1
|
Grubwieser P, Böck N, Soto EK, Hilbe R, Moser P, Seifert M, Dichtl S, Govrins MA, Posch W, Sonnweber T, Nairz M, Theurl I, Trajanoski Z, Weiss G. Human airway epithelium controls Pseudomonas aeruginosa infection via inducible nitric oxide synthase. Front Immunol 2024; 15:1508727. [PMID: 39691712 PMCID: PMC11649544 DOI: 10.3389/fimmu.2024.1508727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Airway epithelial cells play a central role in the innate immune response to invading bacteria, yet adequate human infection models are lacking. Methods We utilized mucociliary-differentiated human airway organoids with direct access to the apical side of epithelial cells to model the initial phase of Pseudomonas aeruginosa respiratory tract infection. Results Immunofluorescence of infected organoids revealed that Pseudomonas aeruginosa invades the epithelial barrier and subsequently proliferates within the epithelial space. RNA sequencing analysis demonstrated that Pseudomonas infection stimulated innate antimicrobial immune responses, but specifically enhanced the expression of genes of the nitric oxide metabolic pathway. We demonstrated that activation of inducible nitric oxide synthase (iNOS) in airway organoids exposed bacteria to nitrosative stress, effectively inhibiting intra-epithelial pathogen proliferation. Pharmacological inhibition of iNOS resulted in expansion of bacterial proliferation whereas a NO producing drug reduced bacterial numbers. iNOS expression was mainly localized to ciliated epithelial cells of infected airway organoids, which was confirmed in primary human lung tissue during Pseudomonas pneumonia. Discussion Our findings highlight the critical role of epithelial-derived iNOS in host defence against Pseudomonas aeruginosa infection. Furthermore, we describe a human tissue model that accurately mimics the airway epithelium, providing a valuable framework for systemically studying host-pathogen interactions in respiratory infections.
Collapse
Affiliation(s)
- Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nina Böck
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Erika Kvalem Soto
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- INNPATH, Innsbruck Medical University Hospital, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie Dichtl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Miriam Alisa Govrins
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Tram MK, Schammel J, Vancavage R, Welliver C, Inouye BM. Emerging strategies for the prevention of bacterial biofilm in prosthetic surgery. Transl Androl Urol 2024; 13:833-845. [PMID: 38855589 PMCID: PMC11157393 DOI: 10.21037/tau-23-550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 06/11/2024] Open
Abstract
Penile prosthesis implantation is an effective treatment for erectile dysfunction (ED) with high patient satisfaction and effectiveness. Unfortunately, infections remain a dreaded complication, often necessitating device removal and imposing a substantial healthcare cost. Biofilms are communities of microorganisms encased in a self-produced polymeric matrix that can attach to penile prostheses. Biofilms have been demonstrated on the majority of explanted prostheses for both infectious and non-infectious revisions and are prevalent even in asymptomatic patients. Biofilms play a role in microbial persistence and exhibit unique antibiotic resistance strategies that can lead to increased infection rates in revision surgery. Biofilms demonstrate physical barriers through the development of an extracellular polymeric substance (EPS) that hinders antibiotic penetrance and the bacteria within biofilms demonstrate reduced metabolic activity that weakens the efficacy of traditional antibiotics. Despite these challenges, new methods are being developed and investigated to prevent and treat biofilms. These treatments include surface modifications, biosurfactants, tissue plasminogen activator (tPA), and nitric oxide (NO) to prevent bacterial adhesion and biofilm formation. Additionally, novel antibiotic treatments are currently under investigation and include antimicrobial peptides (AMPs), bacteriophages, and refillable antibiotic coatings. This article reviews biofilm formation, the challenges that biofilms present to conventional antibiotics, current treatments, and experimental approaches for biofilm prevention and treatment.
Collapse
Affiliation(s)
- Michael K. Tram
- Department of Urology, Albany Medical Center, Albany, NY, USA
| | - Joshua Schammel
- Department of Urology, Albany Medical Center, Albany, NY, USA
| | | | - Charles Welliver
- Department of Urology, Albany Medical Center, Albany, NY, USA
- Albany Stratton Veterans Affairs Medical Center, Albany, NY, USA
| | - Brian M. Inouye
- Department of Urology, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
3
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
High Doses of Inhaled Nitric Oxide as an Innovative Antimicrobial Strategy for Lung Infections. Biomedicines 2022; 10:biomedicines10071525. [PMID: 35884830 PMCID: PMC9312466 DOI: 10.3390/biomedicines10071525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Since the designation of nitric oxide as “Molecule of the Year” in 1992, the scientific and clinical discoveries concerning this biomolecule have been greatly expanding. Currently, therapies enhancing the release of endogenous nitric oxide or the direct delivery of the exogenous compound are recognized as valuable pharmacological treatments in several disorders. In particular, the administration of inhaled nitric oxide is routinely used to treat patients with pulmonary hypertension or refractory hypoxemia. More recently, inhaled nitric oxide has been studied as a promising antimicrobial treatment strategy against a range of pathogens, including resistant bacterial and fungal infections of the respiratory system. Pre-clinical and clinical findings have demonstrated that, at doses greater than 160 ppm, nitric oxide has antimicrobial properties and can be used to kill a broad range of infectious microorganisms. This review focused on the mechanism of action and current evidence from in vitro studies, animal models and human clinical trials of inhaled high-dose nitric oxide as an innovative antimicrobial therapy for lung infections.
Collapse
|
5
|
Michaelsen VS, Ribeiro RVP, Brambate E, Ali A, Wang A, Pires L, Kawashima M, Zhang Y, Gazzalle A, Keshavjee S, Del Sorbo L, Cypel M. A novel pre-clinical strategy to deliver antimicrobial doses of inhaled nitric oxide. PLoS One 2021; 16:e0258368. [PMID: 34644318 PMCID: PMC8513841 DOI: 10.1371/journal.pone.0258368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/25/2021] [Indexed: 11/26/2022] Open
Abstract
Effective treatment of respiratory infections continues to be a major challenge. In high doses (≥160 ppm), inhaled Nitric Oxide (iNO) has been shown to act as a broad-spectrum antimicrobial agent, including its efficacy in vitro for coronavirus family. However, the safety of prolonged in vivo implementation of high-dose iNO therapy has not been studied. Herein we aim to explore the feasibility and safety of delivering continuous high-dose iNO over an extended period of time using an in vivo animal model. Yorkshire pigs were randomized to one of the following two groups: group 1, standard ventilation; and group 2, standard ventilation + continuous iNO 160 ppm + methylene blue (MB) as intravenous bolus, whenever required, to maintain metHb <6%. Both groups were ventilated continuously for 6 hours, then the animals were weaned from sedation, mechanical ventilation and followed for 3 days. During treatment, and on the third post-operative day, physiologic assessments were performed to monitor lung function and other significative markers were assessed for potential pulmonary or systemic injury. No significant change in lung function, or inflammatory markers were observed during the study period. Both gas exchange function, lung tissue cytokine analysis and histology were similar between treated and control animals. During treatment, levels of metHb were maintained <6% by administration of MB, and NO2 remained <5 ppm. Additionally, considering extrapulmonary effects, no significant changes were observed in biochemistry markers. Our findings showed that high-dose iNO delivered continuously over 6 hours with adjuvant MB is clinically feasible and safe. These findings support the development of investigations of continuous high-dose iNO treatment of respiratory tract infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Vinicius S. Michaelsen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rafaela V. P. Ribeiro
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Edson Brambate
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aadil Ali
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aizhou Wang
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Layla Pires
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mitsuaki Kawashima
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yu Zhang
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anajara Gazzalle
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lorenzo Del Sorbo
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Wang M, Gauthier AG, Kennedy TP, Wang H, Velagapudi UK, Talele TT, Lin M, Wu J, Daley L, Yang X, Patel V, Mun SS, Ashby CR, Mantell LL. 2-O, 3-O desulfated heparin (ODSH) increases bacterial clearance and attenuates lung injury in cystic fibrosis by restoring HMGB1-compromised macrophage function. Mol Med 2021; 27:79. [PMID: 34271850 PMCID: PMC8283750 DOI: 10.1186/s10020-021-00334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND High mobility group box 1 protein (HMGB1) is an alarmin following its release by immune cells upon cellular activation or stress. High levels of extracellular HMGB1 play a critical role in impairing the clearance of invading pulmonary pathogens and dying neutrophils in the injured lungs of cystic fibrosis (CF) and acute respiratory distress syndrome (ARDS). A heparin derivative, 2-O, 3-O desulfated heparin (ODSH), has been shown to inhibit HMGB1 release from a macrophage cell line and is efficacious in increasing bacterial clearance in a mouse model of pneumonia. Thus, we hypothesized that ODSH can attenuate the bacterial burden and inflammatory lung injury in CF and we conducted experiments to determine the underlying mechanisms. METHODS We determined the effects of ODSH on lung injury produced by Pseudomonas aeruginosa (PA) infection in CF mice with the transmembrane conductance regulator gene knockout (CFTR-/-). Mice were given ODSH or normal saline intraperitoneally, followed by the determination of the bacterial load and lung injury in the airways and lung tissues. ODSH binding to HMGB1 was determined using surface plasmon resonance and in silico docking analysis of the interaction of the pentasaccharide form of ODSH with HMGB1. RESULTS CF mice given 25 mg/kg i.p. of ODSH had significantly lower PA-induced lung injury compared to mice given vehicle alone. The CF mice infected with PA had decreased levels of nitric oxide (NO), increased levels of airway HMGB1 and HMGB1-impaired macrophage phagocytic function. ODSH partially attenuated the PA-induced alteration in the levels of NO and airway HMGB1 in CF mice. In addition, ODSH reversed HMGB1-impaired macrophage phagocytic function. These effects of ODSH subsequently decreased the bacterial burden in the CF lungs. In a surface plasmon resonance assay, ODSH interacted with HMGB1 with high affinity (KD = 3.89 × 10-8 M) and induced conformational changes that may decrease HMGB1's binding to its membrane receptors, thus attenuating HMGB1-induced macrophage dysfunction. CONCLUSIONS The results suggest that ODSH can significantly decrease bacterial infection-induced lung injury in CF mice by decreasing both HMGB1-mediated impairment of macrophage function and the interaction of HMGB1 with membrane receptors. Thus, ODSH could represent a novel approach for treating CF and ARDS patients that have HMGB1-mediated lung injury.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Thomas P Kennedy
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Haichao Wang
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Xiaojing Yang
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Vivek Patel
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Sung Soo Mun
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA.
