total number and kinds of attenuated pathogens which may be present in a combined agent vaccine. Both live and killed whole pathogen vaccines can be immunogenic and have the possibility to serve as vectors for other antigens. Although many organisms and serotypes are clinically important, by exploiting antigenic cross reactivity and using some pathogen components as vectors for cloned antigens of other pathogens, it could be possible to induce immunity against major enteric pathogens/serotypes with <10 whole pathogen components in a multi-agent vaccine. Safe and effective mucosal adjuvants may in the future be useful in whole pathogen vaccines, but they do not seem to be essential for immunization. Further, dietary supplements such as zinc, mixed routes of delivery and new regimens are under study which may in the future enhance further the effectiveness of the whole pathogen vaccines which now seem realizable in the near term. For this to happen, however, a coordinated and committed effort is necessary now to address the immunologic, regulatory, manufacturing, testing and implementation issues which will be involved in the realization of this important product to benefit children's health worldwide.
Collapse
Affiliation(s)
- Richard I Walker
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike (HFM-425), Rockville, MD 20851-1448, USA.
| |
Collapse
|
31
|
Ranallo RT, Fonseka CP, Cassels F, Srinivasan J, Venkatesan MM. Construction and characterization of bivalent Shigella flexneri 2a vaccine strains SC608(pCFAI) and SC608(pCFAI/LTB) that express antigens from enterotoxigenic Escherichia coli. Infect Immun 2005; 73:258-67. [PMID: 15618162 PMCID: PMC538972 DOI: 10.1128/iai.73.1.258-267.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An invasive strain of Shigella flexneri 2a (SC608) has been developed as a vector for the expression and delivery of heterologous antigens. SC608 is an aspartate semialdehyde dehydrogenase (asd) derivative of SC602 (icsA iuc), a well-characterized live attenuated vaccine strain which has undergone several clinical trials in human volunteers. When administered orally at a single 10(4) (CFU) dose, SC602 is both immunogenic and efficacious against shigellosis. Using asd-based plasmid vectors, we designed SC608 to express the enterotoxigenic Escherichia coli (ETEC) fimbrial subunit CfaB (CFA/I structural subunit) alone or in combination with the E. coli B subunit of heat-labile enterotoxin (LTB). The expression of each heterologous protein in SC608 was verified by immunoblot analysis. Each strain was comparable to the parent strain, SC602, in a HeLa cell invasion assay. After intranasal immunizations of guinea pigs, serum and mucosal immune responses were detected against both Shigella lipopolysaccharide and heterologous ETEC antigens by enzyme-linked immunosorbent assay and ELISPOT analysis. All immunized animals were subsequently protected against a challenge with wild-type S. flexneri 2a in a keratoconjunctivitis Sereny test. Serum antibodies generated against LTB and CfaB demonstrated antitoxin and agglutination activities, respectively. These results suggest that CfaB and LTB expressed in SC608 retain important conformational epitopes that are required for the generation of antibodies that have functional activities. These initial experiments demonstrate that a fully invasive Shigella vaccine strain can be engineered to deliver antigens from other diarrheal pathogens.
