1
|
Maher S, Scott L, Zhang S, Baranchuk A. Animal models of Lyme carditis. Understanding how to study a complex disease. Curr Probl Cardiol 2024; 49:102468. [PMID: 38369203 DOI: 10.1016/j.cpcardiol.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Lyme carditis, a well-established manifestation of Lyme disease, has been studied in animal models to improve understanding of its pathogenesis. This review synthesizes existing literature on these models and associated disease mechanisms. Searches in MEDLINE, Embase, BIOSIS, and Web of Science yielded 53 articles (47 mice models and 6 other animal models). Key findings include: 1) Onset of carditis correlates with spirochete localization in the heart; 2) Carditis occurs within 10 days of infection, progressing to peak inflammation within 30 days; 3) Infiltrates were predominantly composed of Mac-1+ macrophages and were associated with increases in TNF-α, IL-1 and IL-12 cytokines; 4) Resolution of inflammation was primarily mediated by lymphocytes; 5) Immune system is a double-edged sword: it can play a role in the progression and severity of carditis, but can also have a protective effect. Animal models offer valuable insights into the evolution and pathophysiologic mechanisms of Lyme carditis.
Collapse
Affiliation(s)
- Samer Maher
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada
| | - Laura Scott
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada.
| |
Collapse
|
2
|
Bednarczyk M, Bolduan V, Haist M, Stege H, Hieber C, Johann L, Schelmbauer C, Blanfeld M, Karram K, Schunke J, Klaus T, Tubbe I, Montermann E, Röhrig N, Hartmann M, Schlosser J, Bopp T, Clausen BE, Waisman A, Bros M, Grabbe S. β2 Integrins on Dendritic Cells Modulate Cytokine Signaling and Inflammation-Associated Gene Expression, and Are Required for Induction of Autoimmune Encephalomyelitis. Cells 2022; 11:cells11142188. [PMID: 35883631 PMCID: PMC9322999 DOI: 10.3390/cells11142188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Heterodimeric β2 integrin surface receptors (CD11a-d/CD18) are specifically expressed by leukocytes that contribute to pathogen uptake, cell migration, immunological synapse formation and cell signaling. In humans, the loss of CD18 expression results in leukocyte adhesion deficiency syndrome (LAD-)1, largely characterized by recurrent severe infections. All available mouse models display the constitutive and ubiquitous knockout of either α or the common β2 (CD18) subunit, which hampers the analysis of the cell type-specific role of β2 integrins in vivo. To overcome this limitation, we generated a CD18 gene floxed mouse strain. Offspring generated from crossing with CD11c-Cre mice displayed the efficient knockdown of β2 integrins, specifically in dendritic cells (DCs). Stimulated β2-integrin-deficient splenic DCs showed enhanced cytokine production and the concomitantly elevated activity of signal transducers and activators of transcription (STAT) 1, 3 and 5, as well as the impaired expression of suppressor of cytokine signaling (SOCS) 2–6 as assessed in bone marrow-derived (BM) DCs. Paradoxically, these BMDCs also showed the attenuated expression of genes involved in inflammatory signaling. In line, in experimental autoimmune encephalomyelitis mice with a conditional DC-specific β2 integrin knockdown presented with a delayed onset and milder course of disease, associated with lower frequencies of T helper cell populations (Th)1/Th17 in the inflamed spinal cord. Altogether, our mouse model may prove to be a valuable tool to study the leukocyte-specific functions of β2 integrins in vivo.
Collapse
Affiliation(s)
- Monika Bednarczyk
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Maximilian Haist
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Henner Stege
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Lisa Johann
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Michaela Blanfeld
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Jenny Schunke
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Tanja Klaus
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Maike Hartmann
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Jana Schlosser
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Institute of Immunology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (L.J.); (C.S.); (M.B.); (K.K.); (B.E.C.); (A.W.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (V.B.); (M.H.); (H.S.); (C.H.); (J.S.); (T.K.); (I.T.); (E.M.); (N.R.); (M.H.); (J.S.); (M.B.)