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA.
| |
Collapse
|
7
|
Lim HK, Tan SJ, Wu Z, Ong BC, Tan KW, Dong Z, Tay CY. Diatom-inspired 2D nitric oxide releasing anti-infective porous nanofrustules. J Mater Chem B 2021; 9:7229-7237. [PMID: 34031686 DOI: 10.1039/d1tb00458a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) nanomaterials (NM) have emerged as promising platforms for antibacterial applications. However, the inherent "flatness" of 2D NM often limits the loading of antimicrobial components needed for synergistic bactericidal actions. Here, inspired by the highly ornamented siliceous frustules of diatoms, we prepared 2D ultrathin (<20 nm) and rigid "nanofrustule" plates via the out-of-plane growth of cetyltrimethylammonium bromide (CTAB) directed silica mesostructures on the surfaces of 2D graphene oxide nanosheets. The nanofrustules were characterized by the presence of mesoporous channels with a pore size of 3 nm and a high specific surface area of 674 m2 g-1. S-nitrosothiol-modification on the silica surfaces enables the development of a novel anti-infective nitric oxide (NO) releasing NO-nanofrustule system. The cage-like mesoporous silica architecture enabled a controlled and sustainable release of NO from the NO-nanofrustules under physiological conditions. The NO-nanofrustules displayed broad antibacterial effects against Staphylococcus aureus and Escherichia coli with a minimum inhibitory concentration of 250 μg ml-1. Mechanistic studies revealed that the antibacterial property of NO-nanofrustules was attained via a unique "capture-and-release" mode-of-action. The first step entailed the capture of the bacteria by the NO-nanofrustules to form micro-aggregates. This was followed by the release of high levels of NO to the captured bacteria to elicit a potent anti-infective effect. In combination with the lack of cytotoxicity in human dermal cells, the 2D hybrid NO-nanofrustules may be utilized to combat wound infections in clinical settings.
Collapse
Affiliation(s)
- Hong Kit Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Shao Jie Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Boon Chong Ong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Kwan Wee Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Zhili Dong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore. and School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore and Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| |
Collapse
|
8
|
Verma S, Singh K, Bansal A. Multi-epitope DnaK peptide vaccine accords protection against lethal S. typhimurium challenge: Elicits both cell mediated immunity and long-lasting serum-neutralizing antibody titers. Pharmacol Res 2021; 169:105652. [PMID: 33975015 DOI: 10.1016/j.phrs.2021.105652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
Typhoid vaccine development has been impeded by inability of currently available vaccines to induce cellular immunity along with neutralizing antibodies against all serovars of S. Typhi and S. Paratyphi. Unfortunately, antibiotic treatment has shown to be an ineffective therapy due to development of resistance against multiple antibiotics. In the present study, we have explored the immunogenicity and protective efficacy of in-silico designed multi-epitope DnaK peptides as candidate vaccine molecules against Salmonella. Immunization studies in mouse typhoid model revealed three of these peptides (DP1, DP5 and DP7) are highly efficacious, stimulating both humoral and cell mediated immunity along with long lasting antibody memory response. There was significant increase in antibody titers (IgG, IgG1, IgG2a, IgA and IgM), lymphocyte proliferative responses and cytokine levels. Immunized groups showed marked reduction in organ bacterial load, fecal shedding and pronounced protection (upto 80%) as compared to unimmunized controls after challenge with S. typhimurium. Our results demonstrate the huge potential of DnaK peptide vaccine candidates (DP1, DP5 and DP7) to accord protective immunity with significant increase in survivability against Salmonella infection in mice, thus commending these molecules as promising agents to tackle typhoid.
Collapse
Affiliation(s)
- Shivani Verma
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Kaushlesh Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Anju Bansal
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
9
|
Cai YM, Zhang YD, Yang L. NO donors and NO delivery methods for controlling biofilms in chronic lung infections. Appl Microbiol Biotechnol 2021; 105:3931-3954. [PMID: 33937932 PMCID: PMC8140970 DOI: 10.1007/s00253-021-11274-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO), the highly reactive radical gas, provides an attractive strategy in the control of microbial infections. NO not only exhibits bactericidal effect at high concentrations but also prevents bacterial attachment and disperses biofilms at low, nontoxic concentrations, rendering bacteria less tolerant to antibiotic treatment. The endogenously generated NO by airway epithelium in healthy populations significantly contributes to the eradication of invading pathogens. However, this pathway is often compromised in patients suffering from chronic lung infections where biofilms dominate. Thus, exogenous supplementation of NO is suggested to improve the therapeutic outcomes of these infectious diseases. Compared to previous reviews focusing on the mechanism of NO-mediated biofilm inhibition, this review explores the applications of NO for inhibiting biofilms in chronic lung infections. It discusses how abnormal levels of NO in the airways contribute to chronic infections in cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and primary ciliary dyskinesia (PCD) patients and why exogenous NO can be a promising antibiofilm strategy in clinical settings, as well as current and potential in vivo NO delivery methods. KEY POINTS : • The relationship between abnormal NO levels and biofilm development in lungs • The antibiofilm property of NO and current applications in lungs • Potential NO delivery methods and research directions in the future.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ying-Dan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Cai YM, Webb JS. Optimization of nitric oxide donors for investigating biofilm dispersal response in Pseudomonas aeruginosa clinical isolates. Appl Microbiol Biotechnol 2020; 104:8859-8869. [PMID: 32865612 PMCID: PMC7502453 DOI: 10.1007/s00253-020-10859-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
Pseudomonas aeruginosa biofilms contribute heavily to chronic lung infection in cystic fibrosis patients, leading to morbidity and mortality. Nitric oxide (NO) has been shown to disperse P. aeruginosa biofilms in vitro, ex vivo and in clinical trials as a promising anti-biofilm agent. Traditional NO donors such as sodium nitroprusside (SNP) have been extensively employed in different studies. However, the dosage of SNP in different studies was not consistent, ranging from 500 nM to 500 μM. SNP is light sensitive and produces cyanide, which may lead to data misinterpretation and inaccurate predictions of dispersal responses in clinical settings. New NO donors and NO delivery methods have therefore been explored. Here we assessed 7 NO donors using P. aeruginosa PAO1 and determined that SNP and Spermine NONOate (S150) successfully reduced > 60% biomass within 24 and 2 h, respectively. While neither dosage posed toxicity towards bacterial cells, chemiluminescence assays showed that SNP only released NO upon light exposure in M9 media and S150 delivered much higher performance spontaneously. S150 was then tested on 13 different cystic fibrosis P. aeruginosa (CF-PA) isolates; most CF-PA biofilms were significantly dispersed by 250 μM S150. Our work therefore discovered a commercially available NO donor S150, which disperses CF-PA biofilms efficiently within a short period of time and without releasing cyanide, as an alternative of SNP in clinical trials in the future. KEY POINTS: • S150 performs the best in dispersing P. aeruginosa biofilms among 7 NO donors. • SNP only releases NO in the presence of light, while S150 releases NO spontaneously. • S150 successfully disperses biofilms formed by P. aeruginosa cystic fibrosis clinical isolates.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Jeremy S Webb
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
11
|
Ahmadi S, Wu YS, Li M, Ip W, Lloyd-Kuzik A, Di Paola M, Du K, Xia S, Lew A, Bozoky Z, Forman-Kay J, Bear CE, Gonska T. Augmentation of Cystic Fibrosis Transmembrane Conductance Regulator Function in Human Bronchial Epithelial Cells via SLC6A14-Dependent Amino Acid Uptake. Implications for Treatment of Cystic Fibrosis. Am J Respir Cell Mol Biol 2020; 61:755-764. [PMID: 31189070 DOI: 10.1165/rcmb.2019-0094oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SLC6A14-mediated l-arginine transport has been shown to augment the residual anion channel activity of the major mutant, F508del-CFTR, in the murine gastrointestinal tract. It is not yet known if this transporter augments residual and pharmacological corrected F508del-CFTR in primary airway epithelia. We sought to determine the role of l-arginine uptake via SLC6A14 in modifying F508del-CFTR channel activity in airway cells from patients with cystic fibrosis (CF). Human bronchial epithelial (HBE) cells from lung explants of patients without CF (HBE) and those with CF (CF-HBE) were used for H3-flux, airway surface liquid, and Ussing chamber studies. We used α-methyltryptophan as a specific inhibitor for SLC6A14. CFBE41o-, a commonly used CF airway cell line, was employed for studying the mechanism of the functional interaction between SLC6A14 and F508del-CFTR. SLC6A14 is functionally expressed in CF-HBE cells. l-arginine uptake via SLC6A14 augmented F508del-CFTR function at baseline and after treatment with lumacaftor. SLC6A14-mediated l-arginine uptake also increased the airway surface liquid in CF-HBE cells. Using CFBE41o cells, we showed that the positive SLC6A14 effect was mainly dependent on the nitric oxide (NO) synthase activity, nitrogen oxides, including NO, and phosphorylation by protein kinase G. These finding were confirmed in CF-HBE, as inducible NO synthase inhibition abrogated the functional interaction between SLC6A14 and pharmacological corrected F508del-CFTR. In summary, SLC6A14-mediated l-arginine transport augments residual F508del-CFTR channel function via a noncanonical, NO pathway. This effect is enhanced with increasing pharmacological rescue of F508del-CFTR to the membrane. The current study demonstrates how endogenous pathways can be used for the development of companion therapy in CF.
