1
|
Pillay R, Naidoo P, Mkhize-Kwitshana ZL. Exploring microRNA-Mediated Immune Responses to Soil-Transmitted Helminth and Herpes Simplex Virus Type 2 Co-Infections. Diseases 2025; 13:6. [PMID: 39851470 PMCID: PMC11765296 DOI: 10.3390/diseases13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Over the last two decades, the field of microRNA (miRNA) research has grown significantly. MiRNAs are a class of short, single-stranded, non-coding RNAs that regulate gene expression post-transcriptionally. Thereby, miRNAs regulate various essential biological processes including immunity. Dysregulated miRNAs are associated with various infectious and non-infectious diseases. Recently co-infection with soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2) has become a focus of study. Both pathogens can profoundly influence host immunity, particularly in under-resourced and co-endemic regions. It is well known that STHs induce immunomodulatory responses that have bystander effects on unrelated conditions. Typically, STHs induce T-helper 2 (Th2) and immunomodulatory responses, which may dampen the proinflammatory T-helper 1 (Th1) immune responses triggered by HSV-2. However, the extent to which STH co-infection influences the host immune response to HSV-2 is not well understood. Moreover, little is known about how miRNAs shape the immune response to STH/HSV-2 co-infection. In this article, we explore the potential influence that STH co-infection may have on host immunity to HSV-2. Because STH and HSV-2 infections are widespread and disproportionately affect vulnerable and impoverished countries, it is important to consider how STHs may impact HSV-2 immunity. Specifically, we explore how miRNAs contribute to both helminth and HSV-2 infections and discuss how miRNAs may mediate STH/HSV-2 co-infections. Insight into miRNA-mediated immune responses may further improve our understanding of the potential impact of STH/HSV-2 co-infections.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| |
Collapse
|
2
|
Pillay R, Naidoo P, Duma Z, Bhengu KN, Mpaka-Mbatha MN, Nembe-Mafa N, Mkhize-Kwitshana ZL. Potential Interactions Between Soil-Transmitted Helminths and Herpes Simplex Virus Type II: Implications for Sexual and Reproductive Health in Sub-Saharan African. BIOLOGY 2024; 13:1050. [PMID: 39765717 PMCID: PMC11673149 DOI: 10.3390/biology13121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Sub-Saharan Africa (SSA) bears a disproportionate and overlapping burden of soil-transmitted helminths (STHs) and sexually transmitted viral infections. An estimated 232 million pre-school and school-aged children in SSA are vulnerable to STH infections. Together with this, SSA has a high prevalence of herpes simplex virus type II (HSV-2), the primary cause of genital herpes. Studies have examined the immunological interactions between STHs and human immunodeficiency virus and human papillomavirus during co-infections. However, epidemiological and immunological studies on STH-HSV-2 co-infections are lacking, therefore their impact on sexual and reproductive health is not fully understood. STH-driven Th2 immune responses are known to downregulate Th1/Th17 immune responses. Therefore, during STH-HSV-2 co-infections, STH-driven immune responses may alter host immunity to HSV-2 and HSV-2 pathology. Herein, we provide an overview of the burden of STH and HSV-2 infections in SSA, and host immune responses to STH and HSV-2 infections. Further, we emphasize the relevance and urgent need for (i) focused research into the interactions between these important pathogens, and (ii) integrated approaches to improve the clinical detection and management of STH-HSV-2 co-infections in SSA.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zamathombeni Duma
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Khethiwe N. Bhengu
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Miranda N. Mpaka-Mbatha
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Nomzamo Nembe-Mafa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Department of Biomedical Sciences, University of Johannesburg, Doorfontein Campus, Johannesburg 2028, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| |
Collapse
|
3
|
Sun H, Long SR, Jiang M, Zhang HR, Wang JJ, Liao ZX, Cui J, Wang ZQ. The gut microbiota is essential for Trichinella spiralis-evoked suppression of colitis. PLoS Negl Trop Dis 2024; 18:e0012645. [PMID: 39495798 PMCID: PMC11563474 DOI: 10.1371/journal.pntd.0012645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) increases the risk of colorectal cancer, and it has the potential to diminish the quality of life. Clinical and experimental evidence demonstrate protective aspects of parasitic helminth infection against IBD. However, studies on the inhibition of inflammation by helminth infection have overlooked a key determinant of health: the gut microbiota. Although infection with helminths induces alterations in the host microbiota composition, the potential influence and mechanism of helminth infections induced changes in the gut microbiota on the development of IBD has not yet been elucidated. In this study, we analyzed the intersection of helminth Trichinella spiralis and gut bacteria in the regulation of colitis and related mechanisms. METHODOLOGY/PRINCIPAL FINDINGS T. spiralis infected mice were treated with antibiotics or cohoused with wild type mice, then challenged with dextran sodium sulfate (DSS)-colitis and disease severity, immune responses and goblet cells assessed. Gut bacteria composition was assessed by 16S rRNA sequencing and short-chain fatty acids (SCFAs) were measured. We found that protection against disease by infection with T. spiralis was abrogated by antibiotic treatment, and cohousing with T. spiralis- infected mice suppressed DSS-colitis in wild type mice. Bacterial community profiling revealed an increase in the abundance of the bacterial genus Muribaculum and unclassified_Muribaculaceae in mice with T. spiralis infection or mice cohoused with T. spiralis- infected mice. Metabolomic analysis demonstrated significantly increased propionic acid in feces from T. spiralis- infected mice. Data also showed that the gut microbiome modulated by T. spiralis exhibited enhanced goblet cell differentiation and elevated IL-10 levels in mice. CONCLUSIONS These findings identify the gut microbiome as a critical component of the anti- colitic effect of T. spiralis and gives beneficial insights into the processes by which helminth alleviates colitis.
Collapse
Affiliation(s)
- Hualei Sun
- Department of Nutrition, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shao Rong Long
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Miao Jiang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Ran Zhang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Jing Wang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Xuan Liao
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Cui
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhong Quan Wang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Yang Y, Azzuolo A, Fodil N, Gros P. Gene: environment interactions in immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Immunol 2024; 90:102459. [PMID: 39243725 DOI: 10.1016/j.coi.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Despite its devastating human cost, the rapid spread and global establishment of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic had the benefit of providing unique insights into the intricate interplay between genetic, environmental, and socioeconomic factors, which collectively impact susceptibility to infection with SARS-CoV-2. Preceding the implementation of broad vaccination programs and assuming the absence of significant acquired immunity, examining the innate vulnerability to the virus becomes essential. There is indeed considerable heterogeneity observed at both the population and individual levels for various SARS-CoV-2 infection phenotypes, including emergence, progression, and survival from the coronavirus disease 2019 (COVID-19) syndrome. Particularly intriguing is the seemingly milder course of COVID-19 disease reported for the African continent early during the pandemic. This was characterized by significantly lower mortality rates in SARS-CoV-2 patients compared with the European and American continents and globally. We will discuss some of the demographic and socioeconomic factors that may have contributed to these observations. We review the mapped COVID-19 genetic architecture, including the remarkable association of type I interferon as a single protective mechanism and a major determinant of susceptibility. Furthermore, we speculate on potential 'environmental' modulators of penetrance and expressivity of intrinsic vulnerability factors, with a focus on the microbiome and associated metabolomes. Additionally, this review explores the potential immunomodulatory contribution of helminth parasites to the human host immune and inflammatory responses to respiratory viral infections.
Collapse
Affiliation(s)
- Yunxiang Yang
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Alessia Azzuolo
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Burgess MO, Janas P, Berry K, Mayr H, Mack M, Jenkins SJ, Bain CC, McSorley HJ, Schwarze J. Helminth induced monocytosis conveys protection from respiratory syncytial virus infection in mice. Allergy 2024; 79:2157-2172. [PMID: 38924546 DOI: 10.1111/all.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection in infants is a major cause of viral bronchiolitis and hospitalisation. We have previously shown in a murine model that ongoing infection with the gut helminth Heligmosomoides polygyrus protects against RSV infection through type I interferon (IFN-I) dependent reduction of viral load. Yet, the cellular basis for this protection has remained elusive. Given that recruitment of mononuclear phagocytes to the lung is critical for early RSV infection control, we assessed their role in this coinfection model. METHODS Mice were infected by oral gavage with H. polygyrus. Myeloid immune cell populations were assessed by flow cytometry in lung, blood and bone marrow throughout infection and after secondary infection with RSV. Monocyte numbers were depleted by anti-CCR2 antibody or increased by intravenous transfer of enriched monocytes. RESULTS H. polygyrus infection induces bone marrow monopoiesis, increasing circulatory monocytes and lung mononuclear phagocytes in a IFN-I signalling dependent manner. This expansion causes enhanced lung mononuclear phagocyte counts early in RSV infection that may contribute to the reduction of RSV load. Depletion or supplementation of circulatory monocytes prior to RSV infection confirms that these are both necessary and sufficient for helminth induced antiviral protection. CONCLUSIONS H. polygyrus infection induces systemic monocytosis contributing to elevated mononuclear phagocyte numbers in the lung. These cells are central to an anti-viral effect that reduces the peak viral load in RSV infection. Treatments to promote or modulate these cells may provide novel paths to control RSV infection in high risk individuals.
