1
|
Bayoumi NA, El-Shershaby HM, Darwish WM. Synthesis of iron oxide nanocrystals functionalized with hyaluronic acid and 131I-cetuximab for targeted combined (radio-photothermal) treatment of HepG2 cells. Int J Biol Macromol 2025; 305:140890. [PMID: 39971046 DOI: 10.1016/j.ijbiomac.2025.140890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/25/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
Surface coating of NIR-plasmonic iron oxide magnetic nanocrystals (Fe3O4 MNCs) with natural polysaccharides is a promising strategy for increasing their uptake by cancer cells. In this work, chitosan-coated magnetic nanocrystals (Fe3O4@CS MNCs) were prepared and subsequently chemically conjugated with hyaluronic acid (HA). The cellular uptake of MNCs post treatment of HepG2 cells with the synthesized (Fe3O4@CS MNCs) and (Fe3O4@CS-HA MNCs) was 18.1 ± 0.8 and 25.2 ± 1.3 μg Fe/mL, respectively. The enhancement of MNCs cellular uptake is attributed to HA targeting of the cluster of differentiation 44 (CD44) protein extracellularly expressed on HepG2 cells. In another model, HA was covalently attached to the monoclonal antibody cetuximab. The produced (Fe3O4@CS-HA-Cet MNCs) showed the highest cellular uptake (31.4 ± 1.9 μg Fe/mL) via selective binding to the epidermal growth factor receptor (EGFR) overexpressed in HepG2 cells. Consequently, the phototoxicity against HepG2 cells upon near-infrared (NIR) laser light (808 nm, 1.5 W/cm2) at different concentrations of Fe follows the order: (Fe3O4@CS-HA-Cet MNCs) > (Fe3O4@CS-HA MNCs) > (Fe3O4@CS MNCs). For enhancement of the therapeutic efficiency, a combined targeted radio-photothermal candidate was synthesized by radiolabeling the antibody with Iodine-131. The combinatorial model (Fe3O4@CS-HA-Cet-131I MNCs) exhibited the highest toxicity against HepG2 cells upon NIR irradiation due to the synergistic combined radio- photothermal action.
Collapse
Affiliation(s)
- Noha A Bayoumi
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Hanan M El-Shershaby
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Wael M Darwish
- Department of Polymers and Pigments, National Research Centre, Elbohooth Street, Dokki, 12622 Giza, Egypt
| |
Collapse
|
2
|
Byerly CD, Patterson LL, Pittner NA, Solomon RN, Patel JG, Rogan MR, McBride JW. Ehrlichia Wnt SLiM ligand mimic deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis. Infect Immun 2023; 91:e0008523. [PMID: 37530530 PMCID: PMC10501218 DOI: 10.1128/iai.00085-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/03/2023] [Indexed: 08/03/2023] Open
Abstract
Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways, including Wnt, Notch, and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling, resulting in the activation of Hippo transcription coactivator Yes-associated protein (Yap). Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by E. chaffeensis, rTRP120, and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM, and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors, Yap, and transcriptional enhanced associate domain (TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, the TRP120-Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased B cell lymphoma-extra large (BCL-xL) and decreased BCL2-associated X, apoptosis regulator (Bax) levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in GLUT1 and BCL-xL levels and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Byerly CD, Patterson LL, Pittner NA, Solomon RN, Patel JG, Rogan MR, McBride JW. Ehrlichia Wnt short linear motif ligand mimetic deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531456. [PMID: 36945589 PMCID: PMC10028901 DOI: 10.1101/2023.03.06.531456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways including Wnt, Notch and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling resulting in activation of Hippo transcription coactivator Yap and target gene expression. Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by E. chaffeensis, rTRP120 and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors (Yap and TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, TRP120 Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased BCL-xL and decreased Bax levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in levels of GLUT1 and BCL-xL, and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimetic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Onorini D, Borel N, Schoborg RV, Leonard CA. Neisseria gonorrhoeae Limits Chlamydia trachomatis Inclusion Development and Infectivity in a Novel In Vitro Co-Infection Model. Front Cell Infect Microbiol 2022; 12:911818. [PMID: 35873141 PMCID: PMC9300984 DOI: 10.3389/fcimb.2022.911818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) and Neisseria gonorrhoeae (Ng) are the most common bacterial sexually transmitted infections (STIs) worldwide. The primary site of infection for both bacteria is the epithelium of the endocervix in women and the urethra in men; both can also infect the rectum, pharynx and conjunctiva. Ct/Ng co-infections are more common than expected by chance, suggesting Ct/Ng interactions increase susceptibility and/or transmissibility. To date, studies have largely focused on each pathogen individually and models exploring co-infection are limited. We aimed to determine if Ng co-infection influences chlamydial infection and development and we hypothesized that Ng-infected cells are more susceptible to chlamydial infection than uninfected cells. To address this hypothesis, we established an in vitro model of Ct/Ng co-infection in cultured human cervical epithelial cells. Our data show that Ng co-infection elicits an anti-chlamydial effect by reducing chlamydial infection, inclusion size, and subsequent infectivity. Notably, the anti-chlamydial effect is dependent on Ng viability but not extracellular nutrient depletion or pH modulation. Though this finding is not consistent with our hypothesis, it provides evidence that interaction of these bacteria in vitro influences chlamydial infection and development. This Ct/Ng co-infection model, established in an epithelial cell line, will facilitate further exploration into the pathogenic interplay between Ct and Ng.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Cory Ann Leonard,
| |
Collapse
|
5
|
Witkop EM, Wikfors GH, Proestou DA, Lundgren KM, Sullivan M, Gomez-Chiarri M. Perkinsus marinus suppresses in vitro eastern oyster apoptosis via IAP-dependent and caspase-independent pathways involving TNFR, NF-kB, and oxidative pathway crosstalk. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104339. [PMID: 34998862 DOI: 10.1016/j.dci.2022.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The protozoan parasite Perkinsus marinus causes Dermo disease in eastern oysters, Crassostrea virginica, and can suppress apoptosis of infected hemocytes using incompletely understood mechanisms. This study challenged hemocytes in vitro with P. marinus for 1 h in the presence or absence of caspase inhibitor Z-VAD-FMK or Inhibitor of Apoptosis protein (IAP) inhibitor GDC-0152. Hemocytes exposure to P. marinus significantly reduced granulocyte apoptosis, and pre-incubation with Z-VAD-FMK did not affect P. marinus-induced apoptosis suppression. Hemocyte pre-incubation with GDC-0152 prior to P. marinus challenge further reduced apoptosis of granulocytes with engulfed parasite, but not mitochondrial permeabilization. This suggests P. marinus-induced apoptosis suppression may be caspase-independent, affect an IAP-involved pathway, and occur downstream of mitochondrial permeabilization. P. marinus challenge stimulated hemocyte differential expression of oxidation-reduction, TNFR, and NF-kB pathways. WGCNA analysis of P. marinus expression in response to hemocyte exposure revealed correlated protease, kinase, and hydrolase expression that could contribute to P. marinus-induced apoptosis suppression.
Collapse
Affiliation(s)
- Erin M Witkop
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, 120 Flagg Rd, Kingston, RI, USA
| | - Gary H Wikfors
- NOAA Northeast Fisheries Science Center Milford Laboratory, 212 Rogers Ave, Milford, CT, USA
| | - Dina A Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics Program, 120 Flagg Rd, Kingston, RI, USA
| | | | - Mary Sullivan
- USDA ARS NEA NCWMAC Shellfish Genetics Program, 120 Flagg Rd, Kingston, RI, USA
| | - Marta Gomez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, 120 Flagg Rd, Kingston, RI, USA.
| |
Collapse
|
6
|
Sixt BS. Host cell death during infection with Chlamydia: a double-edged sword. FEMS Microbiol Rev 2021; 45:5902849. [PMID: 32897321 PMCID: PMC7794043 DOI: 10.1093/femsre/fuaa043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The phylum Chlamydiae constitutes a group of obligate intracellular bacteria that infect a remarkably diverse range of host species. Some representatives are significant pathogens of clinical or veterinary importance. For instance, Chlamydia trachomatis is the leading infectious cause of blindness and the most common bacterial agent of sexually transmitted diseases. Chlamydiae are exceptionally dependent on their eukaryotic host cells as a consequence of their developmental biology. At the same time, host cell death is an integral part of the chlamydial infection cycle. It is therefore not surprising that the bacteria have evolved exquisite and versatile strategies to modulate host cell survival and death programs to their advantage. The recent introduction of tools for genetic modification of Chlamydia spp., in combination with our increasing awareness of the complexity of regulated cell death in eukaryotic cells, and in particular of its connections to cell-intrinsic immunity, has revived the interest in this virulence trait. However, recent advances also challenged long-standing assumptions and highlighted major knowledge gaps. This review summarizes current knowledge in the field and discusses possible directions for future research, which could lead us to a deeper understanding of Chlamydia's virulence strategies and may even inspire novel therapeutic approaches.
