1
|
Liu Z, Du J, Wang Y, Song H, Lu L, Wu R, Jin C. The NLRP3 molecule is responsible for mediating the pyroptosis of intestinal mucosa cells and plays a crucial role in salmonellosis enteritis in chicks. Mol Immunol 2024; 168:47-50. [PMID: 38422886 DOI: 10.1016/j.molimm.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Salmonella enteritis in poultry can result in reduced immune function, decreased growth rate, and increased mortality. Many farm salmonella strains have developed severe drug resistance and are less susceptible to multiple antibiotics. In the post-antibiotic era, it is of great significance to identify the mechanism of salmonella-induced enteritis in chicks to protect their health and ensure food safety. This article will elucidate the activation mechanism of NOD-like receptor protein 3 (NLRP3) inflammasomes in Salmonella enteritis and review the research on interventions targeting NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Zhe Liu
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China
| | - Juan Du
- Department of Geriatrics, Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Yanhong Wang
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China
| | - Haoyu Song
- Department of Geriatrics, Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Ligong Lu
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, 163319, People's Republic of China
| | - Chenghao Jin
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China; Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
2
|
Shtuhin-Rahav R, Olender A, Zlotkin-Rivkin E, Bouman EA, Danieli T, Nir-Keren Y, Weiss AM, Nandi I, Aroeti B. Enteropathogenic E. coli infection co-elicits lysosomal exocytosis and lytic host cell death. mBio 2023; 14:e0197923. [PMID: 38038448 PMCID: PMC10746156 DOI: 10.1128/mbio.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.
Collapse
Affiliation(s)
- Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aaron Olender
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aryeh M. Weiss
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| |
Collapse
|
3
|
Rogers AP, Mileto SJ, Lyras D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat Rev Microbiol 2023; 21:260-274. [PMID: 36175770 DOI: 10.1038/s41579-022-00794-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The mucosal lining of the gut has co-evolved with a diverse microbiota over millions of years, leading to the development of specialized mechanisms to actively limit the invasion of pathogens. However, some enteric microorganisms have adapted against these measures, developing ways to hijack or overcome epithelial micro-integrity mechanisms. This breach of the gut barrier not only enables the leakage of host factors out of circulation but can also initiate a cascade of detrimental systemic events as microbiota, pathogens and their affiliated secretions passively leak into extra-intestinal sites. Under normal circumstances, gut damage is rapidly repaired by intestinal stem cells. However, with substantial and deep perturbation to the gut lining and the systemic dissemination of gut contents, we now know that some enteric infections can cause the impairment of host regenerative processes. Although these local and systemic aspects of enteric disease are often studied in isolation, they heavily impact one another. In this Review, by examining the journey of enteric infections from initial establishment to systemic sequelae and how, or if, the host can successfully repair damage, we will tie together these complex interactions to provide a holistic overview of the impact of enteric infections at and beyond the epithelial barrier.
Collapse
Affiliation(s)
- Ashleigh P Rogers
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Kaur P, Dudeja PK. Pathophysiology of Enteropathogenic Escherichia coli-induced Diarrhea. NEWBORN (CLARKSVILLE, MD.) 2023; 2:102-113. [PMID: 37388762 PMCID: PMC10308259 DOI: 10.5005/jp-journals-11002-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) are important diarrheal pathogens of infants and young children. Since the availability of molecular diagnosis methods, we now have new insights into the incidence and prevalence of these infections. Recent epidemiological studies indicate that atypical EPEC (aEPEC) are seen more frequently than typical EPEC (tEPEC) worldwide, including in both endemic diarrhea and diarrhea outbreaks. Therefore, it is important to further characterize the pathogenicity of these emerging strains. The virulence mechanisms and pathophysiology of the attaching and effacing lesion (A/E) and the type-three-secretion-system (T3SS) are complex but well-studied. A/E strains use their pool of locus of enterocyte effacement (LEE)-encoded and non-LEE-encoded effector proteins to subvert and modulate cellular and barrier properties of the host. However, the exact mechanisms of diarrhea in EPEC infection are not completely understood. From the clinical perspective, there is a need for fast, easy, and inexpensive diagnostic methods to define optimal treatment and prevention for children in endemic areas. In this article, we present a review of the classification of EPEC, epidemiology, pathogenesis of the disease caused by these bacteria, determinants of virulence, alterations in signaling, determinants of colonization vs. those of disease, and the limited information we have on the pathophysiology of EPEC-induced diarrhea. This article combines peer-reviewed evidence from our own studies and the results of an extensive literature search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Prabhdeep Kaur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, United States of America
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Mortensen NP, Moreno Caffaro M, Davis K, Aravamudhan S, Sumner SJ, Fennell TR. Investigation of eight cellulose nanomaterials' impact on Differentiated Caco-2 monolayer integrity and cytotoxicity. Food Chem Toxicol 2022; 166:113204. [PMID: 35679974 DOI: 10.1016/j.fct.2022.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Abstract
The potential applications of cellulose nanomaterials (CNMs) as food additives or in food packaging, present a possible source of human ingestion. While micron- and macro-scale cellulose products are classified as Generally Regarded As Safe, the safety of ingested nano-scale cellulose is largely unknown. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity was investigated for four nanocellulose crystals (CNCs) and four nanocellulose fibrils (CNFs) following 24 h of exposure at 50 μg/mL. Scanning electron microscope showed some aggregation of both CNCs and CNFs. X-ray photoelectron spectroscopy analyses showed that carbon and oxygen were the main elements. The zeta-potential for CNMs formulated in cell culture medium showed a negative surface charge. Two CNMs increased cell membrane permeability and three CNMs decreased the cell metabolic activity. While three CNMs lead to cytotoxic responses, no changes in apparent permeability coefficient (Papp) for dextran or tight junction integrity were found. Our results show that three CNMs induce cytotoxicity in differentiated Caco-2 cells, demonstrating the need to understand the role of size and shape. The interaction between CNMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications following CNM ingestion.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Klinton Davis
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
6
|
Sanchez-Garrido J, Ruano-Gallego D, Choudhary JS, Frankel G. The type III secretion system effector network hypothesis. Trends Microbiol 2022; 30:524-533. [PMID: 34840074 DOI: 10.1016/j.tim.2021.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Abstract
Type III secretion system (T3SS) effectors are key virulence factors that underpin the infection strategy of many clinically important Gram-negative pathogens, including Salmonella enterica, Shigella spp., enteropathogenic and enterohemorrhagic Escherichia coli and their murine equivalent, Citrobacter rodentium. The cellular processes or proteins targeted by the effectors can be common to multiple pathogens or pathogen-specific. The main approach to understanding T3SS-mediated pathogenesis has been to determine the contribution of one effector at a time, with the aim of piecing together individual functions and unveiling infection mechanisms. However, in contrast to this prevailing approach, simultaneous deletion of multiple effectors revealed that they function as an interconnected network in vivo, uncovering effector codependency and context-dependent effector essentiality. This paradigm shift in T3SS biology is at the heart of this opinion article.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| | - David Ruano-Gallego