Collapse
Affiliation(s)
- Matthew O Burgess
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Piotr Janas
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Karla Berry
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Hannah Mayr
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Stephen J Jenkins
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Henry J McSorley
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Cao Z, Wang J, Liu X, Liu Y, Li F, Liu M, Chiu S, Jin X. Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way. mBio 2024; 15:e0090524. [PMID: 38727220 PMCID: PMC11237724 DOI: 10.1128/mbio.00905-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Hyperactivation of pro-inflammatory type 1 cytokines (e.g., tumor necrosis factor alpha [TNF-α] and interferon gamma [IFN-γ]) mirrors the inflammation of coronavirus disease 2019. Helminths could alleviate excessive immune responses. Here, helminth Trichinella spiralis (Ts) infection was shown to protect against TNF-α- and IFN-γ-induced shock. Mechanistically, Ts-induced protection was interleukin-9 (IL-9) dependent but not IL-4Rα. Recombinant IL-9 treatment not only improved the survival of wild-type mice with TNF-α- and IFN-γ-induced shock but also that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected K18-human angiotensin-converting enzyme 2 (hACE2) mice, emphasizing the significance of IL-9 in alleviating cytokine storm syndromes during SARS-CoV-2 infection. Interestingly, Ts excretory/secretory (TsES)-induced protection was also observed in SARS-CoV-2 infection, indicating that identifying anti-inflammatory molecules from TsES could be a novel way to mitigate adverse pathological inflammation during pathogen infection.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is linked to cytokine storm triggered by type 1 pro-inflammatory immune responses. TNF-α and IFN-γ shock mirrors cytokine storm syndromes, including COVID-19. Helminths (e.g., Trichinella spiralis, Ts) can potently activate anti-inflammatory type 2 immune response. Here, we found that helminth Ts-induced protection against TNF-α and IFN-γ shock was IL-9 dependent. Treatment with recombinant IL-9 could protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in K18-hACE2 mice. Helminth Ts excretory/secretory (TsES) products also ameliorated SARS-CoV-2 infection-related cytokine storm. In conclusion, our study emphasizes the significance of IL-9 in protecting from cytokine storm syndromes associated with SARS-CoV-2 infection. Anti-inflammatory molecules from TsES could be a new source to mitigate adverse pathological inflammation associated with infections, including COVID-19.
Collapse
Affiliation(s)
- Zengguo Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiaqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Liu
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fangxu Li
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
7
|
Chen H, Cao Z, Liu M, Diamond MS, Jin X. The impact of helminth-induced immunity on infection with bacteria or viruses. Vet Res 2023; 54:87. [PMID: 37789420 PMCID: PMC10548622 DOI: 10.1186/s13567-023-01216-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Different human and animal pathogens trigger distinct immune responses in their hosts. The infection of bacteria or viruses can trigger type I pro-inflammatory immune responses (e.g., IFN-γ, TNF-α, TH1 cells), whereas infection by helminths typically elicits a type II host resistance and tolerizing immune response (e.g., IL-4, IL-5, IL-13, TH2 cells). In some respects, the type I and II immune responses induced by these different classes of pathogens are antagonistic. Indeed, recent studies indicate that infection by helminths differentially shapes the response and outcome of subsequent infection by viruses and bacteria. In this review, we summarize the current knowledge on how helminth infections influence concurrent or subsequent microbial infections and also discuss the implications for helminth-mediated immunity on the outcome of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Oyesola OO, Hilligan KL, Namasivayam S, Howard N, Clancy CS, Zhao M, Oland SD, Kiwanuka KN, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Exposure to lung-migrating helminth protects against murine SARS-CoV-2 infection through macrophage-dependent T cell activation. Sci Immunol 2023; 8:eadf8161. [PMID: 37566678 DOI: 10.1126/sciimmunol.adf8161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kasalina N Kiwanuka
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P'ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Schlosser-Brandenburg J, Midha A, Mugo RM, Ndombi EM, Gachara G, Njomo D, Rausch S, Hartmann S. Infection with soil-transmitted helminths and their impact on coinfections. FRONTIERS IN PARASITOLOGY 2023; 2:1197956. [PMID: 39816832 PMCID: PMC11731630 DOI: 10.3389/fpara.2023.1197956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 01/18/2025]
Abstract
The most important soil-transmitted helminths (STHs) affecting humans are roundworms, whipworms, and hookworms, with a large proportion of the world's population infected with one or more of these intestinal parasites. On top of that, concurrent infections with several viruses, bacteria, protozoa, and other helminths such as trematodes are common in STH-endemic areas. STHs are potent immunomodulators, but knowledge about the effects of STH infection on the direction and extent of coinfections with other pathogens and vice versa is incomplete. By focusing on Kenya, a country where STH infections in humans are widespread, we provide an exemplary overview of the current prevalence of STH and co-occurring infections (e.g. with Human Immunodeficiency Virus, Plasmodium falciparum, Giardia duodenalis and Schistosoma mansoni). Using human data and complemented by experimental studies, we outline the immunomechanistic interactions of coinfections in both acutely STH transmigrated and chronically infected tissues, also highlighting their systemic nature. Depending on the coinfecting pathogen and immunological readout, STH infection may restrain, support, or even override the immune response to another pathogen. Furthermore, the timing of the particular infection and host susceptibility are decisive for the immunopathological consequences. Some examples demonstrated positive outcomes of STH coinfections, where the systemic effects of these helminths mitigate the damage caused by other pathogens. Nevertheless, the data available to date are rather unbalanced, as only a few studies have considered the effects of coinfection on the worm's life cycle and associated host immunity. These interactions are complex and depend largely on the context and biology of the coinfection, which can act in either direction, both to the benefit and detriment of the infected host.
Collapse
Affiliation(s)
| | - Ankur Midha
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert M. Mugo
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eric M. Ndombi
- Department of Medical Microbiology and Parasitology, Kenyatta University, Nairobi, Kenya
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - George Gachara
- Department of Medical Laboratory Science, Kenyatta University, Nairobi, Kenya
| | - Doris Njomo
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sebastian Rausch
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Petrellis G, Piedfort O, Katsandegwaza B, Dewals BG. Parasitic worms affect virus coinfection: a mechanistic overview. Trends Parasitol 2023; 39:358-372. [PMID: 36935340 DOI: 10.1016/j.pt.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023]
Abstract
Helminths are parasitic worms that coevolve with their host, usually resulting in long-term persistence through modulating host immunity. The multifarious mechanisms altering the immune system induced by helminths have significant implications on the control of coinfecting pathogens such as viruses. Here, we explore the recent literature to highlight the main immune alterations and mechanisms that affect the control of viral coinfection. Insights from these mechanisms are valuable in the understanding of clinical observations in helminth-prevalent areas and in the design of new therapeutic and vaccination strategies to control viral diseases.
Collapse
Affiliation(s)
- Georgios Petrellis
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium.
| |
Collapse
|
11
|
Hilligan KL, Oyesola OO, Namasivayam S, Howard N, Clancy CS, Oland SD, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Helminth exposure protects against murine SARS-CoV-2 infection through macrophage dependent T cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.09.515832. [PMID: 36380767 PMCID: PMC9665339 DOI: 10.1101/2022.11.09.515832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung migrating helminth, Nippostrongylus brasiliensis , enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate including an increased accumulation of pulmonary SCV2-specific CD8+ T cells and anti-CD8 antibody depletion abrogated the N. brasiliensis -mediated reduction in viral loads. Pulmonary macrophages with a type-2 transcriptional signature persist in the lungs of N. brasiliensis exposed mice after clearance of the parasite and establish a primed environment for increased antigen presentation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of anti-viral CD8+ T cell responses. Abstract Figure
Collapse
Affiliation(s)
- Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Oyebola O. Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sandra D. Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P’ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Hananeh WM, Radhi A, Mukbel RM, Ismail ZB. Effects of parasites coinfection with other pathogens on animal host: A literature review. Vet World 2022; 15:2414-2424. [DOI: 10.14202/vetworld.2022.2414-2424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
A parasite-host relationship is complicated and largely remained poorly understood, especially when mixed infections involving pathogenic bacteria and viruses are present in the same host. It has been found that most parasites are able to manipulate the host's immune responses to evade or overcome its defense systems. Several mechanisms have been postulated that may explain this phenomenon in different animal species. Recent evidence suggests that coinfections involving many parasitic species alter the host's vulnerability to other microorganisms, hinder diagnostic accuracy, and may negatively impact vaccination by altering the host's immune responsiveness. The objective of this review was to provide a comprehensive summary of the current understanding of how parasites interact with other pathogens in different animal species. A better understanding of this complex relationship will aid in the improvement efforts of disease diagnosis, treatment, and control measures such as novel and effective vaccines and therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Wael M. Hananeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid 22110, Jordan
| | - Asya Radhi
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid 22110, Jordan
| | - Rami M. Mukbel
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Zuhair Bani Ismail
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
13
|
Chang T, Jung BK, Chai JY, Cho SI. The notable global heterogeneity in the distribution of COVID-19 cases and the association with pre-existing parasitic diseases. PLoS Negl Trop Dis 2022; 16:e0010826. [PMID: 36215332 PMCID: PMC9584393 DOI: 10.1371/journal.pntd.0010826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/20/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The coronavirus Disease 2019 (COVID-19) is a respiratory disease that has caused extensive ravages worldwide since being declared a pandemic by the World Health Organization (WHO). Unlike initially predicted by WHO, the incidence and severity of COVID-19 appeared milder in many Low-to-Middle-Income Countries (LMIC). To explain this noticeable disparity between countries, many hypotheses, including socio-demographic and geographic factors, have been put forward. This study aimed to estimate the possible association of parasitic diseases with COVID-19 as either protective agents or potential risk factors. METHODS/PRINCIPAL FINDINGS A country-level ecological study using publicly available data of countries was conducted. We conceptualized the true number of COVID-19 infections based on a function of test positivity rate (TPR) and employed linear regression analysis to assess the association between the outcome and parasitic diseases. We considered demographic, socioeconomic, and geographic confounders previously suggested. A notable heterogeneity was observed across WHO regions. The countries in Africa (AFRO) showed the lowest rates of COVID-19 incidence, and the countries in the Americas (AMRO) presented the highest. The multivariable model results were computed using 165 countries, excluding missing values. In the models analyzed, lower COVID-19 incidence rates were consistently observed in malaria-endemic countries, even accounting for potential confounding variables, Gross Domestic Product (GDP) per capita, the population aged 65 and above, and differences in the duration of COVID-19. However, the other parasitic diseases were not significantly associated with the spread of the pandemic. CONCLUSIONS/SIGNIFICANCE This study suggests that malaria prevalence is an essential factor that explains variability in the observed incidence of COVID-19 cases at the national level. Potential associations of COVID-19 with schistosomiasis and soil-transmitted helminthiases (STHs) are worthy of further investigation but appeared unlikely, based on this analysis, to be critical factors of the variability in COVID-19 epidemic trends. The quality of publicly accessible data and its ecological design constrained our research, with fundamental disparities in monitoring and testing capabilities between countries. Research at the subnational or individual level should be conducted to explore hypotheses further.
