1
|
Saralahti AK, Harjula SKE, Rantapero T, Uusi-Mäkelä MIE, Kaasinen M, Junno M, Piippo H, Nykter M, Lohi O, Rounioja S, Parikka M, Rämet M. Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish. PLoS Genet 2023; 19:e1010586. [PMID: 36622851 PMCID: PMC9858863 DOI: 10.1371/journal.pgen.1010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/20/2023] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is one of the most frequent causes of pneumonia, sepsis and meningitis in humans, and an important cause of mortality among children and the elderly. We have previously reported the suitability of the zebrafish (Danio rerio) larval model for the study of the host-pathogen interactions in pneumococcal infection. In the present study, we characterized the zebrafish innate immune response to pneumococcus in detail through a whole-genome level transcriptome analysis and revealed a well-conserved response to this human pathogen in challenged larvae. In addition, to gain understanding of the genetic factors associated with the increased risk for severe pneumococcal infection in humans, we carried out a medium-scale forward genetic screen in zebrafish. In the screen, we identified a mutant fish line which showed compromised resistance to pneumococcus in the septic larval infection model. The transcriptome analysis of the mutant zebrafish larvae revealed deficient expression of a gene homologous for human C-reactive protein (CRP). Furthermore, knockout of one of the six zebrafish crp genes by CRISPR-Cas9 mutagenesis predisposed zebrafish larvae to a more severe pneumococcal infection, and the phenotype was further augmented by concomitant knockdown of a gene for another Crp isoform. This suggests a conserved function of C-reactive protein in anti-pneumococcal immunity in zebrafish. Altogether, this study highlights the similarity of the host response to pneumococcus in zebrafish and humans, gives evidence of the conserved role of C-reactive protein in the defense against pneumococcus, and suggests novel host genes associated with pneumococcal infection.
Collapse
Affiliation(s)
- Anni K. Saralahti
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna-Kaisa E. Harjula
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tommi Rantapero
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Meri I. E. Uusi-Mäkelä
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Kaasinen
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maiju Junno
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannaleena Piippo
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | | | - Mataleena Parikka
- Laboratory of Infection Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- FVR–Finnish Vaccine Research, Tampere, Finland
| |
Collapse
|
2
|
Silva PH, Vázquez Y, Campusano C, Retamal-Díaz A, Lay MK, Muñoz CA, González PA, Kalergis AM, Bueno SM. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front Cell Infect Microbiol 2022; 12:949469. [PMID: 36225231 PMCID: PMC9548657 DOI: 10.3389/fcimb.2022.949469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Campusano
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Christian A. Muñoz
- Unidad de Microbiología, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Susan M. Bueno,
| |
Collapse
|
3
|
Gingerich AD, Mousa JJ. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies. Front Cell Infect Microbiol 2022; 12:824788. [PMID: 35155281 PMCID: PMC8834882 DOI: 10.3389/fcimb.2022.824788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
The gram-positive bacterium Streptococcus pneumoniae is a leading cause of pneumonia, otitis media, septicemia, and meningitis in children and adults. Current prevention and treatment efforts are primarily pneumococcal conjugate vaccines that target the bacterial capsule polysaccharide, as well as antibiotics for pathogen clearance. While these methods have been enormously effective at disease prevention and treatment, there has been an emergence of non-vaccine serotypes, termed serotype replacement, and increasing antibiotic resistance among these serotypes. To combat S. pneumoniae, the immune system must deploy an arsenal of antimicrobial functions. However, S. pneumoniae has evolved a repertoire of evasion techniques and is able to modulate the host immune system. Antibodies are a key component of pneumococcal immunity, targeting both the capsule polysaccharide and protein antigens on the surface of the bacterium. These antibodies have been shown to play a variety of roles including increasing opsonophagocytic activity, enzymatic and toxin neutralization, reducing bacterial adherence, and altering bacterial gene expression. In this review, we describe targets of anti-pneumococcal antibodies and describe antibody functions and effectiveness against S. pneumoniae.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Jarrod J. Mousa,
| |
Collapse
|
4
|
Streptococcus pneumoniae and Its Virulence Factors H 2O 2 and Pneumolysin Are Potent Mediators of the Acute Chest Syndrome in Sickle Cell Disease. Toxins (Basel) 2021; 13:toxins13020157. [PMID: 33671422 PMCID: PMC7922783 DOI: 10.3390/toxins13020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/27/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common autosomal recessive disorders in the world. Due to functional asplenia, a dysfunctional antibody response, antibiotic drug resistance and poor response to immunization, SCD patients have impaired immunity. A leading cause of hospitalization and death in SCD patients is the acute chest syndrome (ACS). This complication is especially manifested upon infection of SCD patients with Streptococcus pneumoniae (Spn)—a facultative anaerobic Gram-positive bacterium that causes lower respiratory tract infections. Spn has developed increased rates of antibiotics resistance and is particularly virulent in SCD patients. The primary defense against Spn is the generation of reactive oxygen species (ROS) during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn itself produces high levels of the ROS hydrogen peroxide (H2O2) as a virulence strategy. Apart from H2O2, Spn also secretes another virulence factor, i.e., the pore-forming exotoxin pneumolysin (PLY), a potent mediator of lung injury in patients with pneumonia in general and particularly in those with SCD. PLY is released early on in infection either by autolysis or bacterial lysis following the treatment with antibiotics and has a broad range of biological activities. This review will discuss recent findings on the role of pneumococci in ACS pathogenesis and on strategies to counteract the devastating effects of its virulence factors on the lungs in SCD patients.