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), Madrid, Spain.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
7
|
Li H, Wu G, Zhao L, Zhang M. Suppressed inflammation in obese children induced by a high-fiber diet is associated with the attenuation of gut microbial virulence factor genes. Virulence 2021; 12:1754-1770. [PMID: 34233588 PMCID: PMC8274444 DOI: 10.1080/21505594.2021.1948252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
In our previous study, a gut microbiota-targeted dietary intervention with a high-fiber diet improved the immune status of both genetically obese (Prader-Willi Syndrome, PWS) and simple obese (SO) children. However, PWS children had higher inflammation levels than SO children throughout the trial, the gut microbiota of the two cohorts was similar. As some virulence factors (VFs) produced by the gut microbiota play a role in triggering host inflammation, this study compared the characteristics and changes of gut microbial VF genes of the two cohorts before and after the intervention using a fecal metagenomic dataset. We found that in both cohorts, the high-fiber diet reduced the abundance of VF, and particularly pathogen-specific, genes. The composition of VF genes was also modulated, especially for offensive and defensive VF genes. Furthermore, genes belonging to invasion, T3SS (type III secretion system), and adherence classes were suppressed. Co-occurrence network analysis detected VF gene clusters closely related to host inflammation in each cohort. Though these cohort-specific clusters varied in VF gene combinations and cascade reactions affecting inflammation, they mainly contained VFs belonging to iron uptake, T3SS, and invasion classes. The PWS group had a lower abundance of VF genes before the trial, which suggested that other factors could also be responsible for the increased inflammation in this cohort. This study provides insight into the modulation of VF gene structure in the gut microbiota by a high-fiber diet, with respect to reduced inflammation in obese children, and differences in VF genes between these two cohorts.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, NJ, USA
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
8
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
9
|
Govindarajan DK, Viswalingam N, Meganathan Y, Kandaswamy K. Adherence patterns of Escherichia coli in the intestine and its role in pathogenesis. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on
Vibrio parahaemolyticus
research in the postgenomic era. Microbiol Immunol 2020; 64:167-181. [DOI: 10.1111/1348-0421.12767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| | - Hirotaka Hiyoshi
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Medical Microbiology and Immunology, School of MedicineUniversity of California Davis California, USA
| | - Sarunporn Tandhavanant
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol University Bangkok Thailand
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| |
Collapse
|
11
|
Enteropathogenic Escherichia coli (EPEC) Recruitment of PAR Polarity Protein Atypical PKCζ to Pedestals and Cell-Cell Contacts Precedes Disruption of Tight Junctions in Intestinal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020527. [PMID: 31947656 PMCID: PMC7014222 DOI: 10.3390/ijms21020527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell–cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.
Collapse
|
12
|
Mortensen NP, Caffaro MM, Patel PR, Uddin MJ, Aravamudhan S, Sumner SJ, Fennell TR. Investigation of Twenty Metal, Metal Oxide, and Metal Sulfide Nanoparticles' Impact on Differentiated Caco-2 Monolayer Integrity. NANOIMPACT 2020; 17:100212. [PMID: 32864507 PMCID: PMC7451203 DOI: 10.1016/j.impact.2020.100212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The use of engineered nanomaterials (ENMs) in foods and consumer products is rising, increasing the potential for unintentional ingestion. While the cytotoxicity of many ENMs has been investigated, less attention has been given to adverse impact on the intestinal barrier integrity. Chronical disruption of gastrointestinal integrity can have far reaching health implications. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity were investigated for 20 metal, metal oxide, and metal sulfide ENMs. Caco-2 cells were exposed to 50 μg/mL ENMs for 24 hours. ENM formulations were characterized at 0 and 24 hours, and In Vitro Sedimentation, Diffusion and Dosimetry Modeling was applied to calculate the effective dose of exposure during 24 hours. The apparent permeability coefficient (Papp) was determined for fluorescent labeled dextran (3,000 Da) and tight junction integrity was evaluated by immunofluorescence microscopy. Cytotoxicity was investigated by determining lactate dehydrogenase release (LDH) and cell metabolic activity (tetrazolium based MTS) assays. Four ENMs led to significantly increased Papp, (15.8% w/w% Ag-SiO2 nanoparticle (NP), 60 nm CdS NP, 100 nm V2O5 flakes, and 50 nm ZnO NP), while one ENM (20 nm MgO NP) decreased Papp. With the exception of CdS NP, significantly increased Papp was not connected with cell cytotoxicity. The calculated effective dose concentration was not correlated with increased Papp. Our results illustrate that while many metal, metal oxide, and metal sulfide ENMs do not adversely affect monolayer integrity or induce cytotoxicity in differentiated Caco-2 cells, a subset of ENMs may compromise the intestinal integrity. This study demonstrated the use of differentiated Caco-2 monolayer and Papp as an endpoint to identify and prioritize ENMs that should be investigated further. The interaction between ENMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications.
Collapse
Affiliation(s)
- Ninell P. Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC 27709, USA
- Corresponding author: Ninell P. Mortensen, Ph. D., Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC 27709, USA,
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC 27709, USA
| | - Purvi R. Patel
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC 27709, USA
| | - Md Jamal Uddin
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd, Greensboro, NC 27401, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd, Greensboro, NC 27401, USA
| | - Susan J. Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Timothy R. Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
O’Callaghan AA, Corr SC. Establishing Boundaries: The Relationship That Exists between Intestinal Epithelial Cells and Gut-Dwelling Bacteria. Microorganisms 2019; 7:microorganisms7120663. [PMID: 31818022 PMCID: PMC6956261 DOI: 10.3390/microorganisms7120663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022] Open
Abstract
The human gastrointestinal (GI) tract is a highly complex organ in which various dynamic physiological processes are tightly coordinated while interacting with a complex community of microorganisms. Within the GI tract, intestinal epithelial cells (IECs) create a structural interface that separates the intestinal lumen from the underlying lamina propria. In the lumen, gut-dwelling microbes play an essential role in maintaining gut homeostasis and functionality. Whether commensal or pathogenic, their interaction with IECs is inevitable. IECs and myeloid immune cells express an array of pathogen recognition receptors (PRRs) that define the interaction of both pathogenic and beneficial bacteria with the intestinal mucosa and mount appropriate responses including induction of barrier-related factors which enhance the integrity of the epithelial barrier. Indeed, the integrity of this barrier and induction of appropriate immune responses is critical to health status, with defects in this barrier and over-activation of immune cells by invading microbes contributing to development of a range of inflammatory and infectious diseases. This review describes the complexity of the GI tract and its interactions with gut bacteria.