Collapse
Affiliation(s)
- Taehee Chang
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul, Republic of Korea
| | - Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-il Cho
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
14
|
Investigating the Potential Effects of COVID-19 Pandemic on Intestinal Coccidian Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
New infectious agents pose a global threat to the healthcare system, and studies are conducted to estimate their health and epidemiological outcomes in the long run. The SARS-CoV-2 virus, which has caused the COVID-19 disease, was formerly assumed to be a respiratory virus; however, it can have serious systemic effects, affecting organs such as the gastrointestinal tract (GIT). Viral RNA was reported in the stool in a subset of patients, indicating another mode of transmission and diagnosis. In COVID-19, prolonged GIT symptoms, especially diarrhea, were associated with reduced diversity and richness of gut microbiota, immunological dysregulation, and delayed viral clearance. Intestinal coccidian parasites are intracellular protozoa that are most typically transmitted to humans by oocysts found in fecally contaminated food and water. Their epidemiological relevance is coupled to opportunistic infections, which cause high morbidity and mortality among immunocompromised individuals. Among immunocompetent people, intestinal coccidia is also involved in acute diarrhea, which is usually self-limiting. Evaluating the available evidence provided an opportunity to carefully consider that; the COVID-19 virus and coccidian protozoan parasites: namely, Cryptosporidium spp., Cyclospora cayetanensis, and Isospora belli, could mutually influence each other from the microbiological, clinical, diagnostic, and elimination aspects. We further systemically highlighted the possible shared pathogenesis mechanisms, transmission routes, clinical manifestations, parasite-driven immune regulation, and intestinal microbiota alteration. Finally, we showed how this might impact developing and developed countries prevention and vaccination strategies. To the best of our knowledge, there is no review that has discussed the reciprocal effect between coccidian parasites and COVID-19 coinfection.
Collapse
|
15
|
Bruschi F, Ashour D, Othman A. Trichinella-induced immunomodulation: Another tale of helminth success. Food Waterborne Parasitol 2022; 27:e00164. [PMID: 35615625 PMCID: PMC9125654 DOI: 10.1016/j.fawpar.2022.e00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Trichinella spiralis is a unique parasite in that both the adults and larvae survive in two different intracellular niches in the same host. The immune response, albeit intense, is highly modulated to ensure the survival of both the host and the parasite. It is skewed to T helper 2 and regulatory arms. Diverse cells from both the innate and adaptive compartments of immunity, including dendritic cells, T regulatory cells, and alternatively activated macrophages are thought to mediate such immunomodulation. The parasite has also an outstanding ability to evade the immune system by several elaborate processes. The molecules derived from the parasites including Trichinella, particularly the components of the excretory-secretory products, are being continually identified and explored for the potential of ameliorating the immunopathology in animal models of diverse inflammatory and autoimmune human diseases. Herein we discuss the various aspects of Trichinella-induced immunomodulation with a special reference to the practical implications of the immune system manipulation in alleviating or possibly curing human diseases.
Collapse
Key Words
- AAM, alternatively activated macrophage
- AW, adult worm
- Allergy
- Autoimmune diseases
- Breg, regulatory B cell
- CAM, classically activated macrophage
- Cancer
- ES L1, ES product of T. spiralis muscle larva
- ES, excretory–secretory
- IFN- γ, interferon-γ
- IIL, intestinal infective larva
- IL, interleukin
- Immune evasion
- Immunomodulation
- ML, muscle larva
- NBL, newborn larva
- NOS, nitric oxide synthase
- TGF-β, transforming growth factor-β
- TLR, toll-like receptor
- TNF- α, tumor necrosis factor-α
- Th, T helper
- Tol-DC, tolerogenic dendritic cell
- Treg, regulatory T cell
- Trichinella
- Trichinella-derived molecules
- Ts-AES, ES from adult T. spiralis
Collapse
Affiliation(s)
- F. Bruschi
- School of Medicine, Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy
| | - D.S. Ashour
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A.A. Othman
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Long SR, Shang WX, Jiang M, Li JF, Liu RD, Wang ZQ, Sun H, Cui J. Preexisting Trichinella spiralis infection attenuates the severity of Pseudomonas aeruginosa-induced pneumonia. PLoS Negl Trop Dis 2022; 16:e0010395. [PMID: 35500031 PMCID: PMC9098000 DOI: 10.1371/journal.pntd.0010395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/12/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background A range of helminth species involve the migration of developing larvae through the lung and establish chronic infections in the host that include potent immune regulatory effects. Trichinella spiralis is one of the most successful parasitic symbiotes. After released by intestinal female adult worms, newborn larvae of T. spiralis travel through the circulatory system to the lung and finally reach skeletal muscle cells. As unique inflammation modulator of intracellular parasitism, T. spiralis shows improved responses to autoimmune disease and viral pulmonary inflammation by exerting immunomodulatory effects on innate and adaptive immune cells. Methodology/Principal findings C57BL/6 mice were divided into four groups: uninfected; helminth- T. spiralis infected; P. aeruginosa infected; and co-infected. Mice infected with T. spiralis were incubated for 6 weeks, followed by P. aeruginosa intranasal inoculation. Bronchial alveolar lavage fluid, blood and lung samples were analyzed. We found that T. spiralis induced Th2 response in the mouse lung tissue, increased lung CD4+ T cells, GATA3, IL-4, IL-5 and IL-13 expression. Pre-existing T. spiralis infection decreased lung neutrophil recruitment, inflammatory mediator IL-1β and IL-6 expression and chemokine CXCL1 and CXCL2 release during P. aeruginosa- pneumonia. Furthermore, T. spiralis co-infected mice exhibited significantly more eosinophils at 6 hours following P. aeruginosa infection, ameliorated pulmonary inflammation and improved survival in P. aeruginosa pneumonia. Conclusions These findings indicate that a prior infection with T. spiralis ameliorates experimental pulmonary inflammation and improves survival in P. aeruginosa pneumonia through a Th2-type response with eosinophils. Helminth infections elicit type 2 immunity, which influences host immune responses to additional threats, such as allergens, metabolic disease and other pathogens. Pseudomonas aeruginosa is one of the most common gram-negative pathogens causing pneumonia in immunocompromised patients. The mortality rate of ventilator associated pneumonia caused by P. aeruginosa is higher than that due to other pathogens. Trichinella spiralis is a zoonotic nematode of intracellular parasitism that infects a wide range of vertebrate hosts, including humans. There is a lung migratory phase in the life cycle of T. spiralis. In this study, we found that T. spiralis induced Th2 response in the mouse lung tissue. T. spiralis co-infected mice exhibited significantly more eosinophils and less neutrophils at 6 hours following P. aeruginosa infection, ameliorated pulmonary inflammation and improved survival in P. aeruginosa pneumonia. These findings suggest a pre-existing chronic helminth with a lung migration phase infection promotes the survival of bacterial airway co-infected host.
Collapse
Affiliation(s)
- Shao Rong Long
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Wen Xuan Shang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
- Biology, School of Life Scence, Zhengzhou University, Zhengzhou, China
| | - Miao Jiang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Jing Fei Li
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Hualei Sun
- Department of Nutrition, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- * E-mail: (HS); (JC)
| | - Jing Cui
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
- * E-mail: (HS); (JC)
| |
Collapse
|
17
|
Hardisty GR, Knipper JA, Fulton A, Hopkins J, Dutia BM, Taylor MD. Concurrent Infection With the Filarial Helminth Litomosoides sigmodontis Attenuates or Worsens Influenza A Virus Pathogenesis in a Stage-Dependent Manner. Front Immunol 2022; 12:819560. [PMID: 35140712 PMCID: PMC8818685 DOI: 10.3389/fimmu.2021.819560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Filarial helminths infect approximately 120 million people worldwide initiating a type 2 immune response in the host. Influenza A viruses stimulate a virulent type 1 pro-inflammatory immune response that in some individuals can cause uncontrolled immunopathology and fatality. Although coinfection with filariasis and influenza is a common occurrence, the impact of filarial infection on respiratory viral infection is unknown. The aim of this study was to determine the impact of pre-existing filarial infection on concurrent infection with influenza A virus. A murine model of co-infection was established using the filarial helminth Litomosoides sigmodontis and the H1N1 (A/WSN/33) influenza A virus (IAV). Co-infection was performed at 3 different stages of L. sigmodontis infection (larval, juvenile adult, and patency), and the impact of co-infection was determined by IAV induced weight loss and clinical signs, quantification of viral titres, and helminth counts. Significant alterations of IAV pathogenesis, dependent upon stage of infection, was observed on co-infection with L. sigmodontis. Larval stage L. sigmodontis infection alleviated clinical signs of IAV co-infection, whilst more established juvenile adult infection also significantly delayed weight loss. Viral titres remained unaltered at either infection stage. In contrast, patent L. sigmdodontis infection led to a reversal of age-related resistance to IAV infection, significantly increasing weight loss and clinical signs of infection as well as increasing IAV titre. These data demonstrate that the progression of influenza infection can be ameliorated or worsened by pre-existing filarial infection, with the outcome dependent upon the stage of filarial infection.