Collapse
Affiliation(s)
- Ryan T Ranallo
- Department of Enteric Infections, Division of Communicable Disease and Immunology, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | | | | | | |
Collapse
|
32
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Vaccines against Infections Caused by Salmonella, Shigella, and Pathogenic Escherichia coli. EcoSal Plus 2004; 1. [PMID: 26443352 DOI: 10.1128/ecosalplus.8.8.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infectious diseases represent one of the most common causes of death worldwide, with the enteropathogenic bacteria Salmonella and Shigella and pathogenic Escherichia coli being among the most detrimental. Currently, vaccination represents the preferred method of preventing such infections. For stimulating the adaptive immune response, immunizations are frequently based on formulations which include inactivated whole-cell vaccines, live attenuated vaccines, or subunit vaccines. These can be administered via a parenteral or mucosal route, the latter having the advantage that it most closely mimics the actual course of infection. In addition to the type of vaccine and method of application, important consideration needs to be paid to safety, efficacy, and cost, which are often major bottlenecks in the successful implementation of vaccines. In this chapter we take a limited look at the history surrounding vaccinations involving Salmonella, Shigella, and pathogenic E. coli. Salmonella infections, which can lead to typhoid fever, are becoming increasing difficult to treat with antibiotics due to multi-drug-resistant strains. At present, the parenteral Vi-based subunit vaccines and the live attenuated oral vaccine Ty21a have proven to be the vaccines of choice, with high levels of protective efficacy and limited side effects. Shigella infections are responsible for the diarrheal disease shigellosis. Various live and nonliving mucosal and parenteral vaccines have been tested, with the most promising candidates evolving around those that stimulate the production of O-antigen-specific antibodies. Pathogenic Escherichia coli infections can lead to severe diseases due to the bacterium's production of several specific toxins. Vaccines against this bacterium target its toxins, as well as surface-exposed antigens, all of which have been found to be effective as immunogens.
Collapse
|
34
|
Affiliation(s)
- Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
35
|
Cersini A, Martino MC, Martini I, Rossi G, Bernardini ML. Analysis of virulence and inflammatory potential of Shigella flexneri purine biosynthesis mutants. Infect Immun 2004; 71:7002-13. [PMID: 14638790 PMCID: PMC308888 DOI: 10.1128/iai.71.12.7002-7013.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several Shigella flexneri mutants with defects in aromatic amino acid and/or purine biosynthesis have been evaluated as vaccines in humans or in animal models. To be suitable as a vaccine, a mutant has to show virulence attenuation, minimal reactogenicity, and a good immunogenic potential in animal models. With this aim, we have constructed five S. flexneri 5 (wild-type strain M90T) mutants with inactivation of one or two of the loci purEK, purHD, and guaBA, governing early or late steps of purine biosynthesis. The mutants have been analyzed in vitro in cell cultures and in vivo in the Sereny test and in the murine pulmonary model of shigellosis. M90T guaBA, M90T guaBA purEK, M90T guaBA purHD, and M90T purHD purEK gave a negative result in the Sereny test. In contrast, in the murine pulmonary model all of the strains had the same 50% lethal dose as the wild type, except M90T guaBA purHD, which did not result in death of the animals. Nevertheless, bacterial counts in infected lungs, immunohistochemistry, and reverse transcription-PCR analysis of mRNAs for tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma), interleukin-1beta (IL-1beta), IL-6, IL-12, and inducible nitric oxide synthase (iNOS) revealed significant differences among the strains. At 72 h postinfection, M90T guaBA purHD still induced proinflammatory cytokines and factors such as IL-1beta, IL-6, TNF-alpha, and iNOS, along with cytokines such as IL-12 and IFN-gamma. Moreover, in the absence of evident lesions in murine tissues, this mutant highly stimulated major histocompatibility complex class II expression, showing a significant ability to activate the innate immunity of the host.