Collapse
Affiliation(s)
- Saumel Ahmadi
- Department of Physiology.,Programme in Molecular Medicine.,Programme in Genetics and Genome Biology, and
| | - Yu-Sheng Wu
- Department of Physiology.,Programme in Molecular Medicine
| | - Mingyuan Li
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wan Ip
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Lloyd-Kuzik
- Department of Physiology.,Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Kai Du
- Department of Biochemistry, and
| | - Sunny Xia
- Department of Physiology.,Programme in Molecular Medicine
| | | | | | - Julie Forman-Kay
- Department of Biochemistry, and.,Programme in Molecular Medicine
| | - Christine E Bear
- Department of Physiology.,Department of Biochemistry, and.,Programme in Molecular Medicine
| | - Tanja Gonska
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Cryptides Identified in Human Apolipoprotein B as New Weapons to Fight Antibiotic Resistance in Cystic Fibrosis Disease. Int J Mol Sci 2020; 21:ijms21062049. [PMID: 32192076 PMCID: PMC7139702 DOI: 10.3390/ijms21062049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Chronic respiratory infections are the main cause of morbidity and mortality in cystic fibrosis (CF) patients, and are characterized by the development of multidrug resistance (MDR) phenotype and biofilm formation, generally recalcitrant to treatment with conventional antibiotics. Hence, novel effective strategies are urgently needed. Antimicrobial peptides represent new promising therapeutic agents. Here, we analyze for the first time the efficacy of three versions of a cryptide identified in human apolipoprotein B (ApoB, residues 887-922) towards bacterial strains clinically isolated from CF patients. Antimicrobial and anti-biofilm properties of ApoB-derived cryptides have been analyzed by broth microdilution assays, crystal violet assays, confocal laser scanning microscopy and scanning electron microscopy. Cell proliferation assays have been performed to test cryptide effects on human host cells. ApoB-derived cryptides have been found to be endowed with significant antimicrobial and anti-biofilm properties towards Pseudomonas and Burkholderia strains clinically isolated from CF patients. Peptides have been also found to be able to act in combination with the antibiotic ciprofloxacin, and they are harmless when tested on human bronchial epithelial mesothelial cells. These findings open interesting perspectives to cryptide applicability in the treatment of chronic lung infections associated with CF disease.
Collapse
|
13
|
Early Growth Response 1 Deficiency Protects the Host against Pseudomonas aeruginosa Lung Infection. Infect Immun 2019; 88:IAI.00678-19. [PMID: 31611276 PMCID: PMC6921661 DOI: 10.1128/iai.00678-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a common cause of nosocomial infections. The molecular mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Early growth response 1 (Egr-1) is a zinc-finger transcription factor that controls inflammatory responses. Here, we characterized the role of Egr-1 in host defense against P. aeruginosa infection in a mouse model of acute bacterial pneumonia. Egr-1 expression was rapidly and transiently induced in response to P. aeruginosa infection. Egr-1-deficient mice displayed decreased mortality, reduced levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-1β [IL-1β], IL-6, IL-12, and IL-17), and enhanced bacterial clearance from the lung. Egr-1 deficiency caused diminished NF-κB activation in P. aeruginosa-infected macrophages independently of IκBα phosphorylation. A physical interaction between Egr-1 and NF-κB p65 was found in P. aeruginosa-infected macrophages, suggesting that Egr-1 could be required for assembly of heterodimeric transcription factors that direct synthesis of inflammatory mediators. Interestingly, Egr-1 deficiency had no impact on neutrophil recruitment in vivo due to its differential effects on chemokine production, which included diminished accumulation of KC (CXCL1), MIP2 (CXCL2), and IP-10 (CXCL10) and increased accumulation of LIX (CXCL5). Importantly, Egr-1-deficient macrophages and neutrophils displayed significant increases in nitric oxide production and bacterial killing ability that correlated with enhanced bacterial clearance in Egr-1-deficient mice. Together, these findings suggest that Egr-1 plays a detrimental role in host defense against P. aeruginosa acute lung infection by promoting systemic inflammation and negatively regulating the nitric oxide production that normally assists with bacterial clearance.
Collapse
|
14
|
Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, Yuan X, Wu M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:909-924. [PMID: 30936684 PMCID: PMC6431001 DOI: 10.2147/dddt.s189847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines for Pseudomonas aeruginosa have been of longstanding interest to immunologists, bacteriologists, and clinicians, due to the widespread prevalence of hospital-acquired infection. As P. aeruginosa becomes increasingly antibiotic resistant, there is a dire need for novel treatments and preventive vaccines. Despite intense efforts, there currently remains no vaccine on the market to combat this dangerous pathogen. This article summarizes current and past vaccines under development that target various constituents of P. aeruginosa. Targeting lipopolysaccharides and O-antigens have shown some promise in preventing infection. Recombinant flagella and pili that target TLR5 have been utilized to combat P. aeruginosa by blocking its motility and adhesion. The type 3 secretion system components, such as needle-like structure PcrV or exotoxin PopB, are also potential vaccine targets. Outer membrane proteins including OprF and OprI are newer representatives of vaccine candidates. Live attenuated vaccines are a focal point in this review, and are also considered for novel vaccines. In addition, phage therapy is revived as an effective option for treating refractory infections after failure with antibiotic treatment. Many of the aforementioned vaccines act on a single target, thus lacking a broad range of protection. Recent studies have shown that mixtures of vaccines and combination approaches may significantly augment immunogenicity, thereby increasing their preventive and therapeutic potential.