Collapse
Affiliation(s)
- Gareth R. Hardisty
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanna A. Knipper
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Fulton
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - John Hopkins
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Matthew D. Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Matthew D. Taylor,
| |
Collapse
|
18
|
Abstract
Viral infections are often studied in model mammalian organisms under specific pathogen-free conditions. However, in nature, coinfections are common, and infection with one organism can alter host susceptibility to infection with another. Helminth parasites share a long coevolutionary history with mammalian hosts and have shaped host physiology, metabolism, immunity, and the composition of the microbiome. Published studies suggest that helminth infection can either be beneficial or detrimental during viral infection. Here, we discuss coinfection studies in mouse models and use them to define key determinants that impact outcomes, including the type of antiviral immunity, the tissue tropism of both the helminth and the virus, and the timing of viral infection in relation to the helminth lifecycle. We also explore the current mechanistic understanding of how helminth-virus coinfection impacts host immunity and viral pathogenesis. While much attention has been placed on the impact of the gut bacterial microbiome on immunity to infection, we suggest that enteric helminths, as a part of the eukaryotic macrobiome, also represent an important modulator of disease pathogenesis and severity following virus infection.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, United States,Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States,The Andrew M. And Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,CONTACT Larissa B. Thackray Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110, United States
| |
Collapse
|
19
|
Vacca F, Le Gros G. Tissue-specific immunity in helminth infections. Mucosal Immunol 2022; 15:1212-1223. [PMID: 35680972 PMCID: PMC9178325 DOI: 10.1038/s41385-022-00531-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
A characteristic feature of host responses to helminth infections is the development of profound systemic and tissue-localised Type 2 immune responses that play critical roles in immunity, tissue repair and tolerance of the parasite at tissue sites. These same Type 2 responses are also seen in the tissue-associated immune-pathologies seen in asthma, atopic dermatitis and many forms of allergies. The recent identification of new subtypes of immune cells and cytokine pathways that influence both immune and non-immune cells and tissues creates the opportunity for reviewing helminth parasite-host responses in the context of tissue specific immunity. This review focuses on the new discoveries of the cells and cytokines involved in tissue specific immune responses to helminths and how these contribute to host immunity against helminth infection and allow the host to accommodate the presence of parasites when they cannot be eliminated.
Collapse
Affiliation(s)
- Francesco Vacca
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
20
|
Fonte L, Ginori M, Calderón EJ, de Armas Y. Prevalence of Pneumocystosis in Sub-Saharan Africa and Helminth Immune Modulation. J Fungi (Basel) 2021; 8:jof8010045. [PMID: 35049985 PMCID: PMC8779910 DOI: 10.3390/jof8010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Sub-Saharan Africa is the region of the world with the highest prevalence of helminth infections. To protect themselves from the defensive mechanisms of their respective hosts, helminths modulate their immune responses. This modulation has relevant clinical and epidemiological consequences, including the inhibition of inflammatory processes that characterize infection by other microorganisms. Severe Pneumocystis pneumonia is characterized by an intense inflammatory reaction that can lead to death. Acquired immunodeficiency syndrome is the main predisposing factor to the development of pneumocystosis. Although the introduction of highly active antiretroviral therapy has led to a notable decline in the incidence of acquired immunodeficiency syndrome-associated complications, pneumocystosis continues to be an important global health problem. Despite the high incidence of human immunodeficiency virus infection in the sub-Saharan region, the prevalence of Pneumocystis pneumonia there has been lower than expected. Several factors, or combinations thereof, may contribute to this evolution. Here, we hypothesize the possible role of helminth immune modulation as an important issue at play. On the other hand, and looking ahead, we believe that the immune modulation achieved by helminths may be an important factor to consider during the design and evaluation processes of vaccines against Pneumocystis jirovecii to be used in Sub-Saharan Africa. The requirements of a balanced triggering of different types of immune responses for controlling the infection produced by this microorganism, as observed during experiments in animal models, support this final consideration.
Collapse
Affiliation(s)
- Luis Fonte
- Parasitology Department, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba
- Correspondence: (L.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - María Ginori
- Department of Teaching, Polyclinic “Plaza de la Revolución”, Havana 11300, Cuba;
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investiga-Ciones Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (L.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba
| |
Collapse
|
21
|
Popple SJ, Burrows K, Mortha A, Osborne LC. Remote regulation of type 2 immunity by intestinal parasites. Semin Immunol 2021; 53:101530. [PMID: 34802872 DOI: 10.1016/j.smim.2021.101530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The intestinal tract is the target organ of most parasitic infections, including those by helminths and protozoa. These parasites elicit prototypical type 2 immune activation in the host's immune system with striking impact on the local tissue microenvironment. Despite local containment of these parasites within the intestinal tract, parasitic infections also mediate immune adaptation in peripheral organs. In this review, we summarize the current knowledge on how such gut-tissue axes influence important immune-mediated resistance and disease tolerance in the context of coinfections, and elaborate on the implications of parasite-regulated gut-lung and gut-brain axes on the development and severity of airway inflammation and central nervous system diseases.
Collapse
Affiliation(s)
- S J Popple
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - K Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - A Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - L C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Głuchowska K, Dzieciątkowski T, Sędzikowska A, Zawistowska-Deniziak A, Młocicki D. The New Status of Parasitic Diseases in the COVID-19 Pandemic-Risk Factors or Protective Agents? J Clin Med 2021; 10:2533. [PMID: 34200502 PMCID: PMC8200987 DOI: 10.3390/jcm10112533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
It is possible that parasites may influence the course of COVID-19 infection, as either risk factors or protective agents; as such, the current coronavirus pandemic may affect the diagnosis and prevention of parasitic disease, and its elimination programs. The present review highlights the similarity between the symptoms of human parasitoses and those of COVID-19 and discuss their mutual influence. The study evaluated selected human parasitoses with similar symptoms to COVID-19 and examined their potential influence on SARS-CoV-2 virus invasion. The available data suggest that at least several human parasitoses could result in misdiagnosis of COVID-19. Some disorders, such as malaria, schistosomiasis and soil-transmitted helminths, can increase the risk of severe infection with COVID-19. It is also suggested that recovery from parasitic disease can enhance the immune system and protect from COVID-19 infection. In addition, the COVID-19 pandemic has affected parasitic disease elimination programs in endemic regions and influenced the number of diagnoses of human parasitoses.
Collapse
Affiliation(s)
- Kinga Głuchowska
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.G.); (A.S.)
| | - Tomasz Dzieciątkowski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Aleksandra Sędzikowska
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.G.); (A.S.)
| | | | - Daniel Młocicki
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.G.); (A.S.)
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland;
| |
Collapse
|
23
|
Banete A, Gee K, Basta S. Sustained IL-4 priming of macrophages enhances the inflammatory response to TLR7/8 ligand R848. J Leukoc Biol 2021; 111:401-413. [PMID: 34013552 DOI: 10.1002/jlb.3a0520-293rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macrophages (Mϕ) are highly plastic, and can acquire a variety of functional phenotypes depending on the presence of different stimuli in their local environment. Mφ stimulated by interleukin (IL)-4 induce an alternative activation state and function as anti-inflammatory cells and promote tissue repair. However, there is overwhelming evidence that IL-4 can play a role in promoting inflammation. In asthma and allergic inflammation, IL-4 mediates proinflammatory responses that lead to tissue damage. Thus the effect of IL-4 on the outcome of the immune responses is greatly influenced by other cofactors and cytokines present in the microenvironment. R848 (resiquimod), a TLR7/8 agonist is a novel vaccine adjuvant, triggering a strong Th1-skewed response but its efficacy as a vaccine adjuvant shows variable results. It is not currently known whether the presence of IL-4 can dampen or enhance immunity in response to TLR7 agonists. In the present study, we sought to investigate the impact of IL-4-induced Mφ polarization on the outcome of R848 stimulation. The activation marker expression and production of cytokines were measured in murine spleen-derived Mφ. Protein expression levels of innate recognition molecules and transcription factors involved, including retinoic-acid inducible gene I, mitochondrial antiviral signaling protein, stimulator of interferon genes (STING), and IFN regulatory factors were evaluated in activated Mφ. These play a crucial role in the control of viral replication and optimal CD8+ T cell priming. We report that sustained priming with IL-4 alone promotes an antiviral response in Mφ, and enhances proinflammatory responses to R848 treatment. This highlights the need for better understanding of IL-4 proinflammatory functions and its potential use as a broad-acting antiviral in combination with R848 may be used in combination with other therapies to target the innate arm of immunity against emerging infections.