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-61-3117-4412
| |
Collapse
|
3
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
4
|
Sanmarco LM, Eberhardt N, Ponce NE, Cano RC, Bonacci G, Aoki MP. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases. Front Immunol 2018; 8:1921. [PMID: 29375564 PMCID: PMC5767236 DOI: 10.3389/fimmu.2017.01921] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.
Collapse
Affiliation(s)
- Liliana Maria Sanmarco
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Católica de Córdoba, Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Gustavo Bonacci
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| |
Collapse
|
5
|
Distinct Effects of Integrins αXβ2 and αMβ2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 2016; 85:IAI.00644-16. [PMID: 27799334 DOI: 10.1128/iai.00644-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Integrins αMβ2 and αXβ2 are homologous adhesive receptors that are expressed on many of the same leukocyte populations and bind many of the same ligands. Although αMβ2 was extensively characterized and implicated in leukocyte inflammatory and immune functions, the roles of αXβ2 remain largely obscure. Here, we tested the ability of mice deficient in integrin αMβ2 or αXβ2 to deal with opportunistic infections and the capacity of cells derived from these animals to execute inflammatory functions. The absence of αMβ2 affected the recruitment of polymorphonuclear neutrophils (PMN) to bacterial and fungal pathogens as well as to model inflammatory stimuli, and αMβ2-deficient PMN displayed defective inflammatory functions. In contrast, deficiency of αXβ2 abrogated intraperitoneal recruitment and adhesive functions of monocytes and macrophages (Mϕ) and the ability of these cells to kill/phagocytose Candida albicans or Escherichia coli cells both ex vivo and in vivo During systemic candidiasis, the absence of αXβ2 resulted in the loss of antifungal activity by tissue Mϕ and inhibited the production of tumor necrosis factor alpha (TNF-α)/interleukin-6 (IL-6) in infected kidneys. Deficiency of αMβ2 suppressed Mϕ egress from the peritoneal cavity, decreased the production of anti-inflammatory IL-10, and stimulated the secretion of IL-6. The absence of αXβ2, but not of αMβ2, increased survival against a septic challenge with lipopolysaccharide (LPS) by 2-fold. Together, these results suggest that αMβ2 plays a primary role in PMN inflammatory functions and regulates the anti-inflammatory functions of Mϕ, whereas αXβ2 is central in the regulation of inflammatory functions of recruited and tissue-resident Mϕ.
Collapse
|
6
|
Transcriptional regulation of the mouse CD11c promoter by AP-1 complex with JunD and Fra2 in dendritic cells. Mol Immunol 2012; 53:295-301. [PMID: 22990073 DOI: 10.1016/j.molimm.2012.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/07/2012] [Indexed: 11/23/2022]
Abstract
CD11c, a member of the β(2) integrin family of adhesion molecule, is expressed on the surface of myeloid lineages and activated lymphoid cells and forms a heterodimeric receptor with CD18. We analyzed the mouse CD11c promoter structure to elucidate the transcriptional regulation in dendritic cells (DCs). By reporter assay, the -84/-65 region was identified to be essential for activity of the mouse CD11c promoter in the mouse bone marrow-derived (BM) DCs and monocyte cell line RAW264.7. An electrophoretic mobility shift assay using a number of antibodies against transcription factors revealed that the target region was recognized by a complex including JunD and Fra2, which are transcription factors belonging to the AP-1 family. The direct interaction of JunD and Fra2 with the CD11c promoter was further confirmed by a chromatin immunoprecipitation assay using CD11c-positive cells purified from BMDCs. Finally, mouse JunD and/or Fra2 siRNA was introduced into BMDCs to evaluate the involvement of these factors against CD11c transcription and found that Fra2 siRNA reduced cell surface expression level of CD11c. These results indicate that AP-1 composed with JunD and Fra2 protein plays a primary role in enhancing the transcription level of the CD11c gene in DC.