Collapse
Affiliation(s)
- Barbara S Sixt
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
7
|
Bordoloi D, Banik K, Vikkurthi R, Thakur KK, Padmavathi G, Sailo BL, Girisa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Buhrmann C, Shakibaei M, Kunnumakkara AB. Inflection of Akt/mTOR/STAT-3 cascade in TNF-α induced protein 8 mediated human lung carcinogenesis. Life Sci 2020; 262:118475. [PMID: 32976884 DOI: 10.1016/j.lfs.2020.118475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related death across the globe. Despite the marked advances in detection and therapeutic approaches, management of lung cancer patients remains a major challenge to oncologists which can be mainly attributed to late stage diagnosis, tumor recurrence and chemoresistance. Therefore, to overthrow these limitations, there arises a vital need to develop effective biomarkers for the successful management of this aggressive cancer type. Notably, TNF-alpha induced protein 8 (TIPE), a nuclear factor-kappa B (NF-κB)-inducible, oncogenic molecule and cytoplasmic protein which is involved in the regulation of T lymphocyte-mediated immunity and different processes in tumor cells such as proliferation, cell death and evasion of growth suppressors, might serve as one such biomarker which would facilitate effective management of lung cancer. Expression studies revealed this protein to be significantly upregulated in different lung cancer types, pathological conditions, stages and grades of lung tumor compared to normal human lung tissues. In addition, knockout of TIPE led to the reduced proliferation, survival, invasion and migration of lung cancer cells. Furthermore, TIPE was found to function through modulation of Akt/mTOR/STAT-3 signaling cascade. This is the first report which shows the involvement of TIPE in tobacco induced lung carcinogenesis. It positively regulated nicotine, NNK, NNN, and BaP induced proliferation, survival and migration of lung cancer cells possibly via Akt/STAT-3 signaling. Thus, this protein possesses important role in the pathogenesis of lung tumor and hence it can be targeted for developing newer therapeutic interventions for the clinico-management of lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Constanze Buhrmann
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
8
|
Zhu S, Zhou J, Sun X, Zhou Z, Zhu Q. ROS accumulation contributes to abamectin‐induced apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway in TM3 Leydig cells. J Biochem Mol Toxicol 2020; 34:e22505. [DOI: 10.1002/jbt.22505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Shanshan Zhu
- Department of Scientific Research, School of Optometry and Ophthalmology Eye HospitalWenzhou Medical University Wenzhou Zhejiang China
- Department of Scientific ResearchState Key Laboratory of Optometry, Ophthalmology, and Visual Science Wenzhou Zhejiang China
| | - Jing Zhou
- Department of Scientific Research, School of Optometry and Ophthalmology Eye HospitalWenzhou Medical University Wenzhou Zhejiang China
- Department of Scientific ResearchState Key Laboratory of Optometry, Ophthalmology, and Visual Science Wenzhou Zhejiang China
| | - Xiaoyu Sun
- Vaccination and Immunoprophylaxis DivisionWenzhou Center for Disease Control and Prevention Wenzhou Zhejiang China
| | - Zhonglou Zhou
- Department of Scientific Research, School of Optometry and Ophthalmology Eye HospitalWenzhou Medical University Wenzhou Zhejiang China
- Department of Scientific ResearchState Key Laboratory of Optometry, Ophthalmology, and Visual Science Wenzhou Zhejiang China
| | - Qiqi Zhu
- Department of Scientific Research, School of Optometry and Ophthalmology Eye HospitalWenzhou Medical University Wenzhou Zhejiang China
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical University Wenzhou Zhejiang China
| |
Collapse
|
9
|
Ren Z, Gu X, Fang J, Cai D, Zuo Z, Liang S, Cui H, Deng J, Ma X, Geng Y, Zhang M, Xie Y, Ye G, Gou L, Hu Y. Effect of intranasal instillation of Escherichia coli on apoptosis of spleen cells in diet-induced-obese mice. Sci Rep 2020; 10:5109. [PMID: 32198370 PMCID: PMC7083956 DOI: 10.1038/s41598-020-62044-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/05/2020] [Indexed: 11/09/2022] Open
Abstract
Splenic immune function was enhanced in diet-induced-obese (DIO) mice caused by Escherichia coli. The changes in spleen function on apoptosis were still unknown. Two hundred mice in groups Lean-E. coli and DIO-E. coli were intranasal instillation of E. coli. And another two hundred mice in groups Lean-PBS and DIO-PBS were given phosphate-buffered saline (PBS). Subsequently, spleen histology was analyzed. Then the rates of spleen cell (SC) apoptosis, and expression of the genes and proteins of Bcl-2, Bax, caspase-3 and caspase-9 were quantified in each group at 0 h (uninfected), 12 h, 24 h, and 72 h postinfection. The SC apoptosis rates of the DIO-E. coli groups were lower than those of the DIO-PBS groups at 12, 24 and 72 h (p < 0.05). Anti-apoptotic Bcl-2 expression gene and protein of the DIO-E. coli groups were higher than those of the DIO-PBS groups (p < 0.05). Gene expressions of pro-apoptotic Bax, caspase-3 and caspase-9 of the DIO-E. coli groups were lower than those of DIO-PBS groups at 12, 24 and 72 h (p < 0.05). The SC apoptosis rates of the Lean-E. coli groups were higher than those of the Lean- PBS groups at 12 h and 24 h (p < 0.05). Interestingly, the SC apoptosis rates in the DIO-E. coli groups were lower than those of the Lean-E. coli groups at 12 h (p < 0.05). In conclusion, our results suggested that the DIO mice presented stronger anti-apoptotic abilities than Lean mice in non-fatal acute pneumonia induced by E. coli infection, which is more conducive to protecting the spleen and improving the immune defense ability of the body.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Xuchu Gu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China.
| | - Shuang Liang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Ming Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Gang Ye
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
10
|
Bordoloi D, Banik K, Padmavathi G, Vikkurthi R, Harsha C, Roy NK, Singh AK, Monisha J, Wang H, Kumar AP, Kunnumakkara AB. TIPE2 Induced the Proliferation, Survival, and Migration of Lung Cancer Cells Through Modulation of Akt/mTOR/NF-κB Signaling Cascade. Biomolecules 2019; 9:E836. [PMID: 31817720 PMCID: PMC6995575 DOI: 10.3390/biom9120836] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Lung cancer represents the most common cause of cancer deaths in the world, constituting around 11.6% of all new cancer cases and 18.4% of cancer-related deaths. The propensity for early spread, lack of suitable biomarkers for early diagnosis, as well as prognosis and ineffective existing therapies, contribute to the poor survival rate of lung cancer. Therefore, there is an urgent need to develop novel biomarkers for early diagnosis and prognosis which in turn can facilitate newer therapeutic avenues for the management of this aggressive neoplasm. TIPE2 (tumor necrosis factor-α-induced protein 8-like 2), a recently identified cytoplasmic protein, possesses enormous potential in this regard. Immunohistochemical analysis showed that TIPE2 was significantly upregulated in different stages and grades of lung cancer tissues compared to normal lung tissues, implying its involvement in the positive regulation of lung cancer. Further, knockout of TIPE2 resulted in significantly reduced proliferation, survival, and migration of human lung cancer cells through modulation of the Akt/mTOR/NF-κB signaling axis. In addition, knockout of TIPE2 also caused arrest in the S phase of the cell cycle of lung cancer cells. As tobacco is the most predominant risk factor for lung cancer, we therefore evaluated the effect of TIPE2 in tobacco-mediated lung carcinogenesis as well. Our results showed that TIPE2 was involved in nicotine-, nicotine-derived nitrosamine ketone (NNK)-, N-nitrosonornicotine (NNN)-, and benzo[a]pyrene (BaP)-mediated lung cancer through inhibited proliferation, survival, and migration via modulation of nuclear factor kappa B (NF-κB)- and NF-κB-regulated gene products, which are involved in the regulation of diverse processes in lung cancer cells. Taken together, TIPE2 possesses an important role in the development and progression of lung cancer, particularly in tobacco-promoted lung cancer, and hence, specific targeting of it holds an enormous prospect in newer therapeutic interventions in lung cancer. However, these findings need to be validated in the in vivo and clinical settings to fully establish the diagnostic and prognostic importance of TIPE2 against lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Kishore Banik
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Anuj Kumar Singh
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Javadi Monisha
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| |
Collapse
|
11
|
Kwon YM, Je JY, Cha SH, Oh Y, Cho WH. Synergistic combination of chemo‑phototherapy based on temozolomide/ICG‑loaded iron oxide nanoparticles for brain cancer treatment. Oncol Rep 2019; 42:1709-1724. [PMID: 31436296 PMCID: PMC6775808 DOI: 10.3892/or.2019.7289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Chemo‑photothermal therapy for cancer treatment has received increasing attention due to its selective therapeutic effects. In the present study, the anticancer effects of drug‑loaded Fe3O4 magnetic nanoparticles (MNPs) by chemo‑photothermal therapy on U‑87 MG human glioblastoma cells was investigated. Anticancer drug‑loaded Fe3O4 MNPs were prepared by loading temozolomide (TMZ) and indocyanine green (ICG), and were characterized by X‑ray diffraction, UV‑vis spectroscopy, thermal gravimetric analysis, transmission electron microscope, as well as drug‑loading capacity. Following treatment with near‑infrared (NIR) light irradiation, the administration of Fe3O4‑TMZ‑ICG MNPs resulted in the apoptosis of U‑87 MG glioblastoma cells through the generation of reactive oxygen species. Western blot analysis and reverse transcription‑quantitative polymerase chain reaction revealed that Fe3O4‑TMZ‑ICG MNPs with NIR laser irradiation lead to significantly enhanced anticancer effects on U‑87 MG glioblastoma cells through the modulation of intrinsic and extrinsic apoptosis genes, including Bcl‑2‑associated X protein, Bcl‑2, cytochrome c, caspase‑3, Fas associated via death domain and caspase‑8. These results suggest that Fe3O4‑TMZ‑ICG MNPs may be potential candidates when administered as chemo‑phototherapy for the treatment of brain cancer.