Collapse
Affiliation(s)
- Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Andrew Weaver
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Ting Huang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA, .,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jacob Schettler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Feng Chen
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Xiefang Yuan
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| |
Collapse
|
15
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
16
|
Chelliah R, Choi JG, Hwang SB, Park BJ, Daliri EBM, Kim SH, Wei S, Ramakrishnan SR, Oh DH. In vitro and in vivo defensive effect of probiotic LAB against Pseudomonas aeruginosa using Caenorhabditis elegans model. Virulence 2018; 9:1489-1507. [PMID: 30257614 PMCID: PMC6177248 DOI: 10.1080/21505594.2018.1518088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate in vitro and in vivo the probiotic characteristics of lactic acid bacteria (LAB) isolated from Korean traditional fermented foods. Caenorhabditis elegans (C. elegans) was used for analytical assays of fertility, chemotaxis, life-span, worm-killing and bacterial colonization in the intestinal lumen of the worm. All 35 strains of LAB reduced fertility and slowed development in the worms. The worm-killing assay showed that LAB significantly increased the lifespan (P < 0.05) and reduced the susceptibility to virulent PA14; however, the heat-killed LAB did not. The bacterial colonization assay revealed that LAB proliferated and protected the gut of the worm against infection by Pseudomonas aeruginosa PA14. In addition, specific LAB Pediococcus acidilactici(P. acidilactici DM-9), Pediococcus brevis (L. brevis SDL1411), and Pediococcus pentosaceus (P. pentosaceus SDL1409) strains showed acid resistance (66-91%), resistance to pepsin (64-67%) and viability in simulated intestinal fluid (67-73%) based on in vitro probiotic analyses. Taken together, these results suggest that C. elegans may be a tractable model for screening efficient probiotics.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung-Gu Choi
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Su-bin Hwang
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung-Jae Park
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Se-Hun Kim
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Shuai Wei
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Sudha Rani Ramakrishnan
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
17
|
Robinson JL, Jaslove JM, Murawski AM, Fazen CH, Brynildsen MP. An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa. Metab Eng 2017; 41:67-81. [PMID: 28363762 DOI: 10.1016/j.ymben.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/21/2016] [Accepted: 03/27/2017] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2-) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3-) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO3-→NO2-→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O2, NO2-, and NO3- in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3-, which was relieved upon O2 depletion. As cell growth depleted dissolved O2 levels, NO3- was converted to NO2- at near-stoichiometric levels, whereas NO2- consumption did not coincide with NO or NO3- accumulation. Assimilatory NO2- reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Allison M Murawski
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Christopher H Fazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Krantz C, Janson C, Hollsing A, Alving K, Malinovschi A. Exhaled and nasal nitric oxide in relation to lung function, blood cell counts and disease characteristics in cystic fibrosis. J Breath Res 2017; 11:026001. [PMID: 28220034 DOI: 10.1088/1752-7163/aa61aa] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Patients with cystic fibrosis (CF) have similar or lower exhaled nitric oxide (FeNO) and lower nasal nitric oxide (nNO) levels than controls. There are divergent results on alveolar NO (CalvNO) concentrations in relation to CF. There are inconsistent results on correlation between different nitric oxide parameters and lung function and inflammation in CF. AIM To compare FeNO, CalvNO and nNO levels between subjects with CF, asthma and healthy controls and to study whether these parameters are related to lung function, blood cell counts or clinical characteristics in CF patients. MATERIAL AND METHODS Measurements of FeNO at multiple exhalation flow rates, nNO and spirometry were done in 38 patients (18 adults) with CF. Blood cell counts and CF clinical characteristics were recorded. Thirty-eight healthy controls and 38 asthma patients, gender- and age-matched, were included as reference groups. RESULTS FeNO levels were lower in CF patients (7.2 [4.7-11.2] ppb) than in healthy controls (11.4 [8.3-14.6] ppb) and asthma patients (14.7 [8.7-24.7] ppb) (both p < 0.005). These differences were consistent in adults. No difference in CalvNO was seen between the groups. nNO levels in CF patients (319 [193-447] ppb) were lower than in healthy controls (797 [664-984] ppb) and asthma patients (780 [619-961] ppb) (both p < 0.001). FeNO positively related to FEV1 (rho = 0.51, p = 0.001) in CF patients and this was consistent in both adults and children. A negative correlation was found between FeNO and blood neutrophil counts (rho = -0.37, p = 0.03) in CF patients. CONCLUSION CF patients have lower FeNO and nNO and similar CalvNO levels as healthy controls and asthma patients. Lower FeNO related to lower lung function in both adults and children with CF. Furthermore, in CF, lower FeNO also related to higher blood neutrophil counts.
Collapse
Affiliation(s)
- Christina Krantz
- Department of Women's and Children's Health, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
19
|
Esculentin-1a-Derived Peptides Promote Clearance of Pseudomonas aeruginosa Internalized in Bronchial Cells of Cystic Fibrosis Patients and Lung Cell Migration: Biochemical Properties and a Plausible Mode of Action. Antimicrob Agents Chemother 2016; 60:7252-7262. [PMID: 27671059 DOI: 10.1128/aac.00904-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/16/2016] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is the major microorganism colonizing the respiratory epithelium in cystic fibrosis (CF) sufferers. The widespread use of available antibiotics has drastically reduced their efficacy, and antimicrobial peptides (AMPs) are a promising alternative. Among them, the frog skin-derived AMPs, i.e., Esc(1-21) and its diastereomer, Esc(1-21)-1c, have recently shown potent activity against free-living and sessile forms of P. aeruginosa Importantly, this pathogen also escapes antibiotics treatment by invading airway epithelial cells. Here, we demonstrate that both AMPs kill Pseudomonas once internalized into bronchial cells which express either the functional or the ΔF508 mutant of the CF transmembrane conductance regulator. A higher efficacy is displayed by Esc(1-21)-1c (90% killing at 15 μM in 1 h). We also show the peptides' ability to stimulate migration of these cells and restore the induction of cell migration that is inhibited by Pseudomonas lipopolysaccharide when used at concentrations mimicking lung infection. This property of AMPs was not investigated before. Our findings suggest new therapeutics that not only eliminate bacteria but also can promote reepithelialization of the injured infected tissue. Confocal microscopy indicated that both peptides are intracellularly localized with a different distribution. Biochemical analyses highlighted that Esc(1-21)-1c is significantly more resistant than the all-l peptide to bacterial and human elastase, which is abundant in CF lungs. Besides proposing a plausible mechanism underlying the properties of the two AMPs, we discuss the data with regard to differences between them and suggest Esc(1-21)-1c as a candidate for the development of a new multifunctional drug against Pseudomonas respiratory infections.
Collapse
|
20
|
The impact of simvastatin on pulmonary effectors of Pseudomonas aeruginosa infection. PLoS One 2014; 9:e102200. [PMID: 25010049 PMCID: PMC4092124 DOI: 10.1371/journal.pone.0102200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
The statin family of cholesterol-lowering drugs is known to have pleiotropic properties which include anti-inflammatory and immunomodulatory effects. Statins exert their pleiotropic effects by altering expression of human immune regulators including pro-inflammatory cytokines. Previously we found that statins modulate virulence phenotypes of the human pathogen Pseudomonas aeruginosa, and sought to investigate if simvastatin could alter the host response to this organism in lung epithelial cells. Simvastatin increased the expression of the P. aeruginosa target genes KLF2, KLF6, IL-8 and CCL20. Furthermore, both simvastatin and P. aeruginosa induced alternative splicing of KLF6. The novel effect of simvastatin on wtKLF6 expression was found to be responsible for induction of the KLF6 regulated genes CCL20 and iNOS. Simvastatin also increased the adhesion of P. aeruginosa to host cells, without altering invasion or cytotoxicity. This study demonstrated that simvastatin had several novel effects on the pulmonary cellular immune response.
Collapse
|
21
|
Marvasi M, Chen C, Carrazana M, Durie IA, Teplitski M. Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7. AMB Express 2014; 4:42. [PMID: 24995149 PMCID: PMC4070026 DOI: 10.1186/s13568-014-0042-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 12/28/2022] Open
Abstract
Biofilms in the industrial environment could be problematic. Encased in extracellular polymeric substances, pathogens within biofilms are significantly more resistant to chlorine and other disinfectants. Recent studies suggest that compounds capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of sessile bacteria and provide a foundation for novel approaches to controlling biofilms formed by some microorganisms. In this work, we compared the ability of five nitric oxide donors (molsidomine, MAHMA NONOate, diethylamine NONOate, diethylamine NONOate diethylammonium salt, spermine NONOate) to dislodge biofilms formed by non-typhoidal Salmonella enterica and pathogenic E. coli on plastic and stainless steel surfaces at different temperatures. All five nitric oxide donors induced significant (35-80%) dispersal of biofilms, however, the degree of dispersal and the optimal dispersal conditions varied. MAHMA NONOate and molsidomine were strong dispersants of the Salmonella biofilms formed on polystyrene. Importantly, molsidomine induced dispersal of up to 50% of the pre-formed Salmonella biofilm at 4°C, suggesting that it could be effective even under refrigerated conditions. Biofilms formed by E. coli O157:H7 were also significantly dispersed. Nitric oxide donor molecules were highly active within 6 hours of application. To better understand mode of action of these compounds, we identified Salmonella genomic region recA-hydN, deletion of which led to an insensitivity to the nitric oxide donors.
Collapse
|
22
|
Regev-Shoshani G, Vimalanathan S, Prema D, Church J, Reudink M, Nation N, Miller C. Safety, bioavailability and mechanism of action of nitric oxide to control Bovine Respiratory Disease Complex in calves entering a feedlot. Res Vet Sci 2014; 96:328-37. [DOI: 10.1016/j.rvsc.2013.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
|
23
|
Toll-like receptor 9 deficiency protects mice against Pseudomonas aeruginosa lung infection. PLoS One 2014; 9:e90466. [PMID: 24595157 PMCID: PMC3942450 DOI: 10.1371/journal.pone.0090466] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/03/2014] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen involved in nosocomial infections. While a number of studies have demonstrated the roles of TLR2, TLR4 and TLR5 in host defense againt P. aeruginosa infection, the implication of TLR9 in this process has been overlooked. Here, we show that P. aeruginosa DNA stimulates the inflammatory response through TLR9 pathway in both a cell line and primary alveolar macrophages (AMs). This activation requires asparagine endopeptidase- and endosomal acidification. Interestingly, TLR9-/- mice resisted to lethal lung infection by P. aeruginosa, compared to WT C57BL/6 mice. The resistance of TLR9-/- mice to P. aeruginosa infection was associated with: (i) a higher ability of TLR9-/- AMs to kill P. aeruginosa; (ii) a rapid increase in the pro-inflammatory cytokines such as TNFα, IL-1β and IL-6 production; and (iii) an increase in nitric oxide (NO) production and inductible NO synthase expression in AMs. In addition, inhibition of both IL-1β and NO production resulted in a significant decrease of P. aeruginosa clearance by AMs. Altogether these results indicate that TLR9 plays a detrimental role in pulmonary host defense toward P. aeruginosa by reducing the AMs clearance activity and production of IL-1β and NO necessary for bacteria killing.
