1
|
Li M, Zhou Y, Cheng J, Wang Y, Lan C, Shen Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024; 17:69. [PMID: 38368353 PMCID: PMC10874582 DOI: 10.1186/s13071-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Manjin Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yang Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yiqing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Cejie Lan
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Yuan Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Moraes B, Martins R, Lopes C, Martins R, Arcanjo A, Nascimento J, Konnai S, da Silva Vaz I, Logullo C. G6PDH as a key immunometabolic and redox trigger in arthropods. Front Physiol 2023; 14:1287090. [PMID: 38046951 PMCID: PMC10693429 DOI: 10.3389/fphys.2023.1287090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Ronald Martins
- Programa de Computação Científica, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Angélica Arcanjo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Jhenifer Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Cardoso-Jaime V, Maya-Maldonado K, Tsutsumi V, Hernández-Martínez S. Mosquito pericardial cells upregulate Cecropin expression after an immune challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104745. [PMID: 37268262 DOI: 10.1016/j.dci.2023.104745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Most mosquito-transmitted pathogens grow or replicate in the midgut before invading the salivary glands. Pathogens are exposed to several immunological factors along the way. Recently, it was shown that hemocytes gather near the periostial region of the heart to efficiently phagocytose pathogens circulating in the hemolymph. Nerveless, not all pathogens can be phagocyted by hemocytes and eliminated by lysis. Interestingly, some studies have shown that pericardial cells (PCs) surrounding periostial regions, may produce humoral factors, such as lysozymes. Our current work provides evidence that Anopheles albimanus PCs are a major producer of Cecropin 1 (Cec1). Furthermore, our findings reveal that after an immunological challenge, PCs upregulate Cec1 expression. We conclude that PCs are positioned in a strategic location that could allow releasing humoral components, such as cecropin, to lyse pathogens on the heart or circulating in the hemolymph, implying that PCs could play a significant role in the systemic immune response.
Collapse
Affiliation(s)
- Victor Cardoso-Jaime
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Av. Universidad 655, Santa María Ahuacatitlan, Cuernavaca, Morelos, C.P. 62100, Mexico; Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN. Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, Ciudad de México, C.P. 07360, Mexico
| | - Krystal Maya-Maldonado
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Av. Universidad 655, Santa María Ahuacatitlan, Cuernavaca, Morelos, C.P. 62100, Mexico; Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN. Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, Ciudad de México, C.P. 07360, Mexico
| | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN. Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, Ciudad de México, C.P. 07360, Mexico.
| | - Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Av. Universidad 655, Santa María Ahuacatitlan, Cuernavaca, Morelos, C.P. 62100, Mexico.
| |
Collapse
|
4
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Novelo M, Dutra HLC, Metz HC, Jones MJ, Sigle LT, Frentiu FD, Allen SL, Chenoweth SF, McGraw EA. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures. PLoS Pathog 2023; 19:e1011307. [PMID: 37043515 PMCID: PMC10124881 DOI: 10.1371/journal.ppat.1011307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 03/19/2023] [Indexed: 04/13/2023] Open
Abstract
Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.
Collapse
Affiliation(s)
- Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Heverton LC Dutra
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillery C. Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Leah T. Sigle
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, Queensland, Australia
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
6
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
7
|
Yan Y, Sigle LT, Rinker DC, Estévez-Lao TY, Capra JA, Hillyer JF. The immune deficiency and c-Jun N-terminal kinase pathways drive the functional integration of the immune and circulatory systems of mosquitoes. Open Biol 2022; 12:220111. [PMID: 36069078 PMCID: PMC9449813 DOI: 10.1098/rsob.220111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune and circulatory systems of animals are functionally integrated. In mammals, the spleen and lymph nodes filter and destroy microbes circulating in the blood and lymph, respectively. In insects, immune cells that surround the heart valves (ostia), called periostial haemocytes, destroy pathogens in the areas of the body that experience the swiftest haemolymph (blood) flow. An infection recruits additional periostial haemocytes, amplifying heart-associated immune responses. Although the structural mechanics of periostial haemocyte aggregation have been defined, the genetic factors that regulate this process remain less understood. Here, we conducted RNA sequencing in the African malaria mosquito, Anopheles gambiae, and discovered that an infection upregulates multiple components of the immune deficiency (IMD) and c-Jun N-terminal kinase (JNK) pathways in the heart with periostial haemocytes. This upregulation is greater in the heart with periostial haemocytes than in the circulating haemocytes or the entire abdomen. RNA interference-based knockdown then showed that the IMD and JNK pathways drive periostial haemocyte aggregation and alter phagocytosis and melanization on the heart, thereby demonstrating that these pathways regulate the functional integration between the immune and circulatory systems. Understanding how insects fight infection lays the foundation for novel strategies that could protect beneficial insects and harm detrimental ones.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Leah T. Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA,Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Tsai CH, Chuang YC, Lu YH, Lin CY, Tang CK, Wei SC, Wu YL. Carbohydrate metabolism is a determinant for the host specificity of baculovirus infections. iScience 2022; 25:103648. [PMID: 35028533 PMCID: PMC8741431 DOI: 10.1016/j.isci.2021.103648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/14/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
Baculoviruses Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV) have highly similar genome sequences but exhibit no overlap in their host range. After baculovirus infects nonpermissive larvae (e.g., AcMNPV infecting B. mori or BmNPV infecting Spodoptera litura), we found that stored carbohydrates, including hemolymph trehalose and fat body glycogen, are rapidly transformed into glucose; enzymes involved in glycolysis and the TCA cycle are upregulated and produce more ATP; adenosine signaling that regulates glycolytic activity is also increased. Subsequently, phagocytosis in cellular immunity and the expression of genes involved in humoral immunity increase significantly. Moreover, inhibiting glycolysis and the expression of gloverins in nonpermissive hosts increased baculovirus infectivity, indicating that the stimulated energy production is designed to support the immune response against infection. Our study highlights that alteration of the host's carbohydrate metabolism is an important factor determining the host specificity of baculoviruses, in addition to viral factors. Nonpermissive infections by AcMNPV and BmNPV alter host carbohydrate metabolism Increased carbohydrate metabolism produces energy to launch immune responses Immune responses including antimicrobial peptide production inhibit virus infection Host metabolic alterations affect the determination of virus's host specificity
Collapse
Affiliation(s)
- Chih-Hsuan Tsai
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yi-Chi Chuang
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Chia-Yang Lin
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Sung-Chan Wei
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
9
|
Lau MJ, Schmidt TL, Yang Q, Chung J, Sankey L, Ross PA, Hoffmann AA. Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia. BMC Genomics 2021; 22:894. [PMID: 34906084 PMCID: PMC8670162 DOI: 10.1186/s12864-021-08200-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Wolbachia wMel is the most commonly used strain in rear and release strategies for Aedes aegypti mosquitoes that aim to inhibit the transmission of arboviruses such as dengue, Zika, Chikungunya and yellow fever. However, the long-term establishment of wMel in natural Ae. aegypti populations raises concerns that interactions between Wolbachia wMel and Ae. aegypti may lead to changes in the host genome, which could affect useful attributes of Wolbachia that allow it to invade and suppress disease transmission. Results We applied an evolve-and-resequence approach to study genome-wide genetic changes in Ae. aegypti from the Cairns region, Australia, where Wolbachia wMel was first introduced more than 10 years ago. Mosquito samples were collected at three different time points in Gordonvale, Australia, covering the phase before (2010) and after (2013 and 2018) Wolbachia releases. An additional three locations where Wolbachia replacement happened at different times across the last decade were also sampled in 2018. We found that the genomes of mosquito populations mostly remained stable after Wolbachia release, with population differences tending to reflect the geographic location of the populations rather than Wolbachia infection status. However, outlier analysis suggests that Wolbachia may have had an influence on some genes related to immune response, development, recognition and behavior. Conclusions Ae. aegypti populations remained geographically distinct after Wolbachia wMel releases in North Australia despite their Wolbachia infection status. At some specific genomic loci, we found signs of selection associated with Wolbachia, suggesting potential evolutionary impacts can happen in the future and further monitoring is warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08200-1.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Thomas L Schmidt
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Chung
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucien Sankey
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Rani J, Chauhan C, Das De T, Kumari S, Sharma P, Tevatiya S, Patel K, Mishra AK, Pandey KC, Singh N, Dixit R. Hemocyte RNA-Seq analysis of Indian malarial vectors Anopheles stephensi and Anopheles culicifacies: From similarities to differences. Gene 2021; 798:145810. [PMID: 34224830 DOI: 10.1016/j.gene.2021.145810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/05/2023]
Abstract
Anopheles stephensi and Anopheles culicifacies are dominant malarial vectors in urban and rural India, respectively. Both species carry significant biological differences in their behavioral adaptation and immunity, but the genetic basis of these variations are still poorly understood. Here, we uncovered the genetic differences of immune blood cells, that influence several immune-physiological responses. We generated, analyzed and compared the hemocyte RNA-Seq database of both mosquitoes. A total of 5,837,223,769 assembled bases collapsed into 7,595 and 3,791 transcripts, originating from hemocytes of laboratory-reared 3-4 days old naïve (sugar-fed) mosquitoes, Anopheles stephensi and Anopheles culicifacies respectively. Comparative GO annotation analysis revealed that both mosquito hemocytes encode similar proteins. Furthermore, while An. stephensi hemocytes showed a higher percentage of immune transcripts encoding APHAG (Autophagy), IMD (Immune deficiency pathway), PRDX (Peroxiredoxin), SCR (Scavenger receptor), IAP (Inhibitor of apoptosis), GALE (galactoside binding lectins), BGBPs (1,3 beta D glucan binding proteins), CASPs (caspases) and SRRP (Small RNA regulatory pathway), An. culicifacies hemocytes yielded a relatively higher percentage of transcripts encoding CLIP (Clip domain serine protease), FREP (Fibrinogen related proteins), PPO (Prophenol oxidase), SRPN (Serpines), ML (Myeloid differentiation 2-related lipid recognition protein), Toll path and TEP (Thioester protein), family proteins. However, a detailed comparative Interproscan analysis showed An. stephensi mosquito hemocytes encode proteins with increased repeat numbers as compared to An. culicifacies. Notably, we observed an abundance of transcripts showing significant variability of encoded proteins with repeats such as LRR (Leucine rich repeat), WD40 (W-D dipeptide), Ankyrin, Annexin, Tetratricopeptide and Mitochondrial substrate carrier repeat-containing family proteins, which may have a direct influence on species-specific immune-physiological responses. Summarily, our deep sequencing analysis unraveled that An. stephensi evolved with an expansion of repeat sequences in hemocyte proteins as compared to An. culicifacies, possibly providing an advantage for better adaptation to diverse environments.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India; Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Karan Patel
- DNA Xperts Private Limited, Sector 63, Noida, Uttar Pradesh 20130, India
| | - Ashwani K Mishra
- DNA Xperts Private Limited, Sector 63, Noida, Uttar Pradesh 20130, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Namita Singh
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India.