Collapse
Affiliation(s)
- Antonella Cersini
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sezione di Scienze Microbiologiche, Università La Sapienza, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
36
|
Steinsland H, Valentiner-Branth P, Gjessing HK, Aaby P, Mølbak K, Sommerfelt H. Protection from natural infections with enterotoxigenic Escherichia coli: longitudinal study. Lancet 2003; 362:286-91. [PMID: 12892959 DOI: 10.1016/s0140-6736(03)13971-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhoea and diarrhoeal deaths in children living in developing countries and of travellers' diarrhoea. During the past 25 years, vaccine development efforts have been focused on induction of protective immunity against surface colonisation factors (CFs) and the heat-labile enterotoxin. Although vaccines that induce immunity to heat-labile toxin offer protection against diarrhoea from ETEC that produce this toxin, the benefit of including CF antigens remains uncertain. We aimed to estimate the protection that natural ETEC infections induce against new infections. METHODS In Guinea-Bissau, we followed up 200 neonates until up to age 2 years, most of whom were breastfed throughout the study. We collected stool specimens from the children every week irrespective of whether they had diarrhoea. As a measure of protection, we used Cox regression models to estimate the change in infection rates after a primary ETEC infection. We thus estimated the protection attributable to CFs, toxins, and to any other factors that could be shared by ETEC with the same toxin-CF profile. FINDINGS ETEC infections induced a 47% (95% CI 12 to 69) protection against new infections with ETEC that had the same toxin-CF profile; the corresponding estimate attributable to CFs was -1% (-40 to 27). Infection with heat-labile toxin-positive ETEC conferred a 45% (-1 to 70) protection against symptomatic infections with ETEC positive for this toxin. INTERPRETATION For breastfed children living in endemic areas, other antigens are substantially more important than CFs for induction of protective immunity against ETEC infection.
Collapse
Affiliation(s)
- Hans Steinsland
- Centre for International Health, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
37
|
Pasetti MF, Barry EM, Losonsky G, Singh M, Medina-Moreno SM, Polo JM, Ulmer J, Robinson H, Sztein MB, Levine MM. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats. J Virol 2003; 77:5209-17. [PMID: 12692223 PMCID: PMC153971 DOI: 10.1128/jvi.77.9.5209-5217.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Genetic Vectors
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Immunity, Mucosal
- Measles/immunology
- Measles/prevention & control
- Measles Vaccine/administration & dosage
- Measles Vaccine/genetics
- Measles Vaccine/immunology
- Neutralization Tests
- Salmonella typhi/genetics
- Salmonella typhi/immunology
- Shigella flexneri/genetics
- Shigella flexneri/immunology
- Sigmodontinae
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Altboum Z, Levine MM, Galen JE, Barry EM. Genetic characterization and immunogenicity of coli surface antigen 4 from enterotoxigenic Escherichia coli when it is expressed in a Shigella live-vector strain. Infect Immun 2003; 71:1352-60. [PMID: 12595452 PMCID: PMC148885 DOI: 10.1128/iai.71.3.1352-1360.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes that encode the enterotoxigenic Escherichia coli (ETEC) CS4 fimbriae, csaA, -B, -C, -E, and -D', were isolated from strain E11881A. The csa operon encodes a 17-kDa major fimbrial subunit (CsaB), a 40-kDa tip-associated protein (CsaE), a 27-kDa chaperone-like protein (CsaA), a 97-kDa usher-like protein (CsaC), and a deleted regulatory protein (CsaD'). The predicted amino acid sequences of the CS4 proteins are highly homologous to structural and assembly proteins of other ETEC fimbriae, including CS1 and CS2, and to CFA/I in particular. The csaA, -B, -C, -E operon was cloned on a stabilized plasmid downstream from an osomotically regulated ompC promoter. pGA2-CS4 directs production of CS4 fimbriae in both E. coli DH5alpha and Shigella flexneri 2a vaccine strain CVD 1204, as detected by Western blot analysis and bacterial agglutination with anti-CS4 immune sera. Electron-microscopic examination of Shigella expressing CS4 confirmed the presence of fimbriae on the bacterial surface. Guinea pigs immunized with CVD 1204(pGA2-CS4) showed serum and mucosal antibody responses to both the Shigella vector and the ETEC fimbria CS4. Among the seven most prevalent fimbrial antigens of human ETEC, CS4 is the last to be cloned and sequenced. These findings pave the way for CS4 to be included in multivalent ETEC vaccines, including an attenuated Shigella live-vector-based ETEC vaccine.