Collapse
|
7
|
Bugelski PJ, Martin PL. Concordance of preclinical and clinical pharmacology and toxicology of therapeutic monoclonal antibodies and fusion proteins: cell surface targets. Br J Pharmacol 2012; 166:823-46. [PMID: 22168282 PMCID: PMC3417412 DOI: 10.1111/j.1476-5381.2011.01811.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/14/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies (mAbs) and fusion proteins directed towards cell surface targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 15 currently approved mAbs and fusion proteins targeted to the cell surface. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency 'Scientific Discussions'; and the US Food and Drug Administration 'Pharmacology/Toxicology Reviews' and package inserts (United States Prescribing Information). Data on the 15 approved biopharmaceuticals were included: abatacept; abciximab; alefacept; alemtuzumab; basiliximab; cetuximab; daclizumab; efalizumab; ipilimumab; muromonab; natalizumab; panitumumab; rituximab; tocilizumab; and trastuzumab. For statistical analysis of concordance, data from these 15 were combined with data on the approved mAbs and fusion proteins directed towards soluble targets. Good concordance with human pharmacodynamics was found for mice receiving surrogates or non-human primates (NHPs) receiving the human pharmaceutical. In contrast, there was poor concordance for human pharmacodynamics in genetically deficient mice and for human adverse effects in all three test systems. No evidence that NHPs have superior predictive value was found.
Collapse
Affiliation(s)
- Peter J Bugelski
- Biologics Toxicology, Janssen Research & Development, division of Johnson & Johnson Pharmaceutical Research & Development, LLC, Radnor, PA 19087, USA
| | | |
Collapse
|
8
|
CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection. J Virol 2011; 85:9945-55. [PMID: 21775452 DOI: 10.1128/jvi.05208-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c(+) DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8(+) T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8(+) T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8(+) T cell responses.
Collapse
|
9
|
The chemokine receptor CXCR2 ligand KC (CXCL1) mediates neutrophil recruitment and is critical for development of experimental Lyme arthritis and carditis. Infect Immun 2010; 78:4593-600. [PMID: 20823213 DOI: 10.1128/iai.00798-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Deletion of the chemokine receptor CXCR2 prevents the recruitment of neutrophils into tissues and subsequent development of experimental Lyme arthritis. Following footpad inoculation of Borrelia burgdorferi, the agent of Lyme disease, expression of the CXCR2 ligand KC (CXCL1) is highly upregulated in the joints of arthritis-susceptible mice and is likely to play an important role in the recruitment of neutrophils to the site of infection. To test this hypothesis, we infected C3H KC(-/-) mice with B. burgdorferi and followed the development of arthritis and carditis. Ankle swelling was significantly attenuated during the peak of arthritis in the KC(-/-) mice. Arthritis severity scores were significantly lower in the KC(-/-) mice on days 11 and 21 postinfection, with fewer neutrophils present in the inflammatory lesions. Cardiac lesions were also significantly decreased in KC(-/-) mice at day 21 postinfection. There were, however, no differences between C3H wild-type and KC(-/-) mice in spirochete clearance from tissues. Two other CXCR2 ligands, LIX (CXCL5) and MIP-2 (CXCL2), were not increased to compensate for the loss of KC, and the production of several innate cytokines was unaltered. These results demonstrate that KC plays a critical nonredundant role in the development of experimental Lyme arthritis and carditis via CXCR2-mediated recruitment of neutrophils into the site of infection.