| |
Collapse
|
11
|
Pantha P, Chalivendra S, Oh DH, Elderd BD, Dassanayake M. A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. Int J Mol Sci 2021; 22:3568. [PMID: 33808210 PMCID: PMC8037200 DOI: 10.3390/ijms22073568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus that causes systemic infections in many arthropod pests. The specific molecular processes underlying the biocidal activity of AcMNPV on its insect hosts are largely unknown. We describe the transcriptional responses in two major pests, Spodoptera frugiperda (fall armyworm) and Trichoplusia ni (cabbage looper), to determine the host-pathogen responses during systemic infection, concurrently with the viral response to the host. We assembled species-specific transcriptomes of the hemolymph to identify host transcriptional responses during systemic infection and assessed the viral transcript abundance in infected hemolymph from both species. We found transcriptional suppression of chitin metabolism and tracheal development in infected hosts. Synergistic transcriptional support was observed to suggest suppression of immune responses and induction of oxidative stress indicating disease progression in the host. The entire AcMNPV core genome was expressed in the infected host hemolymph with a proportional high abundance detected for viral transcripts associated with replication, structure, and movement. Interestingly, several of the host genes that were targeted by AcMNPV as revealed by our study are also targets of chemical insecticides currently used commercially to control arthropod pests. Our results reveal an extensive overlap between biological processes represented by transcriptional responses in both hosts, as well as convergence on highly abundant viral genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic landscape during systemic infection.
Collapse
Affiliation(s)
| | | | | | - Bret D. Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| |
Collapse
|
12
|
Li S, Jiang F, Lu H, Kang X, Wang Y, Zou Z, Wen D, Zheng A, Liu C, Liu Q, Kang L, Xia Q, Cui F. Mosquito Diversity and Population Genetic Structure of Six Mosquito Species From Hainan Island. Front Genet 2020; 11:602863. [PMID: 33193749 PMCID: PMC7658394 DOI: 10.3389/fgene.2020.602863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Hainan is a tropical island in southern China with abundant mosquito species, putting Hainan at risk of mosquito-borne virus disease outbreaks. The population genetic diversity of most mosquito species on Hainan Island remains elusive. In this study, we report the diversity of mosquito species and the genetic diversity of the predominant species on Hainan. Field populations of adults or larvae were collected from 12 regions of Hainan Island in 2018 and 2019. A fragment of the mitochondrial cytochrome c oxidase subunit I (coxI) gene was sequenced from 1,228 mosquito samples and used for species identification and genetic diversity analysis. Twenty-three known mosquito species from the genera Aedes, Armigeres, Culex, Mansonia, and Anopheles and nine unconfirmed mosquito species were identified. Aedes albopictus, Armigeres subalbatus, and Culex pipiens quinquefasciatus were the most prevalent mosquito species on Hainan. The regions north of Danzhou, Tunchang, and Qionghai exhibited high mosquito diversity (26 species). The order of the total haplotype diversity and nucleotide diversity of the populations from high to low was as follows: Culex tritaeniorhynchus, Ar. subalbatus, Culex pallidothorax, Culex gelidus, Ae. albopictus, and C. p. quinquefasciatus. Tajima's D and Fu's F s tests showed that Ae. albopictus, C. p. quinquefasciatus, C. tritaeniorhynchus, and C. gelidus had experienced population expansion, while the Ar. subalbatus and C. pallidothorax populations were in genetic equilibrium. Significant genetic differentiation existed in the overall populations of Ae. albopictus, Ar. subalbatus, C. p. quinquefasciatus, and C. pallidothorax. The Ae. albopictus populations on Hainan were characterized by frequent gene exchange with populations from Guangdong and four other tropical countries, raising the risk of viral disease outbreaks in these regions. Two subgroups were reported in the Ar. subalbatus populations for the first time. Our findings may have important implications for vector control on Hainan Island.
Collapse
Affiliation(s)
- Siping Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dan Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chunxiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Diseases Prevention and Control, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Chauhan C, Das De T, Kumari S, Rani J, Sharma P, Tevatiya S, Pandey KC, Pande V, Dixit R. Hemocyte-specific FREP13 abrogates the exogenous bacterial population in the hemolymph and promotes midgut endosymbionts in Anopheles stephensi. Immunol Cell Biol 2020; 98:757-769. [PMID: 32623757 DOI: 10.1111/imcb.12374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
The immune blood cells "hemocytes" of mosquitoes impart a highly selective immune response against various microorganisms/pathogens. Among several immune effectors, fibrinogen-related proteins (FREPs) have been recognized as key modulators of cellular immune responses; however, their physiological relevance has not been investigated in detail. Our ongoing comparative RNA-sequencing analysis identified a total of 13 FREPs originating from naïve sugar-fed, blood-fed, bacterial challenged and Plasmodium vivax-infected hemocytes in Anopheles stephensi. Transcriptional profiling of the selected seven FREP transcripts showed distinct responses against different pathophysiological conditions, where an exclusive induction of FREP12 after 10 days of P. vivax infection was observed. This represents a possible role of FREP12 in immunity against free circulating sporozoites and needs to be explored in the future. When challenged with live bacterial injection in the thorax, we observed a higher affinity of FREP13 and FREP65 toward Gram-negative and Gram-positive bacteria in the mosquito hemocytes, respectively. Furthermore, we observed increased bacterial survival and proliferation, which is likely compromised by the downregulation of TEP1, in FREP13 messenger RNA-depleted mosquito hemolymph. In contrast, after blood-feeding, we also noticed a significant delay of 24 h in the enrichment of gut endosymbionts in the FREP13-silenced mosquitoes. Taken together, we conclude that hemocyte-specific FREP13 carries the unique ability of tissue-specific regulation, having an antagonistic antibacterial role in the hemolymph, and an agonistic role against gut endosymbionts.
Collapse
Affiliation(s)
- Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| |
Collapse
|
14
|
Potts R, King JG, Pietri JE. Ex vivo characterization of the circulating hemocytes of bed bugs and their responses to bacterial exposure. J Invertebr Pathol 2020; 174:107422. [PMID: 32526226 PMCID: PMC9254597 DOI: 10.1016/j.jip.2020.107422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Bed bugs (Cimex spp.) are urban pests of global importance. Knowledge of the immune system of bed bugs has implications for understanding their susceptibility to biological control agents, their potential to transmit human pathogens, and the basic comparative immunology of insects. Nonetheless, the immunological repertoire of the family Cimicidae remains poorly characterized. Here, we use microscopy, flow cytometry, and RNA sequencing to provide a basal characterization of the circulating hemocytes of the common bed bug, Cimex lectularius. We also examine the responses of these specialized cells to E. coli exposure using the same techniques. Our results show that circulating hemocytes are comprised of at least four morphologically distinct cell types that are capable of phagocytosis, undergo degranulation, and exhibit additional markers of activation following stimulation, including size shift and DNA replication. Furthermore, transcriptomic profiling reveals expression of predicted Toll/IMD signaling pathway components, antimicrobial effectors and other potentially immunoresponsive genes in these cells. Together, our data demonstrate the conservation of several canonical cellular immune responses in the common bed bug and provide a foundation for additional mechanistic immunological studies with specific pathogens of interest.
Collapse
Affiliation(s)
- Rashaun Potts
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States
| | - Jonas G King
- Mississippi State University, Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Starkville, MS, United States
| | - Jose E Pietri
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States.
| |
Collapse
|
15
|
Genetic analysis of Aedes aegypti captured at two international airports serving to the Greater Tokyo Area during 2012-2015. PLoS One 2020; 15:e0232192. [PMID: 32343725 PMCID: PMC7188277 DOI: 10.1371/journal.pone.0232192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/08/2020] [Indexed: 11/19/2022] Open
Abstract
The introduction of exotic disease vectors into a new habitat can drastically change the local epidemiological situation. During 2012–2015, larvae and an adult of the yellow-fever mosquito, Aedes aegypti, were captured alive at two international airports serving the Greater Tokyo Area, Japan. Because this species does not naturally distribute in this country, those mosquitoes were considered to be introduced from overseas via air-transportation. To infer the places of origin of those mosquitoes, we genotyped the 12 microsatellite loci for which the most comprehensive population genetic reference is currently available. Although clustering by Bayesian and multivariate methods both suggested that all those mosquitoes captured at the airports in Japan belonged to the Asia/Pacific populations, they were not clustered into a single cluster. Moreover, there was variation in mitochondrial cytochrome oxidase I gene (CoxI) haplotypes among mosquitoes collected in different incidents of discovery which indicated the existence of multiple maternal origins. We conclude there is little evidence to support the overwintering of Ae. aegypti at the airports; nevertheless, special attention is still needed to prevent the invasion of this prominent arbovirus vector.
Collapse
|
16
|
Lin YH, Tai CC, Brož V, Tang CK, Chen P, Wu CP, Li CH, Wu YL. Adenosine Receptor Modulates Permissiveness of Baculovirus (Budded Virus) Infection via Regulation of Energy Metabolism in Bombyx mori. Front Immunol 2020; 11:763. [PMID: 32411148 PMCID: PMC7198810 DOI: 10.3389/fimmu.2020.00763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Although the modulation of host physiology has been interpreted as an essential process supporting baculovirus propagation, the requirement of energy supply for host antivirus reactions could not be ruled out. Our present study showed that metabolic induction upon AcMNPV (budded virus) infection of Bombyx mori stimulated virus clearance and production of the antivirus protein, gloverin. In addition, we demonstrated that adenosine receptor signaling (AdoR) played an important role in regulating such metabolic reprogramming upon baculovirus infection. By using a second lepidopteran model, Spodoptera frugiperda Sf-21 cells, we demonstrated that the glycolytic induction regulated by adenosine signaling was a conservative mechanism modulating the permissiveness of baculovirus infection. Another interesting finding in our present study is that both BmNPV and AcMNPV infection cause metabolic activation, but it appears that BmNPV infection moderates the level of ATP production, which is in contrast to a dramatic increase upon AcMNPV infection. We identified potential AdoR miRNAs induced by BmNPV infection and concluded that BmNPV may attempt to minimize metabolic activation by suppressing adenosine signaling and further decreasing the host's anti-baculovirus response. Our present study shows that activation of energy synthesis by adenosine signaling upon baculovirus infection is a host physiological response that is essential for supporting the innate immune response against infection.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biology Centre of the Czech Academy of Science, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Chia-Chi Tai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Václav Brož
- Biology Centre of the Czech Academy of Science, Institute of Entomology, Ceske Budejovice, Czechia
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Ping Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Carol P Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hsun Li
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Zhang W, Zheng X, Chen J, Keyhani NO, Cai K, Xia Y. Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103524. [PMID: 31634520 DOI: 10.1016/j.dci.2019.103524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Insect hemocyte and fat body tissues play critical functional roles in insect immunity. Little, however, is known concerning the dynamic responses of these tissues to fungal infection. Here, we report on a time course of locust hemocyte and fat body transcriptomic responses to infection by the acridid specific fungal pathogen, Metarhizium acridum. Fat body responses were more pronounced at all infection stages as compared to hemocytes. Immune and other related genes were induced far earlier than previously considered including at pre-penetration stages. Differential expression in hemocyte and fat body tissues persisted throughout the course of infection up until host death. Our data indicate selective pressure on the host to recognize the infection as early as possible in order to limit its spread. Overall, fat body and hemocyte tissues launch a robust multi-tiered response to combat the fungal pathogen, with our data providing potential host targets for exploitation in pest control.
Collapse
Affiliation(s)
- Wei Zhang
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd, Gainesville, FL32611, USA.
| | - Xiaoli Zheng
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China; College of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR China.
| | - Jianhong Chen
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China.
| | - Nemat O Keyhani
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd, Gainesville, FL32611, USA.
| | - Kaiyong Cai
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China.
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China.
| |
Collapse
|
18
|
Cappelli A, Damiani C, Mancini MV, Valzano M, Rossi P, Serrao A, Ricci I, Favia G. Asaia Activates Immune Genes in Mosquito Eliciting an Anti- Plasmodium Response: Implications in Malaria Control. Front Genet 2019; 10:836. [PMID: 31608103 PMCID: PMC6774264 DOI: 10.3389/fgene.2019.00836] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/13/2019] [Indexed: 01/04/2023] Open
Abstract
In mosquitoes, the discovery of the numerous interactions between components of the microbiota and the host immune response opens up the attractive possibility of the development of novel control strategies against mosquito borne diseases. We have focused our attention to Asaia, a symbiont of several mosquito vectors who has been proposed as one of the most potential tool for paratransgenic applications; although being extensively characterized, its interactions with the mosquito immune system has never been investigated. Here we report a study aimed at describing the interactions between Asaia and the immune system of two vectors of malaria, Anophelesstephensi and An. gambiae. The introduction of Asaia isolates induced the activation of the basal level of mosquito immunity and lower the development of malaria parasite in An. stephensi. These findings confirm and expand the potential of Asaia in mosquito borne diseases control, not only through paratransgenesis, but also as a natural effector for mosquito immune priming.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Claudia Damiani
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Matteo Valzano
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Paolo Rossi
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Aurelio Serrao
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Irene Ricci
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Guido Favia
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
19
|
Spodoptera frugiperda transcriptional response to infestation by Steinernema carpocapsae. Sci Rep 2019; 9:12879. [PMID: 31501491 PMCID: PMC6733877 DOI: 10.1038/s41598-019-49410-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Steinernema carpocapsae is an entomopathogenic nematode (EPN) used in biological control of agricultural pest insects. It enters the hemocoel of its host via the intestinal tract and releases its symbiotic bacterium Xenorhabdus nematophila. In order to improve our knowledge about the physiological responses of its different hosts, we examined the transcriptional responses to EPN infestation of the fat body, the hemocytes and the midgut in the lepidopteran pest Spodoptera frugiperda. The tissues poorly respond to the infestation at an early time post-infestation of 8 h with only 5 genes differentially expressed in the fat body of the caterpillars. Strong transcriptional responses are observed at a later time point of 15 h post-infestation in all three tissues. Few genes are differentially expressed in the midgut but tissue-specific panels of induced metalloprotease inhibitors, immune receptors and antimicrobial peptides together with several uncharacterized genes are up-regulated in the fat body and the hemocytes. Among the most up-regulated genes, we identified new potential immune effectors, unique to Lepidoptera, which show homology with bacterial genes of unknown function. Altogether, these results pave the way for further functional studies of the responsive genes' involvement in the interaction with the EPN.
Collapse
|
20
|
Zhao L, Alto BW, Jiang Y, Yu F, Zhang Y. Transcriptomic Analysis of Aedes aegypti Innate Immune System in Response to Ingestion of Chikungunya Virus. Int J Mol Sci 2019; 20:ijms20133133. [PMID: 31252518 PMCID: PMC6651163 DOI: 10.3390/ijms20133133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/07/2023] Open
Abstract
Aedes aegypti (L.) is the primary vector of emergent mosquito-borne viruses, including chikungunya, dengue, yellow fever, and Zika viruses. To understand how these viruses interact with their mosquito vectors, an analysis of the innate immune system response was conducted. The innate immune system is a conserved evolutionary defense strategy and is the dominant immune system response found in invertebrates and vertebrates, as well as plants. RNA-sequencing analysis was performed to compare target transcriptomes of two Florida Ae. aegypti strains in response to chikungunya virus infection. We analyzed a strain collected from a field population in Key West, Florida, and a laboratory strain originating from Orlando. A total of 1835 transcripts were significantly expressed at different levels between the two Florida strains of Ae. aegypti. Gene Ontology analysis placed these genes into 12 categories of biological processes, including 856 transcripts (up/down regulated) with more than 1.8-fold (p-adj (p-adjust value) ≤ 0.01). Transcriptomic analysis and q-PCR data indicated that the members of the AaeCECH genes are important for chikungunya infection response in Ae. aegypti. These immune-related enzymes that the chikungunya virus infection induces may inform molecular-based strategies for interruption of arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Liming Zhao
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street South East, Vero Beach, FL 32962, USA.
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street South East, Vero Beach, FL 32962, USA
| | - Yongxing Jiang
- Mosquito Control Services, City of Gainesville, 405 NW 39th Avenue Gainesville, FL 32609, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32611, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:31-42. [PMID: 30959109 DOI: 10.1016/j.ibmb.2019.04.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mounting an immune response is an energy-consuming process. Activating immune functions requires the synthesis of many new molecules and the undertaking of numerous cellular tasks and it must happen rapidly. Therefore, immune cells undergo a metabolic switch, which enables the rapid production of ATP and new biomolecules. Such metabolism is very nutrient-demanding, especially of glucose and glutamine, and thus the immune response is associated with a systemic metabolic switch, redirecting nutrient flow towards immunity and away from storage and consumption by non-immune processes. The immune system during its activation becomes privileged in terms of using organismal resources and the activated immune cells usurp nutrients by producing signals which reduce the metabolism of non-immune tissues. The insect fat body plays a dual role in which it is both a metabolic organ, storing energy and providing energy to the rest of the organism, but also an organ important for humoral immunity. Therefore, the internal switch from anabolism to the production of antimicrobial peptides occurs in the fat body during infection. The mechanisms regulating metabolism during the immune response ensure adequate energy for an effective response (resistance) but they must be properly regulated because energy is not unlimited and the energy needs of the immune system thus interfere with the needs of other physiological traits. If not properly regulated, the immune response may in the end decrease fitness via decreasing disease tolerance.
Collapse
Affiliation(s)
- Tomas Dolezal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Gabriela Krejcova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Paul Strasser
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
22
|
Caragata EP, Rocha MN, Pereira TN, Mansur SB, Dutra HLC, Moreira LA. Pathogen blocking in Wolbachia-infected Aedes aegypti is not affected by Zika and dengue virus co-infection. PLoS Negl Trop Dis 2019; 13:e0007443. [PMID: 31107912 PMCID: PMC6544317 DOI: 10.1371/journal.pntd.0007443] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/31/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022] Open
Abstract
Background Wolbachia’s ability to restrict arbovirus transmission makes it a promising tool to combat mosquito-transmitted diseases. Wolbachia-infected Aedes aegypti are currently being released in locations such as Brazil, which regularly experience concurrent outbreaks of different arboviruses. A. aegypti can become co-infected with, and transmit multiple arboviruses with one bite, which can complicate patient diagnosis and treatment. Methodology/principle findings Using experimental oral infection of A. aegypti and then RT-qPCR, we examined ZIKV/DENV-1 and ZIKV/DENV-3 co-infection in Wolbachia-infected A. aegypti and observed that Wolbachia-infected mosquitoes experienced lower prevalence of infection and viral load than wildtype mosquitoes, even with an extra infecting virus. Critically, ZIKV/DENV co-infection had no significant impact on Wolbachia’s ability to reduce viral transmission. Wolbachia infection also strongly altered expression levels of key immune genes Defensin C and Transferrin 1, in a virus-dependent manner. Conclusions/significance Our results suggest that pathogen interference in Wolbachia-infected A. aegypti is not adversely affected by ZIKV/DENV co-infection, which suggests that Wolbachia-infected A. aegypti will likely prove suitable for controlling mosquito-borne diseases in environments with complex patterns of arbovirus transmission. Wolbachia is an endosymbiotic bacterium that infects insects. It has been artificially transferred into Aedes aegypti, a mosquito species that can transmit medically important viruses including dengue, chikungunya, and Zika. Wolbachia in A. aegypti limits infection with these viruses, making the mosquitoes much less capable of transmitting them to people. In tropical areas, where these viral pathogens are commonly found, it is not unusual for outbreaks of different viruses to occur at the same time, which can complicate diagnosis and treatment for those afflicted. Mosquitoes with Wolbachia are currently being released into these areas to reduce transmission of these diseases. In our study, we assessed whether Wolbachia infection in A. aegypti mosquitoes could still effectively inhibit the dengue and Zika viruses if the mosquitoes were fed both viruses at the same time. We found that Wolbachia was still very effective at inhibiting the replication of both viruses in the mosquito, and likewise still greatly reduced the chance of transmission of either virus. Our results suggest that Wolbachia-infected mosquitoes should be able to limit infection with more than one virus, should they encounter them in the field.
Collapse
Affiliation(s)
- Eric P. Caragata
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Marcele N. Rocha
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Thiago N. Pereira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Simone B. Mansur
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Heverton L. C. Dutra
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
| | - Luciano A. Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
23
|
Brown LD, Shapiro LLM, Thompson GA, Estévez‐Lao TY, Hillyer JF. Transstadial immune activation in a mosquito: Adults that emerge from infected larvae have stronger antibacterial activity in their hemocoel yet increased susceptibility to malaria infection. Ecol Evol 2019; 9:6082-6095. [PMID: 31161020 PMCID: PMC6540708 DOI: 10.1002/ece3.5192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023] Open
Abstract
Larval and adult mosquitoes mount immune responses against pathogens that invade their hemocoel. Although it has been suggested that a correlation exists between immune processes across insect life stages, the influence that an infection in the hemocoel of a larva has on the immune system of the eclosed adult remains unknown. Here, we used Anopheles gambiae to test whether a larval infection influences the adult response to a subsequent bacterial or malaria parasite infection. We found that for both female and male mosquitoes, a larval infection enhances the efficiency of bacterial clearance following a secondary infection in the hemocoel of adults. The adults that emerge from infected larvae have more hemocytes than adults that emerge from naive or injured larvae, and individual hemocytes have greater phagocytic activity. Furthermore, mRNA abundance of immune genes-such as cecropin A, Lysozyme C1, Stat-A, and Tep1-is higher in adults that emerge from infected larvae. A larval infection, however, does not have a meaningful effect on the probability that female adults will survive a systemic bacterial infection, and increases the susceptibility of females to Plasmodium yoelii, as measured by oocyst prevalence and intensity in the midgut. Finally, immune proficiency varies by sex; females exhibit increased bacterial killing, have twice as many hemocytes, and more highly express immune genes. Together, these results show that a larval hemocoelic infection induces transstadial immune activation-possibly via transstadial immune priming-but that it confers both costs and benefits to the emerged adults.