Collapse
|
24
|
Stewart L, Ford A, Sangal V, Jeukens J, Boyle B, Kukavica-Ibrulj I, Caim S, Crossman L, Hoskisson PA, Levesque R, Tucker NP. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog Dis 2013; 71:20-5. [PMID: 24167005 DOI: 10.1111/2049-632x.12107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen particularly associated with the inherited disease cystic fibrosis (CF). Pseudomonas aeruginosa is well known to have a large and adaptable genome that enables it to colonise a wide range of ecological niches. Here, we have used a comparative genomics approach to identify changes that occur during infection of the CF lung. We used the mucoid phenotype as an obvious marker of host adaptation and compared these genomes to analyse SNPs, indels and islands within near-isogenic pairs. To commence the correction of the natural bias towards clinical isolates in genomics studies and to widen our understanding of the genomic diversity of P. aeruginosa, we included four environmental isolates in our analysis. Our data suggest that genome plasticity plays an important role in chronic infection and that the strains sequenced in this study are representative of the two major phylogenetic groups as determined by core genome SNP analysis.
Collapse
Affiliation(s)
- Lewis Stewart
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miller CC, Hergott CA, Rohan M, Arsenault-Mehta K, Döring G, Mehta S. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. J Cyst Fibros 2013; 12:817-20. [DOI: 10.1016/j.jcf.2013.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/25/2022]
|
26
|
Regev-Shoshani G, Church JS, Cook NJ, Schaefer AL, Miller C. Prophylactic nitric oxide treatment reduces incidence of bovine respiratory disease complex in beef cattle arriving at a feedlot. Res Vet Sci 2013; 95:606-11. [PMID: 23850382 DOI: 10.1016/j.rvsc.2013.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/05/2013] [Accepted: 06/18/2013] [Indexed: 11/16/2022]
Abstract
Bovine respiratory disease complex (BRDc), is a challenging multi-factorial health issue caused by viral/bacterial pathogens and stressors linked with the transport and mixing of cattle, negatively impacting the cattle feedlot industry. Nitric oxide (NO) is a naturally occurring molecule with antimicrobial attributes. This study tests whether NO can prevent the symptoms associated with BRDc. Eighty-five, crossbred, multiple-sourced, commingled commercial weaned beef calves were monitored and scored for temperature, white blood count, clinical score, hematology, cortisol levels and neutrophil/lymphocyte ratio. NO treatment or placebo were given once on arrival to the stockyard. After one week 87.5% of sick animals were from the control while 12.5% from treatment groups and after two weeks 72% and 28% respectively. Treatment was shown to be safe, causing neither distress nor adverse effects on the animals. These data show that NO treatment on arrival to the feedlot significantly decreased the incidence of BRDc in this study.
Collapse
Affiliation(s)
- G Regev-Shoshani
- Faculty of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
27
|
Regev-Shoshani G, Crowe A, Miller CC. A nitric oxide-releasing solution as a potential treatment for fungi associated with tinea pedis. J Appl Microbiol 2012; 114:536-44. [PMID: 23082864 DOI: 10.1111/jam.12047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/02/2012] [Accepted: 10/16/2012] [Indexed: 11/29/2022]
Abstract
AIMS To test a nitric oxide-releasing solution (NORS) as a potential antifungal footbath therapy against Trichophyton mentagrophytes and Trichophyton rubrum during the mycelial and conidial phases. METHODS AND RESULTS NORS (sodium nitrite citric acid) produces nitric oxide verified by gas chromatography and mass spectrometry (GC-MS). Antifungal activity of this solution was tested against mycelia and conidia of T. mentagrophytes and T. rubrum, using 1-20 mmol l(-1) nitrites and 10-30 min exposure times. The direct effect of the gas released from the solution on the viability of those fungi was tested. NORS demonstrated strong antifungal activity and was found to be dose and time dependent. NO and nitrogen dioxide (NO(2) ) were the only gases detected from this reaction and are likely responsible for the antifungal effect. CONCLUSIONS This in vitro research suggests that a single 20-min exposure to NORS could potentially be used as an effective single-dose treatment against fungi that are associated with tinea pedis in both mycelia and spore phase. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides the background for developing a user-friendly footbath treatment for Athlete's Foot that will kill both vegetative fungi and its spores.
Collapse
Affiliation(s)
- G Regev-Shoshani
- Division of Respiratory Medicine and affiliated with Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
28
|
Mgbemena V, Segovia JA, Chang TH, Tsai SY, Cole GT, Hung CY, Bose S. Transactivation of inducible nitric oxide synthase gene by Kruppel-like factor 6 regulates apoptosis during influenza A virus infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:606-15. [PMID: 22711891 DOI: 10.4049/jimmunol.1102742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza A virus (flu) is a respiratory tract pathogen causing high morbidity and mortality among the human population. NO is a cellular mediator involved in tissue damage through its apoptosis of target cells and resulting enhancement of local inflammation. Inducible NO synthase (iNOS) is involved in the production of NO following infection. Although NO is a key player in the development of exaggerated lung disease during flu infection, the underlying mechanism, including the role of NO in apoptosis during infection, has not been reported. Similarly, the mechanism of iNOS gene induction during flu infection is not well defined in terms of the host transactivator(s) required for iNOS gene expression. In the current study, we identified Kruppel-like factor 6 (KLF6) as a critical transcription factor essential for iNOS gene expression during flu infection. We also underscored the requirement for iNOS in inducing apoptosis during infection. KLF6 gene silencing in human lung epithelial cells resulted in the drastic loss of NO production, iNOS promoter-specific luciferase activity, and expression of iNOS mRNA following flu infection. Chromatin immunoprecipitation assay revealed a direct interaction of KLF6 with iNOS promoter during in vitro and in vivo flu infection of human lung cells and mouse respiratory tract, respectively. A significant reduction in flu-mediated apoptosis was noted in KLF6-silenced cells, cells treated with iNOS inhibitor, and primary murine macrophages derived from iNOS knockout mice. A similar reduction in apoptosis was noted in the lungs following intratracheal flu infection of iNOS knockout mice.
Collapse
Affiliation(s)
- Victoria Mgbemena
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Regev-Shoshani G, Ko M, Crowe A, Av-Gay Y. Comparative efficacy of commercially available and emerging antimicrobial urinary catheters against bacteriuria caused by E. coli in vitro. Urology 2011; 78:334-9. [PMID: 21820571 DOI: 10.1016/j.urology.2011.02.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/21/2011] [Accepted: 02/28/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To compare the efficacy of both commercially available and emerging urinary catheter technologies in relation to their effects on bacteriuria caused by Escherichia coli in vitro. Antiseptic urinary catheters have recently become commercially available and others are in the developmental stage. METHODS Silver alloy-coated catheters, antibiotic Nitrofurazone (NF)-coated catheters, and nitric oxide (NO)-coated catheters were tested against a noncoated control for their antiseptic ability. Inhibition of bacterial growth, biofilm formation, and the number of live bacteria within the biofilm, using up to 10(3) bacterial load were evaluated. Experiments were performed either in E. coli containing Luria broth media or in urine infected with E. coli. RESULTS NF- and NO-coated catheters had equivalent antimicrobial activity and eradicated all bacteria in planktonic and biofilm states. Silver-coated catheters had no effect on E. coli growth or biofilm formation compared with the control, although silver-coated catheters did inhibit bacterial levels within the biofilm by 50%. CONCLUSIONS NF- and NO-coated catheters are highly effective in preventing planktonic growth and biofilm formation. Silver-coated catheters were not found to be effective in this study.
Collapse
Affiliation(s)
- Gilly Regev-Shoshani
- Department of Medicine, Division of Infectious Diseases, Universality of British Columbia, 2733 Heather St. Vancouver, British Columbia, V5Z 3J5, Canada
| | | | | | | |
Collapse
|
30
|
Rottner M, Tual-Chalot S, Mostefai HA, Andriantsitohaina R, Freyssinet JM, Martínez MC. Increased oxidative stress induces apoptosis in human cystic fibrosis cells. PLoS One 2011; 6:e24880. [PMID: 21931865 PMCID: PMC3171475 DOI: 10.1371/journal.pone.0024880] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/22/2011] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress results in deleterious cell function in pathologies associated with inflammation. Here, we investigated the generation of superoxide anion as well as the anti-oxidant defense systems related to the isoforms of superoxide dismutases (SOD) in cystic fibrosis (CF) cells. Pro-apoptotic agents induced apoptosis in CF but not in control cells that was reduced by treatment with SOD mimetic. These effects were associated with increased superoxide anion production, sensitive to the inhibition of IκB-α phosphorylation, in pancreatic but not tracheal CF cells, and reduced upon inhibition of either mitochondrial complex I or NADPH oxidase. CF cells exhibited reduced expression, but not activity, of both Mn-SOD and Cu/Zn-SOD when compared to control cells. Although, expression of EC-SOD was similar in normal and CF cells, its activity was reduced in CF cells. We provide evidence that high levels of oxidative stress are associated with increased apoptosis in CFTR-mutated cells, the sources being different depending on the cell type. These observations underscore a reduced anti-oxidant defense mechanism, at least in part, via diminished EC-SOD activity and regulation of Cu/Zn-SOD and Mn-SOD expressions. These data point to new therapeutic possibilities in targeting anti-oxidant pathways to reduce oxidative stress and apoptosis in CF cells.