Collapse
|
5
|
Role of astroglial Connexin 43 in pneumolysin cytotoxicity and during pneumococcal meningitis. PLoS Pathog 2020; 16:e1009152. [PMID: 33370401 PMCID: PMC7793270 DOI: 10.1371/journal.ppat.1009152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/08/2021] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococcus pneumoniae or pneumococcus (PN) is a major causative agent of bacterial meningitis with high mortality in young infants and elderly people worldwide. The mechanism underlying PN crossing of the blood brain barrier (BBB) and specifically, the role of non-endothelial cells of the neurovascular unit that control the BBB function, remains poorly understood. Here, we show that the astroglial connexin 43 (aCx43), a major gap junctional component expressed in astrocytes, plays a predominant role during PN meningitis. Following intravenous PN challenge, mice deficient for aCx43 developed milder symptoms and showed severely reduced bacterial counts in the brain. Immunofluorescence analysis of brain slices indicated that PN induces the aCx43–dependent destruction of the network of glial fibrillary acid protein (GFAP), an intermediate filament protein specifically expressed in astrocytes and up-regulated in response to brain injury. PN also induced nuclear shrinkage in astrocytes associated with the loss of BBB integrity, bacterial translocation across endothelial vessels and replication in the brain cortex. We found that aCx4-dependent astrocyte damages could be recapitulated using in vitro cultured cells upon challenge with wild-type PN but not with a ply mutant deficient for the pore-forming toxin pneumolysin (Ply). Consistently, we showed that purified Ply requires Cx43 to promote host cell plasma membrane permeabilization in a process involving the Cx43-dependent release of extracellular ATP and prolonged increase of cytosolic Ca2+ in host cells. These results point to a critical role for astrocytes during PN meningitis and suggest that the cytolytic activity of the major virulence factor Ply at concentrations relevant to bacterial infection requires co-opting of connexin plasma membrane channels. The role of non-endothelial cells constituting the neurovascular unit during infectious meningitis is poorly appreciated despite their key regulatory functions on the blood-brain barrier integrity. Here, we show that Streptococcus pneumoniae or pneumococcus, a major causative agent of bacterial meningitis, targets astroglial cells to translocate across brain endothelial vessels. We found that astroglial connexin 43, a gap junctional component, played a major role during PN meningitis in mice. PN translocation and replication in the brain cortex were associated with connexin-dependent fragmentation of astrocytic the GFAP network, a process associated with brain injury. These findings were recapitulated and extended in vitro using cultured primary astrocytes and the major PN virulence determinant Pneumolysin. Ply-mediated cytotoxicity was linked to Ca2+ increase and required aCx43, arguing against a direct toxin activity. The results reveal a key role for astroglial signaling during PN crossing of the BBB and shed light on the mechanism of Ply-mediated cytotoxicity during meningitis.
Collapse
|
6
|
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020; 11:1543. [PMID: 32714314 PMCID: PMC7343714 DOI: 10.3389/fmicb.2020.01543] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen responsible for widespread illness and is a major global health issue for children, the elderly, and the immunocompromised population. Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) and key pneumococcal virulence factor involved in all phases of pneumococcal disease, including transmission, colonization, and infection. In this review we cover the biology and cytolytic function of PLY, its contribution to S. pneumoniae pathogenesis, and its known interactions and effects on the host with regard to tissue damage and immune response. Additionally, we review statins as a therapeutic option for CDC toxicity and PLY toxoid as a vaccine candidate in protein-based vaccines.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Elaine I Tuomanen
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
7
|
Abstract
Streptococcus pneumoniae remains the most common bacterial pathogen causing lower respiratory tract infections and is a leading cause of morbidity and mortality worldwide, especially in children and the elderly. Another important aspect related to pneumococcal infections is the persistent rate of penicillin and macrolide resistance. Therefore, animal models have been developed to better understand the pathogenesis of pneumococcal disease and test new therapeutic agents and vaccines. This narrative review will focus on the characteristics of the different animal pneumococcal pneumonia models. The assessment of the different animal models will include considerations regarding pneumococcal strains, microbiology properties, procedures used for bacterial inoculation, pathogenesis, clinical characteristics, diagnosis, treatment, and preventive approaches.