Collapse
Affiliation(s)
- Young Min Kwon
- Department of Neurosurgery, Dong-A University College of Medicine and Dong-A Medical Center, Busan 49201, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Republic of Korea
| | - Seung Heon Cha
- Department of Neurosurgery and Medical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Yunok Oh
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Republic of Korea
| | - Won Ho Cho
- Department of Neurosurgery and Medical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan 49241, Republic of Korea
| |
Collapse
|
12
|
Doycheva D, Kaur H, Tang J, Zhang JH. The characteristics of the ancient cell death suppressor, TMBIM6, and its related signaling pathways after endoplasmic reticulum stress. J Neurosci Res 2019; 98:77-86. [PMID: 31044452 DOI: 10.1002/jnr.24434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Activation of the unfolded protein response in combination with generation of reactive oxygen species, from cytochrome P450 members and NADPH-P450 reductases, are two major consequences of Endoplasmic Reticulum (ER) stress that cause oxidative damage and cell death. Herein, we reviewed the role of Bax Inhibitor-1 (BI-1), an evolutionarily conserved protein encoded by the Transmembrane Bax inhibitor Motif Containing 6 gene, in protection from ER stress. As BI-1 has multimodal properties that can target a wide array of pathophysiological consequences after injury, our main objective was to explore BI-1's protective role in ER stress and its potential signaling pathways.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
13
|
Zhu S, Zhou J, Zhou Z, Zhu Q. Abamectin induces apoptosis and autophagy by inhibiting reactive oxygen species-mediated PI3K/AKT signaling in MGC803 cells. J Biochem Mol Toxicol 2019; 33:e22336. [PMID: 30958899 DOI: 10.1002/jbt.22336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
Abamectin (ABA) is one of the most widely used compounds in agriculture and veterinary medicine. However, the cytotoxicity of ABA in human gastric cells is utterly unknown. In this study, ABA suppressed the proliferation of MGC803 cells by arresting the cell cycle at the G0/G1-phase. Moreover, ABA induced mitochondrial-mediated apoptosis by inducing the loss of mitochondrial membrane potential, upregulation of Bax/Bcl-2, and activation of caspase-3. ABA significantly improved the LC3-II/LC3-I ratio and reduced P62 protein expression in a dose-dependent manner. Through detection of the reactive oxygen species (ROS) levels, we found ABA induced the accumulation of intracellular ROS and then reduced PI3K/AKT signaling activation related to MGC803 cell apoptosis and autophagy. Our results indicate that ABA exerts cytotoxic effects on human MGC803 cells through apoptosis and autophagy by inhibiting ROS-mediated PI3K/AKT signaling. Furthermore, ABA may be a potential risk to human gastric health.
Collapse
Affiliation(s)
- Shanshan Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Scientific Research, School of Optometry and Ophthalmology and The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Scientific Research, State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jing Zhou
- Department of Scientific Research, School of Optometry and Ophthalmology and The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Scientific Research, State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Zhonglou Zhou
- Department of Scientific Research, School of Optometry and Ophthalmology and The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Scientific Research, State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Tzanetakis A, Antounians L, Belfiore A, Ma Q, Stasiewicz M, Pellerito O, Zani A. Endoplasmic reticulum stress response is activated in pulmonary hypoplasia secondary to congenital diaphragmatic hernia, but is decreased by administration of amniotic fluid stem cells. Pediatr Surg Int 2019; 35:63-69. [PMID: 30386898 DOI: 10.1007/s00383-018-4376-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by impaired epithelial homeostasis. Recently, amniotic fluid stem cells (AFSCs) have been shown to promote growth in hypoplastic lungs of rat fetuses with CDH. Herein, we investigated whether CDH hypoplastic lungs mount an endoplasmic reticulum (ER) stress response and whether AFSCs could re-establish pulmonary epithelial homeostasis. METHODS Primary epithelial cells were isolated from fetal rat lungs at E14.5 from control and nitrofen-exposed dams at E9.5. Nitrofen-exposed epithelial cells were grown in medium alone or co-cultured with AFSCs. Epithelial cell cultures were compared for apoptosis (TUNEL), cytotoxicity (LIVE/DEAD assay), proliferation (5'EdU), and ER stress (CHOP, Bcl-2) using one-way ANOVA (Dunn's post-test). RESULTS Compared to control, nitrofen-exposed epithelial cells had increased cytotoxicity and apoptosis, reduced proliferation, and activated ER stress. AFSCs restored apoptosis, proliferation, and ER stress back to control levels, and significantly reduced cytotoxicity. CONCLUSIONS This study shows for the first time that ER stress-induced apoptosis is activated in the pulmonary epithelium of hypoplastic lungs from fetuses with CDH. AFSC treatment restores epithelial cellular homeostasis by attenuating the ER stress response and apoptosis, by increasing proliferation and migration ability, and by reducing cytotoxicity.
Collapse
Affiliation(s)
- Areti Tzanetakis
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Alyssa Belfiore
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Qi Ma
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Mark Stasiewicz
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Ornella Pellerito
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada. .,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
15
|
Chlamydia trachomatis fails to protect its growth niche against pro-apoptotic insults. Cell Death Differ 2018; 26:1485-1500. [PMID: 30375511 PMCID: PMC6748135 DOI: 10.1038/s41418-018-0224-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial agent responsible for ocular infections and sexually transmitted diseases. It has been postulated that Chlamydia inhibits apoptosis in host cells to maintain an intact replicative niche until sufficient infectious progeny can be generated. Here we report that, while cells infected with C. trachomatis are protected from apoptosis at early and mid-stages of infection, they remain susceptible to the induction of other cell death modalities. By monitoring the fate of infected cells by time-lapse video microscopy and by analyzing host plasma membrane integrity and the activity of caspases, we determined that C. trachomatis-infected cells exposed to pro-apoptotic stimuli predominately died by a mechanism resembling necrosis. This necrotic death of infected cells occurred with kinetics similar to the induction of apoptosis in uninfected cells, indicating that C. trachomatis fails to considerably prolong the lifespan of its host cell when exposed to pro-apoptotic insults. Inhibitors of bacterial protein synthesis partially blocked necrotic death of infected cells, suggesting that the switch from apoptosis to necrosis relies on an active contribution of the bacteria. Tumor necrosis factor alpha (TNF-α)-mediated induction of necrosis in cells infected with C. trachomatis was not dependent on canonical regulators of necroptosis, such as RIPK1, RIPK3, or MLKL, yet was blocked by inhibition or depletion of CASP8. These results suggest that alternative signaling pathways regulate necrotic death in the context of C. trachomatis infections. Finally, consistent with the inability of C. trachomatis to preserve host cell viability, necrosis resulting from pro-apoptotic conditions significantly impaired production of infectious progeny. Taken together, our findings suggest that Chlamydia’s anti-apoptotic activities are not sufficient to protect the pathogen’s replicative niche.
Collapse
|
16
|
Matsuo J, Haga S, Hashimoto K, Okubo T, Ozawa T, Ozaki M, Yamaguchi H. Activation of caspase-3 during Chlamydia trachomatis-induced apoptosis at a late stage. Can J Microbiol 2018; 65:135-143. [PMID: 30336068 DOI: 10.1139/cjm-2018-0408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The obligate intracellular bacterium Chlamydia trachomatis activates the host cell apoptosis pathway at a late stage of its developmental cycle. However, whether caspase-3, which is a key enzyme of apoptosis, is activated in Chlamydia-infected cells remains unknown. Here, we established HEp-2 cells stably expressing cFluc-DEVD, which is a caspase-3 substrate sequence inserted into cyclic firefly luciferase, and then monitored the dynamics of caspase-3 activity in cells infected with Chlamydia. Transfected cells without infection showed a significant increase in luciferase activity due to stimulation with staurosporine, an inducer of apoptosis. Activation was significantly blocked by addition of caspase inhibitor z-VAD-fmk. Furthermore, as expected, Chlamydia infection caused a significant increase in luciferase activation at 36-48 h postinfection with a contrastive decrease at 24 h postinfection, which is already well known. Such activation caused by the infection was much stronger when the amount of bacteria was increased. Thus, caspase-3 activation was accurately monitored by the luciferase activity in HEp-2 cells constitutively expressing the cFluc-DEVD probe. Furthermore, our data showed that C. trachomatis activates caspase-3 in host cells at a late stage of infection.