Collapse
Affiliation(s)
- Mathilde Rottner
- INSERM, U770, Le Kremlin-Bicêtre, France
- Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | | | | | | | - Jean-Marie Freyssinet
- INSERM, U770, Le Kremlin-Bicêtre, France
- Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | | |
Collapse
|
31
|
Abstract
OBJECTIVE Bacterial infection of the pin tract represents the most common complication associated with external fixation. This study was designed to evaluate the antibacterial activity of nitric oxide (NO)-releasing xerogel films applied to commercially pure titanium pins in a rat model. METHODS Pins were coated with xerogel solution through a dip-coating procedure. Half of the xerogel-coated implant pins were modified into NO donors and served as the NO-releasing group, whereas the remaining pins were left unmodified to serve as non-NO-releasing xerogel-coated controls. Acid-etched pins served as uncoated controls. Animal selection was randomized and every rat had one pin from each of the three groups randomly allocated to the third, fourth, or fifth tail vertebrae. Quantification of bacterial infection was performed 48 days postoperatively and the tissue-implant interface was inspected for clinical signs of infection on Days 14 and 28 postimplantation. RESULTS Pin tract bacterial colony counts of the NO-releasing group (170,000 ± 181,000) were significantly lower than both the xerogel-coated group (677,000 ± 675,000) and the control group (1,181,000 ± 2,717,000) 48 days postoperatively (P < 0.05). No significant difference in colony counts was observed between the xerogel-coated group and the control group. The NO-releasing group also had significantly fewer clinical signs of infection than both the coated and the control groups on postoperative Day 28 (P < 0.05). CONCLUSION The application of NO-releasing xerogel coatings can inhibit bacterial colonization of external fixation pins both during the initial postsurgical period and up to 48 days postimplantation.
Collapse
|
32
|
Supplementation with fatty acids influences the airway nitric oxide and inflammatory markers in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 2010; 50:537-44. [PMID: 20639712 DOI: 10.1097/mpg.0b013e3181b47967] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To obtain a balance in the fatty acid (FA) metabolism is important for the inflammatory response and of special importance in cystic fibrosis (CF), which is characterized by impaired FA metabolism, chronic inflammation, and infection in the airways. Nitric oxide (NO) has antimicrobial properties and low nasal (nNO) and exhaled NO (FENO), commonly reported in CF that may affect bacterial status. The present study investigates the effect of different FA blends on nNO and FENO and immunological markers in patients with CF. PATIENTS AND METHODS Forty-three patients with CF and "severe" mutations were consecutively enrolled in a randomized double-blind placebo-controlled study with 3 FA blends containing mainly n-3 or n-6 FA or saturated FA acting as placebo. FENO, nNO, serum phospholipid concentrations of FA, and biomarkers of inflammation were measured before and after 3 months of supplementation. RESULTS Thirty-five patients in clinically stable condition completed the study. The serum phospholipid FA pattern changed significantly in all 3 groups. An increase of the n-6 FA, arachidonic acid, was associated with a decrease of FENO and nNO. The inflammatory biomarkers, erythrocyte sedimentation rate, and interleukin-8 decreased after supplementation with n-3 FA and erythrocyte sedimentation rate increased after supplementation with n-6 FA. CONCLUSIONS This small pilot study indicated that the composition of dietary n-3 and n-6 FA influenced the inflammatory markers in CF. FENO and nNO were influenced by changes in the arachidonic acid concentration, supporting previous studies suggesting that both the lipid abnormality and the colonization with Pseudomonas influenced NO in the airways.
Collapse
|
33
|
Hassett DJ, Korfhagen TR, Irvin RT, Schurr MJ, Sauer K, Lau GW, Sutton MD, Yu H, Hoiby N. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 2010; 14:117-30. [PMID: 20055712 DOI: 10.1517/14728220903454988] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE OF THE FIELD CF airway mucus can be infected by opportunistic microorganisms, notably Pseudomonas aeruginosa. Once organisms are established as biofilms, even the most potent antibiotics have little effect on their viability, especially during late-stage chronic infections. Better understanding of the mechanisms used by P. aeruginosa to circumvent host defenses and therapeutic intervention strategies is critical for advancing novel treatment strategies. AREAS COVERED IN THIS REVIEW Inflammatory injury in CF lung, role of neutrophils in pathogenesis, P. aeruginosa biofilms, mucoidy and its relationship with poor airway oxygenation, mechanisms by which P. aeruginosa biofilms in the CF airway can be killed. WHAT THE READER WILL GAIN An understanding of the processes that P. aeruginosa undergoes during CF airway disease and clues to better treat such infections in future. TAKE HOME MESSAGE The course of CF airway disease is a process involving host and microbial factors that often dictate frequency of pulmonary exacerbations, thus affecting the overall course. In the past decade significant discoveries have been made regarding the pathogenic processes used by P. aeruginosa to bypass the immune system. Many new and exciting features of P. aeruginosa now illuminate weaknesses in the organism that may render it susceptible to inexpensive compounds that force its own destruction.
Collapse
Affiliation(s)
- Daniel J Hassett
- University of Cincinnati College of Medicine, Department of Molecular Genetics, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Slow release of nitric oxide from charged catheters and its effect on biofilm formation by Escherichia coli. Antimicrob Agents Chemother 2009; 54:273-9. [PMID: 19884372 DOI: 10.1128/aac.00511-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catheter-associated urinary tract infection is the most prevalent cause of nosocomial infections. Bacteria associated with biofilm formation play a key role in the morbidity and pathogenesis of these infections. Nitric oxide (NO) is a naturally produced free radical with proven bactericidal effect. In this study, Foley urinary catheters were impregnated with gaseous NO. The catheters demonstrated slow release of nitric oxide over a 14-day period. The charged catheters were rendered antiseptic, and as such, were able to prevent bacterial colonization and biofilm formation on their luminal and exterior surfaces. In addition, we observed that NO-impregnated catheters were able to inhibit the growth of Escherichia coli within the surrounding media, demonstrating the ability to eradicate a bacterial concentration of up to 10(4) CFU/ml.
Collapse
|
35
|
Svensson L, Säve S, Persson K. The effect of nitric oxide on adherence of P-fimbriated uropathogenic Escherichia coli to human renal epithelial cells. BJU Int 2009; 105:1726-31. [DOI: 10.1111/j.1464-410x.2009.08986.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Rottner M, Freyssinet JM, Martínez MC. Mechanisms of the noxious inflammatory cycle in cystic fibrosis. Respir Res 2009; 10:23. [PMID: 19284656 PMCID: PMC2660284 DOI: 10.1186/1465-9921-10-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/13/2009] [Indexed: 01/09/2023] Open
Abstract
Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis.
Collapse
Affiliation(s)
- Mathilde Rottner
- 1INSERM U 770; Université Paris-Sud 11, Faculté de Médecine, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.
| | | | | |
Collapse
|
37
|
Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S. Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2009; 2:370-8. [PMID: 21261931 PMCID: PMC3815757 DOI: 10.1111/j.1751-7915.2009.00098.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilm formation and biofilm‐related infections. Nitric oxide (NO), an important messenger molecule in biological systems, was previously identified as a signal for dispersal in biofilms of the model organism Pseudomonas aeruginosa. In the present study, the use of NO as an anti‐biofilm agent more broadly was assessed. Various NO donors, at concentrations estimated to generate NO levels in the picomolar and low nanomolar range, were tested on single‐species biofilms of relevant microorganisms and on multi‐species biofilms from water distribution and treatment systems. Nitric oxide‐induced dispersal was observed in all biofilms assessed, and the average reduction of total biofilm surface was 63%. Moreover, biofilms exposed to low doses of NO were more susceptible to antimicrobial treatments than untreated biofilms. For example, the efficacy of conventional chlorine treatments at removing multi‐species biofilms from water systems was increased by 20‐fold in biofilms treated with NO compared with untreated biofilms. These data suggest that combined treatments with NO may allow for novel and improved strategies to control biofilms and have widespread applications in many environmental, industrial and clinical settings.
