1
|
Eom GD, Chu KB, Yoon KW, Mao J, Kim SS, Quan FS. Immunizing Mice with Influenza Virus-like Particles Expressing the Leishmania amazonensis Promastigote Surface Antigen Alleviates Inflammation in Footpad. Vaccines (Basel) 2024; 12:793. [PMID: 39066431 PMCID: PMC11281337 DOI: 10.3390/vaccines12070793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL) is a tropical disease endemic in many parts of the world. Characteristic clinical manifestations of CL include the formation of ulcerative skin lesions that can inflict life-long disability if left untreated. Although drugs are available, they are unaffordable and out of reach for individuals who need them the most. Developing a highly cost-efficient CL vaccine could address this problem but such a vaccine remains unavailable. Here, we developed a chimeric influenza virus-like particle expressing the Leishmania amazonensis promastigote surface antigen (LaPSA-VLP). LaPSA-VLPs were self-assembled in Spodoptera frugiperda insect cell lines using the baculovirus expression system. After characterizing the vaccines and confirming successful VLP assembly, BALB/c mice were immunized with these vaccines for efficacy assessment. Sera acquired from mice upon subcutaneous immunization with the LaPSA-VLP specifically interacted with the L. amazonensis soluble total antigens. LaPSA-VLP-immunized mice elicited significantly greater quantities of parasite-specific IgG from the spleens, popliteal lymph nodes, and footpads than unimmunized mice. LaPSA-VLP immunization also enhanced the proliferation of B cell populations in the spleens of mice and significantly lessened the CL symptoms, notably the footpad swelling and IFN-γ-mediated inflammatory response. Overall, immunizing mice with the LaPSA-VLPs prevented mice from developing severe CL symptoms, signifying their developmental potential.
Collapse
Affiliation(s)
- Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.-D.E.); (K.-W.Y.); (J.M.)
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan 47392, Republic of Korea;
- Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.-D.E.); (K.-W.Y.); (J.M.)
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.-D.E.); (K.-W.Y.); (J.M.)
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Basmenj ER, Arastonejad M, Mamizadeh M, Alem M, KhalatbariLimaki M, Ghiabi S, Khamesipour A, Majidiani H, Shams M, Irannejad H. Engineering and design of promising T-cell-based multi-epitope vaccine candidates against leishmaniasis. Sci Rep 2023; 13:19421. [PMID: 37940672 PMCID: PMC10632461 DOI: 10.1038/s41598-023-46408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a very common parasitic infection in subtropical areas worldwide. Throughout decades, there have been challenges in vaccine design and vaccination against CL. The present study introduced novel T-cell-based vaccine candidates containing IFN-γ Inducing epitopic fragments from Leishmania major (L. major) glycoprotein 46 (gp46), cathepsin L-like and B-like proteases, histone H2A, glucose-regulated protein 78 (grp78) and stress-inducible protein 1 (STI-1). For this aim, top-ranked human leukocyte antigen (HLA)-specific, IFN-γ Inducing, antigenic, CD4+ and CD8+ binders were highlighted. Four vaccine candidates were generated using different spacers (AAY, GPGPG, GDGDG) and adjuvants (RS-09 peptide, human IFN-γ, a combination of both, Mycobacterium tuberculosis Resuscitation promoting factor E (RpfE)). Based on the immune simulation profile, those with RS-09 peptide (Leish-App) and RpfE (Leish-Rpf) elicited robust immune responses and their tertiary structure were further refined. Also, molecular docking of the selected vaccine models with the human toll-like receptor 4 showed proper interactions, particularly for Leish-App, for which molecular dynamics simulations showed a stable connection with TLR-4. Upon codon optimization, both models were finally ligated into the pET28a( +) vector. In conclusion, two potent multi-epitope vaccine candidates were designed against CL and evaluated using comprehensive in silico methods, while further wet experiments are, also, recommended.
Collapse
Affiliation(s)
| | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahsa Alem
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mahdi KhalatbariLimaki
- Department of Pharmaceutical Sciences, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadan Ghiabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, 14155-6383, Iran
| | - Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Zhang J, Li J, Hu K, Zhou Q, Chen X, He J, Yin S, Chi Y, Liao X, Xiao Y, Qin H, Zheng Z, Chen J. Screening Novel Vaccine Candidates for Leishmania Donovani by Combining Differential Proteomics and Immunoinformatics Analysis. Front Immunol 2022; 13:902066. [PMID: 35812381 PMCID: PMC9260594 DOI: 10.3389/fimmu.2022.902066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis (VL), also known as kala-azar, is the most dangerous form of leishmaniasis. Currently no effective vaccine is available for clinical use. Since the pathogenicity of different Leishmania strains is inconsistent, the differentially expressed proteins in Leishmania strains may play an important role as virulence factors in pathogenesis. Therefore, effective vaccine candidate targets may exist in the differentially expressed proteins. In this study, we used differential proteomics analysis to find the differentially expressed proteins in two Leishmania donovani strains, and combined with immunoinformatics analysis to find new vaccine candidates. The differentially expressed proteins from L. DD8 (low virulent) and L. 9044 (virulent) strains were analyzed by LC-MS/MS, and preliminarily screened by antigenicity, allergenicity and homology evaluation. The binding peptides of MHC II, IFN-γ and MHC I from differentially expressed proteins were then predicted and calculated for the second screening. IFN-γ/IL-10 ratios and conserved domain prediction were performed to choose more desirable differentially expressed proteins. Finally, the 3D structures of three vaccine candidate proteins were produced and submitted for molecular dynamics simulation and molecular docking interaction with TLR4/MD2. The results showed that 396 differentially expressed proteins were identified by LC-MS/MS, and 155 differentially expressed proteins were selected through antigenicity, allergenicity and homology evaluation. Finally, 16 proteins whose percentages of MHC II, IFN-γ and MHC I binding peptides were greater than those of control groups (TSA, LmSTI1, LeIF, Leish-111f) were considered to be suitable vaccine candidates. Among the 16 candidates, amino acid permease, amastin-like protein and the hypothetical protein (XP_003865405.1) simultaneously had the large ratios of IFN-γ/IL-10 and high percentages of MHC II, IFN-γ and MHC I, which should be focused on. In conclusion, our comprehensive work provided a methodological basis to screen new vaccine candidates for a better intervention against VL and associated diseases.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Kaifeng Hu
- Department of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoxiao Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yangjian Chi
- Department of Urinary Surgery, Jianou Municipal Hospital of Fujian Province, Jianou, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hanxiao Qin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Zhiwan Zheng, ; Jianping Chen,
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
- *Correspondence: Zhiwan Zheng, ; Jianping Chen,
| |
Collapse
|
4
|
Freire ML, Rego FD, Lopes KF, Coutinho LA, Grenfell RFQ, Avelar DM, Cota G, Pascoal-Xavier MA, Oliveira E. Anti-mitochondrial Tryparedoxin Peroxidase Monoclonal Antibody-Based Immunohistochemistry for Diagnosis of Cutaneous Leishmaniasis. Front Microbiol 2022; 12:790906. [PMID: 35295679 PMCID: PMC8918995 DOI: 10.3389/fmicb.2021.790906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cutaneous leishmaniasis (CL) remains a globally spreading public health problem. Among Latin America countries, Brazil has the greatest number of recorded CL cases with several Leishmania species being associated with human cases. Laboratory diagnosis is one of the major challenges to disease control due to the low accuracy of parasitological techniques, the restricted use of molecular techniques, and the importance of differential diagnosis with regard to several dermatological and systemic diseases. In response, we have developed and validated an immunohistochemistry (IHC) technique for CL diagnosis using anti-mTXNPx monoclonal antibody (mAb). Recombinant Leishmania–mTXNPx was produced and used as an immunogen for mAb production through the somatic hybridization technique. The viability of mAb labeling of Leishmania amastigotes was tested by IHC performed with skin biopsies from hamsters experimentally infected with Leishmania amazonensis, Leishmania braziliensis, and Leishmania guyanensis. The enzymes horseradish peroxidase (IHC-HRP) and alkaline phosphatase (IHC-AP), both biotin-free polymer detection systems, were used in the standardization step. The IHC was further validated with skin biopsies from 49 CL patients diagnosed by clinical examination and quantitative real-time polymerase chain reaction and from 37 patients presenting other dermatological infectious diseases. Other parasitological techniques, such as direct examination and culture, were also performed for confirmed CL patients. Histopathology and IHC were performed for all included patients. Overall, the highest sensitivity was observed for IHC-AP (85.7%), followed by IHC-HRP (79.6%), direct examination (77.6%), histopathological examination (HE; 65.3%), and in vitro culture (49%). Only IHC and HE presented specificity over 90% and were able to detect CL patients regardless of parasite burden (odds ratio > 1.94; 95%CI: 0.34–11.23). A significant increase in positivity rates was observed when IHC-AP was combined with direct examination (95.9%) and HE (93.9%). The IHC techniques evaluated in here detected the main Leishmania species causing CL in Brazil and can support diagnostic strategies for controlling this neglected disease, especially if used in combination with other approaches for an integrative laboratorial diagnosis.