Collapse
Affiliation(s)
- Junji Matsuo
- a Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Sanae Haga
- b Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Kent Hashimoto
- a Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Torahiko Okubo
- a Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Takeaki Ozawa
- c Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michitaka Ozaki
- b Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Yamaguchi
- a Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
17
|
|
18
|
Absence of Specific Chlamydia trachomatis Inclusion Membrane Proteins Triggers Premature Inclusion Membrane Lysis and Host Cell Death. Cell Rep 2018; 19:1406-1417. [PMID: 28514660 DOI: 10.1016/j.celrep.2017.04.058] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis is a human pathogen associated with significant morbidity worldwide. As obligate intracellular parasites, chlamydiae must survive within eukaryotic cells for sufficient time to complete their developmental cycle. To promote host cell survival, chlamydiae express poorly understood anti-apoptotic factors. Using recently developed genetic tools, we show that three inclusion membrane proteins (Incs) out of eleven examined are required for inclusion membrane stability and avoidance of host cell death pathways. In the absence of specific Incs, premature inclusion lysis results in recognition by autophagolysosomes, activation of intrinsic apoptosis, and premature termination of the chlamydial developmental cycle. Inhibition of autophagy or knockdown of STING prevented host cell death and activation of intrinsic apoptosis. Significantly, these findings emphasize the importance of Incs in the establishment of a replicative compartment that sequesters the pathogen from host surveillance systems.
Collapse
|
19
|
Kerr MC, Gomez GA, Ferguson C, Tanzer MC, Murphy JM, Yap AS, Parton RG, Huston WM, Teasdale RD. Laser-mediated rupture of chlamydial inclusions triggers pathogen egress and host cell necrosis. Nat Commun 2017; 8:14729. [PMID: 28281536 PMCID: PMC5353685 DOI: 10.1038/ncomms14729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Remarkably little is known about how intracellular pathogens exit the host cell in order to infect new hosts. Pathogenic chlamydiae egress by first rupturing their replicative niche (the inclusion) before rapidly lysing the host cell. Here we apply a laser ablation strategy to specifically disrupt the chlamydial inclusion, thereby uncoupling inclusion rupture from the subsequent cell lysis and allowing us to dissect the molecular events involved in each step. Pharmacological inhibition of host cell calpains inhibits inclusion rupture, but not subsequent cell lysis. Further, we demonstrate that inclusion rupture triggers a rapid necrotic cell death pathway independent of BAK, BAX, RIP1 and caspases. Both processes work sequentially to efficiently liberate the pathogen from the host cytoplasm, promoting secondary infection. These results reconcile the pathogen's known capacity to promote host cell survival and induce cell death.
Collapse
Affiliation(s)
- Markus C. Kerr
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guillermo A. Gomez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Maria C. Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wilhelmina M. Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
20
|
Jin Z, Wang WF, Huang JP, Wang HM, Ju HX, Chang Y. Dryocrassin ABBA Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells Through a Caspase-Dependent Mitochondrial Pathway. Asian Pac J Cancer Prev 2017; 17:1823-8. [PMID: 27221859 DOI: 10.7314/apjcp.2016.17.4.1823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological and pharmacological activities of dryocrassin ABBA, a phloroglucinol derivative extracted from Dryopteris crassirhizoma, have attracted attention. In this study, the apoptotic effect of dryocrassin ABBA on human hepatocellular carcinoma HepG2 cells was investigated. MATERIALS AND METHODS We tested the effects of dryocrassin ABBA on HepG2 in vitro by MTT, flow cytometry, real-time PCR, and Western blotting. KM male mice were used to detect the effect of dryocrassin ABBA on H22 cells in vivo. RESULTS Dryocrassin ABBA inhibited the growth of HepG2 cells in a concentration-dependent manner. After treatment with 25, 50, and 75 μg/mL dryocrassin ABBA, the cell viability was 68%, 60% and 49%, respectively. Dryocrassin ABBA was able to induce apoptosis, measured by propidium iodide (PI)/annexin V-FITC double staining. The results of real-time PCR and Western ting showed that dryocrassin ABBA up-regulated p53 and Bax expression and inhibited Bcl-2 expression which led to an activation of caspase-3 and caspase-7 in the cytosol, and then induction of cell apoptosis. In vivo experiments also showed that dryocrassin ABBA treatment significantly suppressed tumor growth, without major side effects. CONCLUSIONS Overall, these findings provide evidence that dryocrassin ABBA may induce apoptosis in human hepatocellular carcinoma cells through a caspase-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Zhe Jin
- College of Life Sciences, Northeast Agricultural University, Harbin, China E-mail :
| | | | | | | | | | | |
Collapse
|
21
|
Novak M, Žegura B, Baebler Š, Štern A, Rotter A, Stare K, Filipič M. Influence of selected anti-cancer drugs on the induction of DNA double-strand breaks and changes in gene expression in human hepatoma HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14751-14761. [PMID: 26392091 DOI: 10.1007/s11356-015-5420-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
In chemotherapy, various anti-cancer drugs with different mechanisms of action are used and may represent different risk of undesirable delayed side effects in treated patients as well as in occupationally exposed populations. The aim of the present study was to evaluate genotoxic potential of four widely used anti-cancer drugs with different mechanisms of action: 5-fluorouracil (5-FU), cisplatin (CDDP) and etoposide (ET) that cause cell death by targeting DNA function and imatinib mesylate (IM) that inhibits targeted protein kinases in cancer cells in an experimental model with human hepatoma HepG2 cells. After 24 h of exposure all four anti-cancer drugs at non-cytotoxic concentrations induced significant increase in formation of DNA double strand breaks (DSBs), with IM being the least effective. The analysis of the changes in the expression of genes involved in the response to DNA damage (CDKN1A, GADD45A, MDM2), apoptosis (BAX, BCL2) and oncogenesis (MYC, JUN) showed that 5-FU, CDDP and ET upregulated the genes involved in DNA damage response, while the anti-apoptotic gene BCL2 and oncogene MYC were downregulated. On the contrary, IM did not change the mRNA level of the studied genes, showing different mechanism of action that probably does not involve direct interaction with DNA processing. Genotoxic effects of the tested anti-cancer drugs were observed at their therapeutic concentrations that may consequently lead to increased risk for development of delayed adverse effects in patients. In addition, considering the genotoxic mechanism of action of 5-FU, CDDP and ET an increased risk can also not be excluded in occupationally exposed populations. The results also indicate that exposure to 5-FU, CDDP and ET represent a higher risk for delayed effects such as cancer, reproductive effects and heritable disease than exposure to IM.
Collapse
Affiliation(s)
- Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- Ecological Engineering Institute, Maribor, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Katja Stare
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Abstract
Chlamydia is an obligate intracellular bacterial pathogen that replicates solely within a membrane-bound vacuole termed an inclusion. Chlamydia seems to perturb multiple cellular processes of the host, such as, rearrangement of the membrane trafficking system for its intracellular multiplication, and inhibition of host cell apoptosis for persistent infection. In an attempt to clarify host factor involvement in apoptosis regulation, we found that inhibition of Caspase-9 restricted, while Apaf-1 promoted, Chlamydia pneumoniae infection in HEp-2, HeLa, and mouse epithelial fibroblast (MEF) cells. These opposition contributions to the chlamydial infection were confirmed using caspase-9−/− and apaf-1−/− MEFs. Similar phenomena also appeared in the case of infection with Chlamydia trachomatis. Interestingly, caspase-9 in apaf-1−/− MEFs was activated by chlamydial infection but during the infection caspase-3 was not activated. That is, caspase-9 was activated without support for multiplication and activation by Apaf-1, and the activated caspase-9 may be physically disconnected from the caspase cascade. This may be partially explained by the observation of caspase-9 accumulation within chlamydial inclusions. The sequestration of caspase-9 by chlamydia seems to result in apoptosis repression, which is crucial for the chlamydial development cycle. Because Apaf-1 shares domains with intracellular innate immune receptor NOD1, it may play a key role in the strategy to regulate chlamydial infection.
Collapse
|
23
|
Ling Y, Zhao X, Li X, Wang X, Yang Y, Wang Z, Wang X, Zhang J, Zhang Y. Novel FTS-diamine/cinnamic acid hybrids inhibit tumor cell proliferation and migration and promote apoptosis via blocking Ras-related signaling in vitro. Cancer Chemother Pharmacol 2014; 75:381-92. [DOI: 10.1007/s00280-014-2650-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
|
24
|
Lee WR, Kim KH, An HJ, Kim JY, Han SM, Lee KG, Park KK. Protective effect of melittin against inflammation and apoptosis on Propionibacterium acnes-induced human THP-1 monocytic cell. Eur J Pharmacol 2014; 740:218-226. [PMID: 25062791 DOI: 10.1016/j.ejphar.2014.06.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). It has been used in treatment of various chronic inflammatory diseases. However, the cellular mechanism and the anti-apoptotic effect of melittin in Propionibactierium acnes (P. acnes)-induced THP-1 cells have not been explored. In the present study, we investigated the anti-inflammatory and anti-apoptotic mechanism by examining the effect of melittin on P. acnes-induced THP-1 monocytic cells. THP-1 monocytic cells were stimulated by heat-killed P. acnes in the presence of melittin. The expression levels of pro-inflammatory cytokines, NF-κB signaling, caspase family, and PARP signaling were measured by ELISA or Western blot analysis. The number of apoptotic cells and changes of cell morphology were examined using fluorescence microscopy and flow cytometry. Heat-killed P. acnes increased the secretion of pro-inflammatory cytokines and cleavage of caspase-3 and -8 in heat-killed P. acnes-induced THP-1 cells. However, treatment with melittin inhibited the pro-inflammatory cytokines and cleavage of the caspase-3 and -8. Moreover, the cleaved PARP appeared after 8h of heat-killed P. acnes treatment and its cleavage was reduced by melittin treatment. These results demonstrate that 1.0×10(7) CFU/ml of heat-killed P. acnes induces THP-1 cell apoptosis and secretion of inflammatory cytokines. Also, administration of melittin significantly decreases the expression of various inflammatory cytokines in heat-killed P. acnes-treated THP-1 monocytic cells. In particular, melittin exerts anti-apoptotic effects against 1.0×10(7) CFU/ml of heat-killed P. acnes injury to THP-1 cells.