Collapse
Affiliation(s)
- Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
24
|
Desai P, Janova H, White JP, Reynoso GV, Hickman HD, Baldridge MT, Urban JF, Stappenbeck TS, Thackray LB, Diamond MS. Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell 2021; 184:1214-1231.e16. [PMID: 33636133 PMCID: PMC7962748 DOI: 10.1016/j.cell.2021.01.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Although enteric helminth infections modulate immunity to mucosal pathogens, their effects on systemic microbes remain less established. Here, we observe increased mortality in mice coinfected with the enteric helminth Heligmosomoides polygyrus bakeri (Hpb) and West Nile virus (WNV). This enhanced susceptibility is associated with altered gut morphology and transit, translocation of commensal bacteria, impaired WNV-specific T cell responses, and increased virus infection in the gastrointestinal tract and central nervous system. These outcomes were due to type 2 immune skewing, because coinfection in Stat6-/- mice rescues mortality, treatment of helminth-free WNV-infected mice with interleukin (IL)-4 mirrors coinfection, and IL-4 receptor signaling in intestinal epithelial cells mediates the susceptibility phenotypes. Moreover, tuft cell-deficient mice show improved outcomes with coinfection, whereas treatment of helminth-free mice with tuft cell-derived cytokine IL-25 or ligand succinate worsens WNV disease. Thus, helminth activation of tuft cell-IL-4-receptor circuits in the gut exacerbates infection and disease of a neurotropic flavivirus.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Hana Janova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - James P White
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Glennys V Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | | | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Nishimoto A, Wohlgemuth N, Rosch J, Schultz-Cherry S, Cortez V, Rowe HM. Transkingdom Interactions Important for the Pathogenesis of Human Viruses. J Infect Dis 2020; 223:S201-S208. [PMID: 33330907 DOI: 10.1093/infdis/jiaa735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The bacterial, fungal, and helminthic species that comprise the microbiome of the mammalian host have profound effects on health and disease. Pathogenic viruses must contend with the microbiome during infection and likely have evolved to exploit or evade the microbiome. Both direct interactions between the virions and the microbiota and immunomodulation and tissue remodeling caused by the microbiome alter viral pathogenesis in either host- or virus-beneficial ways. Recent insights from in vitro and murine models of viral pathogenesis have highlighted synergistic and antagonistic, direct and indirect interactions between the microbiome and pathogenic viruses. This review will focus on the transkingdom interactions between human gastrointestinal and respiratory viruses and the constituent microbiome of those tissues.
Collapse
Affiliation(s)
- Andrew Nishimoto
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hannah M Rowe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Chetty A, Omondi MA, Butters C, Smith KA, Katawa G, Ritter M, Layland L, Horsnell W. Impact of Helminth Infections on Female Reproductive Health and Associated Diseases. Front Immunol 2020; 11:577516. [PMID: 33329545 PMCID: PMC7719634 DOI: 10.3389/fimmu.2020.577516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
A growing body of knowledge exists on the influence of helminth infections on allergies and unrelated infections in the lung and gastrointestinal (GI) mucosa. However, the bystander effects of helminth infections on the female genital mucosa and reproductive health is understudied but important considering the high prevalence of helminth exposure and sexually transmitted infections in low- and middle-income countries (LMICs). In this review, we explore current knowledge about the direct and systemic effects of helminth infections on unrelated diseases. We summarize host disease-controlling immunity of important sexually transmitted infections and introduce the limited knowledge of how helminths infections directly cause pathology to female reproductive tract (FRT), alter susceptibility to sexually transmitted infections and reproduction. We also review work by others on type 2 immunity in the FRT and hypothesize how these insights may guide future work to help understand how helminths alter FRT health.
Collapse
Affiliation(s)
- Alisha Chetty
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Katherine Ann Smith
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gnatoulma Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - William Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Fonte L, Acosta A, Sarmiento ME, Ginori M, García G, Norazmi MN. COVID-19 Lethality in Sub-Saharan Africa and Helminth Immune Modulation. Front Immunol 2020; 11:574910. [PMID: 33117371 PMCID: PMC7578247 DOI: 10.3389/fimmu.2020.574910] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Luis Fonte
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - María Ginori
- Department of Teaching, Polyclinic “Plaza de la Revolución”, Havana, Cuba
| | - Gissel García
- Department of Medical Genetic, Hospital “Hermanos Ameijeiras”, Havana, Cuba
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
28
|
Walshe N, Mulcahy G, Crispie F, Cabrera-Rubio R, Cotter P, Jahns H, Duggan V. Outbreak of acute larval cyathostominosis - A "perfect storm" of inflammation and dysbiosis. Equine Vet J 2020; 53:727-739. [PMID: 32920897 PMCID: PMC8246859 DOI: 10.1111/evj.13350] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
Background Cyathostomins are prevalent and pathogenic intestinal helminths of horses, causing acute and chronic disease, including acute larval cyathostominosis, which has a mortality rate of 50%. Factors determining individual susceptibility to acute larval cyathostominosis are unknown. Investigation of these factors could lead to novel treatment and prevention strategies. Objectives To investigate clinicopathological and faecal microbiota changes associated with disease in individual horses in an acute larval cyathostominosis outbreak. Study design Case series. Methods The study population was a herd of 23 mixed breed horses in Ireland. The outbreak occurred in November 2018. Fourteen horses were clinically affected. Clinical status was monitored and recorded. Blood and faecal sampling allowed clinicopathological, faecal 16s rRNA gene sequencing and faecal egg count analyses. Results Two horses were euthanised, whilst 12 recovered. Common clinical signs included loose faecal consistency, weight loss and pyrexia. Consistent clinicopathological findings were borderline anaemia, leucocytosis, thrombocytosis, hyperfibrinogenaemia, hyperglobulinaemia and a reverse A: G ratio. Decreased alpha‐diversity of the faecal microbiota and greater relative abundance of the genus Streptococcus, class Bacilli, order Lactobacillales and family Streptococcaceae, and family Prevotelleceae was found in clinically affected horses compared to their clinically normal cohorts. An increase in obligate fibrolytic bacteria was seen in the clinically normal group compared to the clinical group. Histopathological findings of the colon and caecum revealed a severe necrotising typhlocolitis associated with cyathostomin larvae and bacterial overgrowth in the mucosa of the large intestine. Main limitations The study population in this outbreak is small. There are several confounding factors limiting this to a descriptive case series. Faecal microbiota has been shown to reflect the large intestinal microbiota but do not represent changes directly. Conclusions These findings suggest that acute larval cyathostominosis is associated with dysbiosis of the gut microbiota as well as the inflammatory stimulus of numerous emerging larvae leading to structural and functional pathology of the large intestine.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, APC Microbiome, Moorepark, Ireland.,APC Microbiome Ireland, Moorepark, Ireland
| | | | - Paul Cotter
- Teagasc Food Research Centre, APC Microbiome, Moorepark, Ireland.,APC Microbiome Ireland, Moorepark, Ireland.,Vistamilk, Moorepark, Ireland
| | - Hanne Jahns
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Hartmann W, Brunn ML, Stetter N, Gagliani N, Muscate F, Stanelle-Bertram S, Gabriel G, Breloer M. Helminth Infections Suppress the Efficacy of Vaccination against Seasonal Influenza. Cell Rep 2020; 29:2243-2256.e4. [PMID: 31747598 DOI: 10.1016/j.celrep.2019.10.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Here, we analyze the impact of helminth infections on the efficacy of vaccinations using Litomosoides sigmodontis-infected mice. Concurrent helminth infection reduces the quantity and quality of antibody responses to vaccination against seasonal influenza. Vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus is drastically impaired in helminth-infected mice. Impaired responses are also observed if vaccinations are performed after clearance of a previous helminth infection, suggesting that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection. Mechanistically, the suppression is associated with a systemic and sustained expansion of interleukin (IL)-10-producing CD4+CD49+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor.
Collapse
Affiliation(s)
- Wiebke Hartmann
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Marie-Luise Brunn
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Nadine Stetter
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Nicola Gagliani
- I Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
| | - Franziska Muscate
- I Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephanie Stanelle-Bertram
- Research Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Gülsah Gabriel
- Research Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; Institute for Virology, University for Veterinary Medicine, Hannover, Germany
| | - Minka Breloer
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
| |
Collapse
|
30
|
Rippee-Brooks MD, Marcinczyk RN, Lupfer CR. What came first, the virus or the egg: Innate immunity during viral coinfections. Immunol Rev 2020; 297:194-206. [PMID: 32761626 DOI: 10.1111/imr.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Infections with any pathogen can be severe and present with numerous complications caused by the pathogen or the host immune response to the invading microbe. However, coinfections, also called polymicrobial infections or secondary infections, can further exacerbate disease. Coinfections are more common than is often appreciated. In this review, we focus specifically on coinfections between viruses and other viruses, bacteria, parasites, or fungi. Importantly, innate immune signaling and innate immune cells that facilitate clearance of the initial viral infection can affect host susceptibility to coinfections. Understanding these immune imbalances may facilitate better diagnosis, prevention, and treatment of such coinfections.
Collapse
|
31
|
Preliminary Trichinella spiralis Infection Ameliorates Subsequent RSV Infection-Induced Inflammatory Response. Cells 2020; 9:cells9051314. [PMID: 32466130 PMCID: PMC7290565 DOI: 10.3390/cells9051314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection affects the lives of neonates throughout the globe, causing a high rate of mortality upon hospital admission. Yet, therapeutic options to deal with this pulmonary pathogen are currently limited. Helminth therapy has been well received for its immunomodulatory role in hosts, which are crucial for mitigating a multitude of diseases. Therefore, in this study, we used the helminth Trichinella spiralis and assessed its capabilities for modulating RSV infection as well as the inflammatory response induced by it in mice. Our results revealed that RSV-specific antibody responses were enhanced by pre-existing T. spiralis infection, which also limited pulmonary viral replication. Diminished lung inflammation, indicated by reduced pro-inflammatory cytokines and inflammatory cell influx was confirmed, as well as through histopathological assessment. We observed that inflammation-associated nuclear factor kappa-light-chain enhancement of activated B cells (NF-κB) and its phosphorylated forms were down-regulated, whereas antioxidant-associated nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression was upregulated in mice co-infected with T. spiralis and RSV. Upregulated Nrf2 expression contributed to increased antioxidant enzyme expression, particularly NQO1 which relieved the host of oxidative stress-induced pulmonary inflammation caused by RSV infection. These findings indicate that T. spiralis can mitigate RSV-induced inflammation by upregulating the expression of antioxidant enzymes.