Collapse
Affiliation(s)
| | - Felipe Dutra Rego
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | | | | | | | - Gláucia Cota
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Marcelo Antônio Pascoal-Xavier
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edward Oliveira
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- *Correspondence: Edward Oliveira,
| |
Collapse
|
5
|
Abstract
Leishmaniasis is caused by protozoan Leishmania parasites that are transmitted through female sandfly bites. The disease is predominantly endemic to the tropics and semi-tropics and has been reported in more than 98 countries. Due to the side effects of anti-Leishmania drugs and the emergence of drug-resistant isolates, there is currently no encouraging prospect of introducing an effective therapy for the disease. Hence, it seems that the key to disease control management is the introduction of an effective vaccine, particularly against its cutaneous form. Advances in understanding underlying immune mechanisms are feasibale using a variety of candidate antigens, including attenuated live parasites, crude antigens, pure or recombinant Leishmania proteins, Leishmania genes encoding protective proteins, as well as immune system activators from the saliva of parasite vectors. However, there is still no vaccine against different types of human leishmaniasis. In this study, we review the works conducted or being performed in this field.
Collapse
|
6
|
Burgos-Reyes MA, Baylón-Pacheco L, Espíritu-Gordillo P, Galindo-Gómez S, Tsutsumi V, Rosales-Encina JL. Effect of Prophylactic Vaccination with the Membrane-Bound Acid Phosphatase Gene of Leishmania mexicana in the Murine Model of Localized Cutaneous Leishmaniasis. J Immunol Res 2021; 2021:6624246. [PMID: 33928168 PMCID: PMC8053065 DOI: 10.1155/2021/6624246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a disease caused by an intracellular protozoan parasite of the genus Leishmania. Current treatments for leishmaniasis are long, toxic, and expensive and are not available in some endemic regions. Attempts to develop an effective vaccine are feasible, but no vaccine is in active clinical use. In this study, the LmxMBA gene of Leishmania mexicana was selected as a possible vaccine candidate using the reverse vaccinology approach, and the prophylactic effect generated by DNA vaccination with this gene in a murine model of cutaneous leishmaniasis was evaluated. The results showed that prophylactic vaccination with pVAX1::LmxMBA significantly reduced the size of the lesion and the parasitic load on the footpad, compared to the control groups. At a histological level, a smaller number of parasites were evident in the dermis, as well as the absence of connective tissue damage. Mice immunized with plasmid pVAX1::LmxMBA induced immunity characterized by an increase in the IgG2a/IgG1 > 1 ratio and a higher rate of lymphocyte proliferation. In this study, immunization with the plasmid promoted an improvement in the macroscopic and microscopic clinical manifestations of the experimental infection by L. mexicana, with a T helper 1 response characterized by an IgG2a/IgG1 > 1 ratio and high lymphoproliferative response. These findings support immunization with the plasmid pVAX1::LmxMBA as a preventive strategy against cutaneous infection of L. mexicana.
Collapse
Affiliation(s)
- María Angélica Burgos-Reyes
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Patricia Espíritu-Gordillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Silvia Galindo-Gómez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
7
|
Mohammadi AM, Duthie MS, Reed SG, Javadi A, Khamesipour A. Evolution of antigen-specific immune responses in cutaneous leishmaniasis patients. Parasite Immunol 2021; 43:e12814. [PMID: 33351204 DOI: 10.1111/pim.12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022]
Abstract
AIMS Despite immunization appearing to be the most appropriate strategy for long-term control of the vector-borne leishmaniases, no sustainable vaccine is currently available against any form of leishmaniasis. We therefore evaluated, in the context of vaccine antigen candidates, antigen-specific immune response at various stages of cutaneous leishmaniasis (CL). METHODS AND RESULTS Peripheral blood mononuclear cells (PBMC) isolated from healthy volunteers and CL patients (caused by either Leishmania major or L tropica) were incubated with crude Leishmania proteins (soluble Leishmania antigen; SLA), single recombinant proteins (TSA, LeIF, LmSTI1) or chimeric fusion proteins (LEISH-F2 and LEISH-F3). The concentrations of immune modulatory cytokines were then determined. While we did not detect appreciable antigen-specific IL-5 secretion, SLA induced secretion of interleukin (IL)-10 in cultures from early active lesion CL patients and even from healthy individuals. Conversely, interferon (IFN)-γ responses to SLA and recombinant proteins followed a similar pattern, developing only in the late active CL lesion phase. Once established, antigen-specific IFN-γ responses persisted in cured CL patients. CONCLUSION Together, our results provide further insight into the development of immune responses during CL and further validate the selection of LEISH-F2 and LEISH-F3 as vaccine antigen candidates.
Collapse
Affiliation(s)
- Akram Miramin Mohammadi
- Center for Research & Training in Skin Diseases & Leprosy (CRTSDL), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | | | - Amir Javadi
- Department of Social Medicines, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Khamesipour
- Center for Research & Training in Skin Diseases & Leprosy (CRTSDL), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
8
|
André S, Rodrigues V, Picard M, Silvestre R, Estaquier J. Non-human primates and Leishmania immunity. Cytokine X 2020; 2:100038. [PMID: 33604562 PMCID: PMC7885871 DOI: 10.1016/j.cytox.2020.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022] Open
Abstract
In the context of infectious diseases, non-human primates (NHP) provide the best animal models of human diseases due to the close phylogenetic relationship and the similar physiology and anatomical systems. Herein, we summarized the contribution of NHP models for understanding the immunity to leishmaniases, which are a group of diseases caused by infection with protozoan parasites of the genus Leishmania and classified as one of the neglected tropical diseases.
Collapse
Affiliation(s)
- Sonia André
- INSERM-U1124, Paris University, Paris, France
| | | | | | - Ricardo Silvestre
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Jérôme Estaquier
- INSERM-U1124, Paris University, Paris, France
- Centre de Recherche du CHU de Québec, Laval University, QC, Quebec, Canada
| |
Collapse
|
9
|
Askarizadeh A, Badiee A, Khamesipour A. Development of nano-carriers for Leishmania vaccine delivery. Expert Opin Drug Deliv 2020; 17:167-187. [PMID: 31914821 DOI: 10.1080/17425247.2020.1713746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Leishmaniasis is a neglected tropical infection caused by several species of intracellular protozoan parasites of the genus Leishmania. It is strongly believed that the development of vaccines is the most appropriate approach to control leishmaniasis. However, there is no vaccine available yet and the lack of an appropriate adjuvant delivery system is the main reason.Areas covered: Adjuvants are the utmost important part of a vaccine, to induce the immune response in the right direction. Limitations and drawbacks of conventional adjuvants have been necessitated the development of novel particulate delivery systems as adjuvants to obtain desirable protection against infectious diseases such as leishmaniasis. This review focused on particulate adjuvants especially nanoparticles that are in use to develop vaccines against leishmaniasis. The list of adjuvants includes generally lipids-, polymers-, or mineral-based delivery systems that target antigens specifically to the site of action within the host's body and enhance immune responses.Expert opinion: Over the past few years, there has been an increasing interest in developing particulate adjuvants as alternatives to immunostimulatory types. The composition of nano-carriers and particularly the physicochemical properties of nanoparticles have great potential to overcome challenges posed to leishmaniasis vaccine developments.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Nascimento LFM, Miranda DFH, Moura LD, Pinho FA, Werneck GL, Khouri R, Reed SG, Duthie MS, Barral A, Barral-Netto M, Cruz MSP. Allopurinol therapy provides long term clinical improvement, but additional immunotherapy is required for sustained parasite clearance, in L. infantum-infected dogs. Vaccine X 2019; 4:100048. [PMID: 31891152 PMCID: PMC6928333 DOI: 10.1016/j.jvacx.2019.100048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 11/28/2022] Open
Abstract
L. infantum-infected dogs were treated with allopurinol alone or plus Leish-F2 + SLA-SE. Both treatment regimen generated long term clinical improvement. Immunochemotherapy, but not chemotherapy alone, generated sustained parasite control.