Collapse
|
8
|
Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: Invasion and Inflammation. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0004-2018. [PMID: 30873934 PMCID: PMC6422050 DOI: 10.1128/microbiolspec.gpp3-0004-2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae (the pneumoccus) is the leading cause of otitis media, community-acquired pneumonia, and bacterial meningitis. The success of the pneumococcus stems from its ability to persist in the population as a commensal and avoid killing by immune system. This chapter first reviews the molecular mechanisms that allow the pneumococcus to colonize and spread from one anatomical site to the next. Then, it discusses the mechanisms of inflammation and cytotoxicity during emerging and classical pneumococcal infections.
Collapse
Affiliation(s)
- Allister J Loughran
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Elaine I Tuomanen
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
9
|
Zhang W, Wang H, Wang B, Zhang Y, Hu Y, Ma B, Wang J. Replacing the 238th aspartic acid with an arginine impaired the oligomerization activity and inflammation-inducing property of pyolysin. Virulence 2018; 9:1112-1125. [PMID: 30067143 PMCID: PMC6086297 DOI: 10.1080/21505594.2018.1491256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trueperella pyogenes (T. pyogenes) is an important opportunistic pathogen. Pyolysin (PLO) importantly contributes to the pathogenicity of T. pyogenes. However, the relationship between the structure and function and the virulence of PLO is not well documented. In the current study, recombinant PLO (rPLO) and three rPLO mutants were prepared. rPLO D238R, a mutant with the 238th aspartic acid replaced with an arginine, showed impairment in oligomerization activity on cholesterol-containing liposome and pore-forming activity on sheep red blood cell membrane. Further study employing the prepared mutants confirmed that the pore-forming activity of PLO is essential for inducing excessive inflammation responses in mice by upregulating the expression levels of IL-1β, TNF-α, and IL-6. By contrast, rPLO P499F, another mutant with impaired cell membrane binding capacity, elicited an inflammation response that was dependent on pathogen-associated molecular pattern (PAMP) activity, given that the mutant significantly upregulated the expression of IL-10 in macrophages and in mice, whereas rPLO did not. Results indicated that domain 1 of the PLO molecule plays an important role in maintaining pore-forming activity. Moreover, the PLO pore-forming activity and not PAMP activity is responsible for the inflammation-inducing effect of PLO. The results of this study provided new information for research field on the structure, function, and virulence of PLO. Abbreviations: T. pyogenes: Trueperella pyogenes; PLO: Pyolysin; rPLO: recombinant PLO; PAMP: pathogen-associated molecular pattern; CDCs: cholesterol-dependent cytolysins; PLY: pneumolysin; NLRP3: NLR family pyrin domain containing protein 3; PRRs: pattern recognition receptors; Asp: aspartic acid; TLR4: Toll-like receptor 4; Arg: arginine; Asn: asparagine; IPTG: Isopropyl-β-d-thiogalactoside; PBS: phosphate-buffered saline; sRBCs: sheep red blood cells; TEM: Transmission electron microscopy; RBCM: red blood cell membrane; SDS-PAGE: sodium dodecyl sulfate–polyacrylamide gel electrophoresis; NC membrane: nitrocellulose membrane; SDS-AGE: dodecyl sulfate agarose gel electrophoresis; MDBK cells: Madin–Darby bovine kidney cells; RPMI-1640 medium: Roswell Park Memorial Institute-1640 medium; FBS: fetal bovine serum; BMDMs: bone marrow-derived macrophages; TNF-α: tumor necrosis factor α; IL-1β: interleukin-1β; IFN-γ: interferon-γ; TGF-β: transforming growth factor-β; ELISA: enzyme-linked immunosorbent assay
Collapse
Affiliation(s)
- Wenlong Zhang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Haili Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Bing Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Yue Zhang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Yunhao Hu
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Bo Ma
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Junwei Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| |
Collapse
|
10
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
11
|
Abstract
Streptococcus pneumoniae is an opportunistic pathogen globally associated with significant morbidity and mortality. It is capable of causing a wide range of diseases including sinusitis, conjunctivitis, otitis media, pneumonia, bacteraemia, sepsis, and meningitis. While its capsular polysaccharide is indispensible for invasive disease, and opsonising antibodies against the capsule are the basis for the current vaccines, a long history of biomedical research indicates that other components of this Gram-positive bacterium are also critical for virulence. Herein we review the contribution of pneumococcal virulence determinants to survival and persistence in the context of distinct anatomical sites. We discuss how these determinants allow the pneumococcus to evade mucociliary clearance during colonisation, establish lower respiratory tract infection, resist complement deposition and opsonophagocytosis in the bloodstream, and invade secondary tissues such as the central nervous system leading to meningitis. We do so in a manner that highlights both the critical role of the capsular polysaccharide and the accompanying and necessary protein determinants. Understanding the complex interplay between host and pathogen is necessary to find new ways to prevent pneumococcal infection. This review is an attempt to do so with consideration for the latest research findings.