Collapse
|
32
|
The Role of Innate Leukocytes during Influenza Virus Infection. J Immunol Res 2019; 2019:8028725. [PMID: 31612153 PMCID: PMC6757286 DOI: 10.1155/2019/8028725] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza virus infection is a serious threat to humans and animals, with the potential to cause severe pneumonia and death. Annual vaccination strategies are a mainstay to prevent complications related to influenza. However, protection from the emerging subtypes of influenza A viruses (IAV) even in vaccinated individuals is challenging. Innate immune cells are the first cells to respond to IAV infection in the respiratory tract. Virus replication-induced production of cytokines from airway epithelium recruits innate immune cells to the site of infection. These leukocytes, namely, neutrophils, monocytes, macrophages, dendritic cells, eosinophils, natural killer cells, innate lymphoid cells, and γδ T cells, become activated in response to IAV, to contain the virus and protect the airway epithelium while triggering the adaptive arm of the immune system. This review addresses different anti-influenza virus schemes of innate immune cells and how these cells fine-tune the balance between immunoprotection and immunopathology during IAV infection. Detailed understanding on how these innate responders execute anti-influenza activity will help to identify novel therapeutic targets to halt IAV replication and associated immunopathology.
Collapse
|
33
|
Liao C, Cheng X, Liu M, Wang X, Boireau P. Trichinella spiralis and Tumors: Cause, Coincidence or Treatment? Anticancer Agents Med Chem 2019; 18:1091-1099. [PMID: 29173187 PMCID: PMC6340159 DOI: 10.2174/1871520617666171121115847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
Abstract
Background: Conventional therapeutic strategies for tumors have had limited success, and innovative and more effective approaches to treatment are urgently required. The ancient idea that various biological, bacterial, yeast, viral, and para-sitic agents can be used as cancer therapeutics has gradually attracted considerable interest. Certain parasites have been widely discussed in association with human and animal tumors. The purpose of this review was to examine previous literatures which investigates the relations between Trichinella spiralis (T. spiralis) and tumors. Methods: Using PubMed, articles published before 2018 in the whole world have been searched and comprehensively re-viewed. Results: Many researches have provided proofs that T. spiralis possesses antitumor activities. The antitumor effect of T. spi-ralis was first described in the 1970s. However, its research has been inconsistent, and little progress has been made in this field. Therefore, the mechanisms underlying these inhibitory effects are still unclear, and convincing evidence of the links be-tween T. spiralis and the prevention or treatment of tumors from clinical trials is absent. Meanwhile, some other researches al-so suggested that T. spiralis may cause or contribute to coinfection with a tumors. Conclusion: The review has highlighted the scientific literature focussing on evidence for T. spiralis to act as a pro- or anti-tumorigenic agent is summarized and discussed, in hope of contributing to a better understanding of the relations between T. spiralis and tumors
Collapse
Affiliation(s)
- Chengshui Liao
- The Key Lab of Animal Disease and Public Health/ College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Health/ College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuelin Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pascal Boireau
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,ANSES, Laboratory for Animal Health, Maisons-Alfort, France
| |
Collapse
|
34
|
Shen SS, Qu XY, Zhang WZ, Li J, Lv ZY. Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infect Dis Poverty 2019; 8:49. [PMID: 31200765 PMCID: PMC6570864 DOI: 10.1186/s40249-019-0560-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Infectious diseases encompass a large spectrum of diseases that threaten human health, and coinfection is of particular importance because pathogen species can interact within the host. Currently, the antagonistic relationship between different pathogens during concurrent coinfections is defined as one in which one pathogen either manages to inhibit the invasion, development and reproduction of the other pathogen or biologically modulates the vector density. In this review, we provide an overview of the phenomenon and mechanisms of antagonism of coinfecting pathogens involving parasites. Main body This review summarizes the antagonistic interaction between parasites and parasites, parasites and viruses, and parasites and bacteria. At present, relatively clear mechanisms explaining polyparasitism include apparent competition, exploitation competition, interference competition, biological control of intermediate hosts or vectors and suppressive effect on transmission. In particular, immunomodulation, including the suppression of dendritic cell (DC) responses, activation of basophils and mononuclear macrophages and adjuvant effects of the complement system, is described in detail. Conclusions In this review, we summarize antagonistic concurrent infections involving parasites and provide a functional framework for in-depth studies of the underlying mechanisms of coinfection with different microorganisms, which will hasten the development of promising antimicrobial alternatives, such as novel antibacterial vaccines or biological methods of controlling infectious diseases, thus relieving the overwhelming burden of ever-increasing antimicrobial resistance. Electronic supplementary material The online version of this article (10.1186/s40249-019-0560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Shi Shen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiao-Yan Qu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Wei-Zhe Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jian Li
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China
| | - Zhi-Yue Lv
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.
| |
Collapse
|
35
|
Walshe N, Duggan V, Cabrera-Rubio R, Crispie F, Cotter P, Feehan O, Mulcahy G. Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. Int J Parasitol 2019; 49:489-500. [PMID: 30986403 DOI: 10.1016/j.ijpara.2019.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
The interactions between parasitic helminths and gut microbiota are considered to be an important, although as yet incompletely understood, factor in the regulation of immunity, inflammation and a range of diseases. Infection with intestinal helminths is ubiquitous in grazing horses, with cyathostomins (about 50 species of which are recorded) predominating. Consequences of infection include both chronic effects, and an acute inflammatory syndrome, acute larval cyathostominosis, which sometimes follows removal of adult helminths by administration of anthelmintic drugs. The presence of cyathostomins as a resident helminth population of the equine gut (the "helminthome") provides an opportunity to investigate the effect helminth infection, and its perturbation, has on both the immune system and bacterial microbiome of the gut, as well as to determine the specific mechanisms of pathophysiology involved in equine acute larval cyathostominosis. We studied changes in the faecal microbiota of two groups of horses following treatment with anthelmintics (fenbendazole or moxidectin). We found decreases in both alpha diversity and beta diversity of the faecal microbiota at Day 7 post-treatment, which were reversed by Day 14. These changes were accompanied by increases in inflammatory biomarkers. The general pattern of faecal microbiota detected was similar to that seen in the relatively few equine gut microbiome studies reported to date. We conclude that interplay between resident cyathostomin populations and the bacterial microbiota of the equine large intestine is important in maintaining homeostasis and that disturbance of this ecology can lead to gut dysbiosis and play a role in the aetiology of inflammatory conditions in the horse, including acute larval cyathostominosis.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Orna Feehan
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland.
| |
Collapse
|
36
|
Lello J, McClure SJ, Tyrrell K, Viney ME. Predicting the effects of parasite co-infection across species boundaries. Proc Biol Sci 2019. [PMID: 29540516 PMCID: PMC5879626 DOI: 10.1098/rspb.2017.2610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is normal for hosts to be co-infected by parasites. Interactions among co-infecting species can have profound consequences, including changing parasite transmission dynamics, altering disease severity and confounding attempts at parasite control. Despite the importance of co-infection, there is currently no way to predict how different parasite species may interact with one another, nor the consequences of those interactions. Here, we demonstrate a method that enables such prediction by identifying two nematode parasite groups based on taxonomy and characteristics of the parasitological niche. From an understanding of the interactions between the two defined groups in one host system (wild rabbits), we predict how two different nematode species, from the same defined groups, will interact in co-infections in a different host system (sheep), and then we test this experimentally. We show that, as predicted, in co-infections, the blood-feeding nematode Haemonchus contortus suppresses aspects of the sheep immune response, thereby facilitating the establishment and/or survival of the nematode Trichostrongylus colubriformis; and that the T. colubriformis-induced immune response negatively affects H. contortus This work is, to our knowledge, the first to use empirical data from one host system to successfully predict the specific outcome of a different co-infection in a second host species. The study therefore takes the first step in defining a practical framework for predicting interspecific parasite interactions in other animal systems.
Collapse
Affiliation(s)
- Joanne Lello
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK .,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trentino 38010, Italy.,Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Susan J McClure
- Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Kerri Tyrrell
- Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
37
|
The resistance against Trichinella spiralis infection induced by primary infection with respiratory syncytial virus. Parasitology 2018; 146:634-642. [PMID: 30394235 DOI: 10.1017/s0031182018001889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human infections with Trichinella spiralis and respiratory syncytial virus (RSV) are common, as T. spiralis infections are re-emerging in various parts of the world and RSV infections remain a threat for infants. Yet, studies investigating the relationship pertaining to the two are severely lacking. In particular, immune response induction via RSV and T. spiralis remain largely elusive. Here, we investigated the resistance against T. spiralis infection induced upon primary infection with RSV. RSV, notorious for causing severe inflammatory reaction in the lungs, were intranasally infected, followed with a T. spiralis infection in mice. Our results revealed that primary RSV infection in mice significantly raised T. spiralis-specific and total IgE, IgG and its subclass antibody responses upon T. spiralis challenge infection (RSV-Ts). Blood eosinophil levels were decreased in RSV-Ts, accompanied with significant increase in both Th1 and Th2 cytokines. Antibodies generated against RSV in RSV-infected mice were found to react with T. spiralis excretory/secretory antigen, showing several bands determined through immunoblotting. RSV-Ts also had a marked reduction of T. spiralis worm burden in diaphragm. These results indicate that immune responses induced by RSV infection contribute to resistance against subsequent T. spiralis infection.
Collapse
|
38
|
Helminth-induced IL-4 expands bystander memory CD8 + T cells for early control of viral infection. Nat Commun 2018; 9:4516. [PMID: 30375396 PMCID: PMC6207712 DOI: 10.1038/s41467-018-06978-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
Infection with parasitic helminths can imprint the immune system to modulate bystander inflammatory processes. Bystander or virtual memory CD8+ T cells (TVM) are non-conventional T cells displaying memory properties that can be generated through responsiveness to interleukin (IL)-4. However, it is not clear if helminth-induced type 2 immunity functionally affects the TVM compartment. Here, we show that helminths expand CD44hiCD62LhiCXCR3hiCD49dlo TVM cells through direct IL-4 signaling in CD8+ T cells. Importantly, helminth-mediated conditioning of TVM cells provided enhanced control of acute respiratory infection with the murid gammaherpesvirus 4 (MuHV-4). This enhanced control of MuHV-4 infection could further be explained by an increase in antigen-specific CD8+ T cell effector responses in the lung and was directly dependent on IL-4 signaling. These results demonstrate that IL-4 during helminth infection can non-specifically condition CD8+ T cells, leading to a subsequently raised antigen-specific CD8+ T cell activation that enhances control of viral infection. Parasitic helminth infection is known to impact upon the host response to other bystander inflammatory processes. Here the authors show that IL4 production induced by helminth infection results in expansion of bystander CD8+ memory T cells and enhanced control to viral infection.