Collapse
Affiliation(s)
- Lisa D. Brown
- Department of Biological SciencesVanderbilt UniversityNashvilleTennessee
- Present address:
Department of BiologyGeorgia Southern UniversityStatesboroGeorgia
| | | | | | | | - Julián F. Hillyer
- Department of Biological SciencesVanderbilt UniversityNashvilleTennessee
| |
Collapse
|
24
|
Stucki D, Freitak D, Bos N, Sundström L. Stress responses upon starvation and exposure to bacteria in the ant Formica exsecta. PeerJ 2019; 7:e6428. [PMID: 30805249 PMCID: PMC6383555 DOI: 10.7717/peerj.6428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/10/2019] [Indexed: 01/31/2023] Open
Abstract
Organisms are simultaneously exposed to multiple stresses, which requires regulation of the resistance to each stress. Starvation is one of the most severe stresses organisms encounter, yet nutritional state is also one of the most crucial conditions on which other stress resistances depend. Concomitantly, organisms often deploy lower immune defenses when deprived of resources. This indicates that the investment into starvation resistance and immune defenses is likely to be subject to trade-offs. Here, we investigated the impact of starvation and oral exposure to bacteria on survival and gene expression in the ant Formica exsecta. Of the three bacteria used in this study, only Serratia marcescens increased the mortality of the ants, whereas exposure to Escherichia coli and Pseudomonas entomophila alleviated the effects of starvation. Both exposure to bacteria and starvation induced changes in gene expression, but in different directions depending on the species of bacteria used, as well as on the nutritional state of the ants.
Collapse
Affiliation(s)
- Dimitri Stucki
- Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Dalial Freitak
- Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.,Institute of Biology, Division of Zoology, University of Graz, Graz, Austria
| | - Nick Bos
- Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.,Section for Ecology & Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Sundström
- Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
25
|
Transcriptional Profile of Aedes aegypti Leucine-Rich Repeat Proteins in Response to Zika and Chikungunya Viruses. Int J Mol Sci 2019; 20:ijms20030615. [PMID: 30708982 PMCID: PMC6386990 DOI: 10.3390/ijms20030615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Aedes aegypti (L.) is the primary vector of chikungunya, dengue, yellow fever, and Zika viruses. The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in invertebrates and vertebrates, as well as plants. We focused on the AaeLRIM1 and AaeAPL1 gene expressions in response to Zika virus (ZIKV) and chikungunya virus (CHIKV) infection using a time course study, as well as the developmental expressions in the eggs, larvae, pupae, and adults. RNA-seq analysis data provided 60 leucine-rich repeat related transcriptions in Ae. aegypti in response to Zika virus (Accession number: GSE118858, accessed on: August 22, 2018, GEO DataSets). RNA-seq analysis data showed that AaeLRIM1 (AAEL012086-RA) and AaeAPL1 (AAEL009520-RA) were significantly upregulated 2.5 and 3-fold during infection by ZIKV 7-days post infection (dpi) of an Ae. aegypti Key West strain compared to an Orlando strain. The qPCR data showed that LRR-containing proteins related genes, AaeLRIM1 and AaeAPL1, and five paralogues were expressed 100-fold lower than other nuclear genes, such as defensin, during all developmental stages examined. Together, these data provide insights into the transcription profiles of LRR proteins of Ae. aegypti during its development and in response to infection with emergent arboviruses.
Collapse
|
26
|
Zeng Y, Hu XP, Cao G, Suh SJ. Hemolymph protein profiles of subterranean termite Reticulitermes flavipes challenged with methicillin resistant Staphylococcus aureus or Pseudomonas aeruginosa. Sci Rep 2018; 8:13251. [PMID: 30185933 PMCID: PMC6125296 DOI: 10.1038/s41598-018-31681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
When the subterranean termite Reticulitermes flavipes is fed heat-killed methicillin resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa, the termite produces proteins with antibacterial activity against the inducer pathogen in its hemolymph. We used a proteomic approach to characterize the alterations in protein profiles caused by the inducer bacterium in the hemolymph of the termite. Nano-liquid chromatography-tandem mass spectrometry analysis identified a total of 221 proteins and approximately 70% of these proteins could be associated with biological processes and molecular functions. Challenges with these human pathogens induced a total of 57 proteins (35 in MRSA-challenged, 16 in P. aeruginosa-challenged, and 6 shared by both treatments) and suppressed 13 proteins by both pathogens. Quasi-Poisson likelihood modeling with false discovery rate adjustment identified a total of 18 and 40 proteins that were differentially expressed at least 2.5-fold in response to MRSA and P. aeruginosa-challenge, respectively. We selected 7 differentially expressed proteins and verified their gene expression levels via quantitative real-time RT-PCR. Our findings provide an initial insight into a putative termite immune response against MRSA and P. aeruginosa-challenge.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Guanqun Cao
- Department of Mathematics and Statistics, Auburn University, Auburn University, Auburn, AL, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn University, Auburn, AL, USA.
| |
Collapse
|
27
|
Sigle LT, Hillyer JF. Mosquito Hemocytes Associate With Circulatory Structures That Support Intracardiac Retrograde Hemolymph Flow. Front Physiol 2018; 9:1187. [PMID: 30210361 PMCID: PMC6121077 DOI: 10.3389/fphys.2018.01187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023] Open
Abstract
A powerful immune system protects mosquitoes from pathogens and influences their ability to transmit disease. The mosquito's immune and circulatory systems are functionally integrated, whereby intense immune processes occur in areas of high hemolymph flow. The primary circulatory organ of mosquitoes is the dorsal vessel, which consists of a thoracic aorta and an abdominal heart. In adults of the African malaria mosquito, Anopheles gambiae, the heart periodically alternates contraction direction, resulting in intracardiac hemolymph flowing toward the head (anterograde) and toward the posterior of the abdomen (retrograde). During anterograde contractions, hemolymph enters the dorsal vessel through ostia located in abdominal segments 2-7, and exits through an excurrent opening located in the head. During retrograde contractions, hemolymph enters the dorsal vessel through ostia located at the thoraco-abdominal junction, and exits through posterior excurrent openings located in the eighth abdominal segment. The ostia in abdominal segments 2 to 7-which function in anterograde intracardiac flow-are sites of intense immune activity, as a subset of hemocytes, called periostial hemocytes, respond to infection by aggregating, phagocytosing, and killing pathogens. Here, we assessed whether hemocytes are present and active at two sites important for retrograde intracardiac hemolymph flow: the thoraco-abdominal ostia and the posterior excurrent openings of the heart. We detected sessile hemocytes around both of these structures, and these hemocytes readily engage in phagocytosis. However, they are few in number and a bacterial infection does not induce the aggregation of additional hemocytes at these locations. Finally, we describe the process of hemocyte attachment and detachment to regions of the dorsal vessel involved in intracardiac retrograde flow.
Collapse
Affiliation(s)
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
28
|
Bilandžija H, Laslo M, Porter ML, Fong DW. Melanization in response to wounding is ancestral in arthropods and conserved in albino cave species. Sci Rep 2017; 7:17148. [PMID: 29215078 PMCID: PMC5719348 DOI: 10.1038/s41598-017-17471-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Many species adapted to aphotic subterranean habitats have lost all body pigmentation. Yet, melanization is an important component of wound healing in arthropods. We amputated appendages in a variety of cave-adapted and surface-dwelling arthropods. A dark clot formed at the site of injury in most species tested, including even albino cave-adapted species. The dark coloration of the clots was due to melanin deposition. The speed of wound melanization was uncorrelated with a difference in metabolic rate between surface and cave populations of an amphipod. The chelicerate Limulus polyphemus, all isopod crustaceans tested, and the cave shrimp Troglocaris anophthalmus did not melanize wounds. The loss of wound melanization in T. anophthalmus was an apomorphy associated with adaptation to subterranean habitats, but in isopods it appeared to be a symplesiomorphy unrelated to colonization of subterranean habitats. We conclude that wound melanization i) is an important part of innate immunity because it was present in all major arthropod lineages, ii) is retained in most albino cave species, and iii) has been lost several times during arthropod evolution, indicating melanization is not an indispensable component of wound healing in arthropods.
Collapse
Affiliation(s)
- Helena Bilandžija
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Mara Laslo
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Daniel W Fong
- Department of Biology, American University, Washington, DC, 20016, USA.
| |
Collapse
|
29
|
Yanagawa A, Neyen C, Lemaitre B, Marion-Poll F. The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila. PLoS One 2017; 12:e0185370. [PMID: 29121087 PMCID: PMC5679552 DOI: 10.1371/journal.pone.0185370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/12/2017] [Indexed: 01/02/2023] Open
Abstract
Behavioral resistance protects insects from microbial infection. However, signals inducing insect hygiene behavior are still relatively unexplored. Our previous study demonstrated that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals even induce the behavior. In this paper, we postulated a cross-talk between behavioral resistance and innate immunity. To examine this hypothesis, we employed a previously validated behavioral test to examine the function of taste signals in inducing a grooming reflex in decapitated flies. Microbes, which activate different pattern recognition systems upstream of immune pathways, were applied to see if there was any correlation between microbial perception and grooming reflex. To narrow down candidate elicitors, the grooming induction tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC.
Collapse
Affiliation(s)
- Aya Yanagawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Claudine Neyen
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Frédéric Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- AgroParisTech, Département Sciences de la Vie et Santé, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Benoit JB, Vigneron A, Broderick NA, Wu Y, Sun JS, Carlson JR, Aksoy S, Weiss BL. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife 2017; 6:e19535. [PMID: 28079523 PMCID: PMC5231409 DOI: 10.7554/elife.19535] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023] Open
Abstract
Symbiotic bacteria assist in maintaining homeostasis of the animal immune system. However, the molecular mechanisms that underlie symbiont-mediated host immunity are largely unknown. Tsetse flies (Glossina spp.) house maternally transmitted symbionts that regulate the development and function of their host's immune system. Herein we demonstrate that the obligate mutualist, Wigglesworthia, up-regulates expression of odorant binding protein six in the gut of intrauterine tsetse larvae. This process is necessary and sufficient to induce systemic expression of the hematopoietic RUNX transcription factor lozenge and the subsequent production of crystal cells, which actuate the melanotic immune response in adult tsetse. Larval Drosophila's indigenous microbiota, which is acquired from the environment, regulates an orthologous hematopoietic pathway in their host. These findings provide insight into the molecular mechanisms that underlie enteric symbiont-stimulated systemic immune system development, and indicate that these processes are evolutionarily conserved despite the divergent nature of host-symbiont interactions in these model systems.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, United States
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| | - Nichole A Broderick
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, United States
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| |
Collapse
|
31
|
Nallar SC, Kalvakolanu DV. GRIM-19: A master regulator of cytokine induced tumor suppression, metastasis and energy metabolism. Cytokine Growth Factor Rev 2016; 33:1-18. [PMID: 27659873 DOI: 10.1016/j.cytogfr.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Cytokines induce cell proliferation or growth suppression depending on the context. It is increasingly becoming clear that success of standard radiotherapy and/or chemotherapeutics to eradicate solid tumors is dependent on IFN signaling. In this review we discuss the molecular mechanisms of tumor growth suppression by a gene product isolated in our laboratory using a genome-wide expression knock-down strategy. Gene associated with retinoid-IFN-induced mortality -19 (GRIM-19) functions as non-canonical tumor suppressor by antagonizing oncoproteins. As a component of mitochondrial respiratory chain, GRIM-19 influences the degree of "Warburg effect" in cancer cells as many advanced and/or aggressive tumors show severely down-regulated GRIM-19 levels. In addition, GRIM-19 appears to regulate innate and acquired immune responses in mouse models. Thus, GRIM-19 is positioned at nodes that favor cell protection and/or prevent aberrant cell growth.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dhan V Kalvakolanu
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae. In Vitro Cell Dev Biol Anim 2016; 53:33-42. [PMID: 27586266 DOI: 10.1007/s11626-016-0078-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides accumulated in the hemolymph in response to infection are a key element of insect innate immunity. The involvement of the fat body and hemocytes in the antimicrobial peptide synthesis is widely acknowledged, although release of the peptides present in the hemolymph from the immune cells was not directly verified so far. Here, we studied the presence of antimicrobial peptides in the culture medium of fat body cells and hemocytes isolated from the blue blowfly Calliphora vicina using complex of liquid chromatography, mass spectrometry, and antimicrobial activity assays. Both fat body and hemocytes are shown to synthesize and release to culture medium defensin, cecropin, diptericins, and proline-rich peptides. The spectra of peptide antibiotics released by the fat body and hemocytes partially overlap. Thus, the results suggest that insect fat body and blood cells are capable of releasing mature antimicrobial peptides to the hemolymph. It is notable that the data obtained demonstrate dramatic difference in the functioning of insect antimicrobial peptides and their mammalian counterparts localized into blood cells' phagosomes where they exert their antibacterial activity.
Collapse
|
33
|
Jin S, Whang YM, Chang IH. Genetically Modified Bacteria as Targeted Agent for Cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.22465/kjuo.2016.14.2.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Thomas T, De TD, Sharma P, Lata S, Saraswat P, Pandey KC, Dixit R. Hemocytome: deep sequencing analysis of mosquito blood cells in Indian malarial vector Anopheles stephensi. Gene 2016; 585:177-190. [PMID: 26915489 DOI: 10.1016/j.gene.2016.02.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 02/08/2023]
Abstract
Hemocytes are tiny circulating blood cells of insects known to play multiple roles in physiological as well as cellular immune responses. However, the molecular nature of hemocytes in blood feeding insects, especially mosquitoes which transmit several deadly diseases such as malaria, dengue etc. is still limited. Therefore, to know the basic molecular composition of naïve mosquito hemocyte encoded proteins, we sequenced RNA-Seq library and analyzed a total of 13,105,858 Illumina sequencing reads in the mosquito Anopheles stephensi, an urban malarial vector in India. Denovo assembly approach yielded a buildup of 3025 contigs, for molecular and functional annotation. A total of 1829 contigs (48%) could be mapped to the mosquito transcript database, while out of remaining 1196 unmatched contigs, at least 1108 contigs i.e. 40% of total contigs, yielded a significant match to the available draft genome. ImmunoDB analysis predicted a total of 88 putative hemocyte transcripts belonging to 11 immune family proteins. A comprehensive molecular analysis of several unique transcripts including novel LRR, Holotricin, OBP, NiFU, that are involved in immunity, chemo sensing, cell-cell communication, nitrogen fixation/metabolism etc. provides initial evidence that mosquito hemocytes carry unique ability to meet and manage cell specific diverse functions of the mosquito blood. An unexpected observation of abundant transcripts encoding hypothetical proteins with unknown functions indicated that a much of the hemocyte biology remains to be understood.
Collapse
Affiliation(s)
- Tina Thomas
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Sector-8, Dwarka, Delhi -110077, (India)
| | - Tanwee Das De
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Sector-8, Dwarka, Delhi -110077, (India)
| | - Punita Sharma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Sector-8, Dwarka, Delhi -110077, (India)
| | - Suman Lata
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Sector-8, Dwarka, Delhi -110077, (India)
| | - Priyanka Saraswat
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Sector-8, Dwarka, Delhi -110077, (India)
| | - Kailash C Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Sector-8, Dwarka, Delhi -110077, (India)
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Sector-8, Dwarka, Delhi -110077, (India).
| |
Collapse
|
35
|
Vargas V, Moreno-García M, Duarte-Elguea E, Lanz-Mendoza H. Limited Specificity in the Injury and Infection Priming against Bacteria in Aedes aegypti Mosquitoes. Front Microbiol 2016; 7:975. [PMID: 27446016 PMCID: PMC4916184 DOI: 10.3389/fmicb.2016.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/06/2016] [Indexed: 12/29/2022] Open
Abstract
Injury and infection priming has been observed in several insect groups, reported as host immune protection against contact with a pathogen caused by a previous infection with the same. However, the specific response against a pathogen has not been demonstrated in all insect species. Investigating the specific priming response in insects is important because their immune strategies probably reflect particular selective pressures exerted by different pathogens. Here, we determined whether previous infection of Aedes aegypti would enhance survival and/or lead to greater and specific AMP expression after a second exposure to the same or a distinct bacterium. Mosquitoes previously immunized with a low dose of Escherichia coli, but not Staphylococcus aureus, showed increased survival. Although the host protection herein demonstrated was not specific, each bacterium elicited differential AMP expression. These results can be explained by the susceptible-primed-infected (SPI) epidemiological model, which poses that in the evolution of memory-like responses (priming), a pivotal role is played by pathogen virulence, associated host damage, and the host capacity of pathogen recognition.
Collapse
Affiliation(s)
- Valeria Vargas
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, Mexico
- Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Miguel Moreno-García
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, Mexico
- Department of Microbiology, Immunology and Pathology, Colorado State UniversityFort Collins, CO, USA
| | - Erika Duarte-Elguea
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, Mexico
| |
Collapse
|
36
|
Peuß R, Wensing KU, Woestmann L, Eggert H, Milutinović B, Sroka MGU, Scharsack JP, Kurtz J, Armitage SAO. Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160138. [PMID: 27152227 PMCID: PMC4852650 DOI: 10.1098/rsos.160138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 05/24/2023]
Abstract
Down syndrome cell adhesion molecule 1 (Dscam1) has wide-reaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives.
Collapse
|
37
|
Nallar SC, Xu DQ, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges. Cytokine 2016; 89:160-172. [PMID: 26778055 DOI: 10.1016/j.cyto.2016.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/24/2022]
Abstract
Bacteria act as pro- or anti- tumorigenic agents. Whole bacteria or cytotoxic or immunogenic peptides carried by them exert potent anti-tumor effects in the experimental models of cancer. The use of attenuated microorganism(s) e.g., BCG to treat human urinary bladder cancer was found to be superior compared to standard chemotherapy. Although the phase-I clinical trials with Salmonella enterica serovar Typhimurium, has shown limited benefits in human subjects, a recent pre-clinical trial in pet dogs with tumors reported some subjects benefited from this treatment strain. In addition to the attenuated host strains derived by conventional mutagenesis, recombinant DNA technology has been applied to a few microorganisms that have been evaluated in the context of tumor colonization and eradication using mouse models. There is an enormous surge in publications describing bacterial anti-cancer therapies in the past 15years. Vectors for delivering shRNAs that target oncogenic products, express tumor suppressor genes and immunogenic proteins have been developed. These approaches have showed promising anti-tumor activity in mouse models against various tumors. These can be potential therapeutics for humans in the future. In this review, some conceptual and practical issues on how to improve these agents for human applications are discussed.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - De-Qi Xu
- Dalian Hissen Biopharm Co Ltd. E&T Development Zone, Dalian 116600, Peoples Republic of China
| | - Dhan V Kalvakolanu
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
38
|
Bonilla ML, Todd C, Erlandson M, Andres J. Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F). BMC Genomics 2015; 16:1096. [PMID: 26694822 PMCID: PMC4689059 DOI: 10.1186/s12864-015-2327-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seminal fluid proteins control many aspects of fertilization and in turn, they play a key role in post-mating sexual selection and possibly reproductive isolation. Because effective proteome profiling relies on the availability of high-quality DNA reference databases, our knowledge of these proteins is still largely limited to model organisms with ample genetic resources. New advances in sequencing technology allow for the rapid characterization of transcriptomes at low cost. By combining high throughput RNA-seq and shotgun proteomic profiling, we have characterized the seminal fluid proteins secreted by the primary male accessory gland of the migratory grasshopper (Melanoplus sanguinipes), one of the main agricultural pests in central North America. RESULTS Using RNA sequencing, we characterized the transcripts of ~ 8,100 genes expressed in the long hyaline tubules (LHT) of the accessory glands. Proteomic profiling identified 353 proteins expressed in the long hyaline tubules (LHT). Of special interest are seminal fluid proteins (SFPs), such as EJAC-SP, ACE and prostaglandin synthetases, which are known to regulate female oviposition in insects. CONCLUSIONS Our study provides new insights into the proteomic components of male ejaculate in Orthopterans, and highlights several important patterns. First, the presence of proteins that lack predicted classical secretory tags in accessory gland proteomes is common in male accessory glands. Second, the products of a few highly expressed genes dominate the accessory gland secretions. Third, accessory gland transcriptomes are enriched for novel transcripts. Fourth, there is conservation of SFPs' functional classes across distantly related taxonomic groups with very different life histories, mating systems and sperm transferring mechanisms. The identified SFPs may serve as targets of future efforts to develop species- specific genetic control strategies.
Collapse
Affiliation(s)
- Martha L Bonilla
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, A.237. Palmira, Valle del Cauca, Colombia.
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| | - Christopher Todd
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| | - Martin Erlandson
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Pl., Saskatoon, SK, S7N-0X2, Canada.
| | - Jose Andres
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| |
Collapse
|
39
|
Weisheit S, Villar M, Tykalová H, Popara M, Loecherbach J, Watson M, Růžek D, Grubhoffer L, de la Fuente J, Fazakerley JK, Bell-Sakyi L. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit Vectors 2015; 8:599. [PMID: 26582129 PMCID: PMC4652421 DOI: 10.1186/s13071-015-1210-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ixodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed. METHODS RNA and proteins were isolated from the Ixodes scapularis-derived cell line IDE8 and the Ixodes ricinus-derived cell line IRE/CTVM19, mock-infected or infected with TBEV, on day 2 post-infection (p.i.) when virus production was increasing, and on day 6 p.i. when virus production was decreasing. RNA-Seq and mass spectrometric technologies were used to identify changes in abundance of, respectively, transcripts and proteins. Functional analyses were conducted on selected transcripts using RNA interference (RNAi) for gene knockdown in tick cells infected with the closely-related but less pathogenic flavivirus Langat virus (LGTV). RESULTS Differential expression analysis using DESeq resulted in totals of 43 and 83 statistically significantly differentially-expressed transcripts in IDE8 and IRE/CTVM19 cells, respectively. Mass spectrometry detected 76 and 129 statistically significantly differentially-represented proteins in IDE8 and IRE/CTVM19 cells, respectively. Differentially-expressed transcripts and differentially-represented proteins included some that may be involved in innate immune and cell stress responses. Knockdown of the heat-shock proteins HSP90, HSP70 and gp96, the complement-associated protein Factor H and the protease trypsin resulted in increased LGTV replication and production in at least one tick cell line, indicating a possible antiviral role for these proteins. Knockdown of RNAi-associated proteins Argonaute and Dicer, which were included as positive controls, also resulted in increased LGTV replication and production in both cell lines, confirming their role in the antiviral RNAi pathway. CONCLUSIONS This systems biology approach identified several molecules that may be involved in the tick cell innate immune response against flaviviruses and highlighted that ticks, in common with other invertebrate species, have other antiviral responses in addition to RNAi.
Collapse
Affiliation(s)
- Sabine Weisheit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0377, Norway.
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - Marina Popara
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Julia Loecherbach
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Daniel Růžek
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
- Veterinary Research Institute, Hudcova 70, Brno, 62100, Czech Republic.
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | | |
Collapse
|
40
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
41
|
Hillyer JF. Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects. Integr Comp Biol 2015; 55:843-55. [DOI: 10.1093/icb/icv021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Chuang CK, Yang TH, Chen TH, Yang CF, Chen WJ. Heat shock cognate protein 70 isoform D is required for clathrin-dependent endocytosis of Japanese encephalitis virus in C6/36 cells. J Gen Virol 2014; 96:793-803. [PMID: 25502019 DOI: 10.1099/jgv.0.000015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV), one of encephalitic flaviviruses, is naturally transmitted by mosquitoes. During infection, JEV generally enters host cells via receptor-mediated clathrin-dependent endocytosis that requires the 70 kDa heat-shock protein (Hsp70). Heat-shock cognate protein 70 (Hsc70) is one member of the Hsp70 family and is constitutively expressed; thus, it may be expressed under physiological conditions. In C6/36 cells, Hsc70 is upregulated in response to JEV infection. Since Hsc70 shows no relationship with viruses attaching to the cell surface, it probably does not serve as the receptor according to our results in the present study. In contrast, Hsc70 is evidently associated with virus penetration into the cell and resultant acidification of intracellular vesicles. It suggests that Hsc70 is highly involved in clathrin-mediated endocytosis, particularly at the late stage of viral entry into host cells. Furthermore, we found that Hsc70 is composed of at least three isoforms, including B, C and D; of these, isoform D helps JEV to penetrate C6/36 cells via clathrin-mediated endocytosis. This study provides relevant evidence that sheds light on the regulatory mechanisms of JEV infection in host cells, especially on the process of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Ching-Kai Chuang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Tsong-Han Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Tien-Huang Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Chao-Fu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Wei-June Chen
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| |
Collapse
|
43
|
Sigle LT, Ramalho-Ortigão M. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi. Mem Inst Oswaldo Cruz 2014; 108:671-8. [PMID: 24037187 PMCID: PMC3970688 DOI: 10.1590/0074-0276108062013001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/02/2013] [Indexed: 12/26/2022] Open
Abstract
Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of
the genus Leishmania, as well as bacteria and viruses.
Following studies of the midgut transcriptome of Phlebotomus
papatasi, the principal vector of Leishmania
major, two non-classical Kazal-type serine proteinase inhibitors were
identified (PpKzl1 and PpKzl2). Analyses of
expression profiles indicated that PpKzl1 and
PpKzl2 transcripts are both regulated by blood-feeding in
the midgut of P. papatasi and are also expressed in males,
larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression
system (CHO-S free style cells) that was applied to in vitro studies to assess
serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to
9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and
63.9% residual activity, suggesting that native PpKzl2 is an active serine
proteinase inhibitor and likely involved in regulating digestive enzymes in the
midgut. Early stages of Leishmania are susceptible to killing
by digestive proteinases in the sandfly midgut. Thus, characterising serine
proteinase inhibitors may provide new targets and strategies to prevent
transmission of Leishmania.
Collapse
|
44
|
Hillyer JF, Strand MR. Mosquito hemocyte-mediated immune responses. CURRENT OPINION IN INSECT SCIENCE 2014; 3:14-21. [PMID: 25309850 PMCID: PMC4190037 DOI: 10.1016/j.cois.2014.07.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hemocytes are a key component of the mosquito immune system that kill pathogens via phagocytic, lytic and melanization pathways. Individual mosquitoes contain between 500 and 4,000 hemocytes, which are divided into three populations named granulocytes, oenocytoids and prohemocytes. Hemocytes can also be divided by their anatomical location with 75% of hemocytes circulating in the hemocoel (circulating hemocytes) and 25% of hemocytes attaching themselves to tissues (sessile hemocytes). Greater than 85% of the hemocytes in adult mosquitoes are granulocytes, which primarily kill pathogens by phagocytosis or lysis. Oenocytoids, on the other hand, are the major producers of the enzymes required for melanization while prohemocytes are small cells that participate in phagocytosis. Both circulating and sessile hemocytes engage in defense against pathogens. The circulatory system of mosquitoes also interacts with hemocytes and facilitates elimination of potential pathogens that enter the hemocoel.
Collapse
Affiliation(s)
- Julián F. Hillyer
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, TN, USA
| | - Michael R. Strand
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
45
|
Grooming Behavior as a Mechanism of Insect Disease Defense. INSECTS 2013; 4:609-30. [PMID: 26462526 PMCID: PMC4553506 DOI: 10.3390/insects4040609] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 11/17/2022]
Abstract
Grooming is a well-recognized, multipurpose, behavior in arthropods and vertebrates. In this paper, we review the literature to highlight the physical function, neurophysiological mechanisms, and role that grooming plays in insect defense against pathogenic infection. The intricate relationships between the physical, neurological and immunological mechanisms of grooming are discussed to illustrate the importance of this behavior when examining the ecology of insect-pathogen interactions.
Collapse
|
46
|
Geiser DL, Zhou G, Mayo JJ, Winzerling JJ. The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti. INSECT SCIENCE 2013; 20:601-19. [PMID: 23956079 PMCID: PMC4554699 DOI: 10.1111/j.1744-7917.2012.01581.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 05/02/2023]
Abstract
Secreted ferritin is the major iron storage and transport protein in insects. Here, we characterize the message and protein expression profiles of yellow fever mosquito (Aedes aegypti) ferritin heavy chain homologue (HCH) and light chain homologue (LCH) subunits in response to iron and bacterial challenge. In vivo experiments demonstrated tissue-specific regulation of HCH and LCH expression over time post-blood meal (PBM). Transcriptional regulation of HCH and LCH was treatment specific, with differences in regulation for naïve versus mosquitoes challenged with heat-killed bacteria (HKB). Translational regulation by iron regulatory protein (IRP) binding activity for the iron-responsive element (IRE) was tissue-specific and time-dependent PBM. However, mosquitoes challenged with HKB showed little change in IRP/IRE binding activity compared to naïve animals. The changes in ferritin regulation and expression in vivo were confirmed with in vitro studies. We challenged mosquitoes with HKB followed by a blood meal to determine the effects on ferritin expression, and demonstrate a synergistic, time-dependent regulation of expression for HCH and LCH.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona, 85721, USA
| | | | | | | |
Collapse
|
47
|
Gulley MM, Zhang X, Michel K. The roles of serpins in mosquito immunology and physiology. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:138-47. [PMID: 22960307 PMCID: PMC3560325 DOI: 10.1016/j.jinsphys.2012.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 05/10/2023]
Abstract
In vector-borne diseases, the complex interplay between pathogen and its vector's immune system determines the outcome of infection and therefore disease transmission. Serpins have been shown in many animals to be key regulators of innate immune reactions. Their control over regulatory proteolytic cascades ultimately decides whether the recognition of a pathogen will lead to an appropriate immune response. In mosquitoes, serpins (SRPNs) regulate the activation of prophenoloxidase and thus melanization, contribute to malaria parasite lysis, and likely Toll pathway activation. Additionally, in culicine mosquitoes, SRPNs are able to regulate hemostasis in the vertebrate host, suggesting a crucial role during bloodfeeding. This review summarizes the annotation, transcriptional regulation, and current knowledge of SRPN function in the three mosquito species for which the complete genome sequence is available. Additionally, we give a brief overview of how SRPNs may be used to prevent transmission of vector-borne diseases.
Collapse
Affiliation(s)
| | | | - Kristin Michel
- Corresponding author: tel.: +1 (785) 532-0161, fax: +1 (785) 532-6653;
| |
Collapse
|
48
|
Hernández-Martínez S, Lanz-Mendoza H, Martínez-Barnetche J, Rodríguez MH. Antimicrobial properties of Anopheles albimanus pericardial cells. Cell Tissue Res 2013. [PMID: 23229355 DOI: 10.1007/s00441-012-1505-1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Insect pericardial cells (PCs) are strategically located along the dorsal vessel where they encounter a high hemolymph flow enabling them to undertake their osmoregulatory, detoxifying, and scavenging functions. In this location, PCs also encounter foreign molecules and microorganisms. The response of PCs of the mosquito Anopheles albimanus, one of the most important Plasmodium vivax vectors in Mexico and Latin America, to Saccharomyces cerevisiae was analyzed by using biochemical, cellular, ultrastructural, and bioinformatics approaches. Immune gene transcripts were identified in the PC transcriptome of A. albimanus. PCs responded to the presence of yeast and zymosan with increased lysosomal and phosphatase activities and produced lytic activity against bacteria. Our results indicate that mosquito PCs play a key role in the neutralization and elimination of pathogens.
Collapse
Affiliation(s)
- Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Col. Sta. María Ahuacatitlan, Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|
49
|
Antimicrobial properties of Anopheles albimanus pericardial cells. Cell Tissue Res 2012; 351:127-37. [PMID: 23229355 PMCID: PMC3536983 DOI: 10.1007/s00441-012-1505-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
Insect pericardial cells (PCs) are strategically located along the dorsal vessel where they encounter a high hemolymph flow enabling them to undertake their osmoregulatory, detoxifying, and scavenging functions. In this location, PCs also encounter foreign molecules and microorganisms. The response of PCs of the mosquito Anopheles albimanus, one of the most important Plasmodium vivax vectors in Mexico and Latin America, to Saccharomyces cerevisiae was analyzed by using biochemical, cellular, ultrastructural, and bioinformatics approaches. Immune gene transcripts were identified in the PC transcriptome of A. albimanus. PCs responded to the presence of yeast and zymosan with increased lysosomal and phosphatase activities and produced lytic activity against bacteria. Our results indicate that mosquito PCs play a key role in the neutralization and elimination of pathogens.
Collapse
|
50
|
Coggins SA, Estévez-Lao TY, Hillyer JF. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:390-401. [PMID: 22326457 DOI: 10.1016/j.dci.2012.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 05/31/2023]
Abstract
Mosquitoes defend themselves from pathogens by mounting cellular and humoral innate immune responses. Bioinformatic analyses have revealed considerable divergence in immune gene repertoires between mosquito species, but interspecies empirical comparisons of immune responses are lacking. Here, we present a comparative analysis of the antimicrobial responses of two distantly related disease vectors: Aedes aegypti and Anopheles gambiae. Survival studies showed that Ae. aegypti are more proficient in surviving a bacterial infection than An. gambiae, and this correlates with Ae. aegypti's superior ability to kill bacteria in their hemocoels. Hemocytes from both species swiftly phagocytose bacteria, but phagocytosis does not explain Ae. aegypti's increased robustness: An. gambiae contain more circulating hemocytes and display a higher phagocytic index, but the phagocytic capacity of individual hemocytes is greater in Ae. aegypti. Then, profiling of 19 immunity genes revealed that transcriptional induction following infection is significantly elevated in Ae. aegypti when compared to An. gambiae, with the largest change seen in the transcription of cecropin and defensin. These data show that Ae. aegypti is better equipped to survive a bacterial infection than An. gambiae, and this correlates with Ae. aegypti's increased transcriptional induction of antimicrobial peptides and other humoral immune factors in response to infection.
Collapse
Affiliation(s)
- Sarah A Coggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|