Collapse
Affiliation(s)
- Nicolas Barraud
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Lack of MD-2 expression in human corneal epithelial cells is an underlying mechanism of lipopolysaccharide (LPS) unresponsiveness. Immunol Cell Biol 2008; 87:141-8. [PMID: 18936773 PMCID: PMC2645480 DOI: 10.1038/icb.2008.75] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the present study we tested the responsiveness of human corneal epithelial cells (HCECs) and corneal fibroblasts to lipopolysaccharide (LPS), a TLR4 ligand. Purified P aeruginosa LPS was used to stimulate telomerase-immortalized HCECs (HUCL) and stromal fibroblast (THK) cell lines. Exposure of cells to LPS induced a time-dependent activation of NF-κB in THK but not in HUCL cells, as assessed by an increase in IκB-α phosphorylation and degradation. Concomitant with NF-κB activation, LPS-treated THK cells, but not HUCL cells, produced significantly more cytokines than control untreated cells. A cell surface biotinylation assay revealed that HUCL cells express TLR4 intracellularly whereas TLR5 is expressed on the cell surface. Furthermore, RT-PCR analysis revealed that HUCL and primary HCECs, in contrast to THK cells, do not express MD-2. Thus, our results demonstrate that the LPS unresponsiveness of HCECs might be due to deficient expression of MD2, an essential component for LPS-TLR4 signaling.
Collapse
|
39
|
Charville GW, Hetrick EM, Geer CB, Schoenfisch MH. Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 2008; 29:4039-44. [PMID: 18657857 DOI: 10.1016/j.biomaterials.2008.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/02/2008] [Indexed: 11/25/2022]
Abstract
The ability of nitric oxide (NO)-releasing xerogels to reduce fibrinogen-mediated adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli is described. A negative correlation was observed between NO surface flux and bacterial adhesion for each species tested. For S. aureus and E. coli, reduced adhesion correlated directly with NO flux from 0 to 30 pmol cm(-2)s(-1). A similar dependence for S. epidermidis was evident from 18 to 30 pmol cm(-2)s(-1). At a NO flux of 30 pmol cm(-2)s(-1), surface coverage of S. aureus, S. epidermidis, and E. coli was reduced by 96, 48, and 88%, respectively, compared to non-NO-releasing controls. Polymeric NO release was thus demonstrated to be an effective approach for significantly reducing fibrinogen-mediated adhesion of both gram-positive and gram-negative bacteria in vitro, thereby illustrating the advantage of active NO release as a strategy for inhibiting bacterial adhesion in the presence of pre-adsorbed protein.
Collapse
Affiliation(s)
- Gregory W Charville
- Department of Chemistry, University of North Carolina at Chapel Hill, Caudill and Kenan Laboratories, CB 3290, Chapel Hill, NC 27599-3290, USA
| | | | | | | |
Collapse
|
40
|
Bove PF, Hristova M, Wesley UV, Olson N, Lounsbury KM, van der Vliet A. Inflammatory levels of nitric oxide inhibit airway epithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J Biol Chem 2008; 283:17919-28. [PMID: 18424783 DOI: 10.1074/jbc.m709914200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased synthesis of NO during airway inflammation, caused by induction of nitric-oxide synthase 2 in several lung cell types, may contribute to epithelial injury and permeability. To investigate the consequence of elevated NO production on epithelial function, we exposed cultured monolayers of human bronchial epithelial cells to the NO donor diethylenetriaamine NONOate. At concentrations generating high nanomolar levels of NO, representative of inflammatory conditions, diethylenetriaamine NONOate markedly reduced wound closure in an in vitro scratch injury model, primarily by inhibiting epithelial cell migration. Analysis of signaling pathways and gene expression profiles indicated a rapid induction of the mitogen-activated protein kinase phosphatase (MPK)-1 and decrease in extracellular signal-regulated kinase (ERK)1/2 activation, as well as marked stabilization of hypoxia-inducible factor (HIF)-1alpha and activation of hypoxia-responsive genes, under these conditions. Inhibition of ERK1/2 signaling using U0126 enhanced HIF-1alpha stabilization, implicating ERK1/2 dephosphorylation as a contributing mechanism in NO-mediated HIF-1alpha activation. Activation of HIF-1alpha by the hypoxia mimic cobalt chloride, or cell transfection with a degradation-resistant HIF-1alpha mutant construct inhibited epithelial wound repair, implicating HIF-1alpha in NO-mediated inhibition of cell migration. Conversely, NO-mediated inhibition of epithelial wound closure was largely prevented after small interfering RNA suppression of HIF-1alpha. Finally, NO-mediated inhibition of cell migration was associated with HIF-1alpha-dependent induction of PAI-1 and activation of p53, both negative regulators of epithelial cell migration. Collectively, our results demonstrate that inflammatory levels of NO inhibit epithelial cell migration, because of suppression of ERK1/2 signaling, and activation of HIF-1alpha and p53, with potential consequences for epithelial repair and remodeling during airway inflammation.
Collapse
Affiliation(s)
- Peter F Bove
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The airway epithelium represents a primary site for the introduction and deposition of potentially pathogenic microorganisms into the body, through inspired air. The epithelial mucosa is an important component of the innate immune system that recognizes conserved structures in microorganisms and initiates appropriate signaling to recruit and activate phagocytic cells to the airways. This review focuses on how airway epithelial cells sense and respond to the presence of bacterial pathogens. The major signaling cascades initiated by epithelial receptors that lead to phagocyte recruitment to the airways as well as the ability of the epithelium to regulate inflammation are discussed.
Collapse
Affiliation(s)
- Marisa I Gómez
- Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
42
|
Wood SR, Firoved AM, Ornatowski W, Mai T, Deretic V, Timmins GS. Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic Res 2007; 41:208-15. [PMID: 17364947 DOI: 10.1080/10715760601052610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alginate is a critical virulence factor contributing to the poor clinical prognosis associated with the conversion of Pseudomonas aeruginosa to mucoid phenotypes in cystic fibrosis (CF). An important mechanism of action is its ability to scavenge host innate-immune reactive species. We have previously analyzed the bacterial response to nitrosative stress by S-nitrosoglutathione (GSNO), a physiological NO radical donor with diminished levels in the CF lung. GSNO substantially increased bacterial nitrosative and oxidative defenses and so we hypothesized a similar increase in alginate production would occur. However, in mucoid P. aeruginosa, there was decreased expression of the majority of alginate synthetic genes. This microarray data was confirmed both by RT-PCR and at the functional level by direct measurements of alginate production. Our data suggest that the lowered levels of innate-immune nitrosative mediators (such as GSNO) in the CF lung exacerbate the effects of mucoid P. aeruginosa, by failing to suppress alginate biosynthesis.
Collapse
Affiliation(s)
- Simon R Wood
- College of Pharmacy, Toxicology Program, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
43
|
Choi JW, Lee W, Lee DB, Park CH, Kim JS, Jang YH, Kim Y. Electrochemical detection of pathogen infection using cell chip. ENVIRONMENTAL MONITORING AND ASSESSMENT 2007; 129:37-42. [PMID: 17171282 DOI: 10.1007/s10661-006-9423-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Revised: 01/27/2006] [Accepted: 03/09/2006] [Indexed: 05/13/2023]
Abstract
The immobilized cell using self-assembled synthetic oligopeptide was applied to the electrochemical detection of pathogen infection. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for the immobilization of HeLa cell on gold (Au) substrate. Layer formation and immobilization of the cell were investigated with surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS). Experimental results showed that the thin film of cysteine-terminated synthetic oligopeptide was successfully fabricated and it could be applied for the immobilization of HeLa cells. The adhered living cell was exposed to E. coli O157:H7, which induced the change of SPR angle and electrochemical impedance signal. The proposed cell immobilization method using self-assembly technique can be applied to construct the cell microarray for on-site pathogen monitoring.
Collapse
Affiliation(s)
- J W Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 1 Sinsu-Dong, Mapo-Gu, Seoul, 121-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Keen C, Olin AC, Edentoft A, Gronowitz E, Strandvik B. Airway nitric oxide in patients with cystic fibrosis is associated with pancreatic function, Pseudomonas infection, and polyunsaturated fatty acids. Chest 2007; 131:1857-64. [PMID: 17400678 DOI: 10.1378/chest.06-2635] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Airway nitric oxide (NO) is low or normal in cystic fibrosis (CF) patients. This may affect bacterial status since NO has antimicrobial properties. Arachidonic acid (AA), which is increased in the serum and airways of CF patients, has been shown to reduce NO levels. The aim of this study was to investigate whether airway NO level correlates with genotype and pancreatic function, and whether low airway NO level is associated with bacterial infection and increased serum AA level in CF patients. METHOD Nasal NO (nNO) and exhaled NO (eNO) were measured according to the European Respiratory Society/American Thoracic Society standard in 59 CF patients aged 7 to 55 years, 80% of whom were pancreatic insufficient (PI) and 51% were chronically infected with Pseudomonas aeruginosa. RESULTS PI CF patients had significantly lower nNO levels than pancreatic-sufficient (PS) patients. Airway NO level did not correlate with lung function or inflammatory parameters. PI patients chronically infected with P aeruginosa had significantly lower nNO levels than noninfected PI patients. nNO level correlated inversely with the AA/docosahexaenoic acid ratio, and eNO with the essential fatty acid (FA) deficiency index, which is the ratio between mead acid and AA. CONCLUSIONS CF patients with PI, which is associated with more severe genotypes, had lower airway NO levels than patients with PS. Low NO level was correlated to chronic P aeruginosa infection, and an association was found between airway NO level and the abnormal serum phospholipid FA pattern.