There is little evidence that current control strategies for canine leishmaniosis (CanL), the veterinary disease caused by L. infantum infection, are having a positive impact. This is of critical importance because dogs are a primary reservoir for L. infantum and a significant source of parasite transmission to humans. Drugs intended primarily for human use are prohibited for the treatment of CanL because of concerns over the propagation of resistant parasites. Although allopurinol effectively decreases parasite burden in CanL the treatment needs to be maintained for life. We hypothesized that during the allopurinol-induced parasite reduction dogs may become capable of developing a more robust immune response that may permit more effective control of parasites. To test this, we investigated the clinical and parasitological impact of short-term treatment with allopurinol, either alone or in combination with a defined subunit vaccine, on dogs naturally infected with L. infantum. A total of 28 dogs were distributed as follows: untreated; oral allopurinol alone (20 mg/kg, once each day for 90 days); or allopurinol with immunization with the Leish-F2 antigen formulated with the Toll-like receptor (TLR) 4 agonist Second generation Lipid Adjuvant (SLA) in stable emulsion (SE; SLA-SE). Dogs that did not receive treatment had a progressive decline in their clinical condition and an increase in their infection levels, while treatment with allopurinol alone alleviated the clinical symptoms of CanL but did not generate sustained reduction in parasites. Concomitant immunization with Leish-F2 + SLA-SE, however, improved clinical condition while also providing long-term clearance of L. infantum from lymphoid tissues and systemic organs. These results have important implications for both the management of CanL and for limiting L. infantum transmission to humans.
Collapse
Key Words
- CanL, canine leishmaniosis
- Canine visceral leishmaniasis
- Clinical signs
- Drug
- GLA, glycopyranosyl lipid
- IFN, interferon
- IL, interleukin
- MPL, monophosphoryl lipid A
- Parasite
- SE, stable emulsion
- SLA, Second generation Lipid Adjuvant
- TLR, Toll-like receptor
- Th1, T helper 1-like cells
- VL, visceral leishmaniasis
- Vaccine
Collapse
Affiliation(s)
- Leopoldo F M Nascimento
- Universidade Federal do Piauí, Departamento de Morfofisiologia Veterinária, Teresina, PI, Brazil
| | | | - Luana D Moura
- Universidade Federal do Piauí, Departamento de Morfofisiologia Veterinária, Teresina, PI, Brazil
| | - Flaviane A Pinho
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil
| | - Guilherme Loureiro Werneck
- Universidade Federal do Rio de Janeiro, Instituto de Estudos em Saúde Coletiva, Rio de Janeiro, RJ, Brazil
| | - Ricardo Khouri
- Fundação Oswaldo Cruz- Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil
| | - Steven G Reed
- Infectious Diseases Research Institute, Seattle, WA 98102, USA.,HDT Biotech Corporation, Seattle, WA 98102, USA
| | - Malcolm S Duthie
- Infectious Diseases Research Institute, Seattle, WA 98102, USA.,HDT Biotech Corporation, Seattle, WA 98102, USA
| | - Aldina Barral
- Fundação Oswaldo Cruz- Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia, Instituto de Investigação em Imunologia, São Paulo, SP, Brazil
| | - Manoel Barral-Netto
- Fundação Oswaldo Cruz- Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brazil.,Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia, Instituto de Investigação em Imunologia, São Paulo, SP, Brazil
| | - Maria S P Cruz
- Universidade Federal do Piauí, Departamento de Morfofisiologia Veterinária, Teresina, PI, Brazil
| |
Collapse
|
11
|
Santos RL, de Oliveira AR. Leishmaniasis in non-human primates: Clinical and pathological manifestations and potential as reservoirs. J Med Primatol 2019; 49:34-39. [PMID: 31595524 DOI: 10.1111/jmp.12441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Although the domestic dog is the most important reservoir of visceral leishmaniasis in urban areas, there have been an increasing number of reports of naturally occurring leishmaniasis in non-human primates. Reported cases affecting neotropical and Old World non-human primates as well as their potential role as reservoirs were reviewed.
Collapse
Affiliation(s)
- Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ayisa Rodrigues de Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
12
|
Nascimento LFMD, Moura LDD, Lima RT, Cruz MDSPE. Novos adjuvantes vacinais: importante ferramenta para imunoterapia da leishmaniose visceral. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atualmente, muitas das vacinas em desenvolvimento são aquelas compostas de proteínas antigênicas individuais de parasitas ou uma combinação de vários antígenos individuais que são produzidos como produtos recombinantes obtidos por técnicas de biologia molecular. Dentre elas a Leish-111f e sua variação Leish-110f tem ganhado destaque na proteção contra a LV e LC e alcançaram estudos de fase II em seres humanos. A eficácia de uma vacina é otimizada pela adição de adjuvantes imunológicos. No entanto, embora os adjuvantes tenham sido usados por mais de um século, até o momento, apenas alguns adjuvantes são aprovados para o uso em humanos, a maioria destinada a melhorar a eficácia da vacina e a produção de anticorpos protetores específicos do antígeno. Os mecanismos de ação dos adjuvantes imunológicos são diversos, dependendo da sua natureza química e molecular sendo capazes de ativar células imunes especificas que conduzem a respostas imunes inatas e adaptativas melhoradas. Embora o mecanismo de ação molecular detalhado de muitos adjuvantes ainda seja desconhecido, a descoberta de receptores Toll-like (TLRs) forneceu informações críticas sobre o efeito imunoestimulador de numerosos componentes bacterianos que envolvem interação com receptores TLRs, mostrando que estes ligantes melhoram tanto a qualidade como a quantidade de respostas imunes adaptativas do hospedeiro quando utilizadas em formulações de vacinais direcionadas para doenças. O potencial desses adjuvantes de TLR em melhorar o design e os resultados de várias vacinas está em constante evolução, à medida que novos agonistas são descobertos e testados em modelos experimentais e estudos clínicos de vacinação. Nesta revisão, é apresentado um resumo do progresso recente no desenvolvimento de proteínas recombinantes de segunda geração e adjuvantes de TLR, sendo o foco principal nos TLR4 e suas melhorias.
Collapse
|
13
|
Ribeiro PA, Dias DS, Lage DP, Martins VT, Costa LE, Santos TT, Ramos FF, Tavares GS, Mendonça DV, Ludolf F, Gomes DA, Rodrigues MA, Chávez-Fumagalli MA, Silva ES, Galdino AS, Duarte MC, Roatt BM, Menezes-Souza D, Teixeira AL, Coelho EA. Immunogenicity and protective efficacy of a new Leishmania hypothetical protein applied as a DNA vaccine or in a recombinant form against Leishmania infantum infection. Mol Immunol 2019; 106:108-118. [DOI: 10.1016/j.molimm.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/01/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023]
|
14
|
Sangpairoj K, Apisawetakan S, Changklungmoa N, Kueakhai P, Chaichanasak P, Sobhon P, Chaithirayanon K. Potential of recombinant 2-Cys peroxiredoxin protein as a vaccine for Fasciola gigantica infection. Exp Parasitol 2018; 194:16-23. [DOI: 10.1016/j.exppara.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/20/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
|
15
|
Miandoabi T, Bahrami F, Moein Vaziri V, Ajdary S. Construction of a Novel DNA Vaccine Candidate encoding LmSTI1-PpSP42 Fusion Protein from Leishmania major and Phlebotomus papatasi against Cutaneous Leishmaniasis. Rep Biochem Mol Biol 2018; 7:67-75. [PMID: 30324120 PMCID: PMC6175588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Background Cutaneous leishmaniasis (CL) is a serious public health problem in many tropical countries. The infection is caused by a protozoan parasite of Leishmania genus transmitted by Phlebotominae sandflies. In the present study, we constructed a eukaryotic expression vector to produce a fusion protein containing LmSTI1 from Leishmania major (L. major) and PpSP42 from Phlebotomus papatasi (Ph. papatasi). In future studies we will test this construct as a DNA vaccine against zoonotic CL. Methods The nucleotide sequences encoding the LmSTI1 protein and a fragment encoding 79% of PpSP42 were amplified using L. major and Ph. papatasi genomic DNA, respectively. The amplicons were cloned into the pcDNA3.1(+) eukaryotic expression vector. The recombinant plasmid pcDNA-LmSTI1Pp42 was propagated in Escherichia coli (E. coli) and used to transfect HEK-293T cells. The expressed fusion protein was analyzed by Western blotting using anti-LmSTI1 mouse serum. Results Sequences encoding LmSTI1 and partial PpSP42 were cloned into pcDNA3.1(+). Production of the recombinant LmSTI1Pp42 fusion protein was confirmed by Western blotting. Conclusion An LmSTI1Pp42 fusion protein was expressed HEK-293T cells. This construct may be an effective DNA vaccine against CL.