Collapse
|
10
|
Hovius JWR, Bijlsma MF, van der Windt GJW, Wiersinga WJ, Boukens BJD, Coumou J, Oei A, de Beer R, de Vos AF, van 't Veer C, van Dam AP, Wang P, Fikrig E, Levi MM, Roelofs JJTH, van der Poll T. The urokinase receptor (uPAR) facilitates clearance of Borrelia burgdorferi. PLoS Pathog 2009; 5:e1000447. [PMID: 19461880 PMCID: PMC2678258 DOI: 10.1371/journal.ppat.1000447] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 04/25/2009] [Indexed: 12/22/2022] Open
Abstract
The causative agent of Lyme borreliosis, the spirochete Borrelia
burgdorferi, has been shown to induce expression of the urokinase
receptor (uPAR); however, the role of uPAR in the immune response against
Borrelia has never been investigated. uPAR not only acts as
a proteinase receptor, but can also, dependently or independently of ligation to
uPA, directly affect leukocyte function. We here demonstrate that uPAR is
upregulated on murine and human leukocytes upon exposure to B.
burgdorferi both in vitro as well as in vivo. Notably, B.
burgdorferi-inoculated C57BL/6 uPAR knock-out mice harbored
significantly higher Borrelia numbers compared to WT controls.
This was associated with impaired phagocytotic capacity of B.
burgdorferi by uPAR knock-out leukocytes in vitro. B.
burgdorferi numbers in vivo, and phagocytotic capacity in vitro,
were unaltered in uPA, tPA (low fibrinolytic activity) and PAI-1 (high
fibrinolytic activity) knock-out mice compared to WT controls. Strikingly, in
uPAR knock-out mice partially backcrossed to a B. burgdorferi
susceptible C3H/HeN background, higher B. burgdorferi numbers
were associated with more severe carditis and increased local TLR2 and
IL-1β mRNA expression. In conclusion, in B. burgdorferi
infection, uPAR is required for phagocytosis and adequate eradication of the
spirochete from the heart by a mechanism that is independent of binding of uPAR
to uPA or its role in the fibrinolytic system. Lyme borreliosis is caused by the spirochete Borrelia
burgdorferi and is transmitted through ticks. Since its discovery
approximately 30 years ago it has become the most important vector-borne disease
in the Western world. The pathogenesis of this complex zoonosis is still not
entirely understood. We here demonstrate that the urokinase receptor (uPAR) is
upregulated in mice and humans upon exposure to B. burgdorferi
in vitro and in vivo. Importantly, we describe the function of uPAR in the
immune response against the spirochete; using uPAR knock-out mice, we show that
uPAR plays an important role in phagocytosis of B. burgdorferi
by leukocytes both in vitro as well as in vivo. In addition, we show that the
mechanism by which uPAR is involved in the phagocytosis of B.
burgdorferi is independent of ligation to its natural ligand uPA or
uPAR's role in fibrinolysis. Our study contributes to the understanding
of the pathogenesis of Lyme borreliosis and might contribute to the development
of innovative novel treatment strategies for Lyme borreliosis.
Collapse
Affiliation(s)
- Joppe W R Hovius
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, AMC, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hovius JW, Schuijt TJ, de Groot KA, Roelofs JJTH, Oei GA, Marquart JA, de Beer R, van 't Veer C, van der Poll T, Ramamoorthi N, Fikrig E, van Dam AP. Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva. J Infect Dis 2008; 198:1189-97. [PMID: 18752445 DOI: 10.1086/591917] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Ixodes ticks are the main vectors for Borrelia burgdorferi sensu lato. In the United States, B. burgdorferi is the sole causative agent of Lyme borreliosis and is transmitted by Ixodes scapularis. In Europe, 3 Borrelia species-B. burgdorferi, B. garinii, and B. afzelii-are prevalent, which are transmitted by Ixodes ricinus. The I. scapularis salivary protein Salp15 has been shown to bind to B. burgdorferi outer surface protein (Osp) C, protecting the spirochete from antibody-mediated killing. METHODS AND RESULTS We recently identified a Salp15 homologue in I. ricinus, Salp15 Iric-1. Here, we have demonstrated, by solid-phase overlays, enzyme-linked immunosorbent assay, and surface plasmon resonance, that Salp15 Iric-1 binds to B. burgdorferi OspC. Importantly, this binding protected the spirochete from antibody-mediated killing in vitro and in vivo; immune mice rechallenged with B. burgdorferi preincubated with Salp15 Iric-1 displayed significantly higher Borrelia numbers and more severe carditis, compared with control mice. Furthermore, Salp15 Iric-1 was capable of binding to OspC from B. garinii and B. afzelii, but these Borrelia species were not protected from antibody-mediated killing. CONCLUSIONS Salp15 Iric-1 interacts with all European Borrelia species but differentially protects B. burgdorferi from antibody-mediated killing, putatively giving this Borrelia species a survival advantage in nature.