Collapse
|
14
|
Ugalde-Silva P, Navarro-Garcia F. Coordinated transient interaction of ZO-1 and afadin is required for pedestal maturation induced by EspF from enteropathogenic Escherichia coli. Microbiologyopen 2019; 8:e931. [PMID: 31568664 PMCID: PMC6925160 DOI: 10.1002/mbo3.931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/09/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) infection causes a histopathological lesion including recruitment of F‐actin beneath the attached bacteria and formation of actin‐rich pedestal‐like structures. Another important target of EPEC is the tight junction (TJ), and EspF induces displacement of TJ proteins and increased intestinal permeability. Previously, we determined that an EPEC strain lacking EspF did not cause TJ disruption; meanwhile, pedestals were located on the TJ and smaller than those induced by the wild‐type strain. Therefore, EspF could be playing an important role in both phenotypes. Here, using different cell models, we found that EspF was essential for pedestal maturation through ZO‐1 disassembly from TJ, leading to (a) ZO‐1 recruitment to the pedestal structure; no other main TJ proteins were required. Recruited ZO‐1 allowed the afadin recruitment. (b) Afadin recruitment caused an afadin–ZO‐1 transient interaction, like during TJ formation. (c) Afadin and ZO‐1 were segregated to the tip and the stem of pedestal, respectively, causing pedestal maturation. Initiation of these three discrete phases for pedestal maturation functionally and physically required EspF expression. Pedestal maturation process could help coordinate the epithelial actomyosin function by maintaining the actin‐rich column composing the pedestal structure and could be important in the dynamics of the pedestal movement on epithelial cells.
Collapse
Affiliation(s)
- Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México City, Mexico
| |
Collapse
|
15
|
Singh V, Davidson A, Hume PJ, Koronakis V. Pathogenic Escherichia coli Hijacks GTPase-Activated p21-Activated Kinase for Actin Pedestal Formation. mBio 2019; 10:e01876-19. [PMID: 31431554 PMCID: PMC6703428 DOI: 10.1128/mbio.01876-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli (EPEC and EHEC, respectively) are extracellular pathogens that reorganize the host cell cytoskeleton to form "actin pedestals" beneath the tightly adherent bacteria, a critical step in pathogenesis. EPEC and EHEC inject effector proteins that manipulate host cell signaling cascades to trigger pedestal assembly. One such effector, EspG, has been reported to bind and activate p21-activated kinase (PAK), a key cytoskeletal regulator, but the function of this interaction and whether it impacts pedestal assembly are unknown. Here, we demonstrate that deletion of espG significantly impairs pedestal formation and attachment by both EPEC and EHEC. This role of EspG is shown to be dependent on its interaction with PAK. Unexpectedly, EspG was able to subvert PAK only in the presence of Rho family small GTPases, which function to both concentrate PAK at the membrane and stimulate PAK activation. Our findings reveal a novel mechanism by which EspG hijacks PAK and sustains its active state to drive bacterial attachment to host cells.IMPORTANCE Enteropathogenic E. coli and enterohemorrhagic E. coli (EPEC and EHEC, respectively) remain a significant global health problem. Both EPEC and EHEC initiate infection by attaching to cells in the host intestine, triggering the formation of actin-rich "pedestal" structures directly beneath the adherent pathogen. These bacteria inject their own receptor into host cells, which upon binding to a protein on the pathogen surface triggers pedestal formation. Multiple other proteins are also delivered into the cells of the host intestine, but how they contribute to disease is often less clear. Here, we show how one of these injected proteins, EspG, hijacks a host signaling pathway for pedestal production. This provides new insights into this essential early stage in EPEC and EHEC disease.
Collapse
Affiliation(s)
- Vikash Singh
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony Davidson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Hume
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
17
|
Singh AP, Sharma S, Pagarware K, Siraji RA, Ansari I, Mandal A, Walling P, Aijaz S. Enteropathogenic E. coli effectors EspF and Map independently disrupt tight junctions through distinct mechanisms involving transcriptional and post-transcriptional regulation. Sci Rep 2018; 8:3719. [PMID: 29487356 PMCID: PMC5829253 DOI: 10.1038/s41598-018-22017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
Enteropathogenic E. coli infection is characterized by rapid onset of diarrhea but the underlying mechanisms are not well defined. EPEC targets the tight junctions which selectively regulate the permeability of charged and uncharged molecules. Cooperative actions of the EPEC effectors EspF and Map have been reported to mediate tight junction disruption. To analyze the individual contributions of EspF and Map, we generated in vitro models where EspF and Map, derived from the EPEC strain E2348/69, were constitutively expressed in epithelial cells. Here we report that tight junction disruption by EspF and Map is caused by the inhibition of the junctional recruitment of proteins during tight junction assembly. Constitutive expression of EspF and Map depleted the levels of tight junction proteins. EspF down-regulated the transcript levels of claudin-1, occludin and ZO-1, while Map down-regulated only claudin-1 transcripts. Both effectors also caused lysosomal degradation of existing tight junction proteins. We also identified a novel interaction of Map with non-muscle myosin II. Consistent with earlier studies, EspF was found to interact with ZO-1 while actin was the common interacting partner for both effectors. Our data provides evidence for the distinct roles of Map and EspF in tight junction disruption through non-synergistic functions.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swati Sharma
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kirti Pagarware
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rafay Anwar Siraji
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Imran Ansari
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anupam Mandal
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pangertoshi Walling
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Feeney S, Ryan JT, Kilcoyne M, Joshi L, Hickey R. Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia coli in Vitro. Foods 2017; 6:foods6110093. [PMID: 29077065 PMCID: PMC5704137 DOI: 10.3390/foods6110093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP) is the C-terminal portion of kappa-casein that is released from whey during cheese-making by the action of chymosin. Many of the biological properties associated with GMP, such as anti-adhesion, have been linked with the carbohydrate portion of the protein. In this study, we investigated the ability of GMP to inhibit the adhesion of a variety of pathogenic Escherichia coli strains to HT-29 and Caco-2 intestinal cell lines, given the importance of E. coli in causing bacterial gastroenteritis. GMP significantly reduced pathogen adhesion, albeit with a high degree of species specificity toward enteropathogenic E. coli (EPEC) strains O125:H32 and O111:H2 and enterohemorrhagic E. coli (EHEC) strain 12900 O157:H7. The anti-adhesive effect resulted from the interaction of GMP with the E. coli cells and was also dependent on GMP concentration. Pre-incubation of intestinal Caco-2 cells with GMP reduced pathogen translocation as represented by a decrease in transepithelial electrical resistance (TEER). Thus, GMP is an effective in-vitro inhibitor of adhesion and epithelial injury caused by E. coli and may have potential as a biofunctional ingredient in foods to improve gastrointestinal health.