Collapse
Affiliation(s)
- Touraj Miandoabi
- Department of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariborz Bahrami
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran, Iran.
| | - Vahideh Moein Vaziri
- Department of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soheila Ajdary
- Pasteur Institute of Iran, Department of Immunology, 69 Pasteur Ave., Tehran, Iran.
| |
Collapse
|
16
|
Rostamian M, Bahrami F, Niknam HM. Vaccination with whole-cell killed or recombinant leishmanial protein and toll-like receptor agonists against Leishmania tropica in BALB/c mice. PLoS One 2018; 13:e0204491. [PMID: 30248142 PMCID: PMC6152959 DOI: 10.1371/journal.pone.0204491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023] Open
Abstract
One strategy to control leishmaniasis is vaccination with potent antigens alongside suitable adjuvants. The use of toll-like receptor (TLR) agonists as adjuvants is a promising approach in Leishmania vaccine research. Leishmania (L.) tropica is among the less-investigated Leishmania species and a causative agent of cutaneous and sometimes visceral leishmaniasis with no approved vaccine against it. In the present study, we assessed the adjuvant effects of a TLR4 agonist, monophosphoryl lipid A (MPL) and a TLR7/8 agonist, R848 beside two different types of Leishmania vaccine candidates; namely, whole-cell soluble L. tropica antigen (SLA) and recombinant L. tropica stress-inducible protein-1 (LtSTI1). BALB/c mice were vaccinated three times by the antigens (SLA or LtSTI1) with MPL or R848 and then were challenged by L. tropica. Delayed-type hypersensitivity (DTH), parasite load, disease progression and cytokines (IL-10 and IFN-γ) responses were assessed. In general compared to SLA, application of LtSTI1 resulted in higher DTH, higher IFN-γ response and lower lymph node parasite load. Also compared to R848, MPL as an adjuvant resulted in higher DTH and lower lymph node parasite load. Although, no outstanding ability for SLA and R848 in evoking immune responses of BALB/c mice against L. tropica infection could be observed, our data suggest that LtSTI1 and MPL have a better potential to control L. tropica infection and could be pursued for the development of effective vaccination strategies.
Collapse
Affiliation(s)
- Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hamid M. Niknam
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Girard MC, Acevedo GR, López L, Ossowski MS, Piñeyro MD, Grosso JP, Fernandez M, Hernández Vasquez Y, Robello C, Gómez KA. Evaluation of the immune response against Trypanosoma cruzi cytosolic tryparedoxin peroxidase in human natural infection. Immunology 2018; 155:367-378. [PMID: 29972690 DOI: 10.1111/imm.12979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas disease, has a highly efficient detoxification system to deal with the oxidative burst imposed by its host. One of the antioxidant enzymes involved is the cytosolic tryparedoxin peroxidase (c-TXNPx), which catalyses the reduction to hydrogen peroxide, small-chain organic hydroperoxides and peroxynitrite. This enzyme is present in all parasite stages, and its overexpression renders parasites more resistant to the oxidative defences of macrophages, favouring parasite survival. This work addressed the study of the specific humoral and cellular immune response triggered by c-TXNPx in human natural infection. Thus, sera and peripheral blood mononuclear cells (PBMC) were collected from chronically infected asymptomatic and cardiac patients, and non-infected individuals. Results showed that levels of IgG antibodies against c-TXNPx were low in sera from individuals across all groups. B-cell epitope prediction limited immunogenicity to a few, small regions on the c-TXNPx sequence. At a cellular level, PBMC from asymptomatic and cardiac patients proliferated and secreted interferon-γ after c-TXNPx stimulation, compared with mock control. However, only proliferation was higher in asymptomatic patients compared with cardiac and non-infected individuals. Furthermore, asymptomatic patients showed an enhanced frequency of CD19+ CD69+ cells upon exposure to c-TXNPx. Overall, our results show that c-TXNPx fails to induce a strong immune response in natural infection, being measurable only in those patients without any clinical symptoms. The low impact of c-TXNPx in the human immune response could be strategic for parasite survival, as it keeps this crucial antioxidant enzyme activity safe from the mechanisms of adaptive immune response.
Collapse
Affiliation(s)
- Magalí C Girard
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Gonzalo R Acevedo
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Lucía López
- Unidad de Biología Molecular, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Micaela S Ossowski
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - María D Piñeyro
- Unidad de Biología Molecular, Institut Pasteur Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Juan P Grosso
- Laboratorio de Insectos Sociales, IFIBYNE-CONICET, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa Fernandez
- Instituto Nacional de Parasitología "Doctor Mario Fatala Chabén", Buenos Aires, Argentina
| | | | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Karina A Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Jorjani O, Ghaffarifar F, Sharifi Z, Dalimi A, Ziaei-Hezarjaribi H, Talebi B. LACK Gene's Immune Response Induced by Cocktail DNA Vaccine with IL-12 Gene Against Cutaneous Leishmaniasis in BALB/c Mice. Avicenna J Med Biotechnol 2018; 10:134-140. [PMID: 30090205 PMCID: PMC6064009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/27/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Leishmaniasis is caused by parasitic protozoa of the genus Leishmania which is an obligate intracellular parasite in the infected host. Individuals who have been recovered from clinical leishmaniasis develop strong immunity against reinfection. DNA vaccines are the new type of vaccines that induce expression of protein eukaryotic cells. DNA vaccines can be stimulated by the cellular and humoral immune responses using one or several genes. METHODS A DNA vaccine containing plasmids encoding the pcLACK+pcTSA genes of Leishmania major (L. major) (MHRO/IR/75/ER) in the vicinity of IL-12 gene expression was made and then its protective efficacy in comparison with single-gene of LACK was evaluated. Also, BALB/c mice were immunized intramuscularly three times. The humoral and cellular immune responses were evaluated after immunization with pcLACK, pcLACK+pcTSA+pCAGGS-IL12, and then challenged with L. major. RESULTS Humoral response and IFN-γ values were significantly higher than control groups after immunization with pcLACK, pcLACK+pcTSA+pCAGGS-IL12 and challenge with L. major (p≤0.05). IL-4 values were increased in the control groups in such a way that they were remarkably higher than the pcLACK, pcLACK+pcTSA+ pCAGGS-IL12 groups (p≤0.05) after immunization and challenge with L. major. CONCLUSION The survival time of the immunized mice with pcLACK, pcLACK+pcTSA+ pCAGGS-IL12 groups was higher than the control groups. Then, DNA vaccine of pcLACK appeared to be likely able to induce more protection against infection with L. major in mice. Therefore, cocktail DNA is effective to enhance specific immunity.
Collapse
Affiliation(s)
- Oghlniaz Jorjani
- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Research Center of Iranian Blood Transfusion Organizations, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hajar Ziaei-Hezarjaribi
- Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
19
|
Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 12:25-40. [PMID: 29317800 PMCID: PMC5743117 DOI: 10.2147/dddt.s146521] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Leishmania is an obligate intracellular pathogen that invades phagocytic host cells. Approximately 30 different species of Phlebotomine sand flies can transmit this parasite either anthroponotically or zoonotically through their bites. Leishmaniasis affects poor people living around the Mediterranean Basin, East Africa, the Americas, and Southeast Asia. Affected regions are often remote and unstable, with limited resources for treating this disease. Leishmaniasis has been reported as one of the most dangerous neglected tropical diseases, second only to malaria in parasitic causes of death. People can carry some species of Leishmania for long periods without becoming ill, and symptoms depend on the form of the disease. There are many drugs and candidate vaccines available to treat leishmaniasis. For instance, antiparasitic drugs, such as amphotericin B (AmBisome), are a treatment of choice for leishmaniasis depending on the type of the disease. Despite the availability of different treatment approaches to treat leishmaniasis, therapeutic tools are not adequate to eradicate this infection. In the meantime, drug therapy has been limited because of adverse side effects and unsuccessful vaccine preparation. However, it can immediately make infections inactive. According to other studies, vaccination cannot eradicate leishmaniasis. There is no perfect vaccine or suitable drug to eradicate leishmaniasis completely. So far, no vaccine or drug has been provided to induce long-term protection and ensure effective immunity against leishmaniasis. Therefore, it is necessary that intensive research should be performed in drug and vaccine fields to achieve certain results.
Collapse
Affiliation(s)
- Masoud Ghorbani
- Department of Viral Vaccine Production, Pasteur Institute of Iran, Research and Production Complex, Karaj, Iran
| | - Ramin Farhoudi
- Department of Viral Vaccine Production, Pasteur Institute of Iran, Research and Production Complex, Karaj, Iran
| |
Collapse
|
20
|
Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00108-17. [PMID: 28515135 DOI: 10.1128/cvi.00108-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From experimental models and the analyses of patients, it is well documented that antigen-specific T cells are critical for protection against Leishmania infection. Effective vaccines require both targeting to the pathogen and an immune stimulant to induce maturation of appropriate immune responses. While a great number of antigens have been examined as vaccine candidates against various Leishmania species, few have advanced to human or canine clinical trials. With emphasis on antigen expression, in this minireview we discuss some of the vaccine platforms that are currently being explored for the development of Leishmania vaccines. It is clear that the vaccine platform of choice can have a significant impact upon the level of protection induced by particular antigens, and we provide and highlight some examples for which the vaccine system used has impacted the protective efficacy imparted.
Collapse
|
21
|
Fereig RM, Kuroda Y, Terkawi MA, Mahmoud ME, Nishikawa Y. Immunization with Toxoplasma gondii peroxiredoxin 1 induces protective immunity against toxoplasmosis in mice. PLoS One 2017; 12:e0176324. [PMID: 28448521 PMCID: PMC5407612 DOI: 10.1371/journal.pone.0176324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023] Open
Abstract
To develop a vaccine against Toxoplasma gondii, a vaccine antigen with immune-stimulating activity is required. In the present study, we investigated the immunogenicity and prophylactic potential of T. gondii peroxiredoxin 1 (TgPrx1). The TgPrx1 was detected in the ascitic fluid of mice 6 days postinfection, while specific antibody levels were low in the sera of chronically infected mice. Treatment of murine peritoneal macrophages with recombinant TgPrx1 triggered IL-12p40 and IL-6 production, but not IL-10 production. In response to TgPrx1, activation of NF-kB and IL-6 production were confirmed in mouse macrophage cell line (RAW 264.7). These results suggest the immune-stimulating potentials of TgPrx1. Immunization of mice with recombinant TgPrx1 stimulated specific antibody production (IgG1 and IgG2c). Moreover, spleen cell proliferation and interferon-gamma production significantly increased in the TgPrx1- sensitized cells from mice immunized with the same antigen. Immunization with TgPrx1 also increased mouse survival and decreased cerebral parasite burden against lethal T. gondii infection. Thus, our results suggest that TgPrx1 efficiently induces humoral and cellular immune responses and is useful as a new vaccine antigen against toxoplasmosis.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena, Egypt
| | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Kita-kaname, Hiratsuka, Kanagawa, Japan
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Motamed Elsayed Mahmoud
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- Department of Animal Behavior, Management, Genetics and Breeding, Faculty of Veterinary Medicine, Sohag University, Sohag City, Sohag, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
22
|
Maspi N, Ghaffarifar F, Sharifi Z, Dalimi A, Dayer MS. Immunogenicity and efficacy of a bivalent DNA vaccine containing LeIF and TSA genes against murine cutaneous leishmaniasis. APMIS 2017; 125:249-258. [DOI: 10.1111/apm.12651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/15/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Nahid Maspi
- Department of Medical Parasitology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Fatemeh Ghaffarifar
- Department of Medical Parasitology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
| | - Abdolhossein Dalimi
- Department of Medical Parasitology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Mohammad Saaid Dayer
- Department of Medical Parasitology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
23
|
Peroxiredoxin 3 promotes IL-12 production from macrophages and partially protects mice against infection with Toxoplasma gondii. Parasitol Int 2016; 65:741-748. [DOI: 10.1016/j.parint.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023]
|
24
|
Shokri M, Roohvand F, Alimohammadian MH, Ebrahimirad M, Ajdary S. Comparing Montanide ISA 720 and 50-V2 adjuvants formulated with LmSTI1 protein of Leishmania major indicated the potential cytokine patterns for induction of protective immune responses in BALB/c mice. Mol Immunol 2016; 76:108-115. [DOI: 10.1016/j.molimm.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
25
|
Seyed N, Taheri T, Rafati S. Post-Genomics and Vaccine Improvement for Leishmania. Front Microbiol 2016; 7:467. [PMID: 27092123 PMCID: PMC4822237 DOI: 10.3389/fmicb.2016.00467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of IranTehran, Iran
| | | | | |
Collapse
|
26
|
Miura R, Kooriyama T, Yoneda M, Takenaka A, Doki M, Goto Y, Sanjoba C, Endo Y, Fujiyuki T, Sugai A, Tsukiyama-Kohara K, Matsumoto Y, Sato H, Kai C. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs. PLoS Negl Trop Dis 2015; 9:e0003914. [PMID: 26162094 PMCID: PMC4498809 DOI: 10.1371/journal.pntd.0003914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/16/2015] [Indexed: 12/02/2022] Open
Abstract
Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.
Collapse
Affiliation(s)
- Ryuichi Miura
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takanori Kooriyama
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Takenaka
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Miho Doki
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Goto
- Department of Molecular Immunology, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chizu Sanjoba
- Department of Molecular Immunology, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Endo
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Fujiyuki
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiro Sugai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Yoshitsugu Matsumoto
- Department of Molecular Immunology, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+ T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant. PLoS Negl Trop Dis 2014; 8:e3391. [PMID: 25500571 PMCID: PMC4263403 DOI: 10.1371/journal.pntd.0003391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To date, no universally effective and safe vaccine has been developed for general human use. Leishmania donovani Peroxidoxin-1 (LdPxn-1) is a member of the antioxidant family of proteins and is predominantly expressed in the amastigote stage of the parasite. The aim of this study was to evaluate the immunogenicity and protective efficacy of LdPxn-1 in BALB/c mice in heterologous DNA-Protein immunization regimen in the presence of fusion murine granulocyte-macrophage colony-stimulating factor (mGMCSF) DNA adjuvant. METHODOLOGY AND PRINCIPAL FINDINGS A fusion DNA of LdPxn1 and mGMCSF was cloned into a modified pcDNA vector. To confirm the expression in mammalian system, Chinese hamster ovary cells were transfected with the plasmid vector containing LdPxn1 gene. BALB/c mice were immunized twice with pcDNA-mGMCSF-LdPxn-1 or pcDNA-LdPxn1 DNA and boosted once with recombinant LdPxn-1 protein. Three weeks after the last immunization, mice were infected with Leishmania major promastigotes. The result showed that immunization with pcDNA-mGMCSF-LdPxn1 elicited a mixed Th-1/Th-2 immune response with significantly higher production of IFN-γ than controls. Intracellular cytokine staining of antigen-stimulated spleen cells showed that immunization with this antigen elicited significantly higher proportion of CD4+ T cells that express IFN-γ, TNF-α, or IL-2. The antigen also induced significantly higher proportion of multipotent CD4+ cells that simultaneously express the three Th-1 cytokines. Moreover, a significant reduction in the footpad swelling was seen in mice immunized with pcDNA-mGMCSF-LdPxn1 antigen. Expression study in CHO cells demonstrated that pcDNA-mGMCSF-LdPxn-1 was expressed in mammalian system. CONCLUSION The result demonstrates that immunization of BALB/c mice with a plasmid expressing LdPxn1 in the presence of mGMCSF adjuvant elicits a strong specific immune response with high level induction of multipotent CD4+ cells that mediate protection of the mice from Leishmania major infection. To our knowledge, this is the first study showing the vaccine potential of Leishmania peroxidoxin -1.
Collapse
Affiliation(s)
- Abebe Genetu Bayih
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Nada S. Daifalla
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
The role of Montanide ISA 70 as an adjuvant in immune responses against Leishmania major induced by thiol-specific antioxidant-based protein vaccine. J Parasit Dis 2014; 40:760-7. [PMID: 27605780 DOI: 10.1007/s12639-014-0574-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022] Open
Abstract
Leishmaniasis is a parasitic disease caused by several species of the genus Leishmania. Montanide ISA 70 is an adjuvant composed of a natural metabolizable oil and a very refined emulsifier from the manide monooleate family. The TSA (thiol-specific antioxidant) is a important antigen of Leishmania major. The purpose of this work was protein-vaccine efficacy as an protection and excellent candidate in the presence Montanide. The expression of recombinant protein was confirmed with SDS (sodium dodecyl sulfate) page and Western bloting. 48 BALB/c mice were divided into four groups (TSA/Freund,TSA/Alum + BCG, TSA/Montanide and PBS groups) and immunized with 20 μg of vaccine subcutaneously three times intervals on days 0, 14 and 28. The mice were challenged with parasite 21 days after final immunization. The lymphocyte proliferation was evaluated with Brdu method. Cytokines and also total antibody and subclasses were evaluated with ELISA method. The vaccine formulated with the recombinant TSA protein with Montanide induced lymphocytes proliferation cytokines and total antibody and subclasses as compared with the control group.
Collapse
|
29
|
Duthie MS, Reed SG. The Emergence of Defined Subunit Vaccines for the Prevention of Leishmaniasis. CURRENT TROPICAL MEDICINE REPORTS 2014. [DOI: 10.1007/s40475-014-0024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zarrati S, Mahdavi M, Tabatabaie F. Immune responses in DNA vaccine formulated with PMMA following immunization and after challenge with Leishmania major. J Parasit Dis 2014; 40:427-35. [PMID: 27413316 DOI: 10.1007/s12639-014-0521-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022] Open
Abstract
Leishmaniasis is a major infectious disease caused by protozoan parasites of the genus Leishmania. Despite of many efforts toward vaccine against Leishmania no effective vaccine has been approved yet. DNA vaccines can generate more powerful and broad immune responses than conventional vaccines. In order to increase immunity, the DNA vaccine has been supplemented with adjuvant. In this study a new nano-vaccine containing TSA recombinant plasmid and poly(methylmethacrylate) nanoparticles (act as adjuvant) was designed and its immunogenicity tested on BALB/c mouse. After three intramuscular injection of nano-vaccine (100 μg), the recombinant TSA protein (20 μg) was injected subcutaneously. Finally as a challenge animals were infected by Leishmania major. After the last injection of nano-vaccine, after protein booster injection, and also after challenge, cellular immune and antibody responses were evaluated by ELISA method. The findings of this study showed the new nano-vaccine was capable of induction both cytokines secretion and specific antibody responses, but predominant Th1 immune response characterized by IFN-γ production compared to control groups. Moreover, results revealed that nano-vaccine was effective in reducing parasite burden in the spleen of Leishmania major-infected BALB/c mice. Base on results, current candidate vaccine has potency for further studies.
Collapse
Affiliation(s)
- Somayeh Zarrati
- Microbiology Department, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Tabatabaie
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
31
|
Joshi S, Rawat K, Yadav NK, Kumar V, Siddiqi MI, Dube A. Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches. Front Immunol 2014; 5:380. [PMID: 25202307 PMCID: PMC4141159 DOI: 10.3389/fimmu.2014.00380] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/24/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) or kala-azar, a vector-borne protozoan disease, shows endemicity in larger areas of the tropical, subtropical and the Mediterranean countries. WHO report suggested that an annual incidence of VL is nearly 200,000 to 400,000 cases, resulting in 20,000 to 30,000 deaths per year. Treatment with available anti-leishmanial drugs are not cost effective, with varied efficacies and higher relapse rate, which poses a major challenge to current kala-azar control program in Indian subcontinent. Therefore, a vaccine against VL is imperative and knowing the fact that recovered individuals developed lifelong immunity against re-infection, it is feasible. Vaccine development program, though time taking, has recently gained momentum with the emergence of omic era, i.e., from genomics to immunomics. Classical as well as molecular methodologies have been overtaken with alternative strategies wherein proteomics based knowledge combined with computational techniques (immunoinformatics) speed up the identification and detailed characterization of new antigens for potential vaccine candidates. This may eventually help in the designing of polyvalent synthetic and recombinant chimeric vaccines as an effective intervention measures to control the disease in endemic areas. This review focuses on such newer approaches being utilized for vaccine development against VL.
Collapse
Affiliation(s)
- Sumit Joshi
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | - Keerti Rawat
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| | | | - Vikash Kumar
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, Central Drug Research Institute , Lucknow , India
| | - Anuradha Dube
- Division of Parasitology, Central Drug Research Institute , Lucknow , India
| |
Collapse
|
32
|
Grimaldi G, Teva A, Porrozzi R, Pinto MA, Marchevsky RS, Rocha MGL, Dutra MS, Bruña-Romero O, Fernandes AP, Gazzinelli RT. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen. PLoS Negl Trop Dis 2014; 8:e2853. [PMID: 24945284 PMCID: PMC4063746 DOI: 10.1371/journal.pntd.0002853] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/28/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. METHODOLOGY/PRINCIPAL FINDINGS Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. CONCLUSIONS/SIGNIFICANCE The remarkable clinical protection induced by A2 in an animal model that is evolutionary close to humans qualifies this antigen as a suitable vaccine candidate against human VL.
Collapse
Affiliation(s)
- Gabriel Grimaldi
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Teva
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo A. Pinto
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato S. Marchevsky
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Gabrielle L. Rocha
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miriam S. Dutra
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Oscar Bruña-Romero
- Instituto de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana-Paula Fernandes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Gazzinelli
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
33
|
Lakshmi BS, Wang R, Madhubala R. Leishmania genome analysis and high-throughput immunological screening identifies tuzin as a novel vaccine candidate against visceral leishmaniasis. Vaccine 2014; 32:3816-22. [PMID: 24814525 DOI: 10.1016/j.vaccine.2014.04.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 11/18/2022]
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania species. It is a major health concern affecting 88 countries and threatening 350 million people globally. Unfortunately, there are no vaccines and there are limitations associated with the current therapeutic regimens for leishmaniasis. The emerging cases of drug-resistance further aggravate the situation, demanding rapid drug and vaccine development. The genome sequence of Leishmania, provides access to novel genes that hold potential as chemotherapeutic targets or vaccine candidates. In this study, we selected 19 antigenic genes from about 8000 common Leishmania genes based on the Leishmania major and Leishmania infantum genome information available in the pathogen databases. Potential vaccine candidates thus identified were screened using an in vitro high throughput immunological platform developed in the laboratory. Four candidate genes coding for tuzin, flagellar glycoprotein-like protein (FGP), phospholipase A1-like protein (PLA1) and potassium voltage-gated channel protein (K VOLT) showed a predominant protective Th1 response over disease exacerbating Th2. We report the immunogenic properties and protective efficacy of one of the four antigens, tuzin, as a DNA vaccine against Leishmania donovani challenge. Our results show that administration of tuzin DNA protected BALB/c mice against L. donovani challenge and that protective immunity was associated with higher levels of IFN-γ and IL-12 production in comparison to IL-4 and IL-10. Our study presents a simple approach to rapidly identify potential vaccine candidates using the exhaustive information stored in the genome and an in vitro high-throughput immunological platform.
Collapse
Affiliation(s)
| | | | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
34
|
Tabatabaie F, Mahdavi M, Faezi S, Dalimi A, Sharifi Z, Akhlaghi L, Ghaffarifar F. Th1 Platform Immune Responses Against Leishmania major Induced by Thiol-Specific Antioxidant-Based DNA Vaccines. Jundishapur J Microbiol 2014; 7:e8974. [PMID: 25147675 PMCID: PMC4138682 DOI: 10.5812/jjm.8974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/23/2013] [Accepted: 02/19/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Thiol-specific antioxidant (TSA) is an antigen of Leishmania major which is believed to be the most promising molecule as a vaccine candidate against leishmaniasis. OBJECTIVES In this study, we investigated the protective efficacy of TSA-based DNA vaccine against L. major infection. MATERIALS AND METHODS Recombinant plasmid construction TSA (pcTSA) was prepared and transfected into eukaryotic cells and expression was confirmed with western blot and RT-PCR. The mice were assigned to six different groups and DNA immunization was performed with 100 µg intramuscular recombinant plasmid with a two-week interval. Cytokines and lymphocyte proliferation assay, antibody responses and determination of parasite burden were performed following immunization and the challenging infection with L. major. RESULTS The antibody and IFN-γ titers were higher in pcTSA + AlPO4 group the immunized mice with pcTSA alone, but there was no statistically significant difference between the two groups. Additionally the IL-4 titer was not statistically different between the groups following immunization and challenge. After infection with L. major promastigotes, the immunized mice with pcTSA and the one immunized with both pcTSA + AlPO4 presented a considerable reduction in diameter of lesion but there was no statistical difference between the two groups. The immunized mice had significantly lower parasite loads. No significant differences were observed between the two vaccinated groups. However the highest reduction in parasite burden was observed in the group immunized with pcDNA + AlPO4. No significant differences were observed in survival rate of the immunized mice after the challenge with L. major. CONCLUSIONS In conclusion, TSA-based DNA vaccine induced Th1 platform immune response and aluminum phosphate could improve the efficacy of these vaccines with induction of humoral and cellular immune responses against L. major infection. There were no significant differences observed between pcTSA and pcTSA + AlPO4 groups.