Collapse
Affiliation(s)
- J W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The spirochete Borrelia burgdorferi is a tick-borne obligate parasite whose normal reservoir is a variety of small mammals. Although infection of these natural hosts does not lead to disease, infection of humans can result in Lyme disease as a consequence of the human immunopathologic response to B burgdorferi. Consistent with the pathogenesis of Lyme disease, bacterial products that allow B burgdorferi to replicate and survive seem to be primarily what is required for the bacterium to cause disease in a susceptible host. This article describes the basic biology of B burgdorferi and reviews some of the bacterial components required for infection of and survival in the mammalian and tick hosts.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South Fourth St., Hamilton, Montana 59840, Ph. 406-363-9239, FAX 406-375-9681,
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South Fourth St., Hamilton, Montana 59840, Ph. 406-363-9209, FAX 406-375-9681,
| | - Philip E. Stewart
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South Fourth St., Hamilton, Montana 59840, Ph. 406-363-9393, FAX 406-375-9681,
| |
Collapse
|
13
|
Miyazaki Y, Bunting M, Stafforini DM, Harris ES, McIntyre TM, Prescott SM, Frutuoso VS, Amendoeira FC, de Oliveira Nascimento D, Vieira-de-Abreu A, Weyrich AS, Castro-Faria-Neto HC, Zimmerman GA. Integrin alphaDbeta2 is dynamically expressed by inflamed macrophages and alters the natural history of lethal systemic infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:590-600. [PMID: 18097061 PMCID: PMC2275910 DOI: 10.4049/jimmunol.180.1.590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The leukocyte integrins have critical roles in host defense and inflammatory tissue injury. We found that integrin alphaDbeta2, a novel but largely uncharacterized member of this family, is restricted to subsets of macrophages and a small population of circulating leukocytes in wild-type mice in the absence of inflammatory challenge and is expressed in regulated fashion during cytokine-induced macrophage differentiation in vitro. alphaDbeta2 is highly displayed on splenic red pulp macrophages and mediates their adhesion to local targets, identifying key functional activity. In response to challenge with Plasmodium berghei, a malarial pathogen that models systemic infection and inflammatory injury, new populations of alphaD+ macrophages evolved in the spleen and liver. Unexpectedly, targeted deletion of alphaD conferred a survival advantage in P. berghei infection over a 30-day observation period. Mechanistic studies demonstrated that the increased survival of alphaD-/- animals at these time points is not attributed to differences in magnitude of anemia or parasitemia or to alterations in splenic microanatomy, each of which is a key variable in the natural history of P. berghei infection, and indicated that an altered pattern of inflammatory cytokines may contribute to the difference in mortality. In contrast to the outcome in malarial challenge, death of alphaD-/- animals was accelerated in a model of Salmonella sepsis, demonstrating differential rather than stereotyped roles for alphaDbeta2 in systemic infection. These studies identify previously unrecognized and unique activities of alphaDbeta2, and macrophages that express it, in host defense and injury.
Collapse
Affiliation(s)
- Yasunari Miyazaki
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, UT 84112
| | - Michaeline Bunting
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, UT 84112
| | - Diana M. Stafforini
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| | - Estelle S. Harris
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, UT 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| | - Thomas M. McIntyre
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Stephen M. Prescott
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| | - Valber S. Frutuoso
- Laboratório de Immunofarmacologia, Departmento de Fisiologia e Farmacodinamica, Instituto Oswaldo Cruz, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fabio C. Amendoeira
- Laboratório de Immunofarmacologia, Departmento de Fisiologia e Farmacodinamica, Instituto Oswaldo Cruz, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Danielle de Oliveira Nascimento
- Laboratório de Immunofarmacologia, Departmento de Fisiologia e Farmacodinamica, Instituto Oswaldo Cruz, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Adriana Vieira-de-Abreu
- Laboratório de Immunofarmacologia, Departmento de Fisiologia e Farmacodinamica, Instituto Oswaldo Cruz, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Andrew S. Weyrich
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, UT 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| | - Hugo C. Castro-Faria-Neto
- Laboratório de Immunofarmacologia, Departmento de Fisiologia e Farmacodinamica, Instituto Oswaldo Cruz, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Guy A. Zimmerman
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, UT 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
14
|
Plitas G, Chaudhry UI, Kingham TP, Raab JR, DeMatteo RP. NK dendritic cells are innate immune responders to Listeria monocytogenes infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:4411-6. [PMID: 17371998 DOI: 10.4049/jimmunol.178.7.4411] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NK dendritic cells (NKDC) are recently described immunologic cells that possess both lytic and Ag-presenting function and produce prolific quantities of IFN-gamma. The role of NKDC in innate immunity to bacterial infection is unknown. Because IFN-gamma is important in the immune response to Listeria monocytogenes (LM), we hypothesized that NKDC play a critical role during LM infection in mice. We found that LM increased the frequency and activation state of NKDC in vivo. Using in vivo intracellular cytokine analysis, we demonstrated that NKDC are a major source of early IFN-gamma during infection with LM. Adoptive transfer of wild-type NKDC into IFN-gamma-deficient recipients that were subsequently infected with LM decreased bacterial burden in the liver and spleen and prolonged survival. In contrast, NK cells were depleted early during LM infection, produced less IFN-gamma, and conferred less protection upon adoptive transfer into IFN-gamma-deficient mice. In vitro, LM induction of IFN-gamma secretion by NKDC depended on TLR9, in addition to IL-18 and IL-12. Our study establishes NKDC as innate immune responders to bacterial infection by virtue of their ability to secrete IFN-gamma.
Collapse
Affiliation(s)
- George Plitas
- Hepatobiliary Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
15
|
Lowes MA, Chamian F, Abello MV, Leonardi C, Dummer W, Papp K, Krueger JG. Eruptive papules during efalizumab (anti-CD11a) therapy of psoriasis vulgaris: a case series. BMC DERMATOLOGY 2007; 7:2. [PMID: 17324275 PMCID: PMC1817648 DOI: 10.1186/1471-5945-7-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/26/2007] [Indexed: 11/30/2022]
Abstract
Background Newer biological therapies for moderate-to-severe psoriasis are being used more frequently, but unexpected effects may occur. Case presentations We present a group of 15 patients who developed inflammatory papules while on efalizumab therapy (Raptiva, Genentech Inc, anti-CD11a). Immunohistochemistry showed that there were increased CD11b+, CD11c+ and iNOS+ cells (myeloid leukocytes) in the papules, with relatively few CD3+ T cells. While efalizumab caused a decreased expression of CD11a on T cells, other circulating leukocytes from patients receiving this therapy often showed increased CD11b and CD11c. In the setting of an additional stimulus such as skin trauma, this may predispose to increased trafficking into the skin using these alternative β2 integrins. In addition, there may be impaired immune synapse formation, limiting the development of these lesions to small papules. There is little evidence for these papular lesions being "allergic" in nature as there are few eosinophils on biopsy, and they respond to minimal or no therapy even if efalizumab is continued. Conclusion We hypothesize that these papules may represent a unique type of "mechanistic" inflammatory reaction, seen only in the context of drug-induced CD11a blockade, and not during the natural disease process.