Collapse
Affiliation(s)
- Shane Feeney
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Joseph Thomas Ryan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| | - Michelle Kilcoyne
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Rita Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| |
Collapse
|
19
|
Cuellar P, Hernández-Nava E, García-Rivera G, Chávez-Munguía B, Schnoor M, Betanzos A, Orozco E. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium. Front Cell Infect Microbiol 2017; 7:372. [PMID: 28861400 PMCID: PMC5561765 DOI: 10.3389/fcimb.2017.00372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
During intestinal invasion, Entamoeba histolytica opens tight junctions (TJs) reflected by transepithelial electrical resistance (TEER) dropping. To explore the molecular mechanisms underlying this, we studied in vitro and in vivo the damage produced by the recombinant E. histolytica cysteine protease (rEhCP112) on TJ functions and proteins. rEhCP112 reduced TEER in Caco-2 cells in a dose- and time-dependent manner; and EhCP112-overexpressing trophozoites provoked major epithelial injury compared to control trophozoites. rEhCP112 penetrated through the intercellular space, and consequently the ion flux increased and the TJs fence function was disturbed. However, macromolecular flux was not altered. Functional in vitro assays revealed specific association of rEhCP112 with claudin-1 and claudin-2, that are both involved in regulating ion flux and fence function. Of note, rEhCP112 did not interact with occludin that is responsible for regulating macromolecular flux. Moreover, rEhCP112 degraded and delocalized claudin-1, thus affecting interepithelial adhesion. Concomitantly, expression of the leaky claudin-2 at TJ, first increased and then it was degraded. In vivo, rEhCP112 increased intestinal epithelial permeability in the mouse colon, likely due to apical erosion and claudin-1 and claudin-2 degradation. In conclusion, we provide evidence that EhCP112 causes epithelial dysfunction by specifically altering claudins at TJ. Thus, EhCP112 could be a potential target for therapeutic approaches against amoebiasis.
Collapse
Affiliation(s)
- Patricia Cuellar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Elizabeth Hernández-Nava
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico.,Consejo Nacional de Ciencia y TecnologíaMexico, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| |
Collapse
|
20
|
Tapia R, Kralicek SE, Hecht GA. EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity. Cell Microbiol 2017; 19. [PMID: 28618099 DOI: 10.1111/cmi.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1-integrin and Na+ /K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+ /K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+ /K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Sarah E Kralicek
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Gail A Hecht
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
21
|
Tapia R, Kralicek SE, Hecht GA. Modulation of epithelial cell polarity by bacterial pathogens. Ann N Y Acad Sci 2017. [PMID: 28628193 DOI: 10.1111/nyas.13388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cells constitute a physical barrier that aids in protecting the host from microbial pathogens. Polarized epithelial cells contain distinct apical and basolateral membrane domains separated by intercellular junctions, including tight junctions (TJs), which contribute to the maintenance of apical-basal polarity. Polarity complexes also contribute to the establishment of TJ formation. Several pathogens perturb epithelial TJ barrier function and structure in addition to causing a loss of apical-basal polarity. Here, we review the impact of pathogenic bacteria on the disruption of cell-cell junctions and epithelial polarity.
Collapse
Affiliation(s)
- Rocio Tapia
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Sarah E Kralicek
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Gail A Hecht
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois.,Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
22
|
Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens. Toxins (Basel) 2017; 9:toxins9020060. [PMID: 28208612 PMCID: PMC5331439 DOI: 10.3390/toxins9020060] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can utilize tight junction proteins as receptors for attachment and subsequent internalization, while others modify or destroy the tight junction proteins by different pathways and thereby provide a gateway to the underlying tissue. This review aims to deliver an overview of the tight junction structures and function, and its role in enteric bacterial pathogenesis with a special focus on chickens. A main conclusion will be that the molecular mechanisms used by enteric pathogens to disrupt epithelial barrier function in chickens needs a much better understanding, explicitly highlighted for Campylobacter jejuni, Salmonella enterica and Clostridium perfringens. This is a requirement in order to assist in discovering new strategies to avoid damages of the intestinal barrier or to minimize consequences from infections.
Collapse
|
23
|
Tricellular Tight Junction Protein Tricellulin Is Targeted by the Enteropathogenic Escherichia coli Effector EspG1, Leading to Epithelial Barrier Disruption. Infect Immun 2016; 85:IAI.00700-16. [PMID: 27795363 DOI: 10.1128/iai.00700-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/16/2016] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC)-induced diarrhea is often associated with disruption of intestinal epithelial tight junctions. Although studies have shown alterations in the expression and localization of bicellular tight junction proteins during EPEC infections, little is known about whether tricellular tight junction proteins (tTJs) are affected. Using Caco-2 cell monolayers, we investigated if EPEC is capable of targeting the tTJ protein tricellulin. Our results demonstrated that at 4 h postinfection, EPEC induced a significant reduction in tricellulin levels, accompanied by a significant loss of transepithelial resistance (TEER) and a corresponding increase in paracellular permeability. Conversely, cells overexpressing tricellulin were highly resistant to EPEC-induced barrier disruption. Confocal microscopy revealed the distribution of tricellulin into the plasma membrane of infected epithelial cells and confirmed the localization of EPEC aggregates in close proximity to tTJs. Moreover, infections with EPEC strains lacking genes encoding specific type III secreted effector proteins demonstrated a crucial role for the effector EspG1 in modulating tricellulin expression. Complementation studies suggest that the EspG-induced depletion of tricellulin is microtubule dependent. Overall, our results show that EPEC-induced epithelial barrier dysfunction is mediated in part by EspG1-induced microtubule-dependent depletion of tricellulin.
Collapse
|
24
|
Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch 2016; 469:77-90. [DOI: 10.1007/s00424-016-1902-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 01/01/2023]
|
25
|
Enterohaemorrhagic E. coli modulates an ARF6:Rab35 signaling axis to prevent recycling endosome maturation during infection. J Mol Biol 2016; 428:3399-407. [PMID: 27261256 PMCID: PMC5013874 DOI: 10.1016/j.jmb.2016.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate a plethora of host cell processes to establish infection of the gut mucosa. This manipulation is achieved via the injection of bacterial effector proteins into host cells using a Type III secretion system. We have previously reported that the conserved EHEC and EPEC effector EspG disrupts recycling endosome function, reducing cell surface levels of host receptors through accumulation of recycling cargo within the host cell. Here we report that EspG interacts specifically with the small GTPases ARF6 and Rab35 during infection. These interactions target EspG to endosomes and prevent Rab35-mediated recycling of cargo to the host cell surface. Furthermore, we show that EspG has no effect on Rab35-mediated uncoating of newly formed endosomes, and instead leads to the formation of enlarged EspG/TfR/Rab11 positive, EEA1/Clathrin negative stalled recycling structures. Thus, this paper provides a molecular framework to explain how EspG disrupts recycling whilst also reporting the first known simultaneous targeting of ARF6 and Rab35 by a bacterial pathogen. EHEC delivers effector proteins into host cells to establish infection in the gut The effector EspG interacts with GTP-ARF6 confining EspG to recycling endosomes During infection EspG interacts preferentially with Rab35, not Rab1 Spatial restriction of bacterial effectors during infection determines their function
Collapse
|
26
|
The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2016; 2:EHEC-0007-2013. [PMID: 26104209 DOI: 10.1128/microbiolspec.ehec-0007-2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of Shiga toxin-producing Escherichia coli strains, termed enterohemorrhagic E. coli (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of E. coli O157:H7 and other Shiga toxin-producing E. coli strains.
