1
|
Li R, Wilderotter S, Stoddard M, Van Egeren D, Chakravarty A, Joseph-McCarthy D. Computational identification of antibody-binding epitopes from mimotope datasets. FRONTIERS IN BIOINFORMATICS 2024; 4:1295972. [PMID: 38463209 PMCID: PMC10920257 DOI: 10.3389/fbinf.2024.1295972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: A fundamental challenge in computational vaccinology is that most B-cell epitopes are conformational and therefore hard to predict from sequence alone. Another significant challenge is that a great deal of the amino acid sequence of a viral surface protein might not in fact be antigenic. Thus, identifying the regions of a protein that are most promising for vaccine design based on the degree of surface exposure may not lead to a clinically relevant immune response. Methods: Linear peptides selected by phage display experiments that have high affinity to the monoclonal antibody of interest ("mimotopes") usually have similar physicochemical properties to the antigen epitope corresponding to that antibody. The sequences of these linear peptides can be used to find possible epitopes on the surface of the antigen structure or a homology model of the antigen in the absence of an antigen-antibody complex structure. Results and Discussion: Herein we describe two novel methods for mapping mimotopes to epitopes. The first is a novel algorithm named MimoTree that allows for gaps in the mimotopes and epitopes on the antigen. More specifically, a mimotope may have a gap that does not match to the epitope to allow it to adopt a conformation relevant for binding to an antibody, and residues may similarly be discontinuous in conformational epitopes. MimoTree is a fully automated epitope detection algorithm suitable for the identification of conformational as well as linear epitopes. The second is an ensemble approach, which combines the prediction results from MimoTree and two existing methods.
Collapse
Affiliation(s)
- Rang Li
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sabrina Wilderotter
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | | | - Debra Van Egeren
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| | | | | |
Collapse
|
2
|
An improved non-denaturing method for the purification of spiralin, the main membrane lipoprotein of the pathogenic bacteria Spiroplasma melliferum. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1036-1037:149-156. [DOI: 10.1016/j.jchromb.2016.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/26/2016] [Accepted: 10/09/2016] [Indexed: 11/19/2022]
|
3
|
Interferon Beta: From Molecular Level to Therapeutic Effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:343-72. [DOI: 10.1016/bs.ircmb.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Futami J, Nonomura H, Kido M, Niidoi N, Fujieda N, Hosoi A, Fujita K, Mandai K, Atago Y, Kinoshita R, Honjo T, Matsushita H, Uenaka A, Nakayama E, Kakimi K. Sensitive Multiplexed Quantitative Analysis of Autoantibodies to Cancer Antigens with Chemically S-Cationized Full-Length and Water-Soluble Denatured Proteins. Bioconjug Chem 2015; 26:2076-84. [PMID: 26355635 DOI: 10.1021/acs.bioconjchem.5b00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Humoral immune responses against tumor-associated antigens (TAAs) or cancer/testis antigens (CTAs) aberrantly expressed in tumor cells are frequently observed in cancer patients. Recent clinical studies have elucidated that anticancer immune responses with increased levels of anti-TAA/CTA antibodies improve cancer survival rates. Thus, these antibody levels are promising biomarkers for diagnosing the efficiency of cancer immunotherapy. Full-length antigens are favored for detecting anti-TAA/CTA antibodies because candidate antigen proteins contain multiple epitopes throughout their structures. In this study, we developed a methodology to prepare purified water-soluble and full-length antigens by using cysteine sulfhydryl group cationization (S-cationization) chemistry. S-Cationized antigens can be prepared from bacterial inclusion bodies, and they exhibit improved protein solubility but preserved antigenicity. Anti-TAA/CTA antibodies detected in cancer patients appeared to recognize linear epitopes, as well as conformational epitopes, and because the frequency of cysteine side-residues on the epitope-paratope interface was low, any adverse effects of S-cationization were virtually negligible for antibody binding. Furthermore, S-cationized antigen-immobilized Luminex beads could be successfully used in highly sensitive quantitative-multiplexed assays. Indeed, patients with a more broadly induced serum anti-TAA/CTA antibody level showed improved progression-free survival after immunotherapy. The comprehensive anti-TAA/CTA assay system, which uses S-cationized full-length and water-soluble recombinant antigens, may be a useful diagnostic tool for assessing the efficiency of cancer immunotherapy.
Collapse
Affiliation(s)
- Junichiro Futami
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Hidenori Nonomura
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Momoko Kido
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Naomi Niidoi
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Nao Fujieda
- Medinet Co. Ltd. , Yokohama, Kanagawa 222-0033, Japan.,Department of Immunotherapeutics, The University of Tokyo Hospital , Tokyo 113-8655, Japan
| | - Akihiro Hosoi
- Medinet Co. Ltd. , Yokohama, Kanagawa 222-0033, Japan.,Department of Immunotherapeutics, The University of Tokyo Hospital , Tokyo 113-8655, Japan
| | - Kana Fujita
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Komako Mandai
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Yuki Atago
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Rie Kinoshita
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Tomoko Honjo
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital , Tokyo 113-8655, Japan
| | - Akiko Uenaka
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare , Kurashiki, Okayama 701-0193, Japan
| | - Eiichi Nakayama
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare , Kurashiki, Okayama 701-0193, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital , Tokyo 113-8655, Japan
| |
Collapse
|
5
|
Hoppe S, Bier FF, Nickisch-Rosenegk MV. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni. PLoS One 2013; 8:e65837. [PMID: 23734261 PMCID: PMC3667084 DOI: 10.1371/journal.pone.0065837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify the identification of structural epitopes, as this would extend the spectrum of novel epitopes to be detected.
Collapse
Affiliation(s)
- Sebastian Hoppe
- Fraunhofer Institute for Biomedical Engineering, Am Muehlenberg, Potsdam, Germany
| | - Frank F. Bier
- Fraunhofer Institute for Biomedical Engineering, Am Muehlenberg, Potsdam, Germany
- University Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | | |
Collapse
|
6
|
Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification. J Biomed Biotechnol 2011; 2011:432830. [PMID: 21876642 PMCID: PMC3163029 DOI: 10.1155/2011/432830] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/28/2011] [Indexed: 12/29/2022] Open
Abstract
Epitopes are antigenic determinants that are useful because they induce B-cell antibody production and stimulate T-cell activation. Bioinformatics can enable rapid, efficient prediction of potential epitopes. Here, we designed a novel B-cell linear epitope prediction system called LEPS, Linear Epitope Prediction by Propensities and Support Vector Machine, that combined physico-chemical propensity identification and support vector machine (SVM) classification. We tested the LEPS on four datasets: AntiJen, HIV, a newly generated PC, and AHP, a combination of these three datasets. Peptides with globally or locally high physicochemical propensities were first identified as primitive linear epitope (LE) candidates. Then, candidates were classified with the SVM based on the unique features of amino acid segments. This reduced the number of predicted epitopes and enhanced the positive prediction value (PPV). Compared to four other well-known LE prediction systems, the LEPS achieved the highest accuracy (72.52%), specificity (84.22%), PPV (32.07%), and Matthews' correlation coefficient (10.36%).
Collapse
|
7
|
Ayala G, Flores-Luna L, Hernández-Amaro D, Mendoza-Hernández G, Chihu-Amparán L, Bernal-Sahagún F, Camorlinga M, Lazcano-Ponce E, Torres J. Association of circulating VacA-neutralizing antibodies with gastric cancer and duodenal ulcer. Cancer Causes Control 2011; 22:1425-34. [PMID: 21779758 DOI: 10.1007/s10552-011-9817-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 07/05/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To study the association between anti-VacA antibodies and pre-neoplastic lesions (IM), gastric cancer (GC), and duodenal ulcer (DU). METHODS A case-control study that included 347 patients, 90 with IM, 60 with GC, 52 with DU, and 145 with non-atrophic gastritis was conducted. For the analysis, a polytomous logistic regression models were used. Anti-VacA antibodies were identified in sera from these patients, either by Western blot assay (WB), using antigens produced by H. pylori s1m1 strain, or by neutralization assay challenging HeLa cells with H. pylori VacA s1m1 cytotoxin. RESULTS Results of the WB assay showed no association between WB-anti-VacA antibodies and gastroduodenal diseases. In contrast, when antibodies that neutralize VacA cytotoxic activity were studied, a significant association was found with IM (OR 2.7, 95% CI 1.4-5.1) and DU (OR 2.3, 95% CI 1.1-4.9) and an even stronger association with GC (OR 3.9, 95% CI 1.8-8.5). A significant association with histological subtypes of GC (diffuse and intestinal) and of IM (complete and incomplete) was also found. In addition, the association showed a significant dose-response effect in the case of GC, but not of DU or IM. These associations did not change substantially after adjustment for confounding factors. MAIN CONCLUSION This study showed that VacA-neutralizing antibodies are significantly associated with gastroduodenal diseases, especially GC, and that they might be used as risk markers of GC and DU.