Collapse
|
12
|
Proteomics in the Study of Bacterial Keratitis. Proteomes 2015; 3:496-511. [PMID: 28248282 PMCID: PMC5217394 DOI: 10.3390/proteomes3040496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
Bacterial keratitis is a serious ocular infection that can cause severe visual loss if treatment is not initiated at an early stage. It is most commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, or Serratia species. Depending on the invading organism, bacterial keratitis can progress rapidly, leading to corneal destruction and potential blindness. Common risk factors for bacterial keratitis include contact lens wear, ocular trauma, ocular surface disease, ocular surgery, lid deformity, chronic use of topical steroids, contaminated ocular medications or solutions, and systemic immunosuppression. The pathogenesis of bacterial keratitis, which depends on the bacterium-host interaction and the virulence of the invading bacterium, is complicated and not completely understood. This review highlights some of the proteomic technologies that have been used to identify virulence factors and the host response to infections of bacterial keratitis in order to understand the disease process and develop improved methods of diagnosis and treatment. Although work in this field is not abundant, proteomic technologies have provided valuable information toward our current knowledge of bacterial keratitis. More studies using global proteomic approaches are warranted because it is an important tool to identify novel targets for intervention and prevention of corneal damage caused by these virulent microorganisms.
Collapse
|
13
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
14
|
Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response. Infect Immun 2014; 83:591-603. [PMID: 25404032 DOI: 10.1128/iai.02811-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The complement system is a key component of the host immune response for the recognition and clearance of Streptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein to S. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for the lytA ply double mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia.
Collapse
|
15
|
Contributions to protection from Streptococcus pneumoniae infection using the monovalent recombinant protein vaccine candidates PcpA, PhtD, and PlyD1 in an infant murine model during challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1037-45. [PMID: 24850621 DOI: 10.1128/cvi.00052-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A vaccine consisting of several conserved proteins with different functions directing the pathogenesis of pneumonia and sepsis would be preferred for protection against infection by Streptococcus pneumoniae. Infants will be the major population targeted for next-generation pneumococcal vaccines. Here, we investigated the potential efficacy provided by three recombinant pneumococcal vaccine candidate proteins--pneumococcal histidine triad D (PhtD), detoxified pneumolysin derivative (PlyD1), and pneumococcal choline-binding protein A (PcpA)--for reducing pneumonia and sepsis in an infant mouse vaccine model. We found vaccination with PhtD and PcpA provided high IgG antibody titers after vaccination in infant mice, similar to adult mice comparators. PlyD1-specific total IgG was significantly lower in infant mice, with minimal boosting with the second and third vaccinations. Similar isotypes of IgG for PhtD and PlyD1 were generated in infant compared to adult mice. Although lower total specific IgG to all three proteins was elicited in infant than in adult mice, the infant mice were protected from bacteremic pneumonia and sepsis mortality (PlyD1) and had lower lung bacterial burdens (PcpA and PhtD) after challenge. The observed immune responses coupled with bacterial reductions elicited by each of the monovalent proteins support further testing in human infant clinical trials.
Collapse
|
16
|
Abstract
Cholesterol dependent cytolysins are important in the ability of some bacteria to cause disease in man and animals. Pneumolysin (PLY) plays a key role in the diseases caused by Streptococcus pneumoniae (the pneumococcus). This chapter describes the role of PLY in some of the key process in disease. These include induction of cell death by pore formation and toxin-induced apoptosis as well as more subtle effects on gene expression of host cells including epigenetic effects of the toxin. The use of bacterial mutants that either do not express the toxin or express altered versions in biological systems is described. Use of isolated tissue and whole animal systems to dissect the structure/function relationships of the toxin as well as the role played by different activities in the pathogenesis of infection are described. The role of PLY in meningitis and the associated deafness is discussed as well as the role of the toxin in promoting increased lung permeability and inflammation during pneumococcal pneumonia. Different clinical strains of the pneumococcus produce different forms of PLY and the impact of this on disease caused by these strains is discussed. Finally, the impact of this knowledge on the development of treatment and prevention strategies for pneumococcal disease is discussed.