Collapse
|
27
|
Abe A, Nishimura R, Tanaka N, Kurushima J, Kuwae A. The Bordetella Secreted Regulator BspR Is Translocated into the Nucleus of Host Cells via Its N-Terminal Moiety: Evaluation of Bacterial Effector Translocation by the Escherichia coli Type III Secretion System. PLoS One 2015; 10:e0135140. [PMID: 26247360 PMCID: PMC4527748 DOI: 10.1371/journal.pone.0135140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/17/2015] [Indexed: 11/27/2022] Open
Abstract
Bordetella bronchiseptica is genetically related to B. pertussis and B. parapertussis, which cause respiratory tract infections in humans. These pathogens possess a large number of virulence factors, including the type III secretion system (T3SS), which is required for the delivery of effectors into the host cells. In a previous study, we identified a transcriptional regulator, BspR, that is involved in the regulation of the T3SS-related genes in response to iron-starved conditions. A unique feature of BspR is that this regulator is secreted into the extracellular milieu via the T3SS. To further characterize the role of BspR in extracellular localization, we constructed various truncated derivatives of BspR and investigated their translocation into the host cells using conventional translocation assays. In this study, the effector translocation was evaluated by the T3SS of enteropathogenic E. coli (EPEC), since the exogenous expression of BspR triggers severe repression of the Bordetella T3SS expression. The results of the translocation assays using the EPEC T3SS showed that the N-terminal 150 amino acid (aa) residues of BspR are sufficient for translocation into the host cells in a T3SS-dependent manner. In addition, exogenous expression of BspR in HeLa cells demonstrated that the N-terminal 100 aa residues are involved in the nuclear localization. In contrast, the N-terminal 54 aa residues are sufficient for the extracellular secretion into the bacterial culture supernatant via the EPEC T3SS. Thus, BspR is not only a transcriptional regulator in bacteria cytosol, but also functions as an effector that translocates into the nuclei of infected host cells.
Collapse
Affiliation(s)
- Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
- * E-mail:
| | - Ryutaro Nishimura
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naomichi Tanaka
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Jun Kurushima
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
28
|
Singh AP, Aijaz S. Enteropathogenic E. coli: breaking the intestinal tight junction barrier. F1000Res 2015; 4:231. [DOI: 10.12688/f1000research.6778.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2015] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic E. coli (EPEC) causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions.
Collapse
|
29
|
Abstract
Enteropathogenic
E. coli (EPEC) causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
30
|
Hiyoshi H, Okada R, Matsuda S, Gotoh K, Akeda Y, Iida T, Kodama T. Interaction between the type III effector VopO and GEF-H1 activates the RhoA-ROCK pathway. PLoS Pathog 2015; 11:e1004694. [PMID: 25738744 PMCID: PMC4349864 DOI: 10.1371/journal.ppat.1004694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway. Many bacterial pathogens manipulate the actin cytoskeleton of mammalian cells to establish pathogenesis via invasion, to evade killing by phagocytes, to disrupt a barrier function, and to induce inflammation caused by translocation type III secretion (T3S) effector proteins. We demonstrated that the T3S effector protein (VopO) of the enteric pathogen Vibrio parahaemolyticus induced robust actin stress fiber formation in infected host cells. Furthermore, this actin rearrangement induced barrier disruption in a colon epithelial cell line. Although many types of effector proteins have been reported, VopO does not share homology with previously reported effector proteins, and no putative functional motifs could be identified. Finally, we determined that the direct binding of VopO to a RhoA guanine nucleotide exchange factor (GEF) is a key step in the induction of stress fiber formation. These findings indicate that VopO plays a unique role in the pathogenicity of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ryu Okada
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigeaki Matsuda
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Gotoh
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Akeda
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Iida
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshio Kodama
- Microbe Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
31
|
Glotfelty LG, Zahs A, Hodges K, Shan K, Alto NM, Hecht GA. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell Microbiol 2014; 16:1767-83. [PMID: 24948117 DOI: 10.1111/cmi.12323] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 12/14/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type 3 secretion system to transfer effector proteins into the host intestinal epithelial cell. Several effector molecules contribute to tight junction disruption including EspG1 and its homologue EspG2 via a mechanism thought to involve microtubule destruction. The aim of this study was to investigate the contribution of EspG-mediated microtubule disruption to TJ perturbation. We demonstrate that wild type EPEC infection disassembles microtubules and induces the progressive movement of occludin away from the membrane and into the cytosol. Deletion of espG1/G2 attenuates both of these phenotypes. In addition, EPEC infection impedes barrier recovery from calcium switch, suggesting that inhibition of TJ restoration, not merely disruption, prolongs barrier loss. TJs recover more rapidly following infection with ΔespG1/G2 than with wild type EPEC, demonstrating that EspG1/G2 perpetuate barrier loss. Although EspG regulates ADP-ribosylation factor (ARF) and p21-activated kinase (PAK), these activities are not necessary for microtubule destruction or perturbation of TJ structure and function. These data strongly support a role for EspG1/G2 and its associated effects on microtubules in delaying the recovery of damaged tight junctions caused by EPEC infection.
Collapse
Affiliation(s)
- Lila G Glotfelty
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 S. Wolcott, (M/C 790), Chicago, IL, 60612, USA
| | | | | | | | | | | |
Collapse
|
32
|
Awad WA, Hess C, Khayal B, Aschenbach JR, Hess M. In vitro exposure to Escherichia coli decreases ion conductance in the jejunal epithelium of broiler chickens. PLoS One 2014; 9:e92156. [PMID: 24637645 PMCID: PMC3956886 DOI: 10.1371/journal.pone.0092156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/17/2014] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli (E. coli) infections are very widespread in poultry. However, little is known about the interaction between the intestinal epithelium and E. coli in chickens. Therefore, the effects of avian non-pathogenic and avian pathogenic Escherichia coli (APEC) on the intestinal function of broiler chickens were investigated by measuring the electrogenic ion transport across the isolated jejunal mucosa. In addition, the intestinal epithelial responses to cholera toxin, histamine and carbamoylcholine (carbachol) were evaluated following an E. coli exposure. Jejunal tissues from 5-week-old broilers were exposed to 6×10(8) CFU/mL of either avian non-pathogenic E. coli IMT11322 (Ont:H16) or avian pathogenic E. coli IMT4529 (O24:H4) in Ussing chambers and electrophysiological variables were monitored for 1 h. After incubation with E. coli for 1 h, either cholera toxin (1 mg/L), histamine (100 μM) or carbachol (100 μM) were added to the incubation medium. Both strains of avian E. coli (non-pathogenic and pathogenic) reduced epithelial ion conductance (Gt) and short-circuit current (Isc). The decrease in ion conductance after exposure to avian pathogenic E. coli was, at least, partly reversed by the histamine or carbachol treatment. Serosal histamine application produced no significant changes in the Isc in any tissues. Only the uninfected control tissues responded significantly to carbachol with an increase of Isc, while the response to carbachol was blunted to non-significant values in infected tissues. Together, these data may explain why chickens rarely respond to intestinal infections with overt secretory diarrhea. Instead, the immediate response to intestinal E. coli infections appears to be a tightening of the epithelial barrier.
Collapse
Affiliation(s)
- Wageha A. Awad
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Basel Khayal
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
33
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 899] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
34
|
Doran KS, Banerjee A, Disson O, Lecuit M. Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med 2013; 3:a010090. [PMID: 23818514 PMCID: PMC3685877 DOI: 10.1101/cshperspect.a010090] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human body is bordered by the skin and mucosa, which are the cellular barriers that define the frontier between the internal milieu and the external nonsterile environment. Additional cellular barriers, such as the placental and the blood-brain barriers, define protected niches within the host. In addition to their physiological roles, these host barriers provide both physical and immune defense against microbial infection. Yet, many pathogens have evolved elaborated mechanisms to target this line of defense, resulting in a microbial invasion of cells constitutive of host barriers, disruption of barrier integrity, and systemic dissemination and invasion of deeper tissues. Here we review representative examples of microbial interactions with human barriers, including the intestinal, placental, and blood-brain barriers, and discuss how these microbes adhere to, invade, breach, or compromise these barriers.
Collapse
Affiliation(s)
- Kelly S Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182, USA.
| | | | | | | |
Collapse
|
35
|
Thanabalasuriar A, Kim J, Gruenheid S. The inhibition of COPII trafficking is important for intestinal epithelial tight junction disruption during enteropathogenic Escherichia coli and Citrobacter rodentium infection. Microbes Infect 2013; 15:738-44. [PMID: 23747681 DOI: 10.1016/j.micinf.2013.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/04/2013] [Accepted: 05/13/2013] [Indexed: 11/24/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are bacterial pathogens that cause severe illnesses in humans. Citrobacter rodentium is a related mouse pathogen that serves as a small animal model for EPEC and EHEC infections. EPEC, EHEC and C. rodentium translocate bacterial virulence proteins directly into host intestinal cells via a type III secretion system (T3SS). Non-LEE-encoded effector A (NleA) is a T3SS effector that is common to EPEC, EHEC and C. rodentium. NleA interacts with and inhibits the mammalian COPII complex, impairing cellular secretion; this interaction is required for bacterial virulence. Although diarrhea is a hallmark of EPEC, EHEC and C. rodentium infections, the underlying mechanisms are not well characterized. One of the essential functions of the intestine is to maintain a barrier between the lumen and submucosa. Tight junctions seal the space between adjacent epithelial cells creating this barrier. Consequently, it is thought that the disruption of intestinal epithelial tight junctions by EPEC, EHEC, and C. rodentium could result in a loss of barrier function. In this study, we demonstrate that NleA mediated COPII inhibition is required for EPEC- and C. rodentium-mediated disruption of tight junction proteins and increases in fecal water content.
Collapse
Affiliation(s)
- Ajitha Thanabalasuriar
- Department of Microbiology and Immunology, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada
| | | | | |
Collapse
|
36
|
Edwards VL, Wang LC, Dawson V, Stein DC, Song W. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell Microbiol 2013; 15:1042-57. [PMID: 23279089 PMCID: PMC5584544 DOI: 10.1111/cmi.12099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.
Collapse
Affiliation(s)
- Vonetta L. Edwards
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Valerie Dawson
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
37
|
Glotfelty LG, Hecht GA. Enteropathogenic E. coli effectors EspG1/G2 disrupt tight junctions: new roles and mechanisms. Ann N Y Acad Sci 2012; 1258:149-58. [PMID: 22731728 DOI: 10.1111/j.1749-6632.2012.06563.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enteropathogenic E. coli (EPEC) infection is a major cause of infantile diarrhea in the developing world. Using a type-three secretion system, bacterial effector proteins are transferred to the host cell cytosol where they affect multiple physiological functions, ultimately leading to diarrheal disease. Disruption of intestinal epithelial cell tight junctions is a major consequence of EPEC infection and is mediated by multiple effector proteins, among them EspG1 and its homologue EspG2. EspG1/G2 contribute to loss of barrier function via an undefined mechanism that may be linked to their disruption of microtubule networks. Recently new investigations have identified additional roles for EspG. Sequestration of active ADP-ribosylating factor (ARF) proteins and promotion of p21-activated kinase (PAK) activity as well as inhibition of Golgi-mediated protein secretion have all been linked to EspG. In this review, we examine the functions of EspG1/G2 and discuss potential mechanisms of EspG-mediated tight junction disruption.
Collapse
Affiliation(s)
- Lila G Glotfelty
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
38
|
A distinct regulatory sequence is essential for the expression of a subset of nle genes in attaching and effacing Escherichia coli. J Bacteriol 2012; 194:5589-603. [PMID: 22904277 DOI: 10.1128/jb.00190-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli uses a type III secretion system (T3SS), encoded in the locus of enterocyte effacement (LEE) pathogenicity island, to translocate a wide repertoire of effector proteins into the host cell in order to subvert cell signaling cascades and promote bacterial colonization and survival. Genes encoding type III-secreted effectors are located in the LEE and scattered throughout the chromosome. While LEE gene regulation is better understood, the conditions and factors involved in the expression of effectors encoded outside the LEE are just starting to be elucidated. Here, we identified a highly conserved sequence containing a 13-bp inverted repeat (IR), located upstream of a subset of genes coding for different non-LEE-encoded effectors in A/E pathogens. Site-directed mutagenesis and deletion analysis of the nleH1 and nleB2 regulatory regions revealed that this IR is essential for the transcriptional activation of both genes. Growth conditions that favor the expression of LEE genes also facilitate the activation of nleH1 and nleB2; however, their expression is independent of the LEE-encoded positive regulators Ler and GrlA but is repressed by GrlR and the global regulator H-NS. In contrast, GrlA and Ler are required for nleA expression, while H-NS silences it. Consistent with their role in the regulation of nleA, purified Ler and H-NS bound to the regulatory region of nleA upstream of its promoter. This work shows that at least two modes of regulation control the expression of effector genes in attaching and effacing (A/E) pathogens, suggesting that a subset of effector functions may be coordinately expressed in a particular niche or time during infection.
Collapse
|
39
|
Abstract
Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection.
Collapse
Affiliation(s)
- Abigail Clements
- Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
| | | | | | | |
Collapse
|
40
|
Ohland CL, DeVinney R, MacNaughton WK. Escherichia coli-induced epithelial hyporesponsiveness to secretagogues is associated with altered CFTR localization. Cell Microbiol 2012; 14:447-59. [PMID: 22212348 DOI: 10.1111/j.1462-5822.2011.01744.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both pathogenic and commensal strains of Escherichia coli colonize the human intestinal tract. Pathogenic strains differ only in the expression of virulence factors, many of which comprise a type III secretion system (TTSS). Little is known regarding the effect of E. coli on the intestinal epithelial response to the secretagogues that drive ion secretion, despite its importance in causing clinically significant diarrhoea. Using Ussing chambers to measure electrogenic ion transport of T84 intestinal epithelial cell monolayers, we found that all strains of E. coli tested (pathogenic, commensal, probiotic and lab strain) significantly reduced cAMP-dependent ion secretion after 4-8 h exposure. Enteropathogenic E. coli mutants lacking a functional TTSS caused similar hyposecretion while not causing significant apoptosis (as shown by caspase-3 cleavage) or necrosis (lactate dehydrogenase release), as did the commensal strain F18, indicating that epithelial cell death was not the cause of hyposecretion. Enteropathogenic E. coli and the TTSS mutant significantly reduced cell surface expression of the apical anion channel, cystic fibrosis transmembrane conductance regulator, which is likely the mechanism behind the pathogen-induced hyposecretion. However, F18 did not cause cystic fibrosis transmembrane conductance regulator mislocalization and the commensal-induced mechanism remains unclear.
Collapse
Affiliation(s)
- Christina L Ohland
- Department of Physiology and Pharmacology, Inflammation Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
41
|
Bonazzi M, Cossart P. Impenetrable barriers or entry portals? The role of cell-cell adhesion during infection. ACTA ACUST UNITED AC 2012; 195:349-58. [PMID: 22042617 PMCID: PMC3206337 DOI: 10.1083/jcb.201106011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell adhesion plays a fundamental role in cell polarity and organogenesis. It also contributes to the formation and establishment of physical barriers against microbial infections. However, a large number of pathogens, from viruses to bacteria and parasites, have developed countless strategies to specifically target cell adhesion molecules in order to adhere to and invade epithelial cells, disrupt epithelial integrity, and access deeper tissues for dissemination. The study of all these processes has contributed to the characterization of molecular machineries at the junctions of eukaryotic cells that have been better understood by using pathogens as probes.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Centre Nationale de la Recherche Scientifique, UMR 5236, CPBS, CNRS, 34293 Montpellier, France.
| | | |
Collapse
|
42
|
Clements A, Smollett K, Lee SF, Hartland EL, Lowe M, Frankel G. EspG of enteropathogenic and enterohemorrhagic E. coli binds the Golgi matrix protein GM130 and disrupts the Golgi structure and function. Cell Microbiol 2011; 13:1429-39. [PMID: 21740499 DOI: 10.1111/j.1462-5822.2011.01631.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enteric pathogens enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Shigella flexneri all translocate at least one effector protein of the EspG protein family into host cells via a type III secretion system (T3SS). The EspG family comprises EspG, EspG2 and VirA. From a Y2H screen, we identified the Golgi matrix protein GM130 as a potential binding partner of EspG. We confirmed EspG:GM130 protein interaction by affinity co-purification. In co-immunoprecipitation experiments EspG was co-precipitated with GM130 while both GM130 and tubulins were co-precipitated with EspG. When expressed ectopically in HeLa cells, the EspG protein family all localized to the Golgi and induced fragmentation of the Golgi apparatus. All EspG family proteins were also able to disrupt protein secretion to a greater extent than the T3SS effector NleA/EspI, which has previously been shown to localize to the Golgi and interact with SEC24 to disrupt COPII vesicle formation. We hypothesize that EspG:GM130 interaction disrupts protein secretion either through direct disruption of GM130 function or through recruitment of other EspG interacting proteins to the Golgi.
Collapse
Affiliation(s)
- Abigail Clements
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
43
|
Dasanayake D, Richaud M, Cyr N, Caballero-Franco C, Pitroff S, Finn RM, Ausió J, Luo W, Donnenberg MS, Jardim A. The N-terminal amphipathic region of the Escherichia coli type III secretion system protein EspD is required for membrane insertion and function. Mol Microbiol 2011; 81:734-50. [PMID: 21651628 PMCID: PMC3254054 DOI: 10.1111/j.1365-2958.2011.07727.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. These pathogenic E. coli express a syringe-like protein machine, known as the type III secretion system (T3SS), used for the injection of virulence factors into the cytosol of the host epithelial cell. Breaching the epithelial plasma membrane requires formation of a translocation pore that contains the secreted protein EspD. Here we demonstrate that the N-terminal segment of EspD, encompassing residues 1-171, contains two amphipathic domains spanning residues 24-41 and 66-83, with the latter of these helices being critical for EspD function. Fluorescence and circular dichroism analysis revealed that, in solution, His₆-EspD₁₋₁₇₁ adopts a native disordered structure; however, on binding anionic small unilamellar vesicles composed of phosphatidylserine, His₆-EspD₁₋₁₇₁ undergoes a pH depended conformational change that increases the α-helix content of this protein approximately sevenfold. This change coincides with insertion of the region circumscribing Trp₄₇ into the hydrophobic core of the lipid bilayer. On the HeLa cell plasma membrane, His₆-EspD₁₋₁₇₁ forms a homodimer that is postulated to promote EspD-EspD oligomerization and pore formation. Complementation of ΔespD null mutant bacteria with an espDΔ66-83 gene showed that this protein was secreted but non-functional.
Collapse
Affiliation(s)
- Dayal Dasanayake
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Manon Richaud
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Normand Cyr
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Celia Caballero-Franco
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Sabrina Pitroff
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Ron M. Finn
- Department of Biochemistry, University of Victoria, Petch Bldg., Room 258, Victoria, BC, V8W 3P6, Canada
| | - Juan Ausió
- Department of Biochemistry, University of Victoria, Petch Bldg., Room 258, Victoria, BC, V8W 3P6, Canada
| | - Wensheng Luo
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Michael S. Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
44
|
Abstract
Enteroaggregative Escherichia coli (EAEC) is responsible for inflammatory diarrhea in diverse populations, but its mechanisms of pathogenesis have not been fully elucidated. We have used a previously characterized polarized intestinal T84 cell model to investigate the effects of infection with EAEC strain 042 on tight junction integrity. We find that infection with strain 042 induces a decrease in transepithelial electrical resistance (TER) compared to uninfected controls and to cells infected with commensal E. coli strain HS. When the infection was limited after 3 h by washing and application of gentamicin, we observed that the TER of EAEC-infected monolayers continued to decline, and they remained low even as long as 48 h after the infection. Cells infected with the afimbrial mutant strain 042aafA exhibited TER measurements similar to those seen in uninfected monolayers, implicating the aggregative adherence fimbriae II (AAF/II) as necessary for barrier dysfunction. Infection with wild-type strain 042 induced aberrant localization of the tight junction proteins claudin-1 and, to a lesser degree, occludin. EAEC-infected T84 cells exhibited irregular shapes, and some cells became elongated and/or enlarged; these effects were not observed after infection with commensal E. coli strain HS or 042aafA. The effects on tight junctions were also observed with AAF/I-producing strain JM221, and an afimbrial mutant was similarly deficient in inducing barrier dysfunction. Our results show that EAEC induces epithelial barrier dysfunction in vitro and implicates the AAF adhesins in this phenotype.
Collapse
|
45
|
Shames SR, Deng W, Guttman JA, de Hoog CL, Li Y, Hardwidge PR, Sham HP, Vallance BA, Foster LJ, Finlay BB. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cell Microbiol 2010; 12:1322-39. [PMID: 20374249 DOI: 10.1111/j.1462-5822.2010.01470.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC respectively) are diarrhoeal pathogens that cause the formation of attaching and effacing (A/E) lesions on infected host cells. These pathogens encode a type III secretion system (T3SS) used to inject effector proteins directly into host cells, an essential requirement for virulence. In this study, we identified a function for the type III secreted effector EspZ. Infection with EPEC DeltaespZ caused increased cytotoxicity in HeLa and MDCK cells compared with wild-type EPEC, and expressing espZ in cells abrogated this effect. Using yeast two-hybrid, proteomics, immunofluorescence and co-immunoprecipitation, it was demonstrated that EspZ interacts with the host protein CD98, which contributes to protection against EPEC-mediated cytotoxicity. EspZ enhanced phosphorylation of focal adhesion kinase (FAK) and AKT during infection with EPEC, but CD98 only appeared to facilitate FAK phosphorylation. This study provides evidence that EspZ and CD98 promote host cell survival mechanisms involving FAK during A/E pathogen infection.
Collapse
Affiliation(s)
- Stephanie R Shames
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dean P, Mühlen S, Quitard S, Kenny B. The bacterial effectors EspG and EspG2 induce a destructive calpain activity that is kept in check by the co-delivered Tir effector. Cell Microbiol 2010; 12:1308-21. [PMID: 20345487 PMCID: PMC2955966 DOI: 10.1111/j.1462-5822.2010.01469.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial pathogens deliver multiple effector proteins into eukaryotic cells to subvert host cellular processes and an emerging theme is the cooperation between different effectors. Here, we reveal that a fine balance exists between effectors that are delivered by enteropathogenic E. coli (EPEC) which, if perturbed can have marked consequences on the outcome of the infection. We show that absence of the EPEC effector Tir confers onto the bacterium a potent ability to destroy polarized intestinal epithelia through extensive host cell detachment. This process was dependent on the EPEC effectors EspG and EspG2 through their activation of the host cysteine protease calpain. EspG and EspG2 are shown to activate calpain during EPEC infection, which increases significantly in the absence of Tir – leading to rapid host cell loss and necrosis. These findings reveal a new function for EspG and EspG2 and show that Tir, independent of its bacterial ligand Intimin, is essential for maintaining the integrity of the epithelium during EPEC infection by keeping the destructive activity of EspG and EspG2 in check.
Collapse
Affiliation(s)
- Paul Dean
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle-Upon-Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
47
|
Bücker R, Schumann M, Amasheh S, Schulzke JD. Claudins in Intestinal Function and Disease. CURRENT TOPICS IN MEMBRANES 2010. [DOI: 10.1016/s1063-5823(10)65009-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Thanabalasuriar A, Koutsouris A, Hecht G, Gruenheid S. The bacterial virulence factor NleA's involvement in intestinal tight junction disruption during enteropathogenic E. coli infection is independent of its putative PDZ binding domain. Gut Microbes 2010; 1:114-118. [PMID: 21326920 PMCID: PMC3023590 DOI: 10.4161/gmic.1.2.11685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/23/2010] [Accepted: 03/03/2010] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is an enteric pathogen able to cause severe diarrhea. Once adhered to the small intestine, EPEC disrupts tight junctions that are important for intestinal barrier function. This disruption is dependent on the bacterial type III secretion system, as well as the translocated effectors EspF and Map. Recently we have shown that a third type III translocated bacterial effector protein, NleA, is also involved in tight junction disruption during EPEC infection. NleA has a predicted PDZ-binding domain at its C-terminus which is proposed to be involved in protein interactions with PDZ domain containing proteins. Since several PDZ-domain-containing proteins localize to tight junctions, we hypothesized that the PDZ-binding domain of NleA might be important for its role in tight junction disruption. However, here we show that a molecular variant of NleA lacking the PDZ-binding domain behaves indistinguishably from the wild-type protein with respect to disruption of tight junctions.
Collapse
Affiliation(s)
- Ajitha Thanabalasuriar
- Department of Microbiology and Immunology; and The McGill Life Sciences Complex; Montreal, QC Canada
| | - Athanasia Koutsouris
- Department of Medicine; Digestive Diseases and Nutrition; University of Illinois; Chicago, IL USA
| | - Gail Hecht
- Department of Medicine; Digestive Diseases and Nutrition; University of Illinois; Chicago, IL USA
| | - Samantha Gruenheid
- Department of Microbiology and Immunology; and The McGill Life Sciences Complex; Montreal, QC Canada
| |
Collapse
|
49
|
Conlin VS, Wu X, Nguyen C, Dai C, Vallance BA, Buchan AMJ, Boyer L, Jacobson K. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2009; 297:G735-50. [PMID: 19661153 DOI: 10.1152/ajpgi.90551.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Attaching and effacing bacterial pathogens attach to the apical surface of epithelial cells and disrupt epithelial barrier function, increasing permeability and allowing luminal contents access to the underlying milieu. Previous in vitro studies demonstrated that the neuropeptide vasoactive intestinal peptide (VIP) regulates epithelial paracellular permeability, and the high concentrations and close proximity of VIP-containing nerve fibers to intestinal epithelial cells would support such a function in vivo. The aim of this study was to examine whether VIP treatment modulated Citrobacter rodentium-induced disruption of intestinal barrier integrity and to identify potential mechanisms of action. Administration of VIP had no effect on bacterial attachment although histopathological scoring demonstrated a VIP-induced amelioration of colitis-induced epithelial damage compared with controls. VIP treatment prevented the infection-induced increase in mannitol flux a measure of paracellular permeability, resulting in levels similar to control mice, and immunohistochemical studies demonstrated that VIP prevented the translocation of tight junction proteins: zonula occludens-1, occludin, and claudin-3. Enteropathogenic Escherichia coli (EPEC) infection of Caco-2 monolayers confirmed a protective role for VIP on epithelial barrier function. VIP prevented EPEC-induced increase in long myosin light chain kinase (MLCK) expression and myosin light chain phosphorylation (p-MLC). Furthermore, MLCK inhibition significantly attenuated bacterial-induced epithelial damage both in vivo and in vitro. In conclusion, our results indicate that VIP protects the colonic epithelial barrier by minimizing bacterial-induced redistribution of tight junction proteins in part through actions on MLCK and MLC phosphorylation.
Collapse
Affiliation(s)
- V S Conlin
- Division of Gastroenterology, Child and Family Research Institute, BC Children's Hospital, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Thanabalasuriar A, Koutsouris A, Weflen A, Mimee M, Hecht G, Gruenheid S. The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli. Cell Microbiol 2009; 12:31-41. [PMID: 19712078 DOI: 10.1111/j.1462-5822.2009.01376.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a diarrhoeal pathogen that adheres to epithelial cells of the small intestine and uses a type III secretion system to inject effector proteins into host cells. EPEC infection leads to disruption of host intestinal tight junctions that are important for maintaining intestinal barrier function. This disruption is dependent on the bacterial type III secretion system, as well as the translocated effectors EspF and Map. Here we show that a third type III translocated bacterial effector protein, NleA, is also involved in tight junction disruption during EPEC infection. Using the drug Brefeldin A, we demonstrate that the effect of NleA on tight junction integrity is related to its inhibition of host cell protein trafficking through COPII-dependent pathways. These results suggest that NleA's striking effect on virulence is mediated, at least in part, via its role in disruption of intestinal barrier function.
Collapse
Affiliation(s)
- Ajitha Thanabalasuriar
- Department of Microbiology and Immunology, The McGill Life Sciences Complex, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|