Collapse
Affiliation(s)
- Zeev Altboum
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
39
|
Steinsland H, Valentiner-Branth P, Grewal HMS, Gaastra W, Mølbak K K, Sommerfelt H. Development and evaluation of genotypic assays for the detection and characterization of enterotoxigenic Escherichia coli. Diagn Microbiol Infect Dis 2003; 45:97-105. [PMID: 12614980 DOI: 10.1016/s0732-8893(02)00504-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We developed and evaluated a method to genotypically identify enterotoxigenic Escherichia coli (ETEC) and to characterize these organisms with respect to 18 of 21 known colonization factors (CFs). The method, which is based on polynucleotide DNA-DNA colony hybridization, includes a pooled toxin probe assay to identify ETEC, and individual probe assays to detect the enterotoxins STp, STh, and LT, and the CFs CFA/I, CS1-CS8, CS12-CS15, CS17-CS19, CS21, and CS22. We evaluated the pooled toxin probe assay during a cohort study of childhood diarrhea, and the individual probe assays against 33 reference strains and 92 clinical ETEC isolates. There was close to a complete agreement between the pooled toxin probe assay and the individual toxin probe assays, and between the individual CF probe assays and the corresponding phenotypic assays.
Collapse
Affiliation(s)
- Hans Steinsland
- Centre for International Health, University of Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
40
|
Barry EM, Altboum Z, Losonsky G, Levine MM. Immune responses elicited against multiple enterotoxigenic Escherichia coli fimbriae and mutant LT expressed in attenuated Shigella vaccine strains. Vaccine 2003; 21:333-40. [PMID: 12531629 DOI: 10.1016/s0264-410x(02)00611-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Shigella and enterotoxigenic Escherichia coli (ETEC) continue to be important causes of diarrheal disease in infants and young children in developing countries and are major etiologic agents of traveler's diarrhea. Since attenuated strains of Shigella have been developed as live oral vaccines against shigellosis, we have adapted these attenuated Shigella strains to serve as carriers of ETEC antigens, thereby constituting a hybrid vaccine. Since protective immunity against ETEC is largely directed against fimbrial antigens (of which there are multiple antigenic types), we have individually expressed four different ETEC fimbriae, including CFA/I, CS2, CS3, and CS4, using deltaguaBA attenuated Shigella vaccine strain CVD 1204 as a prototype live vector. Following mucosal (intranasal) immunization of guinea pigs, serum IgG and mucosal IgA responses were elicited against each fimbrial type. An additional strain was constructed expressing a detoxified version of the human ETEC variant of heat labile toxin (LThK63). Following mucosal immunization of guinea pigs with a mixed inoculum containing five Shigella strains each expressing a different ETEC antigen, immune responses were observed against each ETEC antigen plus the Shigella vector.
Collapse
Affiliation(s)
- Eileen M Barry
- Center for Vaccine Development, University of Maryland, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
41
|
Valvatne H, Steinsland H, Sommerfelt H. Clonal clustering and colonization factors among thermolabile and porcine thermostable enterotoxin-producing Escherichia coli. APMIS 2002; 110:665-72. [PMID: 12529021 DOI: 10.1034/j.1600-0463.2002.1100911.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A considerable proportion of enterotoxigenic Escherichia coli (ETEC) do not possess identifiable colonization factors (CFs). Genetic fingerprint analyses based on repetitive sequence-based polymerase chain reaction (rep-PCR) showed that 9 of 10 such CF-negative isolates which produced the thermolabile and the porcine thermostabile enterotoxin could be divided into three clusters. Following transformation with a plasmid harbouring the gene encoding CfaR, a positive regulator for several ETEC adhesins, three of the six strains in the first cluster expressed coli surface antigen 20 (CS20). No CFs were identified on the two transformed strains in the second cluster while the transformants of the two strains in the last cluster expressed CS12, the N-terminal amino acid sequence of which was deciphered. The study illustrates the potential of using genetic fingerprinting to group ETEC into clusters of strains with genes encoding different CFs and confirms the ability of CfaR to induce the expression of several different CFs.
Collapse
Affiliation(s)
- Håvard Valvatne
- Centre for International Health, University of Bergen, Norway
| | | | | |
Collapse
|
42
|
Devico AL, Fouts TR, Shata MT, Kamin-Lewis R, Lewis GK, Hone DM. Development of an oral prime-boost strategy to elicit broadly neutralizing antibodies against HIV-1. Vaccine 2002; 20:1968-74. [PMID: 11983256 DOI: 10.1016/s0264-410x(02)00080-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Given the increasing incidence of HIV-1 infection world-wide, an affordable, effective vaccine is probably the only way that this virus will be contained. Accordingly, our group is developing an oral prime-boost strategy with the primary goal of eliciting broadly neutralizing antibodies against HIV-1 to provide sterilizing immunity for this virus. Our secondary goal is to elicit broadly cross-reactive anti-viral CD8(+) T cells by this strategy to blunt any breakthrough infections that occur after vaccination of individuals who fail to develop sterilizing immunity. This article describes our progress in the use of the live attenuated intracellular bacteria, Salmonella and Shigella, as oral delivery vehicles for DNA vaccines and the development of conformationally constrained HIV-1 Env immunogens that elicit broadly neutralizing antibodies.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Administration, Oral
- Animals
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- CD4 Antigens/chemistry
- CD4 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- HIV Antibodies/biosynthesis
- HIV Antibodies/immunology
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp120/metabolism
- HIV-1/immunology
- Humans
- Immunity, Mucosal
- Immunization, Secondary
- Macaca mulatta
- Mice
- Models, Molecular
- Protein Conformation
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Receptors, CCR5/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Salmonella typhi/immunology
- Salmonella typhimurium/immunology
- Shigella flexneri/immunology
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Anthony L Devico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland Biotechnology Institute, 725 W. Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
43
|
Maggi T, Spinosa M, Ricci S, Medaglini D, Pozzi G, Oggioni MR. Genetic engineering of Streptococcus gordonii for the simultaneous display of two heterologous proteins at the bacterial surface. FEMS Microbiol Lett 2002; 210:135-41. [PMID: 12023090 DOI: 10.1111/j.1574-6968.2002.tb11172.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Gram-positive bacterium Streptococcus gordonii has been genetically engineered to allow the simultaneous expression of two heterologous proteins at the cell surface. A family of recombinant streptococci displaying two different antigens was constructed. All the strains were genetically stable and expressed both proteins at the surface of the same bacterial cell. S. gordonii co-expressing the immunomodulating molecule LTB (B monomer of Escherichia coli heat-labile toxin) and the V3 domain of HIV-1 gp120 were inoculated subcutaneously to BALB/c mice. Animals were capable of responding to both antigens, producing LTB- and V3-specific serum IgG. The V3-specific IgG titer was four-fold higher in mice immunised with the double protein-expressing bacteria, as compared to control animals inoculated either with S. gordonii expressing the V3 domain alone or with a mixture of the two strains expressing LTB and V3, separately. Therefore, LTB was able to potentiate the antibody response towards the V3 domain, and this effect was observed only when LTB was co-expressed on the same bacterial cell.