Collapse
Affiliation(s)
- Michelle A Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Francesca Chamian
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Maria V Abello
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | | | | | - Kim Papp
- Probity Medical Research, Waterloo, Canada
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
16
|
Montgomery RR, Booth CJ, Wang X, Blaho VA, Malawista SE, Brown CR. Recruitment of macrophages and polymorphonuclear leukocytes in Lyme carditis. Infect Immun 2006; 75:613-20. [PMID: 17101663 PMCID: PMC1828503 DOI: 10.1128/iai.00685-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lyme arthritis, caused by the spirochete Borrelia burgdorferi, can be recurrent or prolonged, whereas Lyme carditis is mostly nonrecurring. A prominent difference between arthritis and carditis is the differential representation of phagocytes in these lesions: polymorphonuclear leukocytes (PMN) are more prevalent in the joint, and macrophages predominate in the heart lesion. We have previously shown differential efficiency of B. burgdorferi clearance by PMN and macrophages, and we now investigate whether these functional differences at the cellular level may contribute to the observed differences in organ-specific pathogenesis. When we infected mice lacking the neutrophil chemokine receptor (CXCR2(-/-) mice) with spirochetes, we detected fewer PMN in joints and less-severe arthritis. Here we have investigated the effects of the absence of the macrophage chemokine receptor CCR2 on the development and resolution of Lyme carditis in resistant (C57BL/6J [B6]) and sensitive (C3H/HeJ [C3H]) strains of mice. In B6 CCR2(-/-) mice, although inflammation in hearts is mild, we detected an increased burden of B. burgdorferi compared to that in wild-type (WT) mice, suggesting reduced clearance in the absence of macrophages. In contrast, C3H CCR2(-/-) mice have severe inflammation but a decreased B. burgdorferi burden compared to that in WT C3H mice both at peak disease and during resolution. Histopathologic examination of infected hearts revealed that infected C3H CCR2(-/-) animals have an increased presence of PMN, suggesting compensatory mechanisms of B. burgdorferi clearance in the hearts of infected C3H CCR2(-/-) mice. The more efficient clearance of B. burgdorferi from hearts by CCR2(-/-) versus WT C3H mice suggests a natural defect in the recruitment or function of macrophages in C3H mice, which may contribute to the sensitivity of this strain to B. burgdorferi infection.
Collapse
Affiliation(s)
- Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St./TAC S413, New Haven, CT 06520-8031, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Brown CR, Blaho VA, Fritsche KL, Loiacono CM. Stat1 deficiency exacerbates carditis but not arthritis during experimental lyme borreliosis. J Interferon Cytokine Res 2006; 26:390-9. [PMID: 16734559 DOI: 10.1089/jir.2006.26.390] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activation of the transcription factor Stat1 by interferon-gamma (IFN-gamma) is an important step in the development of antimicrobial effector mechanisms against many bacterial pathogens. Susceptibility to murine Lyme arthritis has been correlated with the production of several proinflammatory cytokines, especially IFN-gamma. To determine the role of IFN-mediated effector mechanisms in the development of Lyme borreliosis, we infected Stat1-deficient mice on both resistant (DBA), and susceptible (C3H) genetic backgrounds. Arthritis in Stat1(/) mice was similar to that of wild-type controls in both mouse strains. Spirochete loads in tissues were also unchanged in Stat1(/) mice. C3H Stat1(/) mice exhibited increased inflammation in the heart, whereas carditis was unchanged in DBA Stat1(/) mice. These results demonstrate that inhibition of macrophage activation and responses to IFN-gamma-mediated signaling do not alter the arthritis resistance or susceptibility phenotype; however, they do affect the severity of carditis in susceptible mouse strains.
Collapse
Affiliation(s)
- Charles R Brown
- Department of Molecular Microbiology, Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|