Collapse
Affiliation(s)
- Fatemeh Tabatabaie
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, IR Iran
| | - Mehdi Mahdavi
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Sobhan Faezi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR Iran
| | - Lame Akhlaghi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, IR Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Fatemeh Ghaffarifar, Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 14115-331, Tehran, IR Iran, E-mail:
| |
Collapse
|
35
|
Abstract
Parasitic diseases caused by protozoan and helminth parasites are among the leading causes of morbidity and mortality in tropical and subtropical regions of the world. Unfortunately, at present, there is no vaccine against any human parasitic disease. Conventional vaccine methods have largely failed against parasitic infections. This is due, in part, to the complexity of the parasite life cycle, the ability of the parasite to evade the immune system, and difficulties in identifying and eliciting the desired protective immune responses. The discovery of DNA vaccines has renewed hope for vaccine development against parasites. In the last decade, DNA vaccines were successful in inducing at least partial protection against several parasitic diseases. This review discusses the latest developments in DNA vaccines against tropical parasitic diseases.
Collapse
Affiliation(s)
- Akram A Da'dara
- Department of Immunology and Infectious Disease, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA.
| | | |
Collapse
|
36
|
Becker GJ, Hewitson TD. Animal models of chronic kidney disease: useful but not perfect. Nephrol Dial Transplant 2013; 28:2432-8. [PMID: 23817139 DOI: 10.1093/ndt/gft071] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animal models of chronic kidney disease (CKD) approximate the human condition and are keys to understanding its pathogenesis and to developing rational treatment strategies. The ethical use of animals requires a detailed understanding of the strengths and limitations of each species and the disease model, and the way in which findings can be translated from animals to humans. While not perfect, the careful use of animal experiments offers the opportunity to examine individual mechanisms in an accelerated time frame.
Collapse
Affiliation(s)
- Gavin J Becker
- Department of Nephrology, The Royal Melbourne Hospital and Department of Medicine, University of Melbourne, Melbourne, Vic, Australia
| | | |
Collapse
|
37
|
Matos I, Mizenina O, Lubkin A, Steinman RM, Idoyaga J. Targeting Leishmania major Antigens to Dendritic Cells In Vivo Induces Protective Immunity. PLoS One 2013; 8:e67453. [PMID: 23840706 PMCID: PMC3694010 DOI: 10.1371/journal.pone.0067453] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/18/2013] [Indexed: 11/19/2022] Open
Abstract
Efficient vaccination against the parasite Leishmania major, the causative agent of human cutaneous leishmaniasis, requires development of type 1 T-helper (Th1) CD4+ T cell immunity. Because of their unique capacity to initiate and modulate immune responses, dendritic cells (DCs) are attractive targets for development of novel vaccines. In this study, for the first time, we investigated the capacity of a DC-targeted vaccine to induce protective responses against L. major. To this end, we genetically engineered the N-terminal portion of the stress-inducible 1 protein of L. major (LmSTI1a) into anti-DEC205/CD205 (DEC) monoclonal antibody (mAb) and thereby delivered the conjugated protein to DEC+ DCs in situ in the intact animal. Delivery of LmSTI1a to adjuvant-matured DCs increased the frequency of antigen-specific CD4+ T cells producing IFN-γ+, IL-2+, and TNF-α+ in two different strains of mice (C57BL/6 and Balb/c), while such responses were not observed with the same doses of a control Ig-LmSTI1a mAb without receptor affinity or with non-targeted LmSTI1a protein. Using a peptide library for LmSTI1a, we identified at least two distinct CD4+ T cell mimetopes in each MHC class II haplotype, consistent with the induction of broad immunity. When we compared T cell immune responses generated after targeting DCs with LmSTI1a or other L. major antigens, including LACK (Leishmania receptor for activated C kinase) and LeIF (Leishmania eukaryotic ribosomal elongation and initiation factor 4a), we found that LmSTI1a was superior for generation of IFN-γ-producing CD4+ T cells, which correlated with higher protection of susceptible Balb/c mice to a challenge with L. major. For the first time, this study demonstrates the potential of a DC-targeted vaccine as a novel approach for cutaneous leishmaniasis, an increasing public health concern that has no currently available effective treatment.
Collapse
Affiliation(s)
- Ines Matos
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
| | - Olga Mizenina
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
| | - Ashira Lubkin
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
| | - Ralph M. Steinman
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
| | - Juliana Idoyaga
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Micro/nanoparticle adjuvants for antileishmanial vaccines: Present and future trends. Vaccine 2013; 31:735-49. [DOI: 10.1016/j.vaccine.2012.11.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 01/04/2023]
|
39
|
Kashino SS, Abeijon C, Qin L, Kanunfre KA, Kubrusly FS, Silva FO, Costa DL, Campos D, Costa CHN, Raw I, Campos-Neto A. Identification of Leishmania infantum chagasi proteins in urine of patients with visceral leishmaniasis: a promising antigen discovery approach of vaccine candidates. Parasite Immunol 2012; 34:360-71. [PMID: 22443237 DOI: 10.1111/j.1365-3024.2012.01365.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients' urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases.
Collapse
Affiliation(s)
- S S Kashino
- The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ghaffarifar F, Jorjani O, Sharifi Z, Dalimi A, Hassan ZM, Tabatabaie F, Khoshzaban F, Hezarjaribi HZ. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes againstLeishmania major. APMIS 2012; 121:290-8. [DOI: 10.1111/j.1600-0463.2012.02968.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 07/25/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Fatemeh Ghaffarifar
- Department of Parasitology and Entomology, Faculty of Medical Sciences; Tarbiat Modares University; Tehran; Iran
| | | | - Zohreh Sharifi
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran; Iran
| | - Abdolhossein Dalimi
- Department of Parasitology and Entomology, Faculty of Medical Sciences; Tarbiat Modares University; Tehran; Iran
| | - Zuhair M. Hassan
- Department of Immunology, Faculty of Medical Sciences; Tarbiat Modares University; Tehran; Iran
| | | | - Fariba Khoshzaban
- Department of Parasitology, Faculty of Medical Sciences; Shahed University; Tehran; Iran
| | | |
Collapse
|
41
|
Gretes MC, Poole LB, Karplus PA. Peroxiredoxins in parasites. Antioxid Redox Signal 2012; 17:608-33. [PMID: 22098136 PMCID: PMC3373223 DOI: 10.1089/ars.2011.4404] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. RECENT ADVANCES Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. CRITICAL ISSUES The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. FUTURE DIRECTIONS The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed.
Collapse
Affiliation(s)
- Michael C. Gretes
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - P. Andrew Karplus
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| |
Collapse
|
42
|
Stober CB, Jeronimo SMB, Pontes NN, Miller EN, Blackwell JM. Cytokine responses to novel antigens in a peri-urban population in Brazil exposed to Leishmania infantum chagasi. Am J Trop Med Hyg 2012; 87:663-70. [PMID: 22826477 DOI: 10.4269/ajtmh.2012.12-0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Visceral leishmaniasis (VL) is fatal if untreated, and there are no vaccines for this disease. High levels of CD4-derived interferon-γ (IFN-γ) in the presence of low levels of interleukin-10 (IL-10) predicts vaccine success. Tumor necrosis factor-α (TNF-α) is also important in this process. We characterized human immune responses in three groups exposed to Leishmania infantum chagasi in Brazil: 1) drug-cured VL patients (recovered VL); 2) asymptomatic persons with positive Leishmania-specific delayed-type hypersensitivity skin reactions (DTH+); and 3) DTH-negative household contacts. Magnitude of DTH correlated with crude Leishmania antigen-driven IFN-γ, TNF-α, and IL-5, but not IL-10. DTH+ persons showed equivalent levels of IFN-γ, but higher levels of IL-10, to tryparedoxin peroxidase and Leishmania homolog of receptor for activated C kinase compared with recovered VL patients. The IFN-γ:IL-10 and TNF-α:IL-10 ratios were higher in recovered VL patients than in DTH+ persons. Seven of 11 novel candidates (R71, L37, N52, L302.06, M18, J41, and M22) elicited cytokine responses (36-71% of responders) in recovered VL patients and DTH+ persons. This result confirmed their putative status as cross-species vaccine/immunotherapeutic candidates.