Collapse
Affiliation(s)
- Tiziana Maggi
- Laboratorio di Microbiologia Molecolare e Biotecnologia (L.A.M.M.B.), Dipartimento di Biologia Molecolare, Sezione di Microbiologia, Università di Siena, Policlinico Le Scotte, Viale Bracci, 53100, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Wang JY, Pasetti MF, Noriega FR, Anderson RJ, Wasserman SS, Galen JE, Sztein MB, Levine MM. Construction, genotypic and phenotypic characterization, and immunogenicity of attenuated DeltaguaBA Salmonella enterica serovar Typhi strain CVD 915. Infect Immun 2001; 69:4734-41. [PMID: 11447145 PMCID: PMC98559 DOI: 10.1128/iai.69.8.4734-4741.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A promising live attenuated typhoid vaccine candidate strain for mucosal immunization was developed by introducing a deletion in the guaBA locus of pathogenic Salmonella enterica serovar Typhi strain Ty2. The resultant DeltaguaBA mutant, serovar Typhi CVD 915, has a gene encoding resistance to arsenite replacing the deleted sequence within guaBA, thereby providing a marker to readily identify the vaccine strain. CVD 915 was compared in in vitro and in vivo assays with wild-type strain Ty2, licensed live oral typhoid vaccine strain Ty21a, or attenuated serovar Typhi vaccine strain CVD 908-htrA (harboring mutations in aroC, aroD, and htrA). CVD 915 was less invasive than CVD 908-htrA in tissue culture and was more crippled in its ability to proliferate after invasion. In mice inoculated intraperitoneally with serovar Typhi and hog gastric mucin (to estimate the relative degree of attenuation), the 50% lethal dose of CVD 915 (7.7 x 10(7) CFU) was significantly higher than that of wild-type Ty2 (1.4 x 10(2) CFU) and was only slightly lower than that of Ty21a (1.9 x 10(8) CFU). Strong serum O and H antibody responses were recorded in mice inoculated intranasally with CVD 915, which were higher than those elicited by Ty21a and similar to those stimulated by CVD 908-htrA. CVD 915 also elicited potent proliferative responses in splenocytes from immunized mice stimulated with serovar Typhi antigens. Used as a live vector, CVD 915(pTETlpp) elicited high titers of serum immunoglobulin G anti-fragment C. These encouraging preclinical data pave the way for phase 1 clinical trials with CVD 915.
Collapse
Affiliation(s)
- J Y Wang
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Altboum Z, Barry EM, Losonsky G, Galen JE, Levine MM. Attenuated Shigella flexneri 2a Delta guaBA strain CVD 1204 expressing enterotoxigenic Escherichia coli (ETEC) CS2 and CS3 fimbriae as a live mucosal vaccine against Shigella and ETEC infection. Infect Immun 2001; 69:3150-8. [PMID: 11292735 PMCID: PMC98271 DOI: 10.1128/iai.69.5.3150-3158.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To construct a prototype hybrid vaccine against Shigella and enterotoxigenic Escherichia coli (ETEC), the genes encoding the production of ETEC CS2 and CS3 fimbriae were isolated and expressed in attenuated Shigella flexneri 2a guaBA strain CVD 1204. The CS2 cotA to -D genes, isolated from ETEC strain C91F, and the CS3 cstA to -H genes, subcloned from plasmid pCS100, were cloned into ~15-copy-number-stabilized pGA1 behind the osmotically regulated ompC promoter, resulting in high expression of both fimbriae. Under nonselective in vitro growth conditions, pGA1-CS2 and pGA1-CS3 were stable in CVD 1204, exhibiting a plasmid loss of only approximately 1% per duplication. Expression of CS2 and CS3 reduced the invasiveness of Shigella for HeLa cells and slowed the intracellular growth rate. Guinea pigs immunized intranasally with CVD 1204(pGA1-CS2) or CVD 1204(pGA1-CS3), or with a mixture of these strains, developed secretory immunoglobulin A (IgA) in tears and serum IgG antibodies against Shigella lipopolysaccharide, CS2, and CS3 antigens. Moreover, the animals were protected against keratoconjunctivitis following conjunctival challenge with virulent S. flexneri 2a strain 2457T. Animals immunized with Shigella expressing CS2 or CS3 developed serum antibodies that agglutinated Shigella as well as an ETEC strain bearing the homologous fimbriae, whereas animals immunized with combined CVD 1204(pGA1-CS2) and CVD 1204(pGA1-CS3) developed antibodies that agglutinated all three test strains. These observations support the feasibility of a multivalent vaccine against shigellosis and ETEC diarrhea consisting of multiple Shigella live vectors expressing relevant ETEC antigens.
Collapse
Affiliation(s)
- Z Altboum
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- M M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore 21201, USA
| |
Collapse
|