Collapse
|
39
|
McFarlane AJ, McSorley HJ, Davidson DJ, Fitch PM, Errington C, Mackenzie KJ, Gollwitzer ES, Johnston CJC, MacDonald AS, Edwards MR, Harris NL, Marsland BJ, Maizels RM, Schwarze J. Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota. J Allergy Clin Immunol 2017; 140:1068-1078.e6. [PMID: 28196762 DOI: 10.1016/j.jaci.2017.01.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Helminth parasites have been reported to have beneficial immunomodulatory effects in patients with allergic and autoimmune conditions and detrimental consequences in patients with tuberculosis and some viral infections. Their role in coinfection with respiratory viruses is not clear. OBJECTIVE Here we investigated the effects of strictly enteric helminth infection with Heligmosomoides polygyrus on respiratory syncytial virus (RSV) infection in a mouse model. METHODS A murine helminth/RSV coinfection model was developed. Mice were infected by means of oral gavage with 200 stage 3 H polygyrus larvae. Ten days later, mice were infected intranasally with either RSV or UV-inactivated RSV. RESULTS H polygyrus-infected mice showed significantly less disease and pulmonary inflammation after RSV infection associated with reduced viral load. Adaptive immune responses, including TH2 responses, were not essential because protection against RSV was maintained in Rag1-/- and Il4rα-/- mice. Importantly, H polygyrus infection upregulated expression of type I interferons and interferon-stimulated genes in both the duodenum and lung, and its protective effects were lost in both Ifnar1-/- and germ-free mice, revealing essential roles for type I interferon signaling and microbiota in H polygyrus-induced protection against RSV. CONCLUSION These data demonstrate that a strictly enteric helminth infection can have remote protective antiviral effects in the lung through induction of a microbiota-dependent type I interferon response.
Collapse
Affiliation(s)
- Amanda J McFarlane
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry J McSorley
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald J Davidson
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul M Fitch
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Errington
- National Health Service Lothian, Simpson Centre for Reproductive Health, Edinburgh, United Kingdom
| | - Karen J Mackenzie
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Eva S Gollwitzer
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland
| | - Chris J C Johnston
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Michael R Edwards
- Airway Disease Infection Section, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma and Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicola L Harris
- Global Health Institute, École Polytechnique, Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jürgen Schwarze
- MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom; Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
40
|
Tao L, Reese TA. Making Mouse Models That Reflect Human Immune Responses. Trends Immunol 2017; 38:181-193. [PMID: 28161189 DOI: 10.1016/j.it.2016.12.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 02/08/2023]
Abstract
Humans are infected with a variety of acute and chronic pathogens over the course of their lives, and pathogen-driven selection has shaped the immune system of humans. The same is likely true for mice. However, laboratory mice we use for most biomedical studies are bred in ultra-hygienic environments, and are kept free of specific pathogens. We review recent studies that indicate that pathogen infections are important for the basal level of activation and the function of the immune system. Consideration of these environmental exposures of both humans and mice can potentially improve mouse models of human disease.
Collapse
Affiliation(s)
- Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
41
|
McAfee MS, Huynh TP, Johnson JL, Jacobs BL, Blattman JN. Interaction between unrelated viruses during in vivo co-infection to limit pathology and immunity. Virology 2015; 484:153-162. [PMID: 26099694 PMCID: PMC4567517 DOI: 10.1016/j.virol.2015.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/26/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
Great progress has been made in understanding immunity to viral infection. However, infection can occur in the context of co-infection by unrelated pathogens that modulate immune responses and/or disease. We have studied immunity and disease during co-infection with two unrelated viruses: Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV). ECTV infection can be a lethal in mice due in part to the blockade of Type I Interferons (IFN-I). We show that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, likely due to IFN-I induction by LCMV, as rescue is not observed in IFN-I receptor deficient mice. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and potentially biased toward effector-memory cell generation. Thus, we provide evidence for bi-directional effects of viral co-infection that modulate disease and immunity.
Collapse
Affiliation(s)
- Megan S McAfee
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | - Trung P Huynh
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | - John L Johnson
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | - Joseph N Blattman
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
42
|
Guan F, Hou X, Nie G, Xiao Y, Zhang Q, Liu WQ, Li YL, Lei JH. Effect of Trichinella spiralis infection on the immune response to HBV vaccine in a mouse model. Foodborne Pathog Dis 2013; 10:882-7. [PMID: 23883369 DOI: 10.1089/fpd.2013.1545] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vaccination is the most effective and cost-effective way to treat hepatitis B virus (HBV) infection. Collective data suggest that helminth infections affect immune responses to some vaccines. Therefore, it is important to reveal the effects of helminth infections on the efficacy of protective vaccines in countries with highly prevalent helminth infections. In the present work, effects of Trichinella spiralis infection on the protective efficacy of HBV vaccine in a mouse model were investigated. This study demonstrated that the enteric stage of T. spiralis infection could inhibit the proliferative response of spleen lymphocytes to hepatitis B surface antigen (HBsAg) and lead to lower levels of anti-HBsAg antibodies, interferon-γ, and interleukin (IL)-2, along with higher levels of IL-4 and IL-5. However, these immunological differences are absent in the muscle stage of T. spiralis infection. The results suggest that the muscle stage of T. spiralis infection does not affect the immune response to HBV vaccination, while the enteric-stage infection results in a reduced immune response to HBsAg.
Collapse
Affiliation(s)
- Fei Guan
- Department of Parasitology, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen Y, Huang B, Huang S, Yu X, Li Y, Song W, Li Y, Lu F. Coinfection with Clonorchis sinensis modulates murine host response against Trichinella spiralis infection. Parasitol Res 2013; 112:3167-79. [PMID: 23846239 DOI: 10.1007/s00436-013-3493-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/03/2013] [Indexed: 01/21/2023]
Abstract
Concomitant infections of different species of parasites are common in the field. Infection with one parasite species likely triggers host responses that may influence the subsequent infection of another species and alter disease outcomes. So far, the majority of studies have focused on single species parasite infection, and the mechanisms of protection induced by the first parasite infection against the secondary infection remain poorly defined. In this study, we assess the impact of trematode Clonorchis sinensis infection on the course of another tissue nematode Trichinella spiralis challenge. We observed that mice with preexisting C. sinensis infection had lower worm burden of intestinal T. spiralis than those infected with T. spiralis alone; mice with preexisting C. sinensis also had severe enteric histopathological changes and higher counts of intestinal Paneth cells in responses to T. spiralis challenge. The mRNA levels of interleukin (IL)-4, IL-10, IL-13, and tumor necrosis factor (TNF)-α from the small intestine and spleen of the different groups were analyzed using quantitative real-time polymerase chain reaction. Compared with that in mice infected with T. spiralis alone, the mRNA expression of IL-13 was significantly increased in the small intestine tissues and IL-4, IL-13, and TNF-α were significantly increased in the spleen tissues in the dually infected mice. Our findings suggest that a "preexisting" trematode infection of C. sinensis is a factor which contributes to reducing the establishment of T. spiralis adult worms in the small intestine.
Collapse
Affiliation(s)
- Ying Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Friberg IM, Little S, Ralli C, Lowe A, Hall A, Jackson JA, Bradley JE. Macroparasites at peripheral sites of infection are major and dynamic modifiers of systemic antimicrobial pattern recognition responses. Mol Ecol 2013; 22:2810-26. [PMID: 23379442 DOI: 10.1111/mec.12212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 12/20/2022]
Abstract
Immune defences and the maintenance of immunological homeostasis in the face of pathogenic and commensal microbial exposures are channelled by innate antimicrobial pattern recognition receptors (PRRs) such as toll-like receptors (TLRs). Whilst PRR-mediated response programmes are the result of long-term host-pathogen or host-commensal co-evolutionary dynamics involving microbes, an additional possibility is that macroparasitic co-infections may be a significant modifier of such interactions. We demonstrate experimentally that macroparasites (the model gastrointestinal nematode, Heligmosomoides) at peripheral sites of infection cause substantial alteration of the expression and function of TLRs at a systemic level (in cultured splenocytes), predominantly up-regulating TLR2, TLR4 and TLR9-mediated cytokine responses at times of high standing worm burdens. We consistently observed such effects in BALB/c and C57BL/6 mice under single-pulse and trickle exposures to Heligmosomoides larvae and in SWR and CBA mice under single-pulse exposures. A complementary long-term survey of TLR2-mediated tumour necrosis factor-alpha responses in wild wood mice (Apodemus sylvaticus) was consistent with substantial effects of macroparasites under some environmental conditions. A general pattern, though, was for the associations of macroparasites with TLR function to be temporally dynamic and context-dependent: varying with different conditions of infection exposure in the field and laboratory and with host genetic strain in the laboratory. These results are compelling evidence that macroparasites are a major and dynamic modifier of systemic innate antimicrobial responsiveness in naturally occurring mammals and thus likely to be an important influence on the interaction between microbial exposures and the immune system.
