1
|
Zheng M, Lin R, Zhu J, Dong Q, Chen J, Jiang P, Zhang H, Liu J, Chen Z. Effector Proteins of Type IV Secretion System: Weapons of Brucella Used to Fight Against Host Immunity. Curr Stem Cell Res Ther 2024; 19:145-153. [PMID: 36809969 DOI: 10.2174/1574888x18666230222124529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/24/2023]
Abstract
Brucella is an intracellular bacterial pathogen capable of long-term persistence in the host, resulting in chronic infections in livestock and wildlife. The type IV secretion system (T4SS) is an important virulence factor of Brucella and is composed of 12 protein complexes encoded by the VirB operon. T4SS exerts its function through its secreted 15 effector proteins. The effector proteins act on important signaling pathways in host cells, inducing host immune responses and promoting the survival and replication of Brucella in host cells to promote persistent infection. In this article, we describe the intracellular circulation of Brucella-infected cells and survey the role of Brucella VirB T4SS in regulating inflammatory responses and suppressing host immune responses during infection. In addition, the important mechanisms of these 15 effector proteins in resisting the host immune response during Brucella infection are elucidated. For example, VceC and VceA assist in achieving sustained survival of Brucella in host cells by affecting autophagy and apoptosis. BtpB, together with BtpA, controls the activation of dendritic cells during infection, induces inflammatory responses, and controls host immunity. This article reviews the effector proteins secreted by Brucella T4SS and their involvement in immune responses, which can provide a reliable theoretical basis for the subsequent mechanism of hijacking the host cell signaling pathway by bacteria and contribute to the development of better vaccines to effectively treat Brucella bacterial infection.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ruiqi Lin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Qiao Dong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Pengfei Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| |
Collapse
|
2
|
Vaccine properties of Brucella melitensis 16MΔwzm and reactivation of placental infection in pregnant sheep. Vaccine 2023; 41:1554-1566. [PMID: 36653223 DOI: 10.1016/j.vaccine.2023.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Brucellosis, a worldwide zoonotic disease, is endemic in many developing countries. Besides causing significant economic losses for the livestock industry, it has severe consequences for human health. In endemic regions, small ruminants infected by Brucella melitensis are the main source of human brucellosis. Rev1, the only vaccine currently recommended to control the disease in sheep and goats, has several drawbacks. Rough lipopolysaccharide (R-LPS) mutants have been tested as alternatives, but most lack efficacy. Those in the Wzm/Wzt system responsible for O-polysaccharide export to the periplasm have been proposed as promising vaccine candidates, although to date they have been scarcely investigated in the natural host. In the present work, we studied the biological properties of a 16MΔwzm in-frame deletion mutant, including its safety in pregnant mice and sheep. In mice, 16MΔwzm prevented placental and fetal infections before parturition and protected against B. melitensis and Brucella ovis infections. In sheep, 16MΔwzm was equally safe in lambs, rams, and non-pregnant ewes, inducing some transient Rose Bengal reactions (<7 weeks). The serological reactions occurred earlier and more strongly in pregnant than in non-pregnant ewes and were significantly reduced when conjunctival rather than subcutaneous vaccination was used. In ewes vaccinated at mid-pregnancy, 16MΔwzm was not shed in vaginal discharges during the pregnancy and did not induce abortions/stillbirths. However, some ewes showed a transitory reactivation of infection in placentas and/or milk at parturition, accompanied by a seroconversion in smooth LPS (S-LPS) and/or R-LPS tests. Overall, 16MΔwzm can be considered as a safe vaccine for lambs, rams, and non-pregnant ewes, but its use at mid-pregnancy should be avoided to prevent vaccine dissemination at parturition. If the efficacy results against B. melitensis and B. ovis observed in mice are confirmed by further studies in the natural host, 16MΔwzm could constitute a useful vaccine.
Collapse
|
3
|
Kurmanov B, Zincke D, Su W, Hadfield TL, Aikimbayev A, Karibayev T, Berdikulov M, Orynbayev M, Nikolich MP, Blackburn JK. Assays for Identification and Differentiation of Brucella Species: A Review. Microorganisms 2022; 10:microorganisms10081584. [PMID: 36014002 PMCID: PMC9416531 DOI: 10.3390/microorganisms10081584] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brucellosis is one of the most important and widespread bacterial zoonoses worldwide. Cases are reported annually across the range of known infectious species of the genus Brucella. Globally, Brucella melitensis, primarily hosted by domestic sheep and goats, affects large proportions of livestock herds, and frequently spills over into humans. While some species, such as Brucella abortus, are well controlled in livestock in areas of North America, the Greater Yellowstone Ecosystem supports the species in native wild ungulates with occasional spillover to livestock. Elsewhere in North America, other Brucella species still infect domestic dogs and feral swine, with some associated human cases. Brucella spp. patterns vary across space globally with B. abortus and B. melitensis the most important for livestock control. A myriad of other species within the genus infect a wide range of marine mammals, wildlife, rodents, and even frogs. Infection in humans from these others varies with geography and bacterial species. Control in humans is primarily achieved through livestock vaccination and culling and requires accurate and rapid species confirmation; vaccination is Brucella spp.-specific and typically targets single livestock species for distribution. Traditional bacteriology methods are slow (some media can take up to 21 days for bacterial growth) and often lack the specificity of molecular techniques. Here, we summarize the molecular techniques for confirming and identifying specific Brucella species and provide recommendations for selecting the appropriate methods based on need, sensitivity, and laboratory capabilities/technology. As vaccination/culling approaches are costly and logistically challenging, proper diagnostics and species identification are critical tools for targeting surveillance and control.
Collapse
Affiliation(s)
- Berzhan Kurmanov
- Spatial Epidemiology & Ecology Research Lab, Department of Geography, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Diansy Zincke
- Spatial Epidemiology & Ecology Research Lab, Department of Geography, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Wanwen Su
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ted L. Hadfield
- Spatial Epidemiology & Ecology Research Lab, Department of Geography, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Alim Aikimbayev
- Scientific Practical Center for Sanitary Epidemiological Expertise and Monitoring, Ministry of Health, Almaty 050008, Kazakhstan
| | - Talgat Karibayev
- National Reference Veterinary Center, Nur-Sultan 010000, Kazakhstan
| | - Maxat Berdikulov
- National Reference Veterinary Center, Nur-Sultan 010000, Kazakhstan
| | - Mukhit Orynbayev
- Research Institute for Biological Special Problems, Otar, Zhambyl 080409, Kazakhstan
| | - Mikeljon P. Nikolich
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jason K. Blackburn
- Spatial Epidemiology & Ecology Research Lab, Department of Geography, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence:
| |
Collapse
|
4
|
Middlebrook EA, Romero AT, Bett B, Nthiwa D, Oyola SO, Fair JM, Bartlow AW. Identification and distribution of pathogens coinfecting with Brucella spp., Coxiella burnetii and Rift Valley fever virus in humans, livestock and wildlife. Zoonoses Public Health 2022; 69:175-194. [PMID: 35034427 PMCID: PMC9303618 DOI: 10.1111/zph.12905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 01/20/2023]
Abstract
Zoonotic diseases, such as brucellosis, Q fever and Rift Valley fever (RVF) caused by Brucella spp., Coxiella burnetii and RVF virus, respectively, can have devastating effects on human, livestock, and wildlife health and cause economic hardship due to morbidity and mortality in livestock. Coinfection with multiple pathogens can lead to more severe disease outcomes and altered transmission dynamics. These three pathogens can alter host immune responses likely leading to increased morbidity, mortality and pathogen transmission during coinfection. Developing countries, such as those commonly afflicted by outbreaks of brucellosis, Q fever and RVF, have high disease burden and thus common coinfections. A literature survey provided information on case reports and studies investigating coinfections involving the three focal diseases. Fifty five studies were collected demonstrating coinfections of Brucella spp., C. burnetii or RVFV with 50 different pathogens, of which 64% were zoonotic. While the literature search criteria involved ‘coinfection’, only 24/55 studies showed coinfections with direct pathogen detection methods (microbiology, PCR and antigen test), while the rest only reported detection of antibodies against multiple pathogens, which only indicate a history of co‐exposure, not concurrent infection. These studies lack the ability to test whether coinfection leads to changes in morbidity, mortality or transmission dynamics. We describe considerations and methods for identifying ongoing coinfections to address this critical blind spot in disease risk management.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alicia T Romero
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Daniel Nthiwa
- International Livestock Research Institute, Nairobi, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Samuel O Oyola
- International Livestock Research Institute, Nairobi, Kenya
| | - Jeanne M Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Andrew W Bartlow
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
5
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Improvement of the attenuated mutant strain of Brucella melitensis Rev1 as a potential vaccine candidate. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Jiao H, Zhou Z, Li B, Xiao Y, Li M, Zeng H, Guo X, Gu G. The Mechanism of Facultative Intracellular Parasitism of Brucella. Int J Mol Sci 2021; 22:ijms22073673. [PMID: 33916050 PMCID: PMC8036852 DOI: 10.3390/ijms22073673] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease characterized by abortion and reproductive dysfunction in pregnant animals. Although the mortality rate of Brucellosis is low, it is harmful to human health, and also seriously affects the development of animal husbandry, tourism and international trade. Brucellosis is caused by Brucella, which is a facultative intracellular parasitic bacteria. It mainly forms Brucella-containing vacuoles (BCV) in the host cell to avoid the combination with lysosome (Lys), so as to avoid the elimination of it by the host immune system. Brucella not only has the ability to resist the phagocytic bactericidal effect, but also can make the host cells form a microenvironment which is conducive to its survival, reproduction and replication, and survive in the host cells for a long time, which eventually leads to the formation of chronic persistent infection. Brucella can proliferate and replicate in cells, evade host immune response and induce persistent infection, which are difficult problems in the treatment and prevention of Brucellosis. Therefore, the paper provides a preliminary overview of the facultative intracellular parasitic and immune escape mechanisms of Brucella, which provides a theoretical basis for the later study on the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Correspondence:
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| |
Collapse
|
8
|
Santos RL, Souza TD, Mol JPS, Eckstein C, Paíxão TA. Canine Brucellosis: An Update. Front Vet Sci 2021; 8:594291. [PMID: 33738302 PMCID: PMC7962550 DOI: 10.3389/fvets.2021.594291] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/28/2021] [Indexed: 01/18/2023] Open
Abstract
Canine brucellosis is an infectious and zoonotic disease caused by Brucella canis, which has been reported worldwide, and is a major public health concern due to close contact between dogs and humans. In dogs, canine brucellosis manifests with abortion outbreaks, reproductive failure, enlargement of lymph nodes, and occasionally affects the osteoarticular system, although the occurrence of asymptomatic infections in dogs are not uncommon. In humans, the disease is associated with a febrile syndrome, commonly with non-specific symptoms including splenomegaly, fatigue, and weakness. Infection of dogs occurs mostly by the oronasal route when in contact with contaminated tissues such as aborted fetuses, semen, urine, and vaginal secretions. In humans, contact with contaminated fluids from infected dogs is an important source of infection, and it is an occupational risk for veterinarians, breeders, laboratory workers, among other professionals who deal with infected animals or biological samples. The diagnosis in dogs is largely based on serologic methods. However, serologic diagnosis of canine brucellosis remains very challenging due to the low accuracy of available tests. Molecular diagnostic methods have been increasingly used in the past few years. Treatment of infected dogs is associated with a high frequency of relapse, and should be employed only in selected cases. Currently there are no commercially available vaccines for prevention of canine brucellosis. Therefore, development of novel and improved diagnostic methods as well as the development of efficacious and safe vaccination protocols are needed for an effective control of canine brucellosis and its associated zoonotic risk.
Collapse
Affiliation(s)
- Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tayse D Souza
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P S Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Eckstein
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane A Paíxão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
10
|
Ouahrani-Bettache S, Jiménez De Bagüés MP, De La Garza J, Freddi L, Bueso JP, Lyonnais S, Al Dahouk S, De Biase D, Köhler S, Occhialini A. Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis. Virulence 2020; 10:868-878. [PMID: 31635539 PMCID: PMC6844557 DOI: 10.1080/21505594.2019.1682762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Brucella microti was isolated a decade ago from wildlife and soil in Europe. Compared to the classical Brucella species, it exhibits atypical virulence properties such as increased growth in human and murine macrophages and lethality in experimentally infected mice. A spontaneous rough (R) mutant strain, derived from the smooth reference strain CCM4915T, showed increased macrophage colonization and was non-lethal in murine infections. Whole-genome sequencing and construction of an isogenic mutant of B. microti and Brucella suis 1330 revealed that the R-phenotype was due to a deletion in a single gene, namely wbkE (BMI_I539), encoding a putative glycosyltransferase involved in lipopolysaccharide (LPS) O-polysaccharide biosynthesis. Complementation of the R-strains with the wbkE gene restored the smooth phenotype and the ability of B. microti to kill infected mice. LPS with an intact O-polysaccharide is therefore essential for lethal B. microti infections in the murine model, demonstrating its importance in pathogenesis.
Collapse
Affiliation(s)
| | - María P Jiménez De Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Luca Freddi
- IRIM, CNRS, University Montpellier, INSERM, Montpellier, France
| | - Juan P Bueso
- Laboratorio Agroalimentario, Gobierno de Aragón, Zaragoza, Spain
| | | | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to the Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Latina, Italy
| | - Stephan Köhler
- IRIM, CNRS, University Montpellier, INSERM, Montpellier, France
| | | |
Collapse
|
11
|
Eckstein C, Mol JPS, Costa FB, Nunes PP, Lima PA, Melo MM, Carvalho TP, Santos DO, Silva MF, Carvalho TF, Costa LF, Melo Júnior OAO, Giunchette RC, Paixão TA, Santos RL. Brucella ovis mutant in ABC transporter protects against Brucella canis infection in mice and it is safe for dogs. PLoS One 2020; 15:e0231893. [PMID: 32298378 PMCID: PMC7162469 DOI: 10.1371/journal.pone.0231893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/02/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/OBJECTIVES Vaccination is the most important tool for controlling brucellosis, but currently there is no vaccine available for canine brucellosis, which is a zoonotic disease of worldwide distribution caused by Brucella canis. This study aimed to evaluate protection and immune response induced by Brucella ovis ΔabcBA (BoΔabcBA) encapsulated with alginate against the challenge with Brucella canis in mice and to assess the safety of this strain for dogs. METHODS Intracellular growth of the vaccine strain BoΔabcBA was assessed in canine and ovine macrophages. Protection induced by BoΔabcBA against virulent Brucella canis was evaluated in the mouse model. Safety of the vaccine strain BoΔabcBA was assessed in experimentally inoculated dogs. RESULTS Wild type B. ovis and B. canis had similar internalization and intracellular multiplication profiles in both canine and ovine macrophages. The BoΔabcBA strain had an attenuated phenotype in both canine and ovine macrophages. Immunization of BALB/c mice with alginate-encapsulated BoΔabcBA (108 CFU) induced lymphocyte proliferation, production of IL-10 and IFN-γ, and protected against experimental challenge with B. canis. Dogs immunized with alginate-encapsulated BoΔabcBA (109 CFU) seroconverted, and had no hematologic, biochemical or clinical changes. Furthermore, BoΔabcBA was not detected by isolation or PCR performed using blood, semen, urine samples or vaginal swabs at any time point over the course of this study. BoΔabcBA was isolated from lymph nodes near to the site of inoculation in two dogs at 22 weeks post immunization. CONCLUSION Encapsulated BoΔabcBA protected mice against experimental B. canis infection, and it is safe for dogs. Therefore, B. ovis ΔabcBA has potential as a vaccine candidate for canine brucellosis prevention.
Collapse
Affiliation(s)
- Camila Eckstein
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola B. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Philipe P. Nunes
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pâmela A. Lima
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marília M. Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel O. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. Silva
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane F. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana F. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Otoni A. O. Melo Júnior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodolfo C. Giunchette
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Salmon-Divon M, Kornspan D. Transcriptomic analysis of smooth versus rough Brucella melitensis Rev.1 vaccine strains reveals insights into virulence attenuation. Int J Med Microbiol 2019; 310:151363. [PMID: 31699441 DOI: 10.1016/j.ijmm.2019.151363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Brucella melitensis Rev.1 is the live attenuated Elberg-originated vaccine strain of the facultative intracellular Brucella species, and is widely used to control brucellosis in small ruminants. However, Rev.1 may cause abortions in small ruminants that have been vaccinated during the last trimester of gestation, it is pathogenic to humans, and it induces antibodies directed at the O-polysaccharide (O-PS) of the smooth lipopolysaccharide, thus making it difficult to distinguish between vaccinated and infected animals. Rough Brucella strains, which lack O-PS and are considered less pathogenic, have been introduced to address these drawbacks; however, as Rev.1 confers a much better immunity than the rough mutants, it is still considered the reference vaccine for the prophylaxis of brucellosis in small ruminants. Therefore, developing an improved vaccine strain, which lacks the Rev.1 drawbacks, is a highly evaluated task, which requires a better understanding of the molecular mechanisms underlying the virulence attenuation of Rev.1 smooth strains and of natural Rev.1 rough strains, which are currently only partly understood. As the acidification of the Brucella-containing vacuole during the initial stages of infection is crucial for their survival, identifying the genes that contribute to their survival in an acidic environment versus a normal environment will greatly assist our understanding of the molecular pathogenic mechanisms and the attenuated virulence of the Rev.1 strain. Here, we compared the transcriptomes of the smooth and natural rough Rev.1 strains, each grown under either normal or acidic conditions. We found 12 key genes that are significantly downregulated in the Rev.1 rough strains under normal pH, as compared with Rev.1 smooth strains, and six highly important genes that are significantly upregulated in the smooth strains under acidic conditions, as compared with Rev.1 rough strains. All 18 differentially expressed genes are associated with bacterial virulence and survival and may explain the attenuated virulence of the rough Rev.1 strains versus smooth Rev.1 strains, thus providing new insights into the virulence attenuation mechanisms of Brucella. These highly important candidate genes may facilitate the design of new and improved brucellosis vaccines.
Collapse
Affiliation(s)
- Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel; Adelson School of Medicine, Ariel University, Israel.
| | - David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel.
| |
Collapse
|
13
|
Karponi G, Kritas SK, Papanikolaou E, Petridou E. A Cellular Model of Infection with Brucella melitensis in Ovine Macrophages: Novel Insights for Intracellular Bacterial Detection. Vet Sci 2019; 6:vetsci6030071. [PMID: 31484383 PMCID: PMC6789636 DOI: 10.3390/vetsci6030071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 12/02/2022] Open
Abstract
Intracellular bacteria provoking zoonoses, such as those of the genus Brucella, present a host cell tropism mostly limited to the monocyte/macrophage lineage, leading to chronic inflammatory reactions, difficult-to-eradicate-infections, and widespread prevalence among ruminants. Eradication of brucellosis has been based on programs that translate into a substantial financial burden for both the authorities and stockbreeders, if not strictly followed. To this end, we sought to create an in vitro cell model that could be utilized as future reference for adequately measuring the number of engulfed brucellae/cell, using peripheral blood-derived sheep macrophages infected with B. melitensis at decimal multiplicities of infection (MOI = 5000-5), to simulate the host cell/microorganism interaction and monitor bacterial loads up to 6 days post-infection. We show that the MOI = 5000 leads to high numbers of engulfed bacteria without affecting macrophages’ viability and that the minimum detection limit of our Real-Time PCR assay was 3.97 ± 5.58 brucellae/cell. Moreover, we observed a time-associated, significant gradual reduction in bacterial loads from Day 2 to Day 6 post-infection (p = 0.0013), as part of the natural bactericidal properties of macrophages. Overall, the work presented here constitutes a reliable in vitro cell model of Brucella melitensis for research purposes that can be utilized to adequately measure the number of engulfed brucellae/cell and provides insights towards future utilization of molecular biology-based methods for detection of Brucella.
Collapse
Affiliation(s)
- Garyfalia Karponi
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Spyridon K Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Evanthia Petridou
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
14
|
Amjadi O, Rafiei A, Mardani M, Zafari P, Zarifian A. A review of the immunopathogenesis of Brucellosis. Infect Dis (Lond) 2019; 51:321-333. [PMID: 30773082 DOI: 10.1080/23744235.2019.1568545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Brucellosis, caused by the intracellular pathogens Brucella, is one of the major zoonotic infections. Considering the economic burden, its prevalence has been a health concern especially in endemic regions. Brucella is able to survive and replicate within host cells by expressing different virulence factors and using various strategies to avoid the host's immune response. This leads to progression of the disease from an acute phase to chronic brucellosis. Exploration of genetic variations has confirmed the expected influence of gene polymorphisms on susceptibility and resistance to brucellosis of humans. Since there is no approved human vaccine and treatment is uncertain with risk of relapse, it is important to increase knowledge about pathogenesis, diagnosis and treatment of brucellosis in order to manage and control this infection, especially in endemic regions.
Collapse
Affiliation(s)
- Omolbanin Amjadi
- a Student Research Committee, Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Alireza Rafiei
- b Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Masoud Mardani
- c Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parisa Zafari
- a Student Research Committee, Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Ahmadreza Zarifian
- d Infectious Disease Research Group, Student Research Committee, Medical School , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
15
|
A Mutation in the Mesorhizobium loti oatB Gene Alters the Physicochemical Properties of the Bacterial Cell Wall and Reduces Survival inside Acanthamoeba castellanii. Int J Mol Sci 2018; 19:ijms19113510. [PMID: 30413017 PMCID: PMC6274867 DOI: 10.3390/ijms19113510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
In our previous report, we had shown that the free-living amoeba Acanthamoeba castellanii influenced the abundance, competiveness, and virulence of Mesorhizobium loti NZP2213, the microsymbiont of agriculturally important plants of the genus Lotus. The molecular basis of this phenomenon; however, had not been explored. In the present study, we demonstrated that oatB, the O-acetyltransferase encoding gene located in the lipopolysaccharide (LPS) synthesis cluster of M. loti, was responsible for maintaining the protective capacity of the bacterial cell envelope, necessary for the bacteria to fight environmental stress and survive inside amoeba cells. Using co-culture assays combined with fluorescence and electron microscopy, we showed that an oatB mutant, unlike the parental strain, was efficiently destroyed after rapid internalization by amoebae. Sensitivity and permeability studies of the oatB mutant, together with topography and nanomechanical investigations with the use of atomic force microscopy (AFM), indicated that the incomplete substitution of lipid A-core moieties with O-polysaccharide (O-PS) residues rendered the mutant more sensitive to hydrophobic compounds. Likewise, the truncated LPS moieties, rather than the lack of O-acetyl groups, made the oatB mutant susceptible to the bactericidal mechanisms (nitrosative stress and the action of lytic enzymes) of A. castellanii.
Collapse
|
16
|
Tissue distribution and cell tropism of Brucella canis in naturally infected canine foetuses and neonates. Sci Rep 2018; 8:7203. [PMID: 29740101 PMCID: PMC5940860 DOI: 10.1038/s41598-018-25651-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Brucella canis infection is an underdiagnosed zoonotic disease. Knowledge about perinatal brucellosis in dogs is extremely limited, although foetuses and neonates are under risk of infection due to vertical transmission. In this study, immunohistochemistry was used to determine tissue distribution and cell tropism of B. canis in canine foetuses and neonates. Diagnosis of B. canis in tissues of naturally infected pups was based on PCR and sequencing of amplicons, bacterial isolation, and immunohistochemistry, whose specificity was confirmed by laser capture microdissection. PCR positivity among 200 puppies was 21%, and nine isolates of B. canis were obtained. Tissues from 13 PCR-positive puppies (4 stillborn and 9 neonates) presented widespread immunolabeling. Stomach, intestines, kidney, nervous system, and umbilicus were positive in all animals tested. Other frequently infected organs included the liver (92%), lungs (85%), lymph nodes (69%), and spleen (62%). Immunolabeled coccobacilli occurred mostly in macrophages, but they were also observed in erythrocytes, epithelial cells of gastrointestinal mucosa, renal tubules, epidermis, adipocytes, choroid plexus, ependyma, neuroblasts, blood vessels endothelium, muscle cells, and in the intestinal lumen. These results largely expand our knowledge about perinatal brucellosis in the dog, clearly demonstrating a pantropic distribution of B. canis in naturally infected foetuses and neonates.
Collapse
|
17
|
Affiliation(s)
- Judith A Smith
- a University of Madison School of Medicine and Public Health , Madison WI
| |
Collapse
|
18
|
[Characterization of the genetic variability of field strains of Brucella canis isolated in Antioquia]. Rev Argent Microbiol 2017; 50:255-263. [PMID: 29277251 DOI: 10.1016/j.ram.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
Brucella canis is a facultative intracellular pathogen responsible for canine brucellosis, a zoonotic disease that affects canines, causing abortions and reproductive failure; and the production of non-specific symptoms in humans. In 2005 the presence of B. canis in Antioquia was demonstrated and the strains were identified as type 2. The sequencing of the genome of a field strain denoted Brucella canis str. Oliveri, showed species-specific indel events, which led us to investigate the genomic characteristics of the B. canis strain isolated and to establish the phylogenetic relationships and the divergence time of B. canis str. Oliveri. Conventional PCR sequencing was performed in 30 field strains identifying 5 indel events recognized in B. canis str. Oliveri. ADN from Brucella suis, Brucella melitensis and vaccine strains from Brucella abortus were used as control, and it was determined that all of the studied field strains shared 4 out of the 5 indels of the sequenced Oliveri strain, indicating the presence of more than one strain circulating in the region. Phylogenetic analysis was performed with 24 strains of Brucella using concatenated sequences of genetic markers for species differentiation. The molecular clock hypothesis and Tajima's relative rate test were tested, showing that the Oliveri strain, similarly to other canis species, diverged from B. suis. The molecular clock hypothesis between Brucella species was rejected and an evolution rate and a similar genetic distance between the B. canis were demonstrated.
Collapse
|
19
|
Vaccine development targeting lipopolysaccharide structure modification. Microbes Infect 2017; 20:455-460. [PMID: 29233768 DOI: 10.1016/j.micinf.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Vaccines are one of the most important methods for preventing infectious disease. Structural modification of lipopolysaccharide (LPS) provides a strategy for the development of live attenuated vaccines, either by altering the immunogenicity or by attenuating virulence of the bacteria. This review summarizes various approaches that utilize LPS mutants as whole-cell vaccines.
Collapse
|
20
|
Rossetti CA, Drake KL, Lawhon SD, Nunes JS, Gull T, Khare S, Adams LG. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions. Front Microbiol 2017; 8:1275. [PMID: 28798726 PMCID: PMC5529337 DOI: 10.3389/fmicb.2017.01275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Jairo S Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Leslie G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
21
|
A safe and molecular-tagged Brucella canis ghosts confers protection against virulent challenge in mice. Vet Microbiol 2017; 204:121-128. [PMID: 28532790 DOI: 10.1016/j.vetmic.2017.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/26/2017] [Accepted: 04/25/2017] [Indexed: 01/16/2023]
Abstract
Canine brucellosis, caused by Brucella canis, is a persistent infectious reproductive disease in dogs. The absence of effective treatment to the intracellular pathogen and the irreversible consequence of infection makes the need of a specific vaccine urgent. Bacterial ghosts (BGs) are the empty envelopes of bacteria with no genome content inside, which emerge as a proper vaccine candidate due to its intact outer antigen. It is generally derived from a genetically engineered strain, through the expression of Bacteriophage phiX174 lysis E gene upon induction. In this study, we combined the homologous recombination (HR) and bacterial ghost technologies, generating a genetically stable B. canis ghost strain which bears no drug resistance gene. When the ghost strain grows to OD600 of 0.6, 100% inactivation can be achieved under 42°C in 60h. The resultant BGs showed guaranteed safety and comparable immunogenicity to a live vaccine. The bacterial B0419 protein was depleted during HR process, which is subsequently proved to work as a molecular tag in distinguishing natural infection and BGs immunization through ELISA. Additionally, the BGs also conferred protection against B. canis RM6/66 and B. melitensis 16M. Therefore, the application of current BGs as a vaccine candidate and the corresponding serological diagnostic approach may provide better B. canis prevention strategy.
Collapse
|
22
|
Olsen SC, Tatum FM. Swine brucellosis: current perspectives. VETERINARY MEDICINE-RESEARCH AND REPORTS 2016; 8:1-12. [PMID: 30050849 PMCID: PMC6042558 DOI: 10.2147/vmrr.s91360] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brucella suis is a significant zoonotic species that is present in domestic livestock and wildlife in many countries worldwide. Transmission from animal reservoirs is the source of human infection as human-to-human transmission is very rare. Although swine brucellosis causes economic losses in domestic livestock, preventing human infection is the primary reason for its emphasis in disease control programs. Although disease prevalence varies worldwide, in areas outside of Europe, swine brucellosis is predominantly caused by B. suis biovars 1 and 3. In Europe, swine are predominantly infected with biovar 2 which is much less pathogenic in humans. In many areas worldwide, feral or wild populations of swine are important reservoir hosts. Like other Brucella spp. in their natural host, B. suis has developed mechanisms to survive in an intracellular environment and evade immune detection. Limitations in sensitivity and specificity of current diagnostics require use at a herd level, rather for individual animals. There is currently no commercial vaccine approved for preventing brucellosis in swine. Although not feasible in all situations, whole-herd depopulation is the most effective regulatory mechanism to control swine brucellosis.
Collapse
Affiliation(s)
- S C Olsen
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA,
| | - F M Tatum
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA,
| |
Collapse
|
23
|
Li Y, Lian D, Deng S, Zhang X, Zhang J, Li W, Bai H, Wang Z, Wu H, Fu J, Han H, Feng J, Liu G, Lian L, Lian Z. Efficient production of pronuclear embryos in breeding and nonbreeding season for generating transgenic sheep overexpressing TLR4. J Anim Sci Biotechnol 2016; 7:38. [PMID: 27408716 PMCID: PMC4940989 DOI: 10.1186/s40104-016-0096-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/13/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Brucella is a zoonotic Gram-negative pathogen that causes abortion and infertility in ruminants and humans. TLR4 is the receptor for LPS which can recognize Brucella and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. Consequently, transgenic sheep over-expressing TLR4 are an suitable model to investigate the effects of TLR4 on preventing Brucellosis. In this study, we generated transgenic sheep overexpressing TLR4 and aimed to evaluate the effects of different seasons (breeding and non-breeding season) on superovulation and the imported exogenous gene on growth. RESULTS In total of 43 donor ewes and 166 recipient ewes in breeding season, 37 donor ewes and 144 recipient ewes in non-breeding season were selected for super-ovulation and injected embryo transfer to generate transgenic sheep. Our results indicated the no. of embryos recovered of donors and the rate of pronuclear embryos did not show any significant difference between breeding and non-breeding seasons (P > 0.05). The positive rate of exogenous TLR4 tested were 21.21 % and 22.58 % in breeding and non-breeding season by Southern blot. The expression level of TLR4 in the transgenic sheep was 1.5 times higher than in the non-transgenic group (P < 0.05). The lambs overexpressing TLR4 had similar growth performance with non-transgenic lambs, and the blood physiological parameters of transgenic and non-transgenic were both in the normal range and did not show any difference. CONCLUSIONS Here we establish an efficient platform for the production of transgenic sheep by the microinjection of pronuclear embryos during the whole year. The over-expression of TLR4 had no adverse effect on the growth of the sheep.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Di Lian
- Department of Public Health, Benedictine University, Lisle, IL 60532 USA
| | - Shoulong Deng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, 300381 China
| | - Wenting Li
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hai Bai
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhixian Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hongping Wu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Juncai Fu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hongbing Han
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianzhong Feng
- Tianjin Institute of Animal Sciences, Tianjin, 300381 China
| | - Guoshi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ling Lian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengxing Lian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
24
|
Keleher LL, Skyberg JA. Activation of bovine neutrophils by Brucella spp. Vet Immunol Immunopathol 2016; 177:1-6. [PMID: 27436438 DOI: 10.1016/j.vetimm.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 01/18/2023]
Abstract
Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils.
Collapse
Affiliation(s)
- Lauren L Keleher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, United States; Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO, 65211, United States
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, United States; Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
25
|
Gamazo C, Martín-Arbella N, Brotons A, Camacho AI, Irache JM. Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization. Eur J Pharm Biopharm 2015; 96:454-63. [PMID: 25615880 PMCID: PMC7126451 DOI: 10.1016/j.ejpb.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Dealing with mucosal delivery systems means dealing with mucus. The name mucosa comes from mucus, a dense fluid enriched in glycoproteins, such as mucin, which main function is to protect the delicate mucosal epithelium. Mucus provides a barrier against physiological chemical and physical aggressors (i.e., host secreted digestive products such as bile acids and enzymes, food particles) but also against the potentially noxious microbiota and their products. Intestinal mucosa covers 400m(2) in the human host, and, as a consequence, is the major portal of entry of the majority of known pathogens. But, in turn, some microorganisms have evolved many different approaches to circumvent this barrier, a direct consequence of natural co-evolution. The understanding of these mechanisms (known as virulence factors) used to interact and/or disrupt mucosal barriers should instruct us to a rational design of nanoparticulate delivery systems intended for oral vaccination and immunotherapy. This review deals with this mimetic approach to obtain nanocarriers capable to reach the epithelial cells after oral delivery and, in parallel, induce strong and long-lasting immune and protective responses.
Collapse
Affiliation(s)
- Carlos Gamazo
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Nekane Martín-Arbella
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana Brotons
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana I Camacho
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - J M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
26
|
Jain L, Rawat M, Prajapati A, Tiwari AK, Kumar B, Chaturvedi VK, Saxena HM, Ramakrishnan S, Kumar J, Kerketta P. Protective immune-response of aluminium hydroxide gel adjuvanted phage lysate of Brucella abortus S19 in mice against direct virulent challenge with B. abortus 544. Biologicals 2015; 43:369-376. [PMID: 26156404 DOI: 10.1016/j.biologicals.2015.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/23/2022] Open
Abstract
The prophylactic efficacies of plain and alum adsorbed lysate were evaluated by direct virulent challenge in mice model. A recently isolated brucellaphage 'ϕLd' was used for generation of lysates. Twenty four h incubated Brucella abortus S19 broth cultures standardized to contain approximately 10(8) CFU/ml were found suitable for generation of lysates. Three lysate batches produced through separate cycles did not show any significant variation with respect to protein and polysaccharide contents, endotoxin level and phage counts, indicating that compositionally stable lysate preparations can be generated through an optimized production process. Three polypeptides of ∼16, 19 and 23 kDa could be identified as immuno-dominant antigens of the lysate which induced both humoral and cell-mediated immune responses in a dose dependent manner. Results of efficacy evaluation trial confirmed dose-dependent protective potencies of lysate preparation. The lysate with an antigenic dose of 0.52 μg protein and 60 μg CHO adsorbed on aluminium gel (0.1 percent aluminium concentration) exhibited the highest protective potency which was greater than that induced by standard S19 vaccine. Phage lysate methodology provides a very viable option through which an improved immunizing preparation with all desirable traits can be developed against brucellosis, and integrated with immunization programmes in a more efficient manner.
Collapse
Affiliation(s)
- Lata Jain
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, UP 243122, India
| | - Mayank Rawat
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, UP 243122, India.
| | - Awadhesh Prajapati
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, UP 243122, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, UP 243122, India
| | - Bablu Kumar
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, UP 243122, India
| | - V K Chaturvedi
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, UP 243122, India
| | - H M Saxena
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, India
| | - Sarvanan Ramakrishnan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, UP 243122, India
| | - Jatin Kumar
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, UP 243122, India
| | - Priscilla Kerketta
- Department of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, UP 243122, India
| |
Collapse
|
27
|
Saeedinia AR, Zeinoddini M, Soleimani M, Sadeghizadeh M. A new method for simultaneous gene deletion and down-regulation in Brucella melitensis Rev.1. Microbiol Res 2015; 170:114-123. [PMID: 25249309 DOI: 10.1016/j.micres.2014.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/17/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
In this study, our aim was to integrate an antisense expression cassette in bacterial chromosome for providing a long-term expression down-regulation in a bid to develop a new approach for simultaneous deletion and down-regulation of target genes in bacterial system. Therefore, we were used this approach for simultaneous deletion of the perosamine synthetase (per) gene and down-regulation of the virB1 expression in Brucella melitensis Rev.1. The per gene, which is one of the LPS O-chain coding genes, was replaced by homologous recombination with an antisense virB1 expression cassette together with kanamycin resistance cassette (kan(R)). Deletion of the per gene was characterized by PCR analysis and DNA sequencing. The expression of antisense virB1 cassette was confirmed by RT-PCR. Down-regulation of the virB1 mRNA expression was quantified by real-time RT-PCR using virB1 specific primers relative to the groEL reference gene. The survival rate of mutant strain was evaluated by CFU count in the BALB/c mice. The virB1 mRNA expression was down-regulated on average 10-fold in mutant strain as compared to parental strain. The loss of per gene function and decrease of the virB1 mRNA expression resulted in reduced entry and survival of the mutant Rev.1 strain in BALB/c mice splenocytes. We propose that this method can be used for simultaneous regulation of multiple genes expression.
Collapse
Affiliation(s)
- Ali Reza Saeedinia
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Genetics, Science and Biotechnology Research Center, Mallek-Ashtar University of Technology, P.O. Box: 15875-1774, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| |
Collapse
|
28
|
Abstract
Fifty years ago, bacteria in the genus Brucella were known to cause infertility and reproductive losses. At that time, the genus was considered to contain only 3 species: Brucella abortus, Brucella melitensis, and Brucella suis. Since the early 1960s, at least 7 new species have been identified as belonging to the Brucella genus (Brucella canis, Brucella ceti, Brucella inopinata, Brucella microti, Brucella neotomae, Brucella ovis, and Brucella pinnipedialis) with several additional new species under consideration for inclusion. Although molecular studies have found such high homology that some authors have proposed that all Brucella are actually 1 species, the epidemiologic and diagnostic benefits for separating the genus based on phenotypic characteristics are more compelling. Although pathogenic Brucella spp have preferred reservoir hosts, their ability to infect numerous mammalian hosts has been increasingly documented. The maintenance of infection in new reservoir hosts, such as wildlife, has become an issue for both public health and animal health regulatory personnel. Since the 1960s, new information on how Brucella enters host cells and modifies their intracellular environment has been gained. Although the pathogenesis and histologic lesions of B. abortus, B. melitensis, and B. suis in their preferred hosts have not changed, additional knowledge on the pathology of these brucellae in new hosts, or of new species of Brucella in their preferred hosts, has been obtained. To this day, brucellosis remains a significant human zoonosis that is emerging or reemerging in many parts of the world.
Collapse
Affiliation(s)
- S C Olsen
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - M V Palmer
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
29
|
WANG XIURAN, WANG LIN, LU TIANCHENG, YANG YANLING, CHEN SI, ZHANG RUI, LANG XULONG, YAN GUANGMOU, QIAN JING, WANG XIAOXU, MENG LINGYI, WANG XINGLONG. Effects of partial deletion of the wzm and wzt genes on lipopolysaccharide synthesis and virulence of Brucella abortus S19. Mol Med Rep 2014; 9:2521-7. [DOI: 10.3892/mmr.2014.2104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 02/21/2014] [Indexed: 11/06/2022] Open
|
30
|
Larsen AK, Nymo IH, Briquemont B, Sørensen KK, Godfroid J. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells. PLoS One 2013; 8:e84861. [PMID: 24376851 PMCID: PMC3869908 DOI: 10.1371/journal.pone.0084861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.
Collapse
Affiliation(s)
- Anett K. Larsen
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
- * E-mail:
| | - Ingebjørg H. Nymo
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Benjamin Briquemont
- Faculty of Science, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Karen K. Sørensen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Jacques Godfroid
- Section for Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Tromsø, Norway
- The Fram Centre, High North Research Centre for Climate and the Environment, Tromsø, Norway
| |
Collapse
|
31
|
Wang XR, Yan GM, Zhang R, Lang XL, Yang YL, Li XY, Chen S, Qian J, Wang XL. Immunogenic response induced by wzm and wzt gene deletion mutants from Brucella abortus S19. Mol Med Rep 2013; 9:653-8. [PMID: 24247358 DOI: 10.3892/mmr.2013.1810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 11/13/2013] [Indexed: 11/06/2022] Open
Abstract
Brucellosis is an infectious disease affecting humans and animals worldwide. Effective methods of control include inducing immunity in animals by vaccination and elimination. Brucella abortus S19 is one of the popular vaccines for control of cattle brucellosis, as it has low virulence. In this paper, allelic exchange plasmids of wzm and wzt genes were constructed and partially knocked out to evaluate the effects on the induction of immunity to Brucella abortus S19 mutants. Cytokine secretion in vitro, INF-γ induction in vivo and antibody dynamics were evaluated. These data suggested that the immunity-eliciting ability of the wzm and wzt gene deletion mutants was similar, although reduced compared with the S19 strain. The results demonstrated that the wzt gene may be more important in the regulation of the induction of immunity than the wzm gene.
Collapse
Affiliation(s)
- Xiu-Ran Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Guang-Mou Yan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Rui Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Xu-Long Lang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, P.R. China
| | - Yan-Ling Yang
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130122, P.R. China
| | - Xiao-Yan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, P.R. China
| | - Si Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, P.R. China
| | - Jing Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, P.R. China
| | - Xing-Long Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
32
|
Park S, Choi YS, Park SH, Kim YR, Chu H, Hwang KJ, Park MY. Lon Mutant of Brucella abortus Induces Tumor Necrosis Factor-Alpha in Murine J774.A1 Macrophage. Osong Public Health Res Perspect 2013; 4:301-7. [PMID: 24524018 PMCID: PMC3922098 DOI: 10.1016/j.phrp.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 11/29/2022] Open
Abstract
Objectives The objective of this study was to isolate a Brucella lon mutant and to analyze the cytokine response of B. lon mutant during macrophage infection. Methods A wild-type Brucella abortus strain was mutagenized by Tn5 transposition. From the mouse macrophage J774.A1 cells, total RNA was isolated at 0 hours, 6 hours, 12 hours, and 24 hours after infection with Brucella. Using mouse cytokine microarrays, we measured transcriptional levels of the cytokine response, and validated our results with a reverse transcriptase-polymerase chain reaction (RT-PCR) assay to confirm the induction of cytokine messenger RNA (mRNA). Results In host J774.A1 macrophages, mRNA levels of T helper 1 (Th1)-type cytokines, including tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-2 (IL-2), and IL-3, were significantly higher in the lon mutant compared to wild-type Brucella and the negative control. TNF-α levels in cell culture media were induced as high as 2 μg/mL after infection with the lon mutant, a greater than sixfold change. Conclusion In order to understand the role of the lon protein in virulence, we identified and characterized a novel B. lon mutant. We compared the immune response it generates to the wild-type Brucella response in a mouse macrophage cell line. We demonstrated that the B. lon mutants induce TNF-α expression from the host J774.A1 macrophage.
Collapse
Affiliation(s)
- Sungdo Park
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Young-Sill Choi
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Sang-Hee Park
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Young-Rok Kim
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Hyuk Chu
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Kyu-Jam Hwang
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| | - Mi-Yeoun Park
- Division of Zoonoses, Korea National Institute of Health, Osong, Korea
| |
Collapse
|
33
|
Erdogan S, Duzguner V, Kucukgul A, Aslantas O. Silencing of PrP C (prion protein) expression does not affect Brucella melitensis infection in human derived microglia cells. Res Vet Sci 2013; 95:368-73. [PMID: 23820446 DOI: 10.1016/j.rvsc.2013.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/18/2023]
Abstract
Cellular prion proteins (PrP(C)) are mainly expressed in the central nervous system where they have antioxidant effects and a role in the endocytosis of bacteria within cells. These proteins also have some crucial biological functions including roles in neurotransmission, signal transduction and programmed cell death. However, the role of prion proteins in neuronal Brucella infection, specifically in the interaction of the pathogen and the host cell is controversial. In the present study, the silencing of PrP(C) mRNA by small interfering RNA (siRNA) transfection was investigated in human microglia cells infected with Brucella melitensis. More than 70% of prion proteins were down-regulated in microglia by siRNA transfection and this caused a slight decrease in the cellular viability of the control cells. Silencing of PrP(C) suppressed the antioxidant systems, though it led to an up-regulation of pro-inflammatory cytokines such as IL-12 and TNF-α as demonstrated by qRT-PCR analysis. B. melitensis infection of prion protein-silenced cells led to increase host viability, but had no effect on bacterial phagocytosis. According to the present study, there is no significant effect of prion proteins on phagocytosis and intracellular killing of B. melitensis in microglia cells.
Collapse
Affiliation(s)
- Suat Erdogan
- Zirve University, Emine-Bahaeddin Nakiboglu Medical School, Department of Medical Biochemistry, Gaziantep, Turkey.
| | | | | | | |
Collapse
|
34
|
Gomez G, Adams LG, Rice-Ficht A, Ficht TA. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol 2013; 3:17. [PMID: 23720712 PMCID: PMC3655278 DOI: 10.3389/fcimb.2013.00017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/26/2013] [Indexed: 01/18/2023] Open
Abstract
Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
35
|
Monocyte-derived macrophages from Zebu (Bos taurus indicus) are more efficient to control Brucella abortus intracellular survival than macrophages from European cattle (Bos taurus taurus). Vet Immunol Immunopathol 2013; 151:294-302. [DOI: 10.1016/j.vetimm.2012.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 11/24/2022]
|
36
|
Sá JC, Silva TMA, Costa EA, Silva APC, Tsolis RM, Paixão TA, Carvalho Neta AV, Santos RL. The virB-encoded type IV secretion system is critical for establishment of infection and persistence of Brucella ovis infection in mice. Vet Microbiol 2012; 159:130-40. [PMID: 22483850 DOI: 10.1016/j.vetmic.2012.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/08/2012] [Accepted: 03/10/2012] [Indexed: 12/13/2022]
Abstract
Brucella spp. are gram-negative intracellular bacterial pathogens that cause chronic infections. Brucella virulence factors include a type IV secretion system (T4SS) and its lipopolysaccharide (LPS), which are essential for persistence. However, the role of the virB-encoded T4SS has not been investigated in naturally rough Brucella species such as Brucella ovis. In this study, male 6-week old BALBc mice were infected with B. ovis, Brucella abortus, and their respective ΔvirB2 mutant strains. During early infection, B. ovis and B. abortus wild type strains were similarly recovered from spleen. Interestingly, in contrast to ΔvirB2 B. abortus that was recovered at similar levels when compared to the wild type strain, the ΔvirB2 B. ovis was markedly attenuated as early as 24h post infection (hpi). The ΔvirB2 B. ovis was unable to survive and multiply in murine peritoneal macrophages and extracellularly within the peritoneal cavity at 12 and 24 hpi with lower splenic colonization than the parental strain at 6, 12 and 24 hpi. In contrast, wild type B. abortus and ΔvirB2 B. abortus had a similar kinetics of infection in this model. As expected, the T4SS was essential for intracellular replication of smooth and rough strains in RAW macrophages at 48 hpi. These results suggest that T4SS is important for survival of B. ovis in murine model, and that a T4SS deficient B. ovis strain is cleared at earlier stages of infection when compared to a similar B. abortus mutant.
Collapse
Affiliation(s)
- Joicy C Sá
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Proinflammatory caspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain. Infect Immun 2011; 79:2460-9. [PMID: 21464087 DOI: 10.1128/iai.00050-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brucella spp. are intracellular bacteria that cause an infectious disease called brucellosis in humans and many domestic and wildlife animals. B. suis primarily infects pigs and is pathogenic to humans. The macrophage-Brucella interaction is critical for the establishment of a chronic Brucella infection. Our studies showed that smooth virulent B. suis strain 1330 (S1330) prevented programmed cell death of infected macrophages and rough attenuated B. suis strain VTRS1 (a vaccine candidate) induced strong macrophage cell death. To further investigate the mechanism of VTRS1-induced macrophage cell death, microarrays were used to analyze temporal transcriptional responses of murine macrophage-like J774.A1 cells infected with S1330 or VTRS1. In total 17,685 probe sets were significantly regulated based on the effects of strain, time and their interactions. A miniTUBA dynamic Bayesian network analysis predicted that VTRS1-induced macrophage cell death was mediated by a proinflammatory gene (the tumor necrosis factor alpha [TNF-α] gene), an NF-κB pathway gene (the IκB-α gene), the caspase-2 gene, and several other genes. VTRS1 induced significantly higher levels of transcription of 40 proinflammatory genes than S1330. A Mann-Whitney U test confirmed the proinflammatory response in VTRS1-infected macrophages. Increased production of TNF-α and interleukin 1β (IL-1β) were also detected in the supernatants in VTRS1-infected macrophage cell culture. Hyperphosphorylation of IκB-α was observed in macrophages infected with VTRS1 but not S1330. The important roles of TNF-α and IκB-α in VTRS1-induced macrophage cell death were further confirmed by individual inhibition studies. VTRS1-induced macrophage cell death was significantly inhibited by a caspase-2 inhibitor but not a caspase-1 inhibitor. The role of caspase-2 in regulating the programmed cell death of VTRS1-infected macrophages was confirmed in another study using caspase-2-knockout mice. In summary, VTRS1 induces a proinflammatory, caspase-2- and NF-κB-mediated macrophage cell death. This unique cell death differs from apoptosis, which is not proinflammatory. It is also different from classical pyroptosis, which is caspase-1 mediated.
Collapse
|
38
|
Lacerda TLS, Cardoso PG, Augusto de Almeida L, Camargo ILBDC, Afonso DAF, Trant CC, Macedo GC, Campos E, Cravero SL, Salcedo SP, Gorvel JP, Oliveira SC. Inactivation of formyltransferase (wbkC) gene generates a Brucella abortus rough strain that is attenuated in macrophages and in mice. Vaccine 2010; 28:5627-34. [PMID: 20580469 DOI: 10.1016/j.vaccine.2010.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortusDeltawbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. DeltawbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence.
Collapse
Affiliation(s)
- Thaís Lourdes Santos Lacerda
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Swain P, Behera T, Mohapatra D, Nanda P, Nayak S, Meher P, Das B. Derivation of rough attenuated variants from smooth virulent Aeromonas hydrophila and their immunogenicity in fish. Vaccine 2010; 28:4626-31. [DOI: 10.1016/j.vaccine.2010.04.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 11/25/2022]
|
40
|
Abstract
Infection of cattle caused by Brucella abortus (ie, bovine brucellosis) has been of political importance in the United States for many decades. The most common clinical manifestation of brucellosis in natural hosts is reproductive loss resulting from abortion, birth of weak offspring, or infertility. Brucellosis regulatory programs were primarily developed as the most efficient way to prevent human infections. This article discusses cattle vaccination with B abortus strains 19 and RB51. Other reservoir hosts for this organism and other Brucella spp in cattle have also been visited.
Collapse
Affiliation(s)
- Steven Olsen
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA.
| | | |
Collapse
|
41
|
Neta AVC, Mol JP, Xavier MN, Paixão TA, Lage AP, Santos RL. Pathogenesis of bovine brucellosis. Vet J 2010; 184:146-55. [DOI: 10.1016/j.tvjl.2009.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/05/2009] [Accepted: 04/13/2009] [Indexed: 12/14/2022]
|
42
|
Akbayram S, Dogan M, Peker E, Akgun C, Oner AF, Caksen H. Thrombotic thrombocytopenic purpura in a case of brucellosis. Clin Appl Thromb Hemost 2010; 17:245-7. [PMID: 20211921 DOI: 10.1177/1076029609356426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is characterized by disseminated thrombotic occlusions located in the microcirculation and a syndrome of microangiopathic hemolytic anemia, thrombocytopenia, fever, and renal and neurologic abnormalities. Thrombotic thrombocytopenic purpura is encountered in a variety of clinical situations such as viral, bacterial, and mycobacterial infections, autoimmune disorders, drug reactions, connective tissue disease, and solid tumors. In this report, we present TTP in a case of brucellosis because of rare presentation. A 7-year-old girl was admitted with the complaints of headache, fever, hematuria, malaise, jaundice, epistaxis, and purpura. Her physical examination revealed conjunctival pallor, scleral icterus, petechial-purpuric skin lesions on both legs, and confusion. Laboratory tests showed hematocrit 14%; hemoglobin 4.8 g/dL; platelet count 6000/mm(3), and reticulocytosis 6%. Peripheral blood smear revealed fragmented red blood cells and a complete absence of platelets. The clinical and laboratory findings were consistent with TTP. Serum antibrucella titration agglutination test was found to be 1/1280 positive.
Collapse
Affiliation(s)
- Sinan Akbayram
- Department of Pediatric Hematology, Yuzuncu Yil University, Van, Turkey.
| | | | | | | | | | | |
Collapse
|
43
|
Martín-Martín AI, Vizcaíno N, Fernández-Lago L. Cholesterol, ganglioside GM1 and class A scavenger receptor contribute to infection by Brucella ovis and Brucella canis in murine macrophages. Microbes Infect 2010; 12:246-51. [PMID: 20083220 DOI: 10.1016/j.micinf.2009.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
The establishment of infection by Brucella ovis and Brucella canis in J774.A1 macrophages was found to be dependent upon cholesterol and ganglioside GM(1), two components of lipid rafts. This process also required a class A scavenger receptor of macrophages, and was not inhibited by smooth and rough lipopolysaccharides from Brucella spp. In response to infection, both bacteria induced a weak degree of macrophage activation. These results demonstrate that B. ovis and B. canis use cell surface receptors common to smooth Brucella spp. for macrophage infection, thus limiting macrophage activation and favouring intracellular multiplication and/or the survival of both bacteria.
Collapse
Affiliation(s)
- Ana I Martín-Martín
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | |
Collapse
|
44
|
Covert J, Mathison AJ, Eskra L, Banai M, Splitter G. Brucella melitensis, B. neotomae and B. ovis elicit common and distinctive macrophage defense transcriptional responses. Exp Biol Med (Maywood) 2009; 234:1450-67. [PMID: 19934366 DOI: 10.3181/0904-rm-124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brucella spp. establish an intracellular replicative niche in macrophages, while macrophages attempt to eliminate the bacteria by innate defense mechanisms. Brucella spp. possess similar genomes yet exhibit different macrophage infections. Few B. melitensis and B. neotomae enter macrophages with intracellular adaptation occurring over 4-8 hr. Conversely, B. ovis are readily ingested by macrophages and exhibit a persistent plateau of infection. Evaluating early macrophage interaction with Brucella spp. allows discovery of host entry and intracellular translocation mechanisms. Microarray analysis of macrophage transcriptional response following a 4 hr infection by different Brucella spp. revealed common macrophage genes altered in expression compared to uninfected macrophages. Macrophage infection with three different Brucella spp. provokes a common innate immune theme with increased transcript levels of chemokines and defense response genes and decreased transcript levels of GTPase signaling and cytoskeletal function that may affect trafficking of Brucella containing vesicles. For example, transcript levels of genes associated with chemotaxis (IL-1beta, MIP-1alpha), cytokine regulation (Socs3) and defense (Fas, Tnf) were increased, while transcript levels of genes associated with vesicular trafficking (Rab3d) and lysosomal associated enzymes (prosaposin) were decreased. Genes with altered macrophage transcript levels among Brucella spp. infections may correlate with species specific host defenses and intracellular survival strategies. Depending on the infecting Brucella species, gene ontology categorization identified genes differentially involved in cell growth and maintenance, endopeptidase inhibitor activity and G-protein mediated signaling. Examples of decreased gene expression in B. melitensis infection but not other Brucella spp. were growth arrest (Gas2), immunoglobulin receptor (FcgammarI) and chemokine receptor (Cxcr4) genes, suggesting opposing effects on intracellular functions.
Collapse
Affiliation(s)
- Jill Covert
- University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
45
|
Zhong Z, Wang Y, Qiao F, Wang Z, Du X, Xu J, Zhao J, Qu Q, Dong S, Sun Y, Huang L, Huang K, Chen Z. Cytotoxicity of Brucella smooth strains for macrophages is mediated by increased secretion of the type IV secretion system. Microbiology (Reading) 2009; 155:3392-3402. [DOI: 10.1099/mic.0.030619-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Some Brucella rough mutants cause cytotoxicity that resembles oncosis and necrosis in macrophages. This cytotoxicity requires the type IV secretion system (T4SS). In rough mutants, the cell-surface O antigen is shortened and the T4SS structure is thus exposed on the surface. Cytotoxicity effector proteins can therefore be more easily secreted. This enhanced secretion of effector proteins might cause the increased levels of cytotoxicity observed. However, whether this cytotoxicity is unique to the rough mutant and is mediated by overexpression of the T4SS has not been definitively determined. To test this, in the present study, a virB inactivation mutant (BMΔvirB) and an overexpression strain (BM-VIR) of a smooth Brucella melitensis strain (BM) were constructed and their cytotoxicity for macrophages and intracellular survival capability were analysed and compared. Cytotoxicity was detected in macrophages infected with higher concentrations of strains BM or BM-VIR, but not in those infected with BMΔvirB. The quorum sensing signal molecule N-dodecanoyl-dl-homoserine lactone (C12-HSL), a molecule that can inhibit expression of virB, inhibited the cytotoxicity of BM and BM-VIR, but not of BMΔvirB. These results indicated that overexpression of virB is responsible for Brucella cytotoxicity in macrophages. Transcription analysis showed that virB is regulated in a cell-density-dependent manner both in in vitro culture and during macrophage infection. When compared with BM, BM-VIR showed a reduced survival capacity in macrophages and mice, but both strains demonstrated similar resistance to in vitro stress conditions designed to simulate intracellular environments. Taken together, the cytotoxicity of Brucella for macrophages is probably mediated by increased secretion of effector proteins that results from overexpression of virB or an increase in the number of bacterial cells. The observation that both inactivation and overexpression of virB are detrimental for Brucella intracellular survival also indicated that the expression of virB is tightly regulated in a cell-density-dependent manner.
Collapse
Affiliation(s)
- Zhijun Zhong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yufei Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Feng Qiao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Zhoujia Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Jie Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Jin Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Qing Qu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Shicun Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| |
Collapse
|
46
|
Chen F, He Y. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS One 2009; 4:e6830. [PMID: 19714247 PMCID: PMC2729395 DOI: 10.1371/journal.pone.0006830] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/29/2009] [Indexed: 12/15/2022] Open
Abstract
Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and protective Brucella immunity is discussed.
Collapse
Affiliation(s)
- Fang Chen
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yongqun He
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
47
|
Establishment of systemic Brucella melitensis infection through the digestive tract requires urease, the type IV secretion system, and lipopolysaccharide O antigen. Infect Immun 2009; 77:4197-208. [PMID: 19651862 DOI: 10.1128/iai.00417-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human brucellosis is caused mainly by Brucella melitensis, which is often acquired by ingesting contaminated goat or sheep milk and cheese. Bacterial factors required for food-borne infection of humans by B. melitensis are poorly understood. In this study, a mouse model of oral infection was characterized to assess the roles of urease, the VirB type IV secretion system, and lipopolysaccharide for establishing infection through the digestive tract. B. melitensis strain 16M was consistently recovered from the mesenteric lymph node (MLN), spleen, and liver beginning at 3 or 7 day postinfection (dpi). In the gut, persistence of the inoculum was observed up to 21 dpi. No inflammatory lesions were observed in the ileum or colon during infection. Mutant strains lacking the ureABC genes of the ure1 operon, virB2, or pmm encoding phosphomannomutase were constructed and compared to the wild-type strain for infectivity through the digestive tract. Mutants lacking the virB2 and pmm genes were attenuated in the spleen (P < 0.05) and MLN (P < 0.001), respectively. The wild-type and mutant strains had similar levels of resistance to low pH and 5 or 10% bile, suggesting that the reduced colonization of mutants was not the result of reduced resistance to acid pH or bile salts. In an in vitro lymphoepithelial cell (M-cell) model, B. melitensis transited rapidly through polarized enterocyte monolayers containing M-like cells; however, transit through monolayers containing only enterocytes was reduced or absent. These results indicate that B. melitensis is able to spread systemically from the digestive tract after infection, most likely through M cells of the mucosa-associated lymphoid tissue.
Collapse
|
48
|
Smooth Brucella strains invade and replicate in human lung epithelial cells without inducing cell death. Microbes Infect 2009; 11:476-83. [PMID: 19397873 DOI: 10.1016/j.micinf.2009.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/22/2009] [Accepted: 01/27/2009] [Indexed: 11/22/2022]
Abstract
Inhalation is a common route for Brucella infection. We investigated whether Brucella species can invade and replicate within alveolar(A549) and bronchial (Calu-6 and 16HBE14o-) human epithelial cells. The number of adherent and intracellular bacteria was higher for rough strains (Brucella canis and Brucella abortus RB51) than for smooth strains (B. abortus 2308 and Brucella suis 1330). Only smooth strains exhibited efficient intracellular replication (1.5-3.5 log increase at 24 h p.i.). A B. abortus mutant with defective expression of the type IV secretion system did not replicate. B. abortus internalization was inhibited by specific inhibitors of microfilaments, microtubules and PI3-kinase activity. As assessed with fluorescent probes, B. abortus infection did not affect the viability of A549 and 16HBE14o- cells, but increased the percentage of injured cells (both strains) and dead cells (RB51) in Calu-6 cultures. LDH levels were increased in supernatants of Calu-6 and 16HBE14o- cells infected with B. abortus RB51, and to a lower extent in Calu-6 infected with B. abortus 2308. No apoptosis was detected by TUNEL upon infection with smooth or rough B. abortus. This study shows that smooth brucellae can infect and replicate in human respiratory epithelial cells inducing minimal or null cytotoxicity.
Collapse
|
49
|
Galindo RC, Muñoz PM, de Miguel MJ, Marin CM, Blasco JM, Gortazar C, Kocan KM, de la Fuente J. Characterization of possible correlates of protective response against Brucella ovis infection in rams immunized with the B. melitensis Rev 1 vaccine. Vaccine 2009; 27:3039-44. [PMID: 19428917 DOI: 10.1016/j.vaccine.2009.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 01/18/2023]
Abstract
Vaccination with the live attenuated Brucella melitensis Rev 1 vaccine is used to control ovine brucellosis caused by Brucella ovis in sheep. The objective of this study was to identify possible correlates of protective response to B. ovis infection through the characterization by microarray hybridization and real-time RT-PCR of inflammatory and immune response genes differentially expressed in rams previously immunized with B. melitensis Rev 1 and experimentally challenged with B. ovis. Gene expression profiles were compared before and after challenge with B. ovis between rams protected and those vaccinated but found infected after challenge. The TLR10, Bak and ANXI genes were expressed at higher levels in vaccinated and protected rams. These genes provide possible correlates of protective response to B. ovis infection in rams immunized with the B. melitensis Rev 1 vaccine.
Collapse
Affiliation(s)
- Ruth C Galindo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol 2009; 191:3569-79. [PMID: 19346311 DOI: 10.1128/jb.01767-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact beta-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the "domino theory" of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host.
Collapse
|