Collapse
|
17
|
Darrieux M, Goulart C, Briles D, Leite LCDC. Current status and perspectives on protein-based pneumococcal vaccines. Crit Rev Microbiol 2013; 41:190-200. [DOI: 10.3109/1040841x.2013.813902] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
A Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella. Eur J Clin Microbiol Infect Dis 2012; 31:2653-60. [PMID: 22466968 DOI: 10.1007/s10096-012-1609-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
The bacterium Streptococcus pneumoniae is a leading human opportunistic pathogen. The limitations of the current vaccine have led to increased recognition of the need to understand bacterial behaviour and competitive dynamics using in vivo models of infection. Here, we investigate the potential application of the larvae of the wax moth Galleria mellonella as an informative infection model. Larvae were challenged with a range of doses of S. pneumoniae isolates differing in known virulence factors to determine the LD(50) values. Infection dynamics were determined by obtaining bacterial counts from larvae over a time course. Differences in virulence between serotypes could be distinguished in this host. Infection with strains differing in known virulence factors demonstrated predicted differences in virulence. Acapsulate and pneumolysin-negative strains were less virulent than their respective wild types. A large reduction in virulence was seen in strains lacking cell wall D-alanylation. The mortality of G. mellonella larvae is attributable to bacterial growth within larvae, while surviving larvae are able to clear infections by reducing bacterial numbers. These data demonstrate that G. mellonella larvae represent an in vivo infection model with applications for investigating aspects of bacterial-host interactions such as the role of antimicrobial peptide activity and resistance.
Collapse
|
19
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
20
|
Lecours MP, Gottschalk M, Houde M, Lemire P, Fittipaldi N, Segura M. Critical Role for Streptococcussuis Cell Wall Modifications and Suilysin in Resistance to Complement-Dependent Killing by Dendritic Cells. J Infect Dis 2011; 204:919-29. [DOI: 10.1093/infdis/jir415] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Yuste J, Khandavilli S, Ansari N, Muttardi K, Ismail L, Hyams C, Weiser J, Mitchell T, Brown JS. The effects of PspC on complement-mediated immunity to Streptococcus pneumoniae vary with strain background and capsular serotype. Infect Immun 2010; 78:283-92. [PMID: 19884335 PMCID: PMC2798213 DOI: 10.1128/iai.00541-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/20/2009] [Accepted: 10/22/2009] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae may evade complement activity by binding of factor H (FH), a negative regulator of the alternative pathway, to the surface protein PspC. However, existing data on the effects of FH binding to PspC on complement activity are conflicting, and there is also considerable allelic variation in PspC structure between S. pneumoniae strains that may influence PspC-dependent effects on complement. We have investigated interactions with complement for several S. pneumoniae strains in which the gene encoding PspC has been deleted. The degree of FH binding varied between strains and was entirely dependent on PspC for seven strains. Data obtained with TIGR4 strains expressing different capsular serotypes suggest that FH binding is affected by capsular serotype. Results of immunoblot analysis for C3 degradation products and iC3b deposition assays suggested that FH bound to PspC retained functional activity, but loss of PspC had strikingly varied effects on C3b/iC3b deposition on S. pneumoniae, with large increases on serotype 4, 6A, 6B, and 9V strains but only small increases or even decreases on serotype 2, 3, 17, and 23F strains. Repeating C3b/iC3b assays with TIGR4 strains expressing different capsular serotypes suggested that differences in the effect of PspC on C3b/iC3b deposition were largely independent of capsular serotype and depend on strain background. However, data obtained from infection in complement-deficient mice demonstrated that differences between strains in the effects of PspC on complement surprisingly did not influence the development of septicemia.
Collapse
Affiliation(s)
- Jose Yuste
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Suneeta Khandavilli
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Naadir Ansari
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Kairya Muttardi
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Laura Ismail
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - C. Hyams
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jeffrey Weiser
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Timothy Mitchell
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jeremy S. Brown
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
22
|
Abstract
SUMMARY Streptococcus pneumoniae is a colonizer of human nasopharynx, but it is also an important pathogen responsible for high morbidity, high mortality, numerous disabilities, and high health costs throughout the world. Major diseases caused by S. pneumoniae are otitis media, pneumonia, sepsis, and meningitis. Despite the availability of antibiotics and vaccines, pneumococcal infections still have high mortality rates, especially in risk groups. For this reason, there is an exceptionally extensive research effort worldwide to better understand the diseases caused by the pneumococcus, with the aim of developing improved therapeutics and vaccines. Animal experimentation is an essential tool to study the pathogenesis of infectious diseases and test novel drugs and vaccines. This article reviews both historical and innovative laboratory pneumococcal animal models that have vastly added to knowledge of (i) mechanisms of infection, pathogenesis, and immunity; (ii) efficacies of antimicrobials; and (iii) screening of vaccine candidates. A comprehensive description of the techniques applied to induce disease is provided, the advantages and limitations of mouse, rat, and rabbit models used to mimic pneumonia, sepsis, and meningitis are discussed, and a section on otitis media models is also included. The choice of appropriate animal models for in vivo studies is a key element for improved understanding of pneumococcal disease.
Collapse
|
23
|
Lu L, Ma Z, Jokiranta TS, Whitney AR, DeLeo FR, Zhang JR. Species-specific interaction of Streptococcus pneumoniae with human complement factor H. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7138-46. [PMID: 18981135 PMCID: PMC2587499 DOI: 10.4049/jimmunol.181.10.7138] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae naturally colonizes the nasopharynx as a commensal organism and sometimes causes infections in remote tissue sites. This bacterium is highly capable of resisting host innate immunity during nasopharyngeal colonization and disseminating infections. The ability to recruit complement factor H (FH) by S. pneumoniae has been implicated as a bacterial immune evasion mechanism against complement-mediated bacterial clearance because FH is a complement alternative pathway inhibitor. S. pneumoniae recruits FH through a previously defined FH binding domain of choline-binding protein A (CbpA), a major surface protein of S. pneumoniae. In this study, we show that CbpA binds to human FH, but not to the FH proteins of mouse and other animal species tested to date. Accordingly, deleting the FH binding domain of CbpA in strain D39 did not result in obvious change in the levels of pneumococcal bacteremia or virulence in a bacteremia mouse model. Furthermore, this species-specific pneumococcal interaction with FH was shown to occur in multiple pneumococcal isolates from the blood and cerebrospinal fluid. Finally, our phagocytosis experiments with human and mouse phagocytes and complement systems provide additional evidence to support our hypothesis that CbpA acts as a bacterial determinant for pneumococcal resistance to complement-mediated host defense in humans.
Collapse
Affiliation(s)
- Ling Lu
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Zhuo Ma
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - T. Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute and HUSLAB, University of Helsinki, FIN-00290 Helsinki, Finland
| | - Adeline R. Whitney
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Jing-Ren Zhang
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| |
Collapse
|
24
|
Green SN, Sanders M, Moore QC, Norcross EW, Monds KS, Caballero AR, McDaniel LS, Robinson SA, Onwubiko C, O'Callaghan RJ, Marquart ME. Protection from Streptococcus pneumoniae keratitis by passive immunization with pneumolysin antiserum. Invest Ophthalmol Vis Sci 2008; 49:290-4. [PMID: 18172105 PMCID: PMC2633641 DOI: 10.1167/iovs.07-0492] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether passive immunization with pneumolysin antiserum can reduce corneal damage associated with pneumococcal keratitis. METHODS New Zealand White rabbits were intrastromally injected with Streptococcus pneumoniae and then passively immunized with control serum, antiserum against heat-inactivated pneumolysin (HI-PLY), or antiserum against cytotoxin-negative pneumolysin (psiPLY). Slit lamp examinations (SLEs) were performed at 24, 36, and 48 hours after infection. An additional four corneas from rabbits passively immunized with antiserum against psiPLY were examined up to 14 days after infection. Colony forming units (CFUs) were quantitated from corneas extracted at 20 and 48 hours after infection. Histopathology of rabbit eyes was performed at 48 hours after infection. RESULTS SLE scores at 36 and 48 hours after infection were significantly lower in rabbits passively immunized with HI-PLY antiserum than in control rabbits (P < or = 0.043). SLE scores at 24, 36, and 48 hours after infection were significantly lower in rabbits passively immunized with psiPLY antiserum than in control rabbits (P < or = 0.010). The corneas of passively immunized rabbits that were examined up to 14 days after infection exhibited a sequential decrease in keratitis, with an SLE score average of 2.000 +/- 1.586 at 14 days. CFUs recovered from infected corneas were not significantly different between each experimental group and the respective control group at 20 or 48 hours after infection (P > or = 0.335). Histologic sections showed more corneal edema and polymorphonuclear leukocyte (PMN) infiltration in control rabbits compared with passively immunized rabbits. CONCLUSIONS HI-PLY and psiPLY both elicit antibodies that provide passive protection against S. pneumoniae keratitis.