Collapse
Affiliation(s)
- Woo-Ram Lee
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Kyung-Hyun Kim
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Hyun-Jin An
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Jung-Yeon Kim
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea
| | - Sang-Mi Han
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, South Korea
| | - Kwang-Gil Lee
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, South Korea
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, College of Medicine, Catholic University of Daegu, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 705-718, South Korea.
| |
Collapse
|
25
|
The activation of p38 and JNK by ROS, contribute to OLO-2-mediated intrinsic apoptosis in human hepatocellular carcinoma cells. Food Chem Toxicol 2014; 63:38-47. [DOI: 10.1016/j.fct.2013.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/30/2013] [Accepted: 10/27/2013] [Indexed: 11/19/2022]
|
26
|
Sixt BS, Kostanjšek R, Mustedanagic A, Toenshoff ER, Horn M. Developmental cycle and host interaction of Rhabdochlamydia porcellionis, an intracellular parasite of terrestrial isopods. Environ Microbiol 2013; 15:2980-93. [PMID: 24024954 DOI: 10.1111/1462-2920.12252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 12/01/2022]
Abstract
Environmental chlamydiae are a diverse group of obligate intracellular bacteria related to well-known pathogens of humans. To date, only very little is known about chlamydial species infecting arthropods. In this study, we used cocultivation with insect cells for recovery and maintenance of Rhabdochlamydia porcellionis, a parasite of the crustacean host Porcellio scaber. In vitro, the infection cycle of R. porcellionis was completed within 7 days, resulting in the release of infectious particles by host cell lysis. Lack of apoptosis induction during the entire course of infection, combined with a reduced sensitivity of infected cultures to experimentally induced programmed cell death, indicates that R. porcellionis like its human pathogenic relatives counteracts this host defence mechanism. Interestingly, the rod-shaped variant of R. porcellionis, proposed to represent their mature infective stage, was not detected in cell culture, suggesting that its development may require prolonged maturation or may be triggered by specific conditions encountered only in the animal host. This first cell culture-based system for the cultivation and investigation of an arthropod-associated chlamydial species will help to better understand the biology of a so far neglected group of chlamydiae and its recently suggested potential to cause disease in humans.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Azra Mustedanagic
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Elena R Toenshoff
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Geraniin down regulates gamma radiation-induced apoptosis by suppressing DNA damage. Food Chem Toxicol 2013; 57:147-53. [PMID: 23541438 DOI: 10.1016/j.fct.2013.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/24/2013] [Accepted: 03/12/2013] [Indexed: 02/06/2023]
Abstract
Gamma ray irradiation triggers DNA damage and apoptosis of proliferating stem cells and peripheral immune cells, resulting in the destruction of intestinal crypts and lymphoid system. Geraniin is a natural compound extracts from an aquatic plant Nymphaea tetragona and possesses good antioxidant property. In this study, we demonstrate that geraniin rescues radiosensitive splenocytes and jejunal crypt cells from radiation-induced DNA damage and apoptosis. Isolated splenocytes from C57BL/6 mice treated with geraniin were protected against radiation injury of 2 Gy irradiation through the enhancement of the proliferation and attenuation of DNA damage. Also, geraniin inhibited apoptosis in radiosensitive splenocytes by reducing the expression level and immunoreactivity of proapoptotic p53 and Bax and increasing those of anti-apoptotic Bcl-2. In mice exposed to radiation, geraniin treatment protected splenocytes and intestinal crypt cells from radiation-induced cell death. Our results suggest that geraniin presents radioprotective effects by regulating DNA damage on splenocytes, exerting immunostimulatory capacities and inhibiting apoptosis of radiosensitive immune cells and jejunal crypt cells. Therefore, geraniin can be a radioprotective agent against γ-irradiation exposure.
Collapse
|
28
|
Nayak MK, Kulkarni PP, Dash D. Regulatory role of proteasome in determination of platelet life span. J Biol Chem 2013; 288:6826-34. [PMID: 23329846 DOI: 10.1074/jbc.m112.403154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Limit of platelet life span (8-10 days) is determined by the activity of a putative "internal clock" composed of Bcl-2 family proteins, whereas the role of other molecular players in this process remains obscure. Here, we sought to establish a central role of proteasome in platelet life span regulation. Administration of mice with inhibitors of proteasome peptidase activity induced significant thrombocytopenia. This was associated with enhanced clearance of biotin-labeled platelets from circulation and reduction in average platelet half-life from 66 to 37 h. Cells pretreated in vitro with proteasome inhibitors exhibited augmented annexin V binding and a drop in mitochondrial transmembrane potential indicative of apoptotic cell death and decreased platelet life span. These cells were preferentially phagocytosed by monocyte-derived macrophages, thus linking proteasome activity with platelet survival. The decisive role of proteasome in this process was underscored from enhanced expression of conformationally active Bax in platelets with attenuated proteasome activity, which was consistent with pro-apoptotic phenotype of these cells. The present study establishes a critical role of proteasome in delimiting platelet life span ostensibly through constitutive elimination of the conformationally active Bax. These findings bear potential implications in clinical settings where proteasome peptidase activities are therapeutically targeted.
Collapse
Affiliation(s)
- Manasa K Nayak
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
29
|
Ellesat KS, Holth TF, Wojewodzic MW, Hylland K. Atorvastatin up-regulate toxicologically relevant genes in rainbow trout gills. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1841-1856. [PMID: 22555812 DOI: 10.1007/s10646-012-0918-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2012] [Indexed: 05/31/2023]
Abstract
There are large and increasing discharges of statins into the aquatic environment. Statins are cholesterol-lowering pharmaceuticals, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, an enzyme in the cholesterol synthesis pathway. Earlier studies have shown that statins will affect the expression of a range of genes in mammalian tissues and this group of pharmaceuticals has also been shown to affect membrane transporters. Changes in gene expression and ion transport in aquatic organisms may have dramatic consequences for the individual. The aim of the present study was to clarify whether waterborne exposure to a selected statin, atorvastatin, would affect gene expression in rainbow trout (Oncorhynchus mykiss) gill or liver or ion regulation in gills. Juvenile rainbow trout were exposed to two atorvastatin acid and atorvastatin lactone concentrations for 7 days (nominal concentrations 200 ng L(-1) and 10 μg L(-1)). The exposures caused up-regulated gene expression in gill, not liver, and only at the lowest concentration. Genes involved in membrane transport (pgp, mrp1), oxidative stress response (sod, mt), apoptosis (bax) and biotransformation (sult2b) were differentially expressed whereas the expression of genes involved in cholesterol biosynthesis (hmgr, fdps) or peroxisomal proliferation (ppar) were not affected. There were no significant changes in gill Na(+)/K(+) ATPase activity following exposure to atorvastatin. The pattern of differentially expressed genes in rainbow trout gills differ from responses previously observed in mammalian tissues following statin exposure.
Collapse
|
30
|
Villar CC, Chukwuedum Aniemeke J, Zhao XR, Huynh-Ba G. Induction of apoptosis in oral epithelial cells by Candida albicans. Mol Oral Microbiol 2012; 27:436-48. [PMID: 23134609 DOI: 10.1111/j.2041-1014.2012.00648.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During infection, interactions between Candida albicans and oral epithelial cells result in oral epithelial cell death. This is clinically manifested by the development of oral mucosal ulcerations generally associated with discomfort. In vitro studies have shown that C. albicans induces early apoptotic alterations in oral epithelial cells; however, these studies have also shown that treatment of infected cells with caspase inhibitors does not prevent their death. The reasons for these contradictory results are unknown and it is still not clear if C. albicans stimulates oral epithelial signaling pathways that promote apoptotic cell death. Activation of specific death pathways in response to microbial organisms plays an essential role in modulating the pathogenesis of a variety of infectious diseases. The aim of this study was to (i) characterize C. albicans-induced apoptotic morphological alterations in oral epithelial cells, and (ii) investigate the activation of apoptotic signaling pathways and expression of apoptotic genes during infection. Candida albicans induced early apoptotic changes in over 50% of oral epithelial cells. However, only 15% of those showed mid-late apoptotic alterations. At the molecular level, C. albicans caused a loss of the mitochondrial transmembrane potential and translocation of mitochondrial cytochrome c. Caspase-3/9 activities increased only during the first hours of infection. Moreover, poly[ADP ribose] polymerase 1 was cleaved into apoptotic and necrotic-like fragments. Finally, five anti-apoptotic genes were significantly upregulated and two pro-apoptotic genes were downregulated during infection. Altogether, these findings indicate that epithelial apoptotic pathways are activated in response to C. albicans, but fail to progress and promote apoptotic cell death.
Collapse
Affiliation(s)
- C Cunha Villar
- Department of Periodontics, The University of Texas, Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
31
|
Kim YM, Kim IH, Nam TJ. Induction of apoptosis signaling by glycoprotein of Capsosiphon fulvescens in human gastric cancer (AGS) cells. Nutr Cancer 2012; 64:761-9. [PMID: 22591240 DOI: 10.1080/01635581.2012.683228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Capsosiphon fulvescens is a well-known green sea algae that has been touted in recent years as a potential anticancer drug. In this study, C. fulvescens glycoprotein (Cf-GP) showed proapoptotic signaling in AGS cells. An MTS assay indicated that Cf-GP inhibited the proliferation of AGS cell lines in a dose-dependent manner. Cells were treated with Cf-GP and the expression of proteins associated with apoptosis was examined by Western blotting. Based on the Western blot, expression of Cf-GP-activated caspase-cascade and PARP, which is a substrate of caspase-3 and -8, and proteins of the Bcl-2 family was observed. Cf-GP treatment stimulated the release of cytochrome C and apoptotic protease activating factor-1 from mitochondria to the cytosol. Cf-GP inhibited the growth of AGS cells through induction of sub-G1 phase arrest. We confirmed that sub-G1-phase arrest was associated with a decrease in the expression of cyclin D, cyclin E, Cdk2, Cdk4, and Cdk6, and an increase in the protein levels of p21 and p27. As a result, the increased sub-G1 ratio appears to be inhibited by cell proliferation. Therefore, we can confirm apoptosis in the AGS cells. Our results suggest that Cf-GP could be a potential source of biofunctional material that shows anticancer effects in human gastrointestinal cancer.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
32
|
Tang RX, Kong FY, Fan BF, Liu XM, You HJ, Zhang P, Zheng KY. HBx activates FasL and mediates HepG2 cell apoptosis through MLK3-MKK7-JNKs signal module. World J Gastroenterol 2012; 18:1485-95. [PMID: 22509080 PMCID: PMC3319944 DOI: 10.3748/wjg.v18.i13.1485] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/02/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the possible mechanism by which hepatitis B virus X protein (HBx) mediates apoptosis of HepG2 cells. METHODS HBx expression vector pcDNA3.1-X was transfected into HepG2 cells to establish an HBx high-expression cellular model as pcDNA3.1-X transfected group. The pcDNA3.1-X and pSilencer3.1-shHBX (HBx antagonist) were cotransfected into HepG2 cells to establish an HBx low-expression model as RNAi group. Untransfected HepG2 cells and HepG2 cells transfected with negative control plasmid were used as controls. Apoptosis rate, the expression of Fas/FasL signaling pathway-related proteins and the phosphorylation levels of MLK3, MKK7 and JNKs, which are upstream molecules of death receptor pathways and belong to the family of mitogen-activated protein kinases (MAPKs), were measured in each group. RESULTS Compared with HepG2 cell group and RNAi group, apoptosis rate, the expression of Fas and FasL proteins, and the activation of MLK3, MKK7 and JNKs were increased in the pcDNA3.1-X transfected group. The activation of JNKs and expression of FasL protein were inhibited in the pcDNA3.1-X transfected group when treated with a known JNK inhibitor, SP600125. When authors treated pcDNA3.1-X transfected group with K252a, a known MLK3 inhibitor, the activation of MLK3, MKK7 and JNKs as well as expression of FasL protein was inhibited. Furthermore, cell apoptosis rate was also significantly declined in the presence of K252a in the pcDNA3.1-X transfected group. CONCLUSION HBx can induce HepG2 cell apoptosis via a novel active MLK3-MKK7-JNKs signaling module to upregulate FasL protein expression.
Collapse
|
33
|
Chen W, Liu L, Luo Y, Odaka Y, Awate S, Zhou H, Shen T, Zheng S, Lu Y, Huang S. Cryptotanshinone activates p38/JNK and inhibits Erk1/2 leading to caspase-independent cell death in tumor cells. Cancer Prev Res (Phila) 2012; 5:778-87. [PMID: 22490436 DOI: 10.1158/1940-6207.capr-11-0551] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, the underlying mechanism is not well understood. Here, we show that CPT induced caspase-independent cell death in human tumor cells (Rh30, DU145, and MCF-7). Besides downregulating antiapoptotic protein expression of survivin and Mcl-1, CPT increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK), and inhibited phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2). Inhibition of p38 with SB202190 or JNK with SP600125 attenuated CPT-induced cell death. Similarly, silencing p38 or c-Jun also in part prevented CPT-induced cell death. In contrast, expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) conferred resistance to CPT inhibition of Erk1/2 phosphorylation and induction of cell death. Furthermore, we found that all of these were attributed to CPT induction of reactive oxygen species (ROS). This is evidenced by the findings that CPT induced ROS in a concentration- and time-dependent manner; CPT induction of ROS was inhibited by N-acetyl-L-cysteine (NAC), a ROS scavenger; and NAC attenuated CPT activation of p38/JNK, inhibition of Erk1/2, and induction of cell death. The results suggested that CPT induction of ROS activates p38/JNK and inhibits Erk1/2, leading to caspase-independent cell death in tumor cells.
Collapse
Affiliation(s)
- Wenxing Chen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, 71130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Y, Zhang G, Hendrix LR, Tesh VL, Samuel JE. Coxiella burnetii induces apoptosis during early stage infection via a caspase-independent pathway in human monocytic THP-1 cells. PLoS One 2012; 7:e30841. [PMID: 22303462 PMCID: PMC3267756 DOI: 10.1371/journal.pone.0030841] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/27/2011] [Indexed: 11/25/2022] Open
Abstract
The ability of Coxiella burnetii to modulate host cell death may be a critical factor in disease development. In this study, human monocytic THP-1 cells were used to examine the ability of C. burnetii Nine Mile phase II (NMII) to modulate apoptotic signaling. Typical apoptotic cell morphological changes and DNA fragmentation were detected in NMII infected cells at an early stage of infection. FACS analysis using Annexin-V-PI double staining showed the induction of a significant number of apoptotic cells at an early stage of NMII infection. Double staining of apoptotic cell DNA and intracellular C. burnetii indicates that NMII infected cells undergoing apoptosis. Interestingly, caspase-3 was not cleaved in NMII infected cells and the caspase-inhibitor Z-VAD-fmk did not prevent NMII induced apoptosis. Surprisingly, the caspase-3 downstream substrate PARP was cleaved in NMII infected cells. These results suggest that NMII induces apoptosis during an early stage of infection through a caspase-independent pathway in THP-1 cells. In addition, NMII-infected monocytes were unable to prevent exogenous staurosporine-induced apoptotic death. Western blot analysis indicated that NMII infection induced the translocation of AIF from mitochondria into the nucleus. Cytochrome c release and cytosol-to-mitochondrial translocation of the pore-forming protein Bax in NMII infected cells occurred at 24 h post infection. These data suggest that NMII infection induced caspase-independent apoptosis through a mechanism involving cytochrome c release, cytosol-to-mitochondrial translocation of Bax and nuclear translocation of AIF in THP-1 monocytes. Furthermore, NMII infection increased TNF-α production and neutralization of TNF-α in NMII infected cells partially blocked PARP cleavage, suggesting TNF-α may play a role in the upstream signaling involved in NMII induced apoptosis. Antibiotic inhibition of C. burnetii RNA synthesis blocked NMII infection-induced PARP activation. These results suggest that both intracellular C. burnetii replication and secreted TNF-α contribute to NMII infection-triggered apoptosis during an early stage of infection.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Guoquan Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri, United States of America
- * E-mail: (JS); (GZ)
| | - Laura R. Hendrix
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M Health Science Center, Bryan, Texas, United States of America
| | - Vernon L. Tesh
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M Health Science Center, Bryan, Texas, United States of America
| | - James E. Samuel
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M Health Science Center, Bryan, Texas, United States of America
- * E-mail: (JS); (GZ)
| |
Collapse
|
35
|
Sixt BS, Hiess B, König L, Horn M. Lack of effective anti-apoptotic activities restricts growth of Parachlamydiaceae in insect cells. PLoS One 2012; 7:e29565. [PMID: 22253735 PMCID: PMC3253803 DOI: 10.1371/journal.pone.0029565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/30/2011] [Indexed: 12/02/2022] Open
Abstract
The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals.
Collapse
Affiliation(s)
- Barbara S. Sixt
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Birgit Hiess
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Lena König
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
36
|
Dingayan LP. p38 Mitogen-activated protein kinase (p38 MAPK) and NADPH Oxidase (NOX) are cytoprotective determinants in the trophozoite-induced apoptosis of peripheral blood mononuclear cells. Cell Immunol 2011; 272:25-32. [PMID: 22014391 DOI: 10.1016/j.cellimm.2011.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/04/2011] [Accepted: 09/27/2011] [Indexed: 12/13/2022]
Abstract
In a host-parasite interaction model, peripheral blood mononuclear cells (PBMCs) were co-incubated with trophozoites of Entamoeba histolytica to determine if the cytotoxic killing of PBMCs involves (NOX)-derived reactive oxygen species (ROS) and p38 mitogen-activated protein kinase (MAPK). Experimental PBMC populations were pre-treated with diphenylene iodonium chloride to inhibit NOX, N-acetylcysteine to inhibit p47(phox) (a subunit of NOX), and SB202190 to inhibit p38 MAPK, with co-suppression of caspases. Percentage apoptosis, caspase-3 activity and ROS generation were monitored in all PBMC populations. Pre-treatment significantly raised the proportion of apoptotic PBMCs, but changes in caspase-3 activity and ROS production were relatively negligible. These results indicate that p38 MAPK and NOX were cytoprotective determinants in the trophozoite-induced apoptosis of PBMCs. Further, the programmed cell death herein investigated was independent of both caspases and ROS, and the exact mechanism of cell death remains to be an open question.
Collapse
|
37
|
Henke N, Lisak DA, Schneider L, Habicht J, Pergande M, Methner A. The ancient cell death suppressor BAX inhibitor-1. Cell Calcium 2011; 50:251-60. [PMID: 21663964 DOI: 10.1016/j.ceca.2011.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Bax inhibitor-1 (BI-1) was initially identified for its ability to inhibit BAX-induced apoptosis in yeast cells and is the founding member of a family of highly hydrophobic proteins localized in diverse cellular membranes. It is evolutionarily conserved and orthologues from plants can substitute for mammalian BI-1 in regard to its anti-apoptotic function suggesting a high degree of functional conservation. BI-1 interacts with BCL-2 and BCL-XL and, similar to these two anti-apoptotic proteins, the effect of BI-1 on cell death involves changes in the amount of Ca(2+) releasable from intracellular stores. However, BI-1 is also a negative regulator of the endoplasmic reticulum stress sensor IRE1 α, it interacts with G-actin and increases actin polymerization, enhances cancer metastasis by altering glucose metabolism and activating the sodium-hydrogen exchanger, and reduces the production of reactive oxygen species through direct interaction with NADPH-P450 reductase. In this contribution, we summarize what is known about the expression, intracellular localization and structure of BI-1 and specifically illuminate its effects on the intracellular Ca(2+) homeostasis and how this might relate to its other functions. We also present a thorough phylogenetic analysis of BI-1 proteins from major phyla together with paralogues from all BI-1 family members.
Collapse
Affiliation(s)
- Nadine Henke
- Neurologische Klinik, Universitätsklinikum Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
38
|
ZL11n is a novel nitric oxide-releasing derivative of farnesylthiosalicylic acid that induces apoptosis in human hepatoma HepG2 cells via MAPK/mitochondrial pathways. Biochem Biophys Res Commun 2011; 409:752-7. [DOI: 10.1016/j.bbrc.2011.05.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/14/2011] [Indexed: 11/19/2022]
|
39
|
Chen D, Tang J, Khatibi NH, Zhu M, Li Y, Wang C, Jiang R, Tu L, Wang S. Treatment with Z-ligustilide, a component of Angelica sinensis, reduces brain injury after a subarachnoid hemorrhage in rats. J Pharmacol Exp Ther 2011; 337:663-72. [PMID: 21398513 DOI: 10.1124/jpet.110.177055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke subtype accounting for approximately 3 to 7% of cases each year. Despite its rarity among the various stroke types, SAH is still responsible for approximately 25% of all stroke fatalities. Although various preventative and therapeutic interventions have been explored for potential neuroprotection after SAH, a considerable percentage of patients still experience serious neurologic and/or cognitive impairments as a result of the primary hemorrhage and/or secondary brain damage that occurs. Z-ligustilide (LIG), the primary lipophilic component of the Chinese traditional medicine radix Angelica sinensis, has been shown to reduce ischemic brain injury via antiapoptotic pathways. Accordingly, in our study, we investigated the neuroprotective potential of LIG after experimental SAH in rats. Rats with SAH that was induced using the established double hemorrhage model were studied with and without LIG treatment. Mortality, neurobehavioral evaluation, brain water content, blood-brain barrier (BBB) permeability, and vasospasm assessment of the basilar artery were measured on days 3 and 7 after injury. Additional testing was done to evaluate for apoptosis using TdT-mediated dUTP-biotin nick end labeling staining as well as immunohistochemistry and Western blotting to identify key proapoptotic/survival proteins, i.e., p53, Bax, Bcl-2, and cleaved caspase-3. The results showed that LIG treatment reduced mortality, neurobehavioral deficits, brain edema, BBB permeability, and cerebral vasospasm. In addition, treatment reduced the number of apoptotic cells in the surrounding brain injury site, which accompanied a marked down-regulation of proapoptotic proteins, p53, and cleaved caspase-3. Our data suggest that LIG may be an effective therapeutic modality for SAH victims by altering apoptotic mechanisms.
Collapse
Affiliation(s)
- Di Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China, 400016
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vats V, Agrawal T, Salhan S, Mittal A. Characterization of Apoptotic Activities DuringChlamydia trachomatisInfection in Primary Cervical Epithelial Cells. Immunol Invest 2010; 39:674-87. [DOI: 10.3109/08820139.2010.485626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Role of high-mobility group box 1 protein and poly(ADP-ribose) polymerase 1 degradation in Chlamydia trachomatis-induced cytopathicity. Infect Immun 2010; 78:3288-97. [PMID: 20421386 DOI: 10.1128/iai.01404-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As intracellular bacteria, chlamydiae block the apoptotic pathways of their host cells. However, the infection of epithelial cells causes the loss of cell membrane integrity and can result in nonapoptotic death. Normally, cells undergoing necrosis release high-mobility group box 1 protein (HMGB1) that acts as an important proinflammatory mediator. Here, we show that in Chlamydia trachomatis-infected HeLa cells HMGB1 is not translocated from the nucleus to the cytosol and not released from injured cells in increased amounts. At 48 h after infection, degradation of HMGB1 was observed. In infected cells, poly(ADP-ribose) polymerase 1 (PARP-1), a DNA repair enzyme that also regulates HMGB1 translocation, was found to be cleaved into fragments that correspond to a necrosis like pattern of PARP-1 degradation. Cell-free cleavage assays and immunoprecipitation using purified proteolytic fractions from infected cells demonstrated that the chlamydial-protease-like activity factor (CPAF) is responsible for the cleavage of both HMGB1 and PARP-1. Proteolytic cleavage of PARP-1 was accompanied by a significant decrease in the enzymatic activity in a time-dependent manner. The loss of PARP-1 function obviously affects the viability of Chlamydia-infected cells because silencing of PARP-1 in uninfected HeLa cells with specific small interfering RNA results in increased cell membrane permeability. Our findings suggest that the Chlamydia-specific protease CPAF interferes with necrotic cell death pathways. By the degradation of HMGB1 and PARP-1, the pathogen may have evolved a strategy to reduce the inflammatory response to membrane-damaged cells in vivo.
Collapse
|
42
|
Paschen SA, Christian JG, Vier J, Schmidt F, Walch A, Ojcius DM, Häcker G. Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. ACTA ACUST UNITED AC 2008; 182:117-27. [PMID: 18625845 PMCID: PMC2447887 DOI: 10.1083/jcb.200804023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chlamydiae replicate in a vacuole within epithelial cells and commonly induce cell damage and a deleterious inflammatory response of unknown molecular pathogenesis. The chlamydial protease-like activity factor (CPAF) translocates from the vacuole to the cytosol, where it cleaves several cellular proteins. CPAF is synthesized as an inactive precursor that is processed and activated during infection. Here, we show that CPAF can be activated in uninfected cells by experimentally induced oligomerization, reminiscent of the activation mode of initiator caspases. CPAF activity induces proteolysis of cellular substrates including two novel targets, cyclin B1 and PARP, and indirectly results in the processing of pro-apoptotic BH3-only proteins. CPAF activation induces striking morphological changes in the cell and, later, cell death. Biochemical and ultrastructural analysis of the cell death pathway identify the mechanism of cell death as nonapoptotic. Active CPAF in uninfected human cells thus mimics many features of chlamydial infection, implicating CPAF as a major factor of chlamydial pathogenicity, Chlamydia-associated cell damage, and inflammation.
Collapse
Affiliation(s)
- Stefan A Paschen
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, D-81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
BACKGROUND AND PURPOSE Programmed cell death (pcd) plays a critical role in the development of the nervous system, as well as in its response to insult. Both anti-pcd and pro-pcd modulators play prominent roles in development and disease, including ischemic cerebrovascular disease. The purpose of this article is therefore to review the basics of programmed cell death. METHODS There have been over 100 000 scientific and clinical publications on the topic of programmed cell death and its most well known form, apoptosis. The principles emerging from these studies are reviewed here. RESULTS Programmed cell death is a form of cell death in which the cell plays an active role in its own demise. Apoptosis is the most well-defined form of pcd, but recent studies have begun to characterize an alternative program, autophagic cell death. In addition, there appear to be programmatic cell deaths that do not fit the criteria for either apoptosis or autophagic cell death, arguing that additional programs may also be available to cells. CONCLUSIONS Constructing a mechanistic taxonomy of all forms of pcd--based on inhibitors, activators, and identified biochemical pathways involved in each form of pcd--should offer new insight into cell deaths associated with cerebrovascular disease and other diseases, and ultimately offer new therapeutic approaches.
Collapse
|
44
|
Ying S, Pettengill M, Ojcius DM, Häcker G. Host-Cell Survival and Death During Chlamydia Infection. CURRENT IMMUNOLOGY REVIEWS 2007; 3:31-40. [PMID: 18843378 PMCID: PMC2562443 DOI: 10.2174/157339507779802179] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death.
Collapse
Affiliation(s)
- Songmin Ying
- Institute for Medical Microbiology, Technische Universität München, D-81675 Munich, Germany
| | | | | | | |
Collapse
|
45
|
Schöier J, Högdahl M, Söderlund G, Kihlström E. Chlamydia (Chlamydophila) pneumoniae-induced cell death in human coronary artery endothelial cells is caspase-independent and accompanied by subcellular translocations of Bax and apoptosis-inducing factor. ACTA ACUST UNITED AC 2006; 47:207-16. [PMID: 16831207 DOI: 10.1111/j.1574-695x.2006.00083.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atherosclerosis and coronary heart disease are causing high morbidity and mortality worldwide. Different risk factors have been demonstrated, but the exact mechanisms behind these diseases are still not fully understood. Recent studies have suggested Chlamydia pneumoniae to be involved in the pathogenesis, and increased apoptotic indexes in atherosclerotic plaques have been documented. In this study, we show that C. pneumoniae induces apoptosis and necrosis in populations of human coronary artery endothelial cells. Apoptosis was determined by TUNEL and flow cytometry after staining of cells with annexin V and propidium iodide, and defined as TUNEL-reactive or annexin V-positive, propidium iodide-negative cells. The apoptosis was induced within 2 h postinfection and increased with inoculation dose. The general caspase inhibitor z-VAD-fmk did not affect apoptotic frequencies. By immunochemistry and immunoblot, we demonstrated activation and subcellular translocation of the proapoptotic protein Bax, and translocation of apoptosis-inducing factor from the cytosol to the nucleus. These results indicate that C. pneumoniae-induced apoptosis in human coronary artery endothelial cells is caspase-independent and regulated by Bax and apoptosis-inducing factor.
Collapse
Affiliation(s)
- Johan Schöier
- Department of Molecular and Clinical Medicine, Division of Clinical Microbiology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
46
|
Ying S, Fischer SF, Pettengill M, Conte D, Paschen SA, Ojcius DM, Häcker G. Characterization of host cell death induced by Chlamydia trachomatis. Infect Immun 2006; 74:6057-66. [PMID: 16940144 PMCID: PMC1695498 DOI: 10.1128/iai.00760-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chlamydia are obligate intracellular bacteria that modulate apoptosis of the host cell. Strikingly, chlamydial infection has been reported both to inhibit and to induce apoptosis. Although the ability to inhibit apoptosis has been corroborated by the identification of cellular targets, confirmation of cell death induction has been complicated by a mixture of apoptotic features and atypical cell death during infection, as well as by differences in the experimental techniques used to measure cell death. Here we use a panel of well-established approaches in the study of apoptosis to define the form of cell death induced by Chlamydia trachomatis infection. Infected cells displayed apoptotic features such as nuclear condensation and fragmentation, as well as positive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining. Fragmentation of genomic DNA occurred, but was atypical. Clear evidence against the activation of effector caspases was found. Nuclear changes were measured in fibroblasts lacking one or both of the effectors of mitochondrial apoptosis, Bax and Bak. A slight reduction in nuclear changes was observed in Bax-deficient cells and in Bax/Bak double-deficient cells. Most surprisingly, this reduction was almost complete in Bak-deficient cells. Finally, dying infected cells were efficiently taken up by professional phagocytes, suggesting that Chlamydia-induced host-cell death could play a role in the immune response. In conclusion, chlamydial infection can induce cell death. Although Chlamydia-induced cell death has certain morphological features of apoptosis, it does not result from activation of the apoptotic pathway.
Collapse
Affiliation(s)
- Songmin Ying
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Lee CJ, Han JS, Seo CY, Park TH, Kwon HC, Jeong JS, Kim IH, Yun J, Bae YS, Kwak JY, Park JI. Pioglitazone, a synthetic ligand for PPARγ, induces apoptosis in RB-deficient human colorectal cancer cells. Apoptosis 2006; 11:401-11. [PMID: 16520894 DOI: 10.1007/s10495-006-4003-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
No published data are available about the expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and the role of PPARgamma in retinoblastoma protein (RB)-deficient human colorectal cancer (CRC) cells (SNU-C4 and SNU-C2A). Our aim was to investigate whether PPARgamma is expressed in SNU-C4 and SNU-C2A cells and to elucidate possible molecular mechanisms underlying the effect of pioglitazone, a synthetic ligand for PPARgamma, on cell growth in these cell lines. RT-PCR and Western blot analysis showed that both human CRC cell lines expressed PPARgamma mRNA and protein. Pioglitazone inhibited the cell growth of both cell lines through G2/M phase block and apoptosis. In addition, pioglitazone caused a down-regulation of the X chromosome-linked inhibitor of apoptosis (XIAP), Bcl-2, and cyclooxygenase-2 (COX-2) under conditions leading to PPARgamma down-regulation. These results suggest that pioglitazone may have therapeutic relevance or significance in the treatment of human CRC, and the down-regulation of XIAP, Bcl-2, and COX-2 may contribute to pioglitazone-induced apoptosis in these and other RB-deficient cell lines and tumors.
Collapse
Affiliation(s)
- C J Lee
- Department of Biochemistry, Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Carmen JC, Hardi L, Sinai AP. Toxoplasma gondii inhibits ultraviolet light-induced apoptosis through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Cell Microbiol 2006; 8:301-15. [PMID: 16441440 DOI: 10.1111/j.1462-5822.2005.00622.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cells infected with the protozoan parasite Toxoplasma gondii are resistant to diverse apoptotic stimuli. In this study, we perform a detailed analysis of the manipulation of the mitochondrial arm of the apoptotic cascade by the parasite. Apoptosis was induced using irradiation with ultraviolet light (UV), and the kinetics of caspase activation, cytochrome c release and activation of the upstream signalling pathways were examined. The evidence clearly points to T. gondii targeting multiple steps in the transmission [inhibition of c-Jun N-terminal kinase (JNK) activation in response to UV], triggering (inhibition of cytochrome c release by affecting the balance of pro- and anti-apoptotic BCL-2 family members) and execution (inhibition of caspase 9 and caspase 3) phases of the apoptotic cascade. Interestingly, the multilevel pattern of inhibition that emerges suggests that the global inhibition of the mitochondrial arm of apoptosis is not likely to be contributed to by the small subset of mitochondria recruited to the T. gondii parasitophorous vacuole membrane.
Collapse
Affiliation(s)
- John C Carmen
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
49
|
Ulett GC, Maclean KH, Nekkalapu S, Cleveland JL, Adderson EE. Mechanisms of group B streptococcal-induced apoptosis of murine macrophages. THE JOURNAL OF IMMUNOLOGY 2005; 175:2555-62. [PMID: 16081829 DOI: 10.4049/jimmunol.175.4.2555] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Apoptosis of murine and human macrophages induced by group B Streptococcus agalactiae (GBS) is likely an important virulence mechanism that is used by the bacteria to suppress the host immune response and to persist at sites of infection. The mechanisms by which GBS induces apoptosis are, however, largely unknown. In this study, we report that in murine macrophages GBS induces unique changes in the regulation and localization of the apoptotic regulators Bad, 14-3-3, and Omi/high-temperature requirement A2 and leads to the release of cytochrome c and the activation of caspase-9 and caspase-3. Furthermore, inhibition of caspase-3 impaired GBS-induced apoptosis of macrophages. The ability to modulate the activity of effector caspases may therefore represent an unexploited avenue for therapeutic intervention in GBS infections.
Collapse
Affiliation(s)
- Glen C Ulett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
50
|
Hareramadas B, Rai U. Mechanism of androgen-induced thymic atrophy in the wall lizard, Hemidactylus flaviviridis: an in vitro study. Gen Comp Endocrinol 2005; 144:10-9. [PMID: 16004999 DOI: 10.1016/j.ygcen.2005.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2004] [Revised: 04/09/2005] [Accepted: 04/13/2005] [Indexed: 11/16/2022]
Abstract
The present in vitro study demonstrates the effect of androgen on thymocyte apoptosis leading to thymic atrophy in the wall lizard, Hemidactylus flaviviridis. Thymocytes collected from castrated lizards were incubated with varying concentrations of dihydrotestosterone (DHT) to observe its effect on proliferation and apoptosis. DHT treatment reduced the tritiated thymidine incorporation in thymocytes, suggesting that androgen directly inhibits thymocyte proliferation. It also caused apoptosis of thymocytes effectively at 10(-7)M. However, the increased apoptotic action of DHT was indirectly mediated through thymic epithelial cell-rich stromal cell components (TEC). This observation was reaffirmed by in vitro incubation of thymocytes with DHT-pretreated TEC-conditioned medium. However, the DHT-induced TEC-secreted apoptotic factors could induce thymocyte DNA fragmentation only when DHT was added to the conditioned medium. It implies that DHT priming of thymocytes is required for the apoptotic effect of DHT-induced TEC-secreted factor. DHT-induced thymocyte apoptosis was found to be caspase-dependent since it activated the initiator (caspase-9) and effector caspases (caspases-3 and -7) as well as cleaved the enzyme substrate poly(ADP-ribose) polymerase (PARP). Further, the apoptotic effect of DHT was routed through its classical receptors, as non-steroidal antiandrogen flutamide blocked the DHT-induced thymocyte apoptosis. The inhibition of apoptosis by transcription/translation inhibitors further substantiates the genomic pathway of DHT action. It can be concluded that DHT, in addition to inhibiting thymocyte proliferation directly, accelerates caspase-dependent apoptotic process in thymocytes indirectly through TEC via a genomic pathway. Nevertheless, the priming of thymocytes with DHT is required for the apoptotic effect of TEC-secreted factor.
Collapse
Affiliation(s)
- B Hareramadas
- Comparative Endocrinology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi 110 007, India
| | | |
Collapse
|