Collapse
Affiliation(s)
- Carmel B Stober
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
Evaluation of Leishmania donovani protein disulfide isomerase as a potential immunogenic protein/vaccine candidate against visceral Leishmaniasis. PLoS One 2012; 7:e35670. [PMID: 22539989 PMCID: PMC3335089 DOI: 10.1371/journal.pone.0035670] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
In Leishmania species, Protein disulfide isomerase (PDI) - a redox chaperone, is reported to be involved in its virulence and survival. This protein has also been identified, through proteomics, as a Th1 stimulatory protein in the soluble lysate of a clinical isolate of Leishmania donovani (LdPDI). In the present study, the molecular characterization of LdPDI was carried out and the immunogenicity of recombinant LdPDI (rLdPDI) was assessed by lymphocyte proliferation assay (LTT), nitric oxide (NO) production, estimation of Th1 cytokines (IFN-γ and IL-12) as well as IL-10 in PBMCs of cured/endemic/infected Leishmania patients and cured L. donovani infected hamsters. A significantly higher proliferative response against rLdPDI as well as elevated levels of IFN-γ and IL-12 were observed. The level of IL-10 was found to be highly down regulated in response to rLdPDI. A significant increase in the level of NO production in stimulated hamster macrophages as well as IgG2 antibody and a low level of IgG1 in cured patient's serum was observed. Higher level of IgG2 antibody indicated its Th1 stimulatory potential. The efficacy of pcDNA-LdPDI construct was further evaluated for its prophylactic potential. Vaccination with this construct conferred remarkably good prophylactic efficacy (∼90%) and generated a robust cellular immune response with significant increases in the levels of iNOS transcript as well as TNF-α, IFN-γ and IL-12 cytokines. This was further supported by the high level of IgG2 antibody in vaccinated animals. The in vitro as well as in vivo results thus indicate that LdPDI may be exploited as a potential vaccine candidate against visceral Leishmaniasis (VL).
Collapse
|
44
|
Singh B, Sundar S. Leishmaniasis: vaccine candidates and perspectives. Vaccine 2012; 30:3834-42. [PMID: 22475861 DOI: 10.1016/j.vaccine.2012.03.068] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 11/28/2022]
Abstract
Leishmania is a protozoan parasite and a causative agent of the various clinical forms of leishmaniasis. High cost, resistance and toxic side effects of traditional drugs entail identification and development of therapeutic alternatives. The sound understanding of parasite biology is key for identifying novel drug targets, that can induce the cell mediated immunity (mainly CD4+ and CD8+ IFN-gamma mediated responses) polarized towards a Th1 response. These aspects are important in designing a new vaccine along with the consideration of the candidates with respect to their ability to raise memory response in order to improve the vaccine performance. This review is an effort to identify molecules according to their homology with the host and their ability to be used as potent vaccine candidates.
Collapse
Affiliation(s)
- Bhawana Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, UP, India
| | | |
Collapse
|
45
|
Abstract
Non-human primates (NHPs) are used to model human disease owing to their remarkably similar genomes, physiology, and immune systems. Recently, there has been an increased interest in modeling tuberculosis (TB) in NHPs. Macaques are susceptible to infection with different strains of Mycobacterium tuberculosis (Mtb), producing the full spectrum of disease conditions, including latent infection, chronic progressive infection, and acute TB, depending on the route and dose of infection. Clearly, NHPs are an excellent model of human TB. While the initial aim of the NHP model was to allow preclinical testing of candidate vaccines and drugs, it is now also being used to study pathogenesis and immune correlates of protection. Recent advances in this field are discussed in this review. Key questions such as the effect of hypoxia on the biology of Mtb and the basis of reactivation of latent TB can now be investigated through the use of this model.
Collapse
Affiliation(s)
- D Kaushal
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA 70433, USA.
| | | | | | | |
Collapse
|
46
|
Rahbarnia L, Farajnia S, Naghili B. Application of DsbA Signal Peptide for Soluble Expression of Leishmania infantum P4 Nuclease in E. coli. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajava.2012.326.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Joshi N, Duhan V, Lingwal N, Bhaskar S, Upadhyay P. Adjuvant properties of thermal component of hyperthermia enhanced transdermal immunization: effect on dendritic cells. PLoS One 2012; 7:e32067. [PMID: 22363798 PMCID: PMC3282786 DOI: 10.1371/journal.pone.0032067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 01/23/2012] [Indexed: 11/19/2022] Open
Abstract
Hyperthermia enhanced transdermal (HET) immunization is a novel needle free immunization strategy employing application of antigen along with mild local hyperthermia (42°C) to intact skin resulting in detectable antigen specific Ig in serum. In the present study, we investigated the adjuvant effect of thermal component of HET immunization in terms of maturation of dendritic cells and its implication on the quality of the immune outcome in terms of antibody production upon HET immunization with tetanus toxoid (TT). We have shown that in vitro hyperthermia exposure at 42°C for 30 minutes up regulates the surface expression of maturation markers on bone marrow derived DCs. This observation correlated in vivo with an increased and accelerated expression of maturation markers on DCs in the draining lymph node upon HET immunization in mice. This effect was found to be independent of the antigen delivered and depends only on the thermal component of HET immunization. In vitro hyperthermia also led to enhanced capacity to stimulate CD4+ T cells in allo MLR and promotes the secretion of IL-10 by BMDCs, suggesting a potential for Th2 skewing of T cell response. HET immunization also induced a systemic T cell response to TT, as suggested by proliferation of splenocytes from immunized animal upon in vitro stimulation by TT. Exposure to heat during primary immunization led to generation of mainly IgG class of antibodies upon boosting, similar to the use of conventional alum adjuvant, thus highlighting the adjuvant potential of heat during HET immunization. Lastly, we have shown that mice immunized by tetanus toxoid using HET route exhibited protection against challenge with a lethal dose of tetanus toxin. Thus, in addition to being a painless, needle free delivery system it also has an immune modulatory potential.
Collapse
Affiliation(s)
- Neha Joshi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vikas Duhan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neelam Lingwal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sangeeta Bhaskar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pramod Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
48
|
Stäger S, Rafati S. CD8(+) T cells in leishmania infections: friends or foes? Front Immunol 2012; 3:5. [PMID: 22566891 PMCID: PMC3342007 DOI: 10.3389/fimmu.2012.00005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 01/10/2023] Open
Abstract
Host protection against several intracellular pathogens requires the induction of CD8+ T cell responses. CD8+ T cells are potent effector cells that can produce high amounts of pro-inflammatory cytokines and kill infected target cells efficiently. However, a protective role for CD8+ T cells during Leishmania infections is still controversial and largely depends on the infection model. In this review, we discuss the role of CD8+ T cells during various types of Leishmania infections, following vaccination, and as potential immunotherapeutic targets.
Collapse
Affiliation(s)
- Simona Stäger
- Institut National de la Recherche Scientifique, Institut Armand Frappier, Université du Québec Laval, QC, Canada
| | | |
Collapse
|
49
|
Fatemeh G, Fatemeh T, Zohreh S, Abdolhosein D, Mohammad Zahir H, Mehdi M. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line. Malays J Med Sci 2012; 19:15-19. [PMID: 22977370 PMCID: PMC3436491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 10/01/2011] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. METHODS Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. RESULTS The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. CONCLUSION The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.
Collapse
Affiliation(s)
- Ghaffarifar Fatemeh
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Tabatabaie Fatemeh
- Department of Parasitology and Mycology, School of Medicine, Tehran University of Medical Sciences, PO Box 1449614535, Tehran, Iran
| | - Sharifi Zohreh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, PO Box 14665-1157, Tehran, Iran
| | - Dalimiasl Abdolhosein
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Hassan Mohammad Zahir
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Mahdavi Mehdi
- Department of Virology, Pasteur Institute of Iran, PO Box 1316943551, Tehran, Iran
| |
Collapse
|
50
|
Duthie MS, Raman VS, Piazza FM, Reed SG. The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 2011; 30:134-41. [PMID: 22085553 DOI: 10.1016/j.vaccine.2011.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
Infection with Leishmania parasites results in a range of clinical manifestations and outcomes. Control of Leishmania parasite transmission is extremely difficult due to the large number of vectors and potential reservoirs, and none of the current treatments are ideal. Vaccination could be an effective strategy to provide sustained control. In this review, the current global situation with regard to leishmaniasis, the immunology of Leishmania infection and various efforts to identify second generation vaccine candidates are briefly discussed. The variety of clinical trials conducted using the only current second generation vaccine approved for clinical use, LEISH-F1+MPL-SE, are described. Given that epidemiological evidence suggests that reducing the canine reservoir also positively impacts human incidence, efforts at providing a vaccine for leishmaniasis in dogs are highlighted. Finally, potential refinements and surrogate markers that could expedite the introduction of a vaccine that can limit the severity and incidence of leishmaniasis are discussed.
Collapse
Affiliation(s)
- Malcolm S Duthie
- Infectious Disease Research Institute, 1124 Columbia St, Suite 400, Seattle, WA 98104, USA.
| | | | | | | |
Collapse
|