Collapse
Affiliation(s)
- Guadalupe Ayala
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Universidad No. 655, entre Cerrada Los Pinos y Caminera. Col. Santa María Ahuacatitlán, CP 62100, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ivie SE, McClain MS, Algood HMS, Lacy DB, Cover TL. Analysis of a beta-helical region in the p55 domain of Helicobacter pylori vacuolating toxin. BMC Microbiol 2010; 10:60. [PMID: 20178613 PMCID: PMC2836311 DOI: 10.1186/1471-2180-10-60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/23/2010] [Indexed: 12/28/2022] Open
Abstract
Background Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. VacA, a toxin secreted by H. pylori, is comprised of two domains, designated p33 and p55. Analysis of the crystal structure of the p55 domain indicated that its structure is predominantly a right-handed parallel β-helix, which is a characteristic of autotransporter passenger domains. Substitution mutations of specific amino acids within the p33 domain abrogate VacA activity, but thus far, it has been difficult to identify small inactivating mutations within the p55 domain. Therefore, we hypothesized that large portions of the p55 domain might be non-essential for vacuolating toxin activity. To test this hypothesis, we introduced eight deletion mutations (each corresponding to a single coil within a β-helical segment spanning VacA amino acids 433-628) into the H. pylori chromosomal vacA gene. Results All eight of the mutant VacA proteins were expressed by the corresponding H. pylori mutant strains and underwent proteolytic processing to yield ~85 kDa passenger domains. Three mutant proteins (VacA Δ484-504, Δ511-536, and Δ517-544) were secreted and induced vacuolation of mammalian cells, which indicated that these β-helical coils were dispensable for vacuolating toxin activity. One mutant protein (VacA Δ433-461) exhibited reduced vacuolating toxin activity compared to wild-type VacA. Other mutant proteins, including those containing deletions near the carboxy-terminal end of the β-helical region (amino acids Val559-Asn628), exhibited marked defects in secretion and increased susceptibility to proteolytic cleavage by trypsin, which suggested that these proteins were misfolded. Conclusions These results indicate that within the β-helical segment of the VacA p55 domain, there are regions of plasticity that tolerate alterations without detrimental effects on protein secretion or activity, as well as a carboxy-terminal region in which similar alterations result in protein misfolding and impaired secretion. We propose that non-essential β-helical coils and a carboxy-terminal β-helical segment required for proper protein folding and secretion are features shared by numerous autotransporter passenger domains.
Collapse
Affiliation(s)
- Susan E Ivie
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
9
|
Druckova A, Mernaugh RL, Ham AJL, Marnett LJ. Identification of the Protein Targets of the Reactive Metabolite of Teucrin A in Vivo in the Rat. Chem Res Toxicol 2007; 20:1393-408. [PMID: 17892266 DOI: 10.1021/tx7001405] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalent modification of proteins is associated with the toxicity of many electrophiles, and the identification of relevant in vivo protein targets is a desirable but challenging goal. Here, we describe a strategy for the enrichment of adducted proteins utilizing single-chain fragment variable (ScFv) antibodies selected using phage-display technology. Teucrin A is a furan-containing diterpenoid found in the herb germander that is primarily responsible for the herb's hepatotoxicity in rodents and humans following metabolic activation by cytochrome P450 enzymes. Conjugates of the 1,4-enedial derivative of teucrin A, its presumed toxic metabolite, with lysine- and cysteine-containing peptides were synthesized and used to select ScFvs from a rodent phage-displayed library, which recognized the terpenoid moiety of the teucrin-derived adducts. Immunoaffinity isolation of adducted proteins from rat liver homogenates following administration of a toxic dose of teucrin A afforded a family of proteins that were identified by liquid chromatography/tandem mass spectrometry. Of the 46 proteins identified in this study, most were of mitochondrial and endoplasmic reticulum origin. Several cytosolic proteins were found, as well as four peroxisomal and two secreted proteins. Using Ingenuity Pathway Analysis software, two significant networks involving the target genes were identified that had major functions in gene expression, small molecule biochemistry, and cellular function and maintenance. These included proteins involved in lipid, amino acid, and drug metabolism. This study illustrates the utility of chemically synthesized biological conjugates of reactive intermediates and the potential of the phage display technology for the generation of affinity reagents for the isolation of adducted proteins.
Collapse
Affiliation(s)
- Alexandra Druckova
- Department of Biochemistry, A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | |
Collapse
|
10
|
McClain MS, Czajkowsky DM, Torres VJ, Szabo G, Shao Z, Cover TL. Random mutagenesis of Helicobacter pylori vacA to identify amino acids essential for vacuolating cytotoxic activity. Infect Immun 2006; 74:6188-95. [PMID: 16954403 PMCID: PMC1695532 DOI: 10.1128/iai.00915-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
VacA is a secreted toxin that plays a role in Helicobacter pylori colonization of the stomach and may contribute to the pathogenesis of peptic ulcer disease and gastric cancer. In this study, we analyzed a library of plasmids expressing randomly mutated forms of recombinant VacA and identified 10 mutant VacA proteins that lacked vacuolating cytotoxic activity when added to HeLa cells. The mutations included six single amino acid substitutions within an amino-terminal hydrophobic region and four substitutions outside the amino-terminal hydrophobic region. All 10 mutations mapped within the p33 domain of VacA. By introducing mutations into the H. pylori chromosomal vacA gene, we showed that secreted mutant toxins containing V21L, S25L, G121R, or S246L mutations bound to cells and were internalized but had defects in vacuolating activity. In planar lipid bilayer and membrane depolarization assays, VacA proteins containing V21L and S25L mutations were defective in formation of anion-selective membrane channels, whereas proteins containing G121R or S246L mutations retained channel-forming capacity. These are the first point mutations outside the amino-terminal hydrophobic region that are known to abrogate vacuolating toxin activity. In addition, these are the first examples of mutant VacA proteins that have defects in vacuolating activity despite exhibiting channel activities similar to those of wild-type VacA.
Collapse
Affiliation(s)
- Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, and Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
11
|
Sun J, Aoki K, Zheng JX, Su BZ, Ouyang XH, Misumi J. Effect of NaCl and Helicobacter pylori vacuolating cytotoxin on cytokine expression and viability. World J Gastroenterol 2006; 12:2174-80. [PMID: 16610017 PMCID: PMC4087642 DOI: 10.3748/wjg.v12.i14.2174] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether Helicobacter pylori (H pylori) vacuolating cytotoxin (VacA) regulates release of pro-inflammatory cytokines (IL-1β, IL-8, TNF-α, and IL-6) or alters gastric epithelial cell viability and to determine whether NaCl affects these VacA-induced changes.
METHODS: Vacuolating activity was determined by measuring the uptake of neutral red into vacuoles of VacA-treated human gastric epithelial (AGS) cells. AGS cell viability was assessed by direct cell counting. Specific enzyme-linked immunosorbent assays (ELISA) and reverse transcriptase-polymerase chain reaction(RT-PCR) were performed to examine the effects of H pylori VacA and NaCl on cell pro-inflammatory cytokine production in AGS cells. Immunohistochemical staining of gastric tissue from Mongolian gerbils was used to confirm VacA-induced pro-inflammatory cytokine production and the effects of NaCl on this VacA-induced response.
RESULTS: Addition of VacA alone reduced AGS cell viability (P < 0.05), and this reduction was enhanced by high doses of NaCl (P < 0.05). VacA alone induced expression of TNF-α, IL-8 and IL-1β, while NaCl alone induced expression of TNF-α and IL-1β. Changes in mRNA levels in the presence of both VacA and NaCl were more complicated. For the case of TNF-α, expression was dose-dependent on NaCl. IL-6 mRNA was not detected. However, low levels of IL-6 were detected by ELISA. Positive immunohistochemical staining of IL-1, IL-6, and TNF-α was found in gastric tissue of H pylori-infected gerbils fed with either a normal diet or a high salt diet. However, the staining of these three cytokines was stronger in H pylori-infected animals fed with a 5g/kg NaCl diet.
CONCLUSION: VacA decreases the viability of AGS cells, and this effect can be enhanced by NaCl. NaCl also affects the production of pro-inflammatory cytokines induced by VacA, suggesting that NaCl plays an important role in H pylori-induced gastric epithelial cell cytotoxicity.
Collapse
Affiliation(s)
- Juan Sun
- Department of Public Health and Hygiene(II), Faculty of Medicine, Oita University Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Background Antigen epitopes provide valuable information useful for disease prevention, diagnosis, and treatment. Recently, more and more databases focusing on different types of epitopes have become available. Conformational epitopes are an important form of epitope formed by residues that are sequentially discontinuous but close together in three-dimensional space. These epitopes have implicit structural information, making them attractive for both theoretical and applied biomedical research. However, most existing databases focus on linear rather than conformational epitopes. Description We describe CED, a special database of well defined conformational epitopes. CED provides a collection of conformational epitopes and related information including the residue make up and location of the epitope, the immunological property of the epitope, the source antigen and corresponding antibody of the epitope. All entries in this database are manually curated from articles published in peer review journals. The database can be browsed or searched through a user-friendly web interface. Most epitopes in CED can also be viewed interactively in the context of their 3D structures. In addition, the entries are also hyperlinked to various databases such as Swiss-Prot, PDB, KEGG and PubMed, providing wide background information. Conclusion A conformational epitope database called CED has been developed as an information resource for investigators involved in both theoretical and applied immunology research. It complements other existing specialised epitope databases. The database is freely available at
Collapse
Affiliation(s)
- Jian Huang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- School of Life Science and Technology, University of Electronic Science and Technology of China, China
| | - Wataru Honda
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
13
|
Li Y, Wandinger-Ness A, Goldenring JR, Cover TL. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. Mol Biol Cell 2004; 15:1946-59. [PMID: 14742715 PMCID: PMC379289 DOI: 10.1091/mbc.e03-08-0618] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori VacA is a secreted protein toxin that may contribute to the pathogenesis of peptic ulcer disease and gastric adenocarcinoma. When added to cultured mammalian cells in the presence of weak bases (e.g., ammonium chloride), VacA induces the formation of large cytoplasmic vacuoles. Here, we report a previously unrecognized capacity of VacA to induce clustering and perinuclear redistribution of late endocytic compartments. In contrast to VacA-induced cell vacuolation, VacA-induced clustering and redistribution of late endocytic compartments are not dependent on the presence of weak bases and are not inhibited by bafilomycin A1. VacA mutant toxins defective in the capacity to form anion-selective membrane channels fail to cause clustering and redistribution. VacA-induced clusters of late endocytic compartments undergo transformation into vacuoles after the addition of ammonium chloride. VacA-induced clustering and redistribution of late endocytic compartments occur in cells expressing wild-type or constitutively active Rab7, but not in cells expressing dominant-negative mutant Rab7. In VacA-treated cells containing clustered late endocytic compartments, overexpression of dominant-negative Rab7 causes reversion to a nonclustered distribution. Redistribution of late endocytic compartments to the perinuclear region requires a functional microtubule cytoskeleton, whereas clustering of these compartments and vacuole formation do not. These data provide evidence that clustering of late endocytic compartments is a critical mechanistic step in the process of VacA-induced cell vacuolation. We speculate that VacA-induced alterations in late endocytic membrane traffic contribute to the capacity of H. pylori to persistently colonize the human gastric mucosa.
Collapse
Affiliation(s)
- Yi Li
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
14
|
Tabel G, Hoa NT, Tarnawski A, Chen J, Domek M, Ma TY. Helicobacter pylori infection inhibits healing of the wounded duodenal epithelium in vitro. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2003; 142:421-430. [PMID: 14713894 DOI: 10.1016/j.lab.2003.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (Hp) infection causes duodenal ulcers, delays the healing of such ulcers, and is associated with ulcer recurrence. The pathogenic mechanisms involved in Hp-induced duodenal mucosal injury and delay in ulcer healing remain unclear. In this study we sought to investigate the possible pathogenic actions of Hp infection and vacuolating cytotoxin (Vac A) on duodenal epithelial wound healing, using an in vitro wound model consisting of excisionally scraped or eroded IEC-6 duodenal monolayers. Two isogenic strains of Hp were used: wild-type strain 60190, producing Vac A; and an isogenic mutant strain, 60190-v1, that lacks the gene to produce the cytotoxin. The addition of Vac A-positive or Vac A-negative Hp (50:1 ratio of bacterial to epithelial cells) to the eroded or "wounded" IEC-6 monolayers resulted in significant inhibition of wound reepithelialization. The Vac A-positive Hp produced significantly greater inhibition than did the Vac A-negative Hp (70% and 35% inhibition, respectively; P <.001). Additionally, the bacterial supernatant containing Vac A (but not the supernatant lacking the cytotoxin) caused significant inhibition of IEC-6 wound reepithelialization in the absence of Hp infection, indicating that Vac A has an independent inhibitory action on wound reepithelialization. The Vac A inhibition of IEC-6 reepithelialization correlated with down-regulation of actin stress fibers in the migrating cells. Epidermal growth factor (EGF) stimulated IEC-6 wound reepithelialization with a corresponding increase in the formation of actin stress fiber. Vac A-positive bacterial supernatant (but not Vac A-negative supernatant) prevented the EGF-stimulated increase in IEC-6 actin stress fiber formation and wound reepithelialization. These findings demonstrate that Hp infection inhibits the process of duodenal epithelial wound healing. Hp inhibition of duodenal wound healing may therefore be an important pathogenic factor contributing to duodenal mucosal injury and delay in ulcer healing in vivo.
Collapse
Affiliation(s)
- Ghasan Tabel
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | | | | | | | | |
Collapse
|
15
|
Schraw W, Li Y, McClain MS, van der Goot FG, Cover TL. Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J Biol Chem 2002; 277:34642-50. [PMID: 12121984 DOI: 10.1074/jbc.m203466200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A variety of extracellular ligands and pathogens interact with raft domains in the plasma membrane of eukaryotic cells. In this study, we examined the role of lipid rafts and raft-associated glycosylphosphatidylinositol (GPI)-anchored proteins in the process by which Helicobacter pylori vacuolating toxin (VacA) intoxicates cells. We first investigated whether GPI-anchored proteins are required for VacA toxicity by analyzing wild-type Chinese hamster ovary (CHO) cells and CHO-LA1 mutant cells that are defective in production of GPI-anchored proteins. Whereas wild-type and mutant cells differed markedly in susceptibility to aerolysin (a bacterial toxin that binds to GPI-anchored proteins), they were equally susceptible to VacA. We next determined whether VacA physically associates with lipid rafts. CHO or HeLa cells were incubated with VacA, and Triton-insoluble membranes then were separated by sucrose density gradient centrifugation. Immunoblot analysis revealed that a substantial proportion of cell-associated toxin was associated with detergent-resistant membranes (DRMs). DRM association required acid activation of the purified toxin prior to contact with cells, and acid activation also was required for VacA cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (a cholesterol-depleting agent) did not inhibit VacA-induced depolarization of the plasma membrane, but interfered with the internalization or intracellular localization of VacA and inhibited the capacity of the toxin to induce cell vacuolation. Treatment of cells with nystatin also inhibited VacA-induced cell vacuolation. These data indicate that VacA associates with lipid raft microdomains in the absence of GPI-anchored proteins and suggest that association of the toxin with lipid rafts is important for VacA cytotoxicity.
Collapse
Affiliation(s)
- Wayne Schraw
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|