Collapse
Affiliation(s)
- Sherrina N Green
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Propst-Graham KL, Preheim LC, Vander Top EA, Snitily MU, Gentry-Nielsen MJ. Cirrhosis-induced defects in innate pulmonary defenses against Streptococcus pneumoniae. BMC Microbiol 2007; 7:94. [PMID: 17956621 PMCID: PMC2140065 DOI: 10.1186/1471-2180-7-94] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 10/23/2007] [Indexed: 12/24/2022] Open
Abstract
Background The risk of mortality from pneumonia caused by Streptococcus pneumoniae is increased in patients with cirrhosis. However, the specific pneumococcal virulence factors and host immune defects responsible for this finding have not been clearly established. This study used a cirrhotic rat model of pneumococcal pneumonia to identify defect(s) in innate pulmonary defenses in the cirrhotic host and to determine the impact of the pneumococcal toxin pneumolysin on these defenses in the setting of severe cirrhosis. Results No cirrhosis-associated defects in mucociliary clearance of pneumococci were found in these studies, but early intrapulmonary killing of the organisms before the arrival of neutrophils was significantly impaired. This defect was exacerbated by pneumolysin production in cirrhotic but not in control rats. Neutrophil-mediated killing of a particularly virulent type 3 pneumococcal strain also was significantly diminished within the lungs of cirrhotic rats with ascites. Levels of lysozyme and complement component C3 were both significantly reduced in bronchoalveolar lavage fluid from cirrhotic rats. Finally, complement deposition was reduced on the surface of pneumococci recovered from the lungs of cirrhotic rats in comparison to organisms recovered from the lungs of control animals. Conclusion Increased mortality from pneumococcal pneumonia in this cirrhotic host is related to defects in both early pre-neutrophil- and later neutrophil-mediated pulmonary killing of the organisms. The fact that pneumolysin production impaired pre-neutrophil-mediated pneumococcal killing in cirrhotic but not control rats suggests that pneumolysin may be particularly detrimental to this defense mechanism in the severely cirrhotic host. The decrease in neutrophil-mediated killing of pneumococci within the lungs of the cirrhotic host is related to insufficient deposition of host proteins such as complement C3 on their surfaces. Pneumolysin likely plays a role in complement consumption within the lungs. Our studies, however, were unable to determine whether pneumolysin more negatively impacted this defense mechanism in cirrhotic than in control rats. These findings contribute to our understanding of the defects in innate pulmonary defenses that lead to increased mortality from pneumococcal pneumonia in the severely cirrhotic host. They also suggest that pneumolysin may be a particularly potent pneumococcal virulence factor in the setting of cirrhosis.
Collapse
Affiliation(s)
- Katie L Propst-Graham
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA.
| | | | | | | | | |
Collapse
|
26
|
Chabot-Roy G, Willson P, Segura M, Lacouture S, Gottschalk M. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microb Pathog 2006; 41:21-32. [PMID: 16714092 DOI: 10.1016/j.micpath.2006.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/28/2006] [Accepted: 04/04/2006] [Indexed: 11/19/2022]
Abstract
Streptococcus suis serotype 2 is an important swine pathogen responsible for diverse infections, mainly meningitis. Virulence factors and the pathogenesis of infection are not well understood. Neutrophils may play an important role in the pathogenesis of infection given that infiltration by neutrophils and mononuclear cells are frequently observed in lesions caused by S. suis. The objective of this work was to study the interactions between S. suis serotype 2 and porcine neutrophils. Results showed that suilysin is toxic to neutrophils and this could help S. suis evade innate immunity. Moreover, suilysin appears to affect complement-dependent killing by decreasing the opsonization of S. suis and the bactericidal capacity of neutrophils. Our results confirm that capsule polysaccharide protects S. suis against killing and phagocytosis by neutrophils. We also showed that the presence of specific IgG against S. suis serotype 2 promoted killing by neutrophils, indicating that the induction of a strong humoral response is beneficial for clearance of this pathogen.
Collapse
Affiliation(s)
- Geneviève Chabot-Roy
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Qué., Canada J2S 2M2
| | | | | | | | | |
Collapse
|
27
|
Lu L, Ma Y, Zhang JR. Streptococcus pneumoniae Recruits Complement Factor H through the Amino Terminus of CbpA. J Biol Chem 2006; 281:15464-74. [PMID: 16597618 DOI: 10.1074/jbc.m602404200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus pneumoniae, a human pathogen, is naturally capable of colonizing the upper airway and sometimes disseminating to remote tissue sites. Previous studies have shown that S. pneumoniae is able to evade complement-mediated innate immunity by recruiting complement factor H (FH), a complement alternative pathway inhibitor. Pneumococcal binding to FH has been attributed to choline-binding protein A (CbpA) of S. pneumoniae and its allelic variants, all of which are surface-exposed proteins. In this study, we sought to determine the molecular basis of the CbpA-FH binding interaction. Initial deletional analysis of the CbpA protein in strain D39 (capsular serotype 2) revealed that the N-terminal region of 89 amino acids in the mature CbpA protein is required for FH binding. Immunofluorescence microscopy analysis showed that this region of CbpA is also necessary for FH deposition to the surface of the intact pneumococci. Moreover, recombinant proteins representing the 104 amino acids of the N-terminal CbpA alone was sufficient for high affinity binding to FH (KD < 1 nm). The FH binding activity was finally localized to a 12-amino acid motif in the N-terminal CbpA by peptide mapping. Further kinetic analysis suggested that additional amino acids downstream of the 12-amino acid motif provide necessary structural or conformational support for the CbpA-FH interaction. The 12-amino acid motif and its adjacent regions contain highly conserved residues among various CbpA alleles, suggesting that this region may mediate FH binding in multiple pneumococcal strains.
Collapse
Affiliation(s)
- Ling Lu
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
28
|
Kerr AR, Paterson GK, Riboldi-Tunnicliffe A, Mitchell TJ. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3. Infect Immun 2005; 73:4245-52. [PMID: 15972516 PMCID: PMC1168602 DOI: 10.1128/iai.73.7.4245-4252.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement is known to be involved in protection against systemic infection with Streptococcus pneumoniae. However, less is known about effects of complement within the lungs during pneumococcal pneumonia. By intranasally infecting transgenic mice unable to express complement C3, we investigated the role of complement in pulmonary defenses against S. pneumoniae. It was demonstrated that within the lungs, there is a requirement for C3 during the initial hours of infection. It was found that within 1 h of infection, bacterial loads decreased within lung airways of control mice as C3 protein increased. The lack of C3 resulted in the inability to control growth of wild-type or attenuated pneumococci within the lungs and bloodstream, resulting in an overwhelming inflammatory response and shorter survival times. Our results show that during the initial hours of infection with S. pneumoniae, C3 is protective within the lungs and subsequently plays an important role systemically.
Collapse
Affiliation(s)
- Alison R Kerr
- Division of Infection and Immunity, IBLS, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
29
|
Lu L, Lamm ME, Li H, Corthesy B, Zhang JR. The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J Biol Chem 2003; 278:48178-87. [PMID: 13679368 DOI: 10.1074/jbc.m306906200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a major cause of bacterial pneumonia, middle ear infection (otitis media), sepsis, and meningitis. Our previous study demonstrated that the choline-binding protein A (CbpA) of S. pneumoniae binds to the human polymeric immunoglobulin receptor (pIgR) and enhances pneumococcal adhesion to and invasion of cultured epithelial cells. In this study, we sought to determine the CbpA-binding motif on pIgR by deletional analysis. The extra-cellular portion of pIgR consists of five Ig-like domains (D1-D5), each of which contains 104-114 amino acids and two disulfide bonds. Deletional analysis of human pIgR revealed that the lack of either D3 or D4 resulted in the loss of CbpA binding, whereas complete deletions of domains D1, D2, and D5 had undetectable impacts. Subsequent analysis showed that domains D3 and D4 together were necessary and sufficient for the ligand-binding activity. Furthermore, CbpA binding of pIgR did not appear to require Ca2+ or Mg2+. Finally, treating pIgR with a reducing agent abolished CbpA binding, suggesting that disulfide bonding is required for the formation of CbpA-binding motif(s). These results strongly suggest a conformational CbpA-binding motif(s) in the D3/D4 region of human pIgR, which is functionally separated from the IgA-binding site(s).
Collapse
Affiliation(s)
- Ling Lu
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
30
|
Wellmer A, Zysk G, Gerber J, Kunst T, Von Mering M, Bunkowski S, Eiffert H, Nau R. Decreased virulence of a pneumolysin-deficient strain of Streptococcus pneumoniae in murine meningitis. Infect Immun 2002; 70:6504-8. [PMID: 12379738 PMCID: PMC130334 DOI: 10.1128/iai.70.11.6504-6508.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumolysin, neuraminidases A and B, and hyaluronidase are virulence factors of Streptococcus pneumoniae that appear to be involved in the pathogenesis of meningitis. In a murine model of meningitis after intracerebral infection using mutants of S. pneumoniae D39, only mice infected with a pneumolysin-deficient strain were healthier at 32 and 36 h, had lower bacterial titers in blood at 36 h, and survived longer than the D39 parent strain. Cerebellar and spleen bacterial titers, meningeal inflammation, and neuronal damage scores remained uninfluenced by the lack of any of the virulence factors.
Collapse
Affiliation(s)
- Andreas Wellmer
- Department of Neurology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cockeran R, Anderson R, Feldman C. The role of pneumolysin in the pathogenesis of Streptococcus pneumoniae infection. Curr Opin Infect Dis 2002; 15:235-9. [PMID: 12015456 DOI: 10.1097/00001432-200206000-00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In addition to being cytotoxic for eukaryotic cells, recent research has clearly indicated that pneumolysin at sub-cytolytic concentrations potentiates the proinflammatory activities of neutrophils and macrophages. Together these cytotoxic and proinflammatory activities of the toxin are likely to contribute to the virulence of the pneumococcus, particularly in facilitating adherence, invasion and dissemination of this important microbial pathogen. Pneumolysin-based vaccine strategies, although in the early stages of development and evaluation, show promise in reducing the severity of pneumococcal disease.
Collapse
Affiliation(s)
- Riana Cockeran
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | | | | |
Collapse
|