Collapse
Affiliation(s)
- I M Friberg
- School of Biology, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Ezenwa VO, Jolles AE. From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. Integr Comp Biol 2011; 51:540-51. [PMID: 21727178 DOI: 10.1093/icb/icr058] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Concurrent infections with multiple parasites are ubiquitous in nature. Coinfecting parasites can interact with one another in a variety of ways, including through the host's immune system via mechanisms such as immune trade-offs and immunosuppression. These within-host immune processes mediating interactions among parasites have been described in detail, but how they scale up to determine disease dynamic patterns at the population level is only beginning to be explored. In this review, we use helminth-microparasite coinfection as a model for examining how within-host immunological effects may influence the ecological outcome of microparasitic diseases, with a specific focus on disease invasion. The current literature on coinfection between helminths and major microparasitic diseases includes many studies documenting the effects of helminths on individual host responses to microparasites. In many cases, the observed host responses map directly onto parameters relevant for quantifying disease dynamics; however, there have been few attempts at integrating data on individual-level effects into theoretical models to extrapolate from the individual to the population level. Moreover, there is considerable variability in the particular combination of disease parameters affected by helminths across different microparasite systems. We develop a conceptual framework identifying some potential sources of such variability: Pathogen persistence and severity, and resource availability to hosts. We also generate testable hypotheses regarding diseases and the environmental contexts when the effects of helminths on microparasite dynamics should be most pronounced. Finally, we use a case study of helminth and mycobacterial coinfection in the African buffalo to illustrate both progress and challenges in understanding the population-level consequences of within-host immunological interactions, and conclude with suggestions for future research that will help improve our understanding of the effects of coinfection on dynamics of infectious diseases.
Collapse
Affiliation(s)
- Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
46
|
Salvador AR, Guivier E, Xuéreb A, Chaval Y, Cadet P, Poulle ML, Sironen T, Voutilainen L, Henttonen H, Cosson JF, Charbonnel N. Concomitant influence of helminth infection and landscape on the distribution of Puumala hantavirus in its reservoir, Myodes glareolus. BMC Microbiol 2011; 11:30. [PMID: 21303497 PMCID: PMC3040693 DOI: 10.1186/1471-2180-11-30] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/08/2011] [Indexed: 12/22/2022] Open
Abstract
Background Puumala virus, the agent of nephropathia epidemica (NE), is the most prevalent hantavirus in Europe. The risk for human infection seems to be strongly correlated with the prevalence of Puumala virus (PUUV) in populations of its reservoir host species, the bank vole Myodes glareolus. In humans, the infection risks of major viral diseases are affected by the presence of helminth infections. We therefore proposed to analyse the influence of both helminth community and landscape on the prevalence of PUUV among bank vole populations in the Ardennes, a PUUV endemic area in France. Results Among the 313 voles analysed, 37 had anti-PUUV antibodies. Twelve gastro-intestinal helminth species were recorded among all voles sampled. We showed that PUUV seroprevalence strongly increased with age or sexual maturity, especially in the northern forests (massif des Ardennes). The helminth community structure significantly differed between this part and the woods or hedgerows of the southern cretes pre-ardennaises. Using PUUV RNA quantification, we identified significant coinfections between PUUV and gastro-intestinal helminths in the northern forests only. More specifically, PUUV infection was positively associated with the presence of Heligmosomum mixtum, and in a lesser extent, Aonchotheca muris-sylvatici. The viral load of PUUV infected individuals tended to be higher in voles coinfected with H. mixtum. It was significantly lower in voles coinfected with A. muris-sylvatici, reflecting the influence of age on these latter infections. Conclusions This is the first study to emphasize hantavirus - helminth coinfections in natural populations. It also highlights the importance to consider landscape when searching for such associations. We have shown that landscape characteristics strongly influence helminth community structure as well as PUUV distribution. False associations might therefore be evidenced if geographic patterns of helminths or PUUV repartition are not previously identified. Moreover, our work revealed that interactions between helminths and landscape enhance/deplete the occurrence of coinfections between PUUV and H. mixtum or A. muris-sylvatici. Further experimental analyses and long-term individual surveys are now required to confirm these correlative results, and to ascertain the causal links between helminth and PUUV infection risks.
Collapse
Affiliation(s)
- Alexis Ribas Salvador
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitaries, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Immunity against helminths: interactions with the host and the intercurrent infections. J Biomed Biotechnol 2010; 2010:428593. [PMID: 20150967 PMCID: PMC2817558 DOI: 10.1155/2010/428593] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/25/2009] [Indexed: 01/15/2023] Open
Abstract
Helminth parasites are of considerable medical and economic importance. Studies
of the immune response against helminths are of great interest in understanding
interactions between the host immune system and parasites. Effector immune
mechanisms against tissue-dwelling helminths and helminths localized in the
lumen of organs, and their regulation, are reviewed. Helminth infections are
characterized by an association of Th2-like and Treg responses. Worms are able
to persist in the host and are mainly responsible for chronic infection despite a
strong immune response developed by the parasitized host. Two types of
protection against the parasite, namely, premune and partial immunities, have been
described. Immune responses against helminths can also participate in
pathogenesis. Th2/Treg-like immunomodulation allows the survival of both host
and parasite by controlling immunopathologic disorders and parasite persistence.
Consequences of the modified Th2-like responses on co-infection, vaccination, and
inflammatory diseases are discussed.
Collapse
|
48
|
Hoeve MA, Mylonas KJ, Fairlie-Clarke KJ, Mahajan SM, Allen JE, Graham AL. Plasmodium chabaudi limits early Nippostrongylus brasiliensis-induced pulmonary immune activation and Th2 polarization in co-infected mice. BMC Immunol 2009; 10:60. [PMID: 19951425 PMCID: PMC3224723 DOI: 10.1186/1471-2172-10-60] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 12/01/2009] [Indexed: 01/09/2023] Open
Abstract
Background Larvae of several common species of parasitic nematodes obligately migrate through, and often damage, host lungs. The larvae induce strong pulmonary Type 2 immune responses, including T-helper (Th)2 cells as well as alternatively activated macrophages (AAMφ) and associated chitinase and Fizz/resistin family members (ChaFFs), which are thought to promote tissue repair processes. Given the prevalence of systemic or lung-resident Type 1-inducing pathogens in geographical areas in which nematodes are endemic, we wished to investigate the impact of concurrent Type 1 responses on the development of these Type 2 responses to nematode larval migration. We therefore infected BALB/c mice with the nematode Nippostrongylus brasiliensis, in the presence or absence of Plasmodium chabaudi chabaudi malaria parasites. Co-infected animals received both infections on the same day, and disease was assessed daily before immunological measurements were taken at 3, 5, 7 or 20 days post-infection. Results We observed that the nematodes themselves caused transient loss of body mass and red blood cell density, but co-infection then slightly ameliorated the severity of malarial anaemia. We also tracked the development of immune responses in the lung and thoracic lymph node. By the time of onset of the adaptive immune response around 7 days post-infection, malaria co-infection had reduced pulmonary expression of ChaFFs. Assessment of the T cell response demonstrated that the Th2 response to the nematode was also significantly impaired by malaria co-infection. Conclusion P. c. chabaudi co-infection altered both local and lymph node Type 2 immune activation due to migration of N. brasiliensis larvae. Given recent work from other laboratories showing that N. brasiliensis-induced ChaFFs correlate to the extent of long-term lung damage, our results raise the possibility that co-infection with malaria might alter pulmonary repair processes following nematode migration. Further experimentation in the co-infection model developed here will reveal the longer-term consequences of the presence of both malaria and helminths in the lung.
Collapse
Affiliation(s)
- Marieke A Hoeve
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Jackson JA, Friberg IM, Little S, Bradley JE. Review series on helminths, immune modulation and the hygiene hypothesis: immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies? Immunology 2009; 126:18-27. [PMID: 19120495 DOI: 10.1111/j.1365-2567.2008.03010.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although the molecules and cells involved in triggering immune responses against parasitic worms (helminths) remain enigmatic, research has continued to implicate expansions of T-helper type 2 (Th2) cells and regulatory T-helper (T(reg)) cells as a characteristic response to these organisms. An intimate association has also emerged between Th2 responses and wound-healing functions. As helminth infections in humans are associated with a strong Th2/T(reg) immunoregulatory footprint (often termed a 'modified Th2' response), plausible links have been made to increased susceptibility to microbial pathogens in helminth-infected populations in the tropics and to the breakdowns in immunological control (allergy and autoimmunity) that are increasing in frequency in helminth-free developed countries. Removal of helminths and their anti-inflammatory influence may also have hazards for populations exposed to infectious agents, such as malaria and influenza, whose worst effects are mediated by excessive inflammatory reactions. The patterns seen in the control of helminth immunity are discussed from an evolutionary perspective. Whilst an inability to correctly regulate the immune system in the absence of helminth infection might seem highly counter-adaptive, the very ancient and pervasive relationship between vertebrates and helminths supports a view that immunological control networks have been selected to function within the context of a modified Th2 environment. The absence of immunoregulatory stimuli from helminths may therefore uncover maladaptations that were not previously exposed to selection.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Biology, The University of Nottingham, University Park, Nottingham, UK
| | | | | | | |
Collapse
|
50
|
Wissinger E, Goulding J, Hussell T. Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol 2009; 21:147-55. [PMID: 19223202 DOI: 10.1016/j.smim.2009.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
Abstract
Innate immunity at mucosal surfaces requires additional restraint to prevent inflammation to innocuous antigens or commensal microorganisms. The threshold above which airway macrophages become activated is raised by site-specific factors including the receptors for transforming growth factor beta, interleukin 10 and CD200; the ligands for which are produced by, or expressed on, respiratory epithelium. We discuss such site-specific regulation and how this is continually altered by prior infections. Resetting of innate reactivity represents a strategy for limiting excessive inflammation, but in some may pre-dispose to secondary bacterial pneumonia.
Collapse
Affiliation(s)
- Erika Wissinger
- Imperial College London, National Heart and Lung Institute, Leukocyte Biology Section, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|