Collapse
Affiliation(s)
- Christina Keen
- Department of Pediatrics, Sahlgrenska Academy, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Reynolds WF, Sermet-Gaudelus I, Gausson V, Feuillet MN, Bonnefont JP, Lenoir G, Descamps-Latscha B, Witko-Sarsat V. Myeloperoxidase promoter polymorphism -463G is associated with more severe clinical expression of cystic fibrosis pulmonary disease. Mediators Inflamm 2007; 2006:36735. [PMID: 16883063 PMCID: PMC1592586 DOI: 10.1155/mi/2006/36735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The severity of cystic fibrosis (CF) pulmonary disease is not directly related to CFTR genotype but depends upon several parameters, including neutrophil-dominated inflammation. Identification of agents modulating inflammation constitutes a relevant goal. Myeloperoxidase (MPO) is involved in both microbicidal and proinflammatory neutrophil activities. The aim of this study was to evaluate whether the -463GA MPO promoter polymorphism is linked to clinical severity of CF-associated pulmonary inflammation. This polymorphism significantly affects the level of MPO gene expression in leukocytes and the G allele is more expressing than the A allele. We show that MPO genotype significantly influences the severity of pulmonary disease in early stages, prior to the development of chronic lung infections, with GG genotype being associated with more severe CF disease. Our findings indicate that the level of MPO gene expression influences the CF pathogenesis, presumably reflecting cellular damage by MPO-generated oxidants or other activity of MPO in airway inflammation.
Collapse
Affiliation(s)
| | | | - Valérie Gausson
- INSERM U507, Hôpital Necker-Enfants Malades,
75015 Paris, France
| | | | | | - Gérard Lenoir
- Service de Pédiatrie Générale, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | | | - Véronique Witko-Sarsat
- INSERM U507, Hôpital Necker-Enfants Malades,
75015 Paris, France
- *Véronique Witko-Sarsat:
| |
Collapse
|
46
|
Cuzick A, Stirling FR, Lindsay SL, Evans TJ. The type III pseudomonal exotoxin U activates the c-Jun NH2-terminal kinase pathway and increases human epithelial interleukin-8 production. Infect Immun 2006; 74:4104-13. [PMID: 16790784 PMCID: PMC1489742 DOI: 10.1128/iai.02045-05] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Microbial interactions with host cell signaling pathways are key determinants of the host cell response to infection. Many toxins secreted by bacterial type III secretion systems either stimulate or inhibit the host inflammatory response. We investigated the role of type III secreted toxins of the lung pathogen Pseudomonas aeruginosa in the inflammatory response of human respiratory epithelial cells to infection. Using bacteria with specific gene deletions, we found that interleukin-8 production by these cells was almost entirely dependent on bacterial type III secretion of exotoxin U (ExoU), a phospholipase, although other bacterial factors are involved. ExoU activated the c-Jun NH(2)-terminal kinase pathway, stimulating the phosphorylation and activation of mitogen-activated kinase kinase 4, c-Jun NH(2)-terminal kinase, and c-Jun. This in turn increased levels of transcriptionally competent activator protein-1. Although this pathway was dependent on the lipase activity of ExoU, it was independent of cell death. Activation of mitogen-activated kinase signaling by ExoU in this fashion is a novel mechanism by which a bacterial product can initiate a host inflammatory response, and it may result in increased epithelial permeability and bacterial spread.
Collapse
Affiliation(s)
- Alayne Cuzick
- Division of Immunology, Infection and Inflammation, University of Glasgow, Western Infirmary, Glasgow G11 6NT, United Kingdom
| | | | | | | |
Collapse
|
47
|
Hardy I, Alany R, Russell B, Hardy G. Antimicrobial effects of arginine and nitrogen oxides and their potential role in sepsis. Curr Opin Clin Nutr Metab Care 2006; 9:225-32. [PMID: 16607121 DOI: 10.1097/01.mco.0000222104.23171.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Moeller A, Horak F, Lane C, Knight D, Kicic A, Brennan S, Franklin P, Terpolilli J, Wildhaber JH, Stick SM. Inducible NO synthase expression is low in airway epithelium from young children with cystic fibrosis. Thorax 2006; 61:514-20. [PMID: 16517573 PMCID: PMC2111217 DOI: 10.1136/thx.2005.054643] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND This is the first study to measure inducible nitric oxide synthase (iNOS) gene and protein expression quantitatively in primary epithelial cells from very young children with cystic fibrosis (CF). Low levels of exhaled nitric oxide (NO) in CF suggest dysregulation of NO production in the airway. Due to the importance of NO in cell homeostasis and innate immunity, any defect in the pathway associated with CF would be a potential target for treatment. METHODS Cells were obtained by tracheobronchial brushing from 40 children with CF of mean (SD) age 2.1 (1.5) years and from 12 healthy non-atopic children aged 3.4 (1.2) years. Expression of iNOS mRNA was measured using quantitative PCR and iNOS protein by immunofluorescence and Western blot analysis. RESULTS Inducible NOS mRNA expression was significantly lower in CF patients with and without bacterial infection than in healthy children (0.22 and 0.23 v 0.76; p=0.002 and p=0.01, respectively). Low levels of iNOS gene expression were accompanied by low levels of iNOS protein expression as detected by Western blot analysis. CONCLUSIONS These results support the findings of previous studies in adult patients with advanced disease, cell lines, and animal models. Our findings reflect the situation in children with mild lung disease. They indicate that low iNOS expression may be an innate defect in CF with potential consequences for local antimicrobial defence and epithelial cell function and provide evidence for an approach to treatment based on increasing epithelial NO production or the sensitivity of NO dependent cellular processes.
Collapse
Affiliation(s)
- A Moeller
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, and Division of Respiratory Medicine, University Children's Hospital Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hoyt JC, Ballering J, Numanami H, Hayden JM, Robbins RA. Doxycycline modulates nitric oxide production in murine lung epithelial cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:567-72. [PMID: 16365451 DOI: 10.4049/jimmunol.176.1.567] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many effective therapeutic agents exhibit effects that are different from their intended primary mode of action. Antibiotics such as doxycycline and erythromycin A are no exception. They also display anti-inflammatory activity. Using LA4 murine lung alveolar epithelial cells, effects of doxycycline and erythromycin A on inducible NO synthase (iNOS) NO production as well as iNOS protein and mRNA production were investigated. Induction of iNOS was accomplished by treatment with cytomix (TNF-alpha, IL-1beta, and IFN-gamma each at 5 ng/ml). Production of NO or iNOS was not detected in controls with or without erythromycin A. In the presence of cytomix, erythromycin A did not decrease NO, nitrite, iNOS protein, or mRNA production. In contrast, doxycycline caused a dose-dependent decrease in NO, nitrite, iNOS protein, and mRNA production in cytomix-treated cells. Doxycycline at 30 mug/ml produced a 90% decrease in nitrite and NO production and a 52% decrease in iNOS mRNA transcription compared with cytomix treatment alone. Actinomycin D treatment suggests that doxycycline decreases stability of iNOS mRNA in cytomix-treated cells. To determine a mechanism for the decrease in iNOS expression, NF-kappaB and AP-1 transcription regulatory systems and p38 MAPK were examined. Doxycycline treatment gave no statistically significant change in NF-kappaB activation but did decrease p38 MAPK protein in cytomix-treated cells by 50%, suggesting that p38 MAPK may be responsible for stabilization of iNOS mRNA. These results demonstrate that doxycycline decreases NO production from iNOS by destabilization of iNOS mRNA via decreased expression of p38 MAPK.
Collapse
Affiliation(s)
- Jeffrey C Hoyt
- Research Service, Carl T. Hayden Veterans Affairs Medical Center, Phoenix, AZ 85012, USA.
| | | | | | | | | |
Collapse
|
50
|
Hazlett LD, McClellan S, Goshgarian C, Huang X, Thakur A, Barrett R. The role of nitric oxide in resistance to P. aeruginosa ocular infection. Ocul Immunol Inflamm 2005; 13:279-88. [PMID: 16159718 DOI: 10.1080/09273940590951016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE This study determined the role of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the resistance response of BALB/c mice to P. aeruginosa-induced keratitis. METHODS RT-PCR, nitrite detection, iNOS inhibition, ELISA, and immunohistochemistry were used. RESULTS Early after infection, iNOS mRNA expression and nitrite levels in cornea were elevated compared to levels in the uninfected cornea. Treatment with aminoguanidine sulfate (AG), an inhibitor of iNOS, resulted in extensive corneal destruction, reduced nitrite levels, and reduced nitrotyrosine staining. Infected mice also had increased bacterial burden and elevated levels of MIP-1alpha, IL-1beta, and MIP-2 in the cornea. Dual-labeling immunohistochemistry established the macrophage as the major source of iNOS in the infected cornea. CONCLUSIONS These data provide evidence that iNOS is constitutively expressed in the BALB/c cornea; that iNOS-derived NO is required for bacterial killing/stasis; and that the macrophage is the major cell source of NO.
Collapse
Affiliation(s)
- Linda D Hazlett
- Department of Anatomy/Cell Biology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|