1
|
The First Assessments of Pediatric HBV Immunization Coverage in Mauritania and Persistence of Antibody Titers Post Infant Immunizations. Vaccines (Basel) 2023; 11:vaccines11030588. [PMID: 36992174 DOI: 10.3390/vaccines11030588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Background: The Hepatitis B virus (HBV) vaccine is used worldwide as an efficient tool to prevent the occurrence of chronic HBV infection and the subsequent liver disease. However, despite decades of vaccination campaigns, millions of new infections are still reported every year. Here, we aimed to assess the nationwide HBV vaccination coverage in Mauritania as well as the presence of protective levels of the antibodies against HBV surface antigen (HBsAb) following vaccination in a sample of children immunized as infants. Methods: To evaluate the frequency of fully vaccinated and seroprotected children in Mauritania, a prospective serological study was conducted in the capital. First, we evaluated the pediatric HBV vaccine coverage in Mauritania between 2015 and 2020. Then, we examined the level of antibodies against HBV surface antigen (HBsAb) in 185 fully vaccinated children (aged 9 months to 12 years) by ELISA using the VIDAS hepatitis panel for Minividas (Biomerieux). These vaccinated children were sampled in 2014 or 2021. Results: In Mauritania, between 2016 and 2019, more than 85% of children received the complete HBV vaccine regimen. While 93% of immunized children between 0 and 23 months displayed HBsAb titer >10 IU/L, the frequency of children with similar titers decreased to 63, 58 and 29% in children aged between 24–47, 48–59 and 60–144 months, respectively. Conclusions: A marked reduction in the frequency of HBsAb titer was observed with time, indicating that HBsAb titer usefulness as marker of protection is short lived and prompting the need for more accurate biomarkers predictive of long-term protection.
Collapse
|
2
|
Cimolai N. Non-primate animal models for pertussis: back to the drawing board? Appl Microbiol Biotechnol 2022; 106:1383-1398. [PMID: 35103810 PMCID: PMC8803574 DOI: 10.1007/s00253-022-11798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Despite considerable progress in the understanding of clinical pertussis, the contemporary emergence of antimicrobial resistance for Bordetella pertussis and an evolution of concerns with acellular component vaccination have both sparked a renewed interest. Although simian models of infection best correlate with the observed attributes of human infection, several animal models have been used for decades and have positively contributed in many ways to the related science. Nevertheless, there is yet the lack of a reliable small animal model system that mimics the combination of infection genesis, variable upper and lower respiratory infection, systemic effects, infection resolution, and vaccine responses. This narrative review examines the history and attributes of non-primate animal models for pertussis and places context with the current use and needs. Emerging from the latter is the necessity for further such study to better create the optimal model of infection and vaccination with use of current molecular tools and a broader range of animal systems. KEY POINTS: • Currently used and past non-primate animal models of B. pertussis infection often have unique and focused applications. • A non-primate animal model that consistently mimics human pertussis for the majority of key infection characteristics is lacking. • There remains ample opportunity for an improved non-primate animal model of pertussis with the use of current molecular biology tools and with further exploration of species not previously considered.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
- Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, B.C., V6H3V4, Canada.
| |
Collapse
|
3
|
Mashhouri S, Koleva P, Huynh M, Okoye I, Shahbaz S, Elahi S. Sex Matters: Physiological Abundance of Immuno-Regulatory CD71+ Erythroid Cells Impair Immunity in Females. Front Immunol 2021; 12:705197. [PMID: 34367164 PMCID: PMC8334724 DOI: 10.3389/fimmu.2021.705197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Mature erythrocytes are the major metabolic regulators by transporting oxygen throughout the body. However, their precursors and progenitors defined as CD71+ Erythroid Cells (CECs) exhibit a wide range of immunomodulatory properties. Here, we uncover pronounced sexual dimorphism in CECs. We found female but not male mice, both BALB/c and C57BL/6, and human females were enriched with CECs. CECs, mainly their progenitors defined as CD45+CECs expressed higher levels of reactive oxygen species (ROS), PDL-1, VISTA, Arginase II and Arginase I compared to their CD45- counterparts. Consequently, CECs by the depletion of L-arginine suppress T cell activation and proliferation. Expansion of CECs in anemic mice and also post-menstrual cycle in women can result in L-arginine depletion in different microenvironments in vivo (e.g. spleen) resulting in T cell suppression. As proof of concept, we found that anemic female mice and mice adoptively transferred with CECs from anemic mice became more susceptible to Bordetella pertussis infection. These observations highlight the role of sex and anemia-mediated immune suppression in females. Notably, enriched CD45+CECs may explain their higher immunosuppressive properties in female BALB/c mice. Finally, we observed significantly more splenic central macrophages in female mice, which can explain greater extramedullary erythropoiesis and subsequently abundance of CECs in the periphery. Thus, sex-specific differences frequency in the frequency of CECs might be imprinted by differential erythropoiesis niches and hormone-dependent manner.
Collapse
Affiliation(s)
- Siavash Mashhouri
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Petya Koleva
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mai Huynh
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Isobel Okoye
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
5
|
Tokuhara D, Hikita N. Cord Blood-Based Approach to Assess Candidate Vaccine Adjuvants Designed for Neonates and Infants. Vaccines (Basel) 2021; 9:vaccines9020095. [PMID: 33514054 PMCID: PMC7911524 DOI: 10.3390/vaccines9020095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Neonates and infants are particularly susceptible to infections, for which outcomes tend to be severe. Vaccination is a key strategy for preventing infectious diseases, but the protective immunity achieved through vaccination typically is weaker in infants than in healthy adults. One possible explanation for the poor acquisition of vaccine-induced immunity in infants is that their innate immune response, represented by toll-like receptors, is immature. The current system for developing pediatric vaccines relies on the confirmation of their safety and effectiveness in studies involving the use of mature animals or adult humans. However, creating vaccines for neonates and infants requires an understanding of their uniquely immature innate immunity. Here we review current knowledge regarding the innate immune system of neonates and infants and challenges in developing vaccine adjuvants for those children through analyses of cord blood.
Collapse
|
6
|
Martin Aispuro P, Ambrosis N, Zurita ME, Gaillard ME, Bottero D, Hozbor DF. Use of a Neonatal-Mouse Model to Characterize Vaccines and Strategies for Overcoming the High Susceptibility and Severity of Pertussis in Early Life. Front Microbiol 2020; 11:723. [PMID: 32362890 PMCID: PMC7182080 DOI: 10.3389/fmicb.2020.00723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
Newborns and unvaccinated infants, compared to other age groups, are more susceptible to pertussis infection, manifesting severe symptoms leading to a higher mortality. The recent increase in pertussis cases demands more effective strategies to overcome this major health problem. In parallel with maternal-immunization, neonatal-immunization (NI) is a strategy needing revision. Here, using the intranasal-challenge-mouse-model we evaluated the protective capacity of NI in both naïve-mice and those with maternally acquired immunity. We tested our acellular-vaccine-candidate based on outer-membrane-vesicles derived from Bordetella pertussis (OMVP) that induces Th2-profile but also the recommended Th-profile for protection: Th1/Th17-profile and CD4 T-memory-cells that reside in the lungs. Commercial acellular-vaccine (aP) and whole cell-vaccine (wP) inducing mainly Th2-profile and Th1-profile, respectively, were also tested. Analyzing the induced immunity and protection capability of NI included in 1- or 2-dose schedules with the same or different types of vaccine, we detected that the aP-vaccine administered in either single- or 2-dose schedules protected against sublethal B. pertussis infection. Schedules consisting of doses of aP neonatally and of OMVP or wP vaccine during infancy greatly reduced bacterial lung colonization while inducing the highest levels of high-avidity anti-pertussis toxin (PTx) IgG. That OMVP or wP neonatal dose did not interfere with the protection of transferred maternal immunity was especially encouraging. Moreover, OMVP- or wP used as a neonatal dose enhanced the quality of the humoral immune response in immunized pups. Antibodies generated by OMVP-or wP-vaccinated mice born to aP-immunized mothers were of higher avidity than those from mice that harbored only maternal immunity; but when mothers and neonates were immunized with the same aP-vaccine, the humoral response in the neonates was partially suppressed through the blunting of the level of anti-PTx IgG induced by the neonatal aP dose. These results demonstrated that neonatal immunization is a possible strategy to be considered to improve the current pertussis epidemiology. For neonates without maternal-immunity, mixed-vaccination schedules that include the aP- and OMVP-vaccines appear to be the most appropriate to induce protection in the pups. For offspring from immune mothers, to avoid blunting-effect, NI should be carried out with vaccines other than those applied during pregnancy.
Collapse
Affiliation(s)
- Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Nicolás Ambrosis
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - María Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Daniela Flavia Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| |
Collapse
|
7
|
Commensal Microbes Affect Host Humoral Immunity to Bordetella pertussis Infection. Infect Immun 2019; 87:IAI.00421-19. [PMID: 31308086 PMCID: PMC6759300 DOI: 10.1128/iai.00421-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023] Open
Abstract
As important players in the host defense system, commensal microbes and the microbiota influence multiple aspects of host physiology. Bordetella pertussis infection is highly contagious among humans. However, the roles of the microbiota in B. pertussis pathogenesis are poorly understood. Here, we show that antibiotic-mediated depletion of the microbiota results in increased susceptibility to B. pertussis infection during the early stage. The increased susceptibility was associated with a marked impairment of the systemic IgG, IgG2a, and IgG1 antibody responses to B. pertussis infection after antibiotic treatment. Furthermore, the microbiota impacted the short-lived plasma cell responses as well as the recall responses of memory B cells to B. pertussis infection. Finally, we found that the dysbiosis caused by antibiotic treatment affects CD4+ T cell generation and PD-1 expression on CD4+ T cells and thereby perturbs plasma cell differentiation. Our results have revealed the importance of commensal microbes in modulating host immune responses to B. pertussis infection and support the possibility of controlling the severity of B. pertussis infection in humans by manipulating the microbiota.
Collapse
|
8
|
Scanlon K, Skerry C, Carbonetti N. Association of Pertussis Toxin with Severe Pertussis Disease. Toxins (Basel) 2019; 11:toxins11070373. [PMID: 31252532 PMCID: PMC6669598 DOI: 10.3390/toxins11070373] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Pertussis, caused by respiratory tract infection with the bacterial pathogen Bordetella pertussis, has long been considered to be a toxin-mediated disease. Bacteria adhere and multiply extracellularly in the airways and release several toxins, which have a variety of effects on the host, both local and systemic. Predominant among these toxins is pertussis toxin (PT), a multi-subunit protein toxin that inhibits signaling through a subset of G protein-coupled receptors in mammalian cells. PT activity has been linked with severe and lethal pertussis disease in young infants and a detoxified version of PT is a common component of all licensed acellular pertussis vaccines. The role of PT in typical pertussis disease in other individuals is less clear, but significant evidence supporting its contribution to pathogenesis has been accumulated from animal model studies. In this review we discuss the evidence indicating a role for PT in pertussis disease, focusing on its contribution to severe pertussis in infants, modulation of immune and inflammatory responses to infection, and the characteristic paroxysmal cough of pertussis.
Collapse
Affiliation(s)
- Karen Scanlon
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ciaran Skerry
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicholas Carbonetti
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Meng X, Dunsmore G, Koleva P, Elloumi Y, Wu RY, Sutton RT, Ambrosio L, Hotte N, Nguyen V, Madsen KL, Dieleman LA, Chen H, Huang V, Elahi S. The Profile of Human Milk Metabolome, Cytokines, and Antibodies in Inflammatory Bowel Diseases Versus Healthy Mothers, and Potential Impact on the Newborn. J Crohns Colitis 2019; 13:431-441. [PMID: 30418545 PMCID: PMC6441305 DOI: 10.1093/ecco-jcc/jjy186] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS For women with inflammatory bowel disease [IBD], it is not very well known how IBD or IBD treatment affects their breast milk components. We aimed to investigate whether breast milk composition differs in healthy control [HC] versus IBD mothers in terms of antibodies, cytokines, and metabolite,s to identify potential impact of IBD breast milk on neonatal immune system. METHODS Breast milk specimens from HC [n = 17] and IBD [n = 31 for Crohn's disease [CD]; and n = 41 for ulcerative colitis [UC]; were collected at 3 and 6 months postpartum [PP3] and [PP6], respectively. Faecal samples were also collected. Cytokines and immunoglobulins [IgA/IgG/IgE] were analysed by multiplex Meso Scale Discovery [MSD] and commercial kits. Moreover, breast milk metabolites were analysed by 1H nuclear magnetic resonance [NMR]. RESULTS We found that breast milk from IBD mothers showed significantly lower levels of IgA, sugar metabolite [lactose], and 2-aminobutyrate. In contrast, we observed that breast milk from mothers with IBD had increased levels of pro-inflammatory cytokines and higher energy metabolites [lactate and succinate] than milk from healthy mothers. In addition, we noticed that the type of treatment [5-aminosalicylic acid versus biologics] influenced the milk cytokines and metabolites profile. CONCLUSIONS The reduction in immunoprotective components of IBD breast milk such as sIgA and lactose theoretically may modulate the potential protective effects of breastfeeding. On the other hand, presence of higher levels of pro-inflammatory cytokines, lactate, and succinate may predispose the offspring to an inflammatory condition or impact on the gut microbiome. Better understanding of the role of succinate in infants and its potential effects on microbiome or mucosal immunity merits further investigations.
Collapse
Affiliation(s)
- Xuanyi Meng
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada,State Key Laboratory of Food Science and Technology, Nanchang University. Nanchang, China
| | - Garett Dunsmore
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Petya Koleva
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yesmine Elloumi
- Division of Gastroenterology, University of Alberta, AB, Canada
| | - Richard You Wu
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Lindsy Ambrosio
- Division of Gastroenterology, University of Alberta, AB, Canada
| | - Naomi Hotte
- Division of Gastroenterology, University of Alberta, AB, Canada
| | - Vivian Nguyen
- Division of Gastroenterology, University of Alberta, AB, Canada
| | - Karen L Madsen
- Division of Gastroenterology, University of Alberta, AB, Canada
| | | | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University. Nanchang, China
| | - Vivian Huang
- Division of Gastroenterology, University of Alberta, AB, Canada,Division of Gastroenterology, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada,Corresponding author: Shokrollah Elahi, PhD, 7020L, Katz Group Centre for Pharmacology and Health Research, 11361-87th Ave NW, Edmonton, AB, T6G2E1, Canada. Tel.: 780-492-1336; fax: 780-492-7466;
| |
Collapse
|
10
|
Jensen LK, Henriksen NL, Jensen HE. Guidelines for porcine models of human bacterial infections. Lab Anim 2018; 53:125-136. [PMID: 30089438 DOI: 10.1177/0023677218789444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During the last 10 years the number of porcine models for human bacterial infectious diseases has increased. In the future, this tendency is expected to continue and, therefore, the aim of the present review is to describe guidelines for the development and reporting of these models. The guidelines are based on a review of 122 publications of porcine models for different bacterial infectious diseases in humans. The review demonstrates a substantial lack of information in most papers which hampers reproducibility and continuation of the work that was established in the models. The guidelines describe overall principles related to the inoculum, the animal, the infected animal and the post-mortem characterization that are of crucial importance when porcine models of infectious diseases are developed, validated and reported.
Collapse
Affiliation(s)
- Louise K Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicole L Henriksen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
Maternal immunity plays a pivotal role in swine health and production because piglets are born agammaglobulinemic and with limited cell-mediated immunity, i.e. few peripheral lymphoid cells, immature lymphoid tissues, and no effector and memory T-lymphocytes. Swine do not become fully immunologically competent until about 4 weeks of age, which means that their compromised ability to respond to infectious agents during the first month of life must be supplemented by maternal immune components: (1) circulating antibodies derived from colostrum; (2) mucosal antibodies from colostrum and milk; and (3) immune cells provided in mammary secretions. Because maternal immunity is highly effective at protecting piglets against specific pathogens, strengthening sow herd immunity against certain diseases through exposure or vaccination is a useful management tool for ameliorating clinical effects in piglets and delaying infection until the piglets' immune system is better prepared to respond. In this review, we discuss the anatomy and physiology of lactation, the immune functions of components provided to neonatal swine in mammary secretion, the importance of maternal immunity in the prevention and control of significant pathogens.
Collapse
|
12
|
Gaillard ME, Bottero D, Zurita ME, Carriquiriborde F, Martin Aispuro P, Bartel E, Sabater-Martínez D, Bravo MS, Castuma C, Hozbor DF. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency. Front Immunol 2017; 8:1099. [PMID: 28932228 PMCID: PMC5592197 DOI: 10.3389/fimmu.2017.01099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023] Open
Abstract
Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP) vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p < 0.001) in the colony-forming-units recovered from the lungs of 16-week-old offspring. Moreover, maternal-vaccination-acquired immunity from the first pregnancy still conferred protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results—though admittedly not necessarily immediately extrapolatable to humans—nevertheless enabled us to test hypotheses under controlled conditions through detailed sampling and data collection. These findings will hopefully refine hypotheses that can then be validated in subsequent human studies.
Collapse
Affiliation(s)
- María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - María Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Francisco Carriquiriborde
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Erika Bartel
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - David Sabater-Martínez
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - María Sol Bravo
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Celina Castuma
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Daniela Flavia Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| |
Collapse
|
13
|
Abu Raya B, Edwards KM, Scheifele DW, Halperin SA. Pertussis and influenza immunisation during pregnancy: a landscape review. THE LANCET. INFECTIOUS DISEASES 2017; 17:e209-e222. [DOI: 10.1016/s1473-3099(17)30190-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
|
14
|
Mbengue MAS, Mboup A, Ly ID, Faye A, Camara FBN, Thiam M, Ndiaye BP, Dieye TN, Mboup S. Vaccination coverage and immunization timeliness among children aged 12-23 months in Senegal: a Kaplan-Meier and Cox regression analysis approach. Pan Afr Med J 2017; 27:8. [PMID: 29296143 PMCID: PMC5745951 DOI: 10.11604/pamj.supp.2017.27.3.11534] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/11/2017] [Indexed: 11/11/2022] Open
Abstract
Introduction Expanded programme on immunizations in resource-limited settings currently measure vaccination coverage defined as the proportion of children aged 12-23 months that have completed their vaccination. However, this indicator does not address the important question of when the scheduled vaccines were administered. We assessed the determinants of timely immunization to help the national EPI program manage vaccine-preventable diseases and impact positively on child survival in Senegal. Methods Vaccination data were obtained from the Demographic and Health Survey (DHS) carried out across the 14 regions in the country. Children were aged between 12-23 months. The assessment of vaccination coverage was done with the health card and/or by the mother’s recall of the vaccination act. For each vaccine, an assessment of delay in age-appropriate vaccination was done following WHO recommendations. Additionally, Kaplan-Meier survival function was used to estimate the proportion vaccinated by age and cox-proportional hazards models were used to examine risk factors for delays. Results A total of 2444 living children between 12–23 months of age were included in the analysis. The country vaccination was below the WHO recommended coverage level and, there was a gap in timeliness of children immunization. While BCG vaccine uptake was over 95%, coverage decreased with increasing number of Pentavalent vaccine doses (Penta 1: 95.6%, Penta 2: 93.5%: Penta 3: 89.2%). Median delay for BCG was 1.7 weeks. For polio at birth, the median delay was 5 days; all other vaccine doses had median delays of 2-4 weeks. For Penta 1 and Penta 3, 23.5% and 15.7% were given late respectively. A quarter of measles vaccines were not administered or were scheduled after the recommended age. Vaccinations that were not administered within the recommended age ranges were associated with mothers’ poor education level, multiple siblings, low socio-economic status and living in rural areas. Conclusion A significant delay in receipt of infant vaccines is found in Senegal while vaccine coverage is suboptimal. The national expanded program on immunization should consider measuring age at immunization or using seroepidemiological data to better monitor its impact.
Collapse
Affiliation(s)
- Mouhamed Abdou Salam Mbengue
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF).,University of the Witwatersrand, Faculty of Health Sciences, School of Public Health, Johannesburg- South Africa
| | - Aminata Mboup
- Department of Preventive Medecine, University of Laval, Québec, QC, Canada
| | - Indou Deme Ly
- Centre Hospitalier National d'Enfants Albert Royer, Faculty of Medecine, Cheikh Anta Diop University, Dakar, Senegal
| | - Adama Faye
- Department of Public Health, Faculty of Medecine, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Moussa Thiam
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF)
| | - Birahim Pierre Ndiaye
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF)
| | - Tandakha Ndiaye Dieye
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF).,Laboratory of Immunology, Cheikh Anta Diop University, Dakar, Senegal
| | - Souleymane Mboup
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF)
| |
Collapse
|
15
|
Garg R, Babiuk L, van Drunen Littel-van den Hurk S, Gerdts V. A novel combination adjuvant platform for human and animal vaccines. Vaccine 2017; 35:4486-4489. [PMID: 28599794 DOI: 10.1016/j.vaccine.2017.05.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
Adjuvants are crucial components of many vaccines. They are used to improve the immunogenicity of vaccines with the aim of conferring long-term protection, to enhance the efficacy of vaccines in newborns, elderly or immunocompromised persons, and to reduce the amount of antigen or the number of doses required to elicit effective immunity. Novel combination adjuvants have been tested in both candidate animals and humans vaccines and have generated encouraging results. Recently, we developed a combination adjuvant platform (TriAdj) comprising of three components, namely a TLR agonist, either polyI:C or CpG oligodeoxynucleotides (ODN), host defense peptide and polyphosphazene. This adjuvant platform is stable and highly effective in a wide range of animal and human vaccines tested in mice, cotton rats, pigs, sheep, and koalas. TriAdj with various vaccines antigens induced effective long-term humoral and cellular immunity. Moreover, the adjuvant platform is suitable for maternal immunization and highly effective in neonates even in the presence of maternal antibodies. This novel vaccine platform, offers excellent opportunity for use in present and future generations of vaccines against multiple infectious agents and targets challenging populations.
Collapse
Affiliation(s)
- Ravendra Garg
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | | | - Sylvia van Drunen Littel-van den Hurk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| |
Collapse
|
16
|
Protective Role of Passively Transferred Maternal Cytokines against Bordetella pertussis Infection in Newborn Piglets. Infect Immun 2017; 85:IAI.01063-16. [PMID: 28167667 DOI: 10.1128/iai.01063-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/27/2017] [Indexed: 11/20/2022] Open
Abstract
Maternal vaccination represents a potential strategy to protect both the mother and the offspring against life-threatening infections. This protective role has mainly been associated with antibodies, but the role of cell-mediated immunity, in particular passively transferred cytokines, is not well understood. Here, using a pertussis model, we have demonstrated that immunization of pregnant sows with heat-inactivated bacteria leads to induction of a wide range of cytokines (e.g., tumor necrosis factor alpha [TNF-α], gamma interferon [IFN-γ], interleukin-6 [IL-6], IL-8, and IL-12/IL-23p40) in addition to pertussis-specific antibodies. These cytokines can be detected in the sera and colostrum/milk of vaccinated sows and subsequently were detected at significant levels in the serum and bronchoalveolar lavage fluid of piglets born to vaccinated sows together with pertussis-specific antibodies. In contrast, active vaccination of newborn piglets with heat-inactivated bacteria induced high levels of specific IgG and IgA but no cytokines. Although the levels of antibodies in vaccinated piglets were comparable to those of passively transferred antibodies, no protection against Bordetella pertussis infection was observed. Thus, our results demonstrate that a combination of passively transferred cytokines and antibodies is crucial for disease protection. The presence of passively transferred cytokines/antibodies influences the cytokine secretion ability of splenocytes in the neonate, which provides novel evidence that maternal immunization can influence the newborn's cytokine milieu and may impact immune cell differentiation (e.g., Th1/Th2 phenotype). Therefore, these maternally derived cytokines may play an essential role both as mediators of early defense against infections and possibly as modulators of the immune repertoire of the offspring.
Collapse
|
17
|
Gupta S, Campbell H, Dolan GP, Kapadia SJ, Andrews N, Amirthalingam G. Vaccination in pregnancy to prevent pertussis in early infancy. Hippokratia 2016. [DOI: 10.1002/14651858.cd010923.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Saurabh Gupta
- Ambition Health Private Limited; Public Health, Epidemiology and Biostatistics; 120, Good Earth City Centre Sector 50 Gurgaon India 122018
| | - Helen Campbell
- Public Health England; Department of Immunisation, Hepatitis and Blood Safety; 61 Colindale Avenue Colindale London UK NW9 5EQ
| | - Gayle P Dolan
- Public Health England; North East PHE Centre; Floor 2, Citygate, Gallowgate Newcastle upon Tyne UK NE1 4WH
| | - Smita J Kapadia
- Public Health England, East of England; Health Protection Team; Goodman House Harlow Harlow Essex UK CM20 2ET
| | - Nick Andrews
- Public Health England; Department of Statistics Modelling and Economics, Centre for Infectious Disease Surveillance and Control; 61 Colindale Avenue Colindale London UK NW9 5EQ
| | - Gayatri Amirthalingam
- Public Health England; Department of Immunisation, Hepatitis and Blood Safety; 61 Colindale Avenue Colindale London UK NW9 5EQ
| |
Collapse
|
18
|
Gerdts V, van Drunen Littel-van den Hurk S, Potter A. Protection of neonates and infants by maternal immunization. Expert Rev Vaccines 2016; 15:1347-1349. [PMID: 27248694 DOI: 10.1080/14760584.2016.1195266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Volker Gerdts
- a Vaccine and Infectious Disease Organization-International Vaccine Centre , Saskatoon , SK , Canada
| | | | - Andrew Potter
- a Vaccine and Infectious Disease Organization-International Vaccine Centre , Saskatoon , SK , Canada
| |
Collapse
|
19
|
Pray IW, Swanson DJ, Ayvar V, Muro C, Moyano LM, Gonzalez AE, Garcia HH, O’Neal SE, Cysticercosis Working Group in Peru. GPS Tracking of Free-Ranging Pigs to Evaluate Ring Strategies for the Control of Cysticercosis/Taeniasis in Peru. PLoS Negl Trop Dis 2016; 10:e0004591. [PMID: 27035825 PMCID: PMC4818035 DOI: 10.1371/journal.pntd.0004591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/08/2016] [Indexed: 11/18/2022] Open
Abstract
Background Taenia solium, a parasitic cestode that affects humans and pigs, is the leading cause of preventable epilepsy in the developing world. T. solium eggs are released into the environment through the stool of humans infected with an adult intestinal tapeworm (a condition called taeniasis), and cause cysticercosis when ingested by pigs or other humans. A control strategy to intervene within high-risk foci in endemic communities has been proposed as an alternative to mass antihelminthic treatment. In this ring strategy, antihelminthic treatment is targeted to humans and pigs residing within a 100 meter radius of a pig heavily-infected with cysticercosis. Our aim was to describe the roaming ranges of pigs in this region, and to evaluate whether the 100 meter radius rings encompass areas where risk factors for T. solium transmission, such as open human defecation and dense pig activity, are concentrated. Methodology/Principal Findings In this study, we used Global Positioning System (GPS) devices to track pig roaming ranges in two rural villages of northern Peru. We selected 41 pigs from two villages to participate in a 48-hour tracking period. Additionally, we surveyed all households to record the locations of open human defecation areas. We found that pigs spent a median of 82.8% (IQR: 73.5, 94.4) of their time roaming within 100 meters of their homes. The size of home ranges varied significantly by pig age, and 93% of the total time spent interacting with open human defecation areas occurred within 100 meters of pig residences. Conclusions/Significance These results indicate that 100 meter radius rings around heavily-infected pigs adequately capture the average pig’s roaming area (i.e., home range) and represent an area where the great majority of exposure to human feces occurs. Taenia solium, commonly known as the pork tapeworm, is a parasite that affects humans and pigs. It has a disproportionate impact on low and middle income countries, and is most common in rural areas where free-ranging domestic pigs are common, and access to sanitation is limited. Pigs acquire cysticercosis, the larval stage of the disease, when they ingest T. solium eggs that have been released into the environment through the feces of an infected human host. In this study, we tracked free-ranging pigs with GPS devices, and found that most pigs remained close to their owners’ homes throughout the tracking period, and that the majority of pigs’ interactions with open human feces occurred near their owners’ homes. These findings suggest that 100 meter radius rings around heavily-infected pigs capture the most likely area of pig infection, and support focused control interventions in areas surrounding heavily-infected pigs.
Collapse
Affiliation(s)
- Ian W. Pray
- School of Public Health, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Dallas J. Swanson
- School of Public Health, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Viterbo Ayvar
- Center for Global Health Tumbes, Universidad Peruana Cayetano Heredia, Tumbes, Peru
| | - Claudio Muro
- Center for Global Health Tumbes, Universidad Peruana Cayetano Heredia, Tumbes, Peru
| | - Luz M. Moyano
- Center for Global Health Tumbes, Universidad Peruana Cayetano Heredia, Tumbes, Peru
- Inserm Neuroépidémiologie Tropicale (NET), Institut d'Epidémiologie et de Neurologie Tropicale (IENT), Faculté de Médecine de l'Université de Limoges, Limoges, France
- Office of Training and Research. Regional Hospital II-2, Tumbes, Peru
| | - Armando E. Gonzalez
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Hector H. Garcia
- Center for Global Health Tumbes, Universidad Peruana Cayetano Heredia, Tumbes, Peru
- Department of Microbiology, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Seth E. O’Neal
- School of Public Health, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Global Health Tumbes, Universidad Peruana Cayetano Heredia, Tumbes, Peru
- * E-mail:
| | | |
Collapse
|
20
|
Feunou PF, Mielcarek N, Locht C. Reciprocal interference of maternal and infant immunization in protection against pertussis. Vaccine 2016; 34:1062-9. [PMID: 26776471 DOI: 10.1016/j.vaccine.2016.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Because of the current re-emergence of pertussis, vaccination during the 3rd trimester of pregnancy is recommended in several countries in order to protect neonates by placental transfer of maternal antibodies. Here, we examined the potential reciprocal interference of mother and infant vaccination in protection against pertussis in mice. METHODS Female mice were vaccinated with acellular pertussis vaccines and protection against Bordetella pertussis challenge, as well as functional antibodies were measured in their offspring with or without re-vaccination. RESULTS Maternal immunization protected the offspring against B. pertussis challenge, but protection waned quickly and was lost after vaccination of the infant mice with the same vaccine. Without affecting antibody titers, infant vaccination reduced the protective functions of maternally-derived antibodies, evidenced both in vitro and in vivo. Protection induced by infant vaccination was also affected by maternal antibodies. However, when mothers and infants were immunized with two different vaccines, no interference of infant vaccination on the protective effects of maternal antibodies was noted. CONCLUSION It may be important to determine the functionality of antibodies to evaluate potential interference of maternal and infant vaccination in protection against pertussis.
Collapse
Affiliation(s)
- Pascal Feunou Feunou
- Univ Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France; CNRS, UMR 8204, F-59000 Lille, France; Inserm, U1019, F-59000 Lille, France; CHU Lille, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Nathalie Mielcarek
- Univ Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France; CNRS, UMR 8204, F-59000 Lille, France; Inserm, U1019, F-59000 Lille, France; CHU Lille, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Camille Locht
- Univ Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France; CNRS, UMR 8204, F-59000 Lille, France; Inserm, U1019, F-59000 Lille, France; CHU Lille, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France.
| |
Collapse
|
21
|
Gerdts V, Wilson HL, Meurens F, van Drunen Littel - van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA. Large Animal Models for Vaccine Development and Testing. ILAR J 2015; 56:53-62. [DOI: 10.1093/ilar/ilv009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Conrad MS, Johnson RW. The domestic piglet: an important model for investigating the neurodevelopmental consequences of early life insults. Annu Rev Anim Biosci 2014; 3:245-64. [PMID: 25387115 DOI: 10.1146/annurev-animal-022114-111049] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insults in the prenatal and early postnatal period increase the risk for behavioral problems later in life. One hypothesis is that pre- and postnatal stressors influence structural and functional brain plasticity. Understanding the mechanisms is important, but progress has lagged because certain studies in human infants are impossible, while others are extremely difficult. Furthermore, results from popular rodent models are difficult to translate to human infants owing to the substantial differences in brain development and morphology. Because it overcomes some of these obstacles, the domestic piglet has emerged as an important model. Piglets have a gyrencephalic brain that develops similar to the human brain and that can be assessed in vivo by using clinical-grade neuroimaging instruments. Furthermore, owing to their precocial nature, piglets can be weaned at birth and used in behavioral testing paradigms to assess cognitive behavior at an early age. Thus, the domestic piglet represents an important translational model for investigating the neurodevelopmental consequences of early life insults.
Collapse
|
23
|
Pasternak JA, Ng SH, Wilson HL. A single, low dose oral antigen exposure in newborn piglets primes mucosal immunity if administered with CpG oligodeoxynucleotides and polyphosphazene adjuvants. Vet Immunol Immunopathol 2014; 161:211-21. [PMID: 25194591 DOI: 10.1016/j.vetimm.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/05/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
By definition, soluble antigens ingested orally trigger mucosal tolerance such that any subsequent re-exposure by a systemic route results in suppression of immunity. We propose that antigens introduced in extreme early life can readily traverse the gut wall and therefore circumvent induction of mucosal tolerance and instead induce immunity. Piglets were drenched with low-doses of ovalbumin (OVA; 5mg or 0.05 mg) alone, OVA plus adjuvants (CpG oligodeoxynucleotides and PCEP polyphosphazene) or saline within 6h of birth. At 28 days of age, they were administered 10mg OVA plus 1:1 Montanide adjuvant (or saline) via the intraperitoneal (i.p.) route or via the oral route. Serum was obtained on day 28 and day 49 to measure OVA-specific antibodies titres. All piglets boosted orally with OVA plus Montanide, regardless of prior OVA exposure, failed to induce immunity. As expected, piglets drenched with saline but boosted via the i.p. route with OVA plus Montanide showed significant induction of anti-OVA IgA, IgG, IgG1 and IgG2 relative to saline control piglets. Newborn animals drenched with 5mg or 0.05 mg OVA failed to induce oral immunity. A second intramuscular injection in adulthood triggered immunity in the piglets that were drenched with 0.05 mg OVA and boosted initially by the i.p. route suggesting that some systemic lymphocytes were primed despite initial lack of induction of humoral immunity. In contrast, piglets orally immunized with 5mg or 0.05 mg OVA plus adjuvants resulted in significant induction of anti-OVA IgA (5mg only), IgM, IgG, IgG1 and IgG2 in serum relative to saline control piglets as well as significant induction of anti-OVA IgA, IgM (5mg only) IgG, IgG1 (5mg only) or IgG2 relative to piglets drenched with OVA alone. These data clearly show that the response was sensitive to the oral vaccine components and was not simply a response to the i.p. immunization at day 28. This work demonstrates that newborn piglets respond to oral antigens with immunity if re-exposure to the antigen occurs via a systemic route and if adjuvants are included with the oral vaccine administered at birth. These results should be further explored to establish whether early life oral vaccination can be exploited to protect this susceptible population against infectious diseases.
Collapse
Affiliation(s)
- J Alex Pasternak
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| |
Collapse
|
24
|
Allen AC, Mills KHG. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity. Expert Rev Vaccines 2014; 13:1253-64. [PMID: 25017925 DOI: 10.1586/14760584.2014.936391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bordetella pertussis is a Gram-negative bacterium that causes the severe and sometimes lethal respiratory disease whooping cough in infants and children. There has been a recent resurgence in the number of cases of pertussis in several countries with high vaccine coverage. This has been linked with waning or ineffective immunity induced by current acellular pertussis vaccines. These acellular pertussis vaccines are formulated with alum as the adjuvant, which promotes strong antibody responses but is less effective at inducing Th1-type responses crucial for effective bacterial clearance. Studies in animal models have demonstrated that replacing alum with alternative adjuvants, such as toll-like receptor agonists, can promote more robust cell-mediated immunity and confer a high level of protection against infection following respiratory challenge.
Collapse
Affiliation(s)
- Aideen C Allen
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
25
|
Faucette AN, Unger BL, Gonik B, Chen K. Maternal vaccination: moving the science forward. Hum Reprod Update 2014; 21:119-35. [PMID: 25015234 DOI: 10.1093/humupd/dmu041] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infections contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the development and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the efficacy and safety in the pregnant women and the offspring. METHODS An outline was synthesized based on the current status and major gaps in the knowledge of maternal vaccination. A systematic literature search in PUBMED was undertaken using the key words in each section title of the outline to retrieve articles relevant to pregnancy. Articles cited were selected based on relevance and quality. On the basis of the reviewed information, a perspective on the future directions of maternal vaccination research was formulated. RESULTS Maternal vaccination can generate active immune protection in the mother and elicit systemic immunoglobulin G (IgG) and mucosal IgG, IgA and IgM responses to confer neonatal protection. The maternal immune system undergoes significant modulation during pregnancy, which influences responsiveness to vaccines. Significant gaps exist in our knowledge of the efficacy and safety of maternal vaccines, and no maternal vaccines against a large number of old and emerging pathogens are available. Public acceptance of maternal vaccination has been low. CONCLUSIONS To tackle the scientific challenges of maternal vaccination and to provide the public with informed vaccination choices, scientists and clinicians in different disciplines must work closely and have a mechanistic understanding of the systemic, reproductive and mammary mucosal immune responses to vaccines. The use of animal models should be coupled with human studies in an iterative manner for maternal vaccine experimentation, evaluation and optimization. Systems biology approaches should be adopted to improve the speed, accuracy and safety of maternal vaccine targeting.
Collapse
Affiliation(s)
- Azure N Faucette
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Benjamin L Unger
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Bernard Gonik
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA Department of Oncology, Wayne State University, Detroit, MI 48201, USA Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Mills KHG, Gerdts V. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis. J Infect Dis 2014; 209 Suppl 1:S16-9. [PMID: 24626866 DOI: 10.1093/infdis/jit488] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increasing incidence of whooping cough in many developed countries has been linked with waning immunity induced after immunization with acellular pertussis (aP) vaccines. The rational design of an improved aP vaccine requires a full understanding of the mechanism of protective immunity and preclinical studies in animal models. Infection of mice and pigs with Bordetella pertussis has many features of the infection seen in humans and has already provided valuable information on the roles of innate and adaptive immune responses in protection. Recent findings in these models have already indicated that it may be possible to develop an improved aP vaccine based on a formulation that includes a Toll-like receptor agonist as an adjuvant.
Collapse
Affiliation(s)
- Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | | |
Collapse
|
27
|
Guzman-Bautista ER, Garcia-Ruiz CE, Gama-Espinosa AL, Ramirez-Estudillo C, Rojas-Gomez OI, Vega-Lopez MA. Effect of age and maternal antibodies on the systemic and mucosal immune response after neonatal immunization in a porcine model. Immunology 2014; 141:609-16. [PMID: 24754050 DOI: 10.1111/imm.12222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Newborn mammals are highly susceptible to respiratory infections. Although maternal antibodies (MatAb) offer them some protection, they may also interfere with their systemic immune response to vaccination. However, the impact of MatAb on the neonatal mucosal immune response remains incompletely described. This study was performed to determine the effect of ovalbumin (OVA) -specific MatAb on the anti- OVA antibody response in sera, nasal secretions and saliva from specific pathogen-free Vietnamese miniature piglets immunized at 7 or 14 days of age. Our results demonstrated that MatAb increased antigen-specific IgA and IgG responses in sera, and transiently enhanced an early secretory IgA response in nasal secretions of piglets immunized at 7 days of age. In contrast, we detected a lower mucosal (nasal secretion and saliva) anti- OVA IgG response in piglets with MatAb immunized at 14 days of age, compared with piglets with no MatAb, suggesting a modulatory effect of antigen-specific maternal factors on the isotype transfer to the mucosal immune exclusion system. In our porcine model, we demonstrated that passive maternal immunity positively modulated the systemic and nasal immune responses of animals immunized early in life. Our results, therefore, open the possibility of inducing systemic and respiratory mucosal immunity in the presence of MatAb through early vaccination.
Collapse
|
28
|
Smallenburg LCS, van Welie NA, Elvers LH, van Huisseling JCM, Teunis PFM, Versteegh FGA. Decline of IgG pertussis toxin measured in umbilical cord blood, and neonatal and early infant serum. Eur J Clin Microbiol Infect Dis 2014; 33:1541-5. [PMID: 24756212 DOI: 10.1007/s10096-014-2110-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
Maternal pertussis-specific antibodies are passively acquired by infants during pregnancy. An IgG pertussis toxin (IgG-PT) concentration of >20 U/ml is considered to protect neonates against pertussis. To evaluate the IgG concentration at birth and during the first two months of life, we examined the IgG-PT concentration in the umbilical cord blood and three times during the neonatal and early infant period. IgG-PT was measured by validated IgG-specific enzyme-linked immunosorbent assays (ELISA) in umbilical cord blood and in Guthrie card blood samples of umbilical cord blood in 2,790 children, born between 1 August 2006 and 1 December 2008. These measurements were comparable. All children with concentrations of IgG-PT >30 U/ml were included. IgG-PT was also measured in Guthrie card blood samples, when the neonates or early infants were 5 days, 1 month and 2 months old. The mean concentrations of IgG-PT were calculated. The mean concentration of IgG-PT in umbilical cord blood was 60.1 U/ml (LN 4.1; 0.6 SD; n = 103). At the age of 5 days, 1 month and 2 months, the mean concentration of IgG-PT was 40.6 U/ml (LN 3.7; 0.5 SD; n = 103), 20.7 U/ml (LN 3.0; 0.7 SD; n = 62) and 16.7 U/ml (LN 2.8; 0.9 SD; n = 61), respectively. Four percent of the neonates had a concentration of IgG-PT >30 U/ml in umbilical cord blood, which declined to levels around the concentration needed for protection against pertussis (>20 U/ml) in the first two months of life. Hence, it is of great importance to further investigate the safety of maternal immunisation during pregnancy to prevent life-threatening pertussis in newborns.
Collapse
Affiliation(s)
- L C S Smallenburg
- Department of Pediatrics, Groene Hart Ziekenhuis, 2803 HH, Gouda, The Netherlands,
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Pertussis, also known as whooping cough, has recently re-emerged as a major public health threat despite high levels of vaccination against the aetiological agent Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into B. pertussis virulence-factor function. We also discuss the changing epidemiology of pertussis and the challenges facing vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies.
Collapse
|
30
|
Komba EV, Kimbi EC, Ngowi HA, Kimera SI, Mlangwa JE, Lekule FP, Sikasunge CS, Willingham AL, Johansen MV, Thamsborg SM. Prevalence of porcine cysticercosis and associated risk factors in smallholder pig production systems in Mbeya region, southern highlands of Tanzania. Vet Parasitol 2013; 198:284-91. [DOI: 10.1016/j.vetpar.2013.09.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/07/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022]
|
31
|
Buchanan RM, Mertins S, Wilson HL. Oral antigen exposure in extreme early life in lambs influences the magnitude of the immune response which can be generated in later life. BMC Vet Res 2013; 9:160. [PMID: 23937675 PMCID: PMC3751536 DOI: 10.1186/1746-6148-9-160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 08/08/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous investigations in newborn lambs determined that adenovirus-mediated expression of antigen to a localized region of the gut induced antigen-specific mucosal and systemic immunity. These experiments were limited in that the localized region of the gut to which antigen was introduced was sterile and the influence of colostrum on the antigen was not assessed but they do suggest that mucosal vaccines may be an effective vaccination strategy to protect neonatal lambs. We propose that persistent oral antigen exposure introduced in extreme early life can induce immunity in lambs, despite the presence of commensal bacteria and colostrum. RESULTS To test this hypothesis, conventionally raised newborn lambs (n = 4 per group) were gavaged with ovalbumin (OVA) starting the day after birth for either a single day (2.27 g), every day for 3 days (0.23 g/day), or every day for 3 days then every second day until nine days of age (0.023 g/day). Lambs gavaged with OVA for 3 to 9 days developed significant serum anti-OVA IgG titres (p < 0.05), but not IgA titres, relative to control lambs (n = 4) after 3 and 4 weeks. At 4 weeks of age, lambs were immunized with OVA in Incomplete Freund's Adjuvant via intraperitoneal (i.p.) injection then lambs were euthanized at 7 weeks. Serum anti-OVA IgG titres were further augmented after i.p. immunization indicating immunity persisted and tolerance was not induced. Serum IgA titres remained low regardless of treatment. It is known that i.p. priming of sheep with antigen in Freund's complete adjuvant leads to an enhanced number of IgA and IgG antibody containing cells in the respiratory mucosa (Immunology 53(2):375-384, 1984). Lambs gavaged with a single bolus of 2.27 g OVA prior to i.p. immunization showed very low titres of anti-OVA IgA in the lung lavage. These data suggest that a single, high dose exposure to OVA can promote tolerance which impacts response to systemic vaccination in later life. Lambs gavaged with 0.023 g OVA for 9 days (Group C) generated significant anti-OVA IgA titres in lung (p < 0.001) compared to negative control lambs but no additive effect was observed compared to parenteral control lambs. When splenocytes were re-stimulated with OVA ex vivo, all groups failed to show increased lymphocyte proliferation or interferon (IFN)-γ production relative to the parenteral control group. CONCLUSIONS In agreement with our hypothesis, persistent low dose antigen exposure primes humoral antibody production in serum in conventionally raised newborn lambs. In contrast, a single high dose bolus of antigen triggered oral tolerance which negatively impacted the quality and magnitude of the immune response to i.p. immunization in later life. These tangential responses are important as they indicate that the dose and/or repeated oral exposure to antigen, such as that which may be found in the neonate's environment, may promote immunity or alternatively it may negatively impact responses to parenteral vaccination.
Collapse
|
32
|
Polewicz M, Gracia A, Garlapati S, van Kessel J, Strom S, Halperin SA, Hancock REW, Potter AA, Babiuk LA, Gerdts V. Novel vaccine formulations against pertussis offer earlier onset of immunity and provide protection in the presence of maternal antibodies. Vaccine 2013; 31:3148-55. [PMID: 23684829 DOI: 10.1016/j.vaccine.2013.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/18/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
Whooping cough is a respiratory illness most severe in infants and young children. While the introduction of whole-cell (wP) and acellular pertussis (aP) vaccines has greatly reduced the burden of the disease, pertussis remains a problem in neonates and adolescents. New vaccines are needed that can provide early life and long-lasting protection of infants. Vaccination at an early age, however, is problematic due to the interference with maternally derived antibodies (MatAbs) and the bias towards Th2-type responses following vaccination. Here we report the development of a novel vaccine formulation against pertussis that is highly protective in the presence of MatAbs. We co-formulated pertussis toxoid (PTd) and filamentous hemagglutinin (FHA) with cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN), cationic innate defense regulator (IDR) peptide and polyphosphazene (PP) into microparticle and soluble vaccine formulations and tested them in murine and porcine models in the presence and absence of passive immunity. Vaccines composed of the new adjuvant formulations induced an earlier onset of immunity, higher anti-pertussis IgG2a and IgA titers, and a balanced Th1/Th2-type responses when compared to immunization with Quadracel(®), one of the commercially available vaccines for pertussis. Most importantly, the vaccines offered protection against challenge infection in the presence of passively transferred MatAbs.
Collapse
Affiliation(s)
- Monika Polewicz
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan S7N 5E3, SK, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Animal models for neonatal diseases in humans. Vaccine 2013; 31:2489-99. [DOI: 10.1016/j.vaccine.2012.11.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 01/09/2023]
|
34
|
Pertussis vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
35
|
Acquisition of maternal antibodies both from the placenta and by lactation protects mouse offspring from Yersinia pestis challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1746-50. [PMID: 22933398 DOI: 10.1128/cvi.00455-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Artificially passive immunization has been demonstrated to be effective against Yersinia pestis infection in animals. However, maternal antibodies' protective efficacy against plague has not yet been demonstrated. Here, we evaluated the kinetics, protective efficacy, and transmission modes of maternal antibodies, using mice immunized with plague subunit vaccine SV1 (20 μg of F1 and 10 μg of rV270). The results showed that the rV270- and F1-specific antibodies could be detected in the sera of newborn mice (NM) until 10 and 14 weeks of age, respectively. There was no antibody titer difference between the parturient mice immunized with SV1 (PM-S) and the caesarean-section newborns (CSN) from the PM-S or between the lactating mice immunized by SV1 (LM-S) and the cross-fostered mice (CFM) during 3 weeks of lactation. The NM had a 72% protection against 4,800 CFU Y. pestis strain 141 challenge at 6 weeks of age, whereas at 14 weeks of age, NM all succumbed to 5,700 CFU of Y. pestis challenge. After 7 weeks of age, CFM had an 84% protection against 5,000 CFU of Y. pestis challenge. These results indicated that maternal antibodies induced by the plague subunit vaccine in mother mice can be transferred to NM by both placenta and lactation. Passive antibodies from the immunized mothers could persist for 3 months and provide early protection for NM. The degree of early protection is dependent on levels of the passively acquired antibody. The results indicate that passive immunization should be an effective countermeasure against plague during its epidemics.
Collapse
|
36
|
Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol 2011; 20:50-7. [PMID: 22153753 PMCID: PMC7173122 DOI: 10.1016/j.tim.2011.11.002] [Citation(s) in RCA: 716] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
Abstract
An animal model to study human infectious diseases should accurately reproduce the various aspects of disease. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of anatomy, genetics and physiology, and represent an excellent animal model to study various microbial infectious diseases. Indeed, experiments in pigs are much more likely to be predictive of therapeutic treatments in humans than experiments in rodents. In this review, we highlight the numerous advantages of the pig model for infectious disease research and vaccine development and document a few examples of human microbial infectious diseases for which the use of pigs as animal models has contributed to the acquisition of new knowledge to improve both animal and human health.
Collapse
Affiliation(s)
- François Meurens
- Institut National de la Recherche Agronomique, Unité de Recherche 1282, Infectiologie Animale et Santé Publique, 37380, Nouzilly (Tours), France.
| | | | | | | | | |
Collapse
|
37
|
Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E. The fecal virome of pigs on a high-density farm. J Virol 2011; 85:11697-708. [PMID: 21900163 PMCID: PMC3209269 DOI: 10.1128/jvi.05217-11] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/23/2011] [Indexed: 12/14/2022] Open
Abstract
Swine are an important source of proteins worldwide but are subject to frequent viral outbreaks and numerous infections capable of infecting humans. Modern farming conditions may also increase viral transmission and potential zoonotic spread. We describe here the metagenomics-derived virome in the feces of 24 healthy and 12 diarrheic piglets on a high-density farm. An average of 4.2 different mammalian viruses were shed by healthy piglets, reflecting a high level of asymptomatic infections. Diarrheic pigs shed an average of 5.4 different mammalian viruses. Ninety-nine percent of the viral sequences were related to the RNA virus families Picornaviridae, Astroviridae, Coronaviridae, and Caliciviridae, while 1% were related to the small DNA virus families Circoviridae, and Parvoviridae. Porcine RNA viruses identified, in order of decreasing number of sequence reads, consisted of kobuviruses, astroviruses, enteroviruses, sapoviruses, sapeloviruses, coronaviruses, bocaviruses, and teschoviruses. The near-full genomes of multiple novel species of porcine astroviruses and bocaviruses were generated and phylogenetically analyzed. Multiple small circular DNA genomes encoding replicase proteins plus two highly divergent members of the Picornavirales order were also characterized. The possible origin of these viral genomes from pig-infecting protozoans and nematodes, based on closest sequence similarities, is discussed. In summary, an unbiased survey of viruses in the feces of intensely farmed animals revealed frequent coinfections with a highly diverse set of viruses providing favorable conditions for viral recombination. Viral surveys of animals can readily document the circulation of known and new viruses, facilitating the detection of emerging viruses and prospective evaluation of their pathogenic and zoonotic potentials.
Collapse
Affiliation(s)
- Tongling Shan
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
- Zoonosis and Comparative Medicine Group, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Peter Simmonds
- Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford, California
| | - Adam Moeser
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| |
Collapse
|
38
|
Polewicz M, Gracia A, Buchanan R, Strom S, Halperin SA, Potter AA, Babiuk LA, Gerdts V. Influence of maternal antibodies on active pertussis toxoid immunization of neonatal mice and piglets. Vaccine 2011; 29:7718-26. [DOI: 10.1016/j.vaccine.2011.07.135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
|
39
|
Halperin BA, Morris A, Mackinnon-Cameron D, Mutch J, Langley JM, McNeil SA, Macdougall D, Halperin SA. Kinetics of the antibody response to tetanus-diphtheria-acellular pertussis vaccine in women of childbearing age and postpartum women. Clin Infect Dis 2011; 53:885-92. [PMID: 21946190 DOI: 10.1093/cid/cir538] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Because adolescents and adults act as a primary source of pertussis infection for infants, vaccination of mothers immediately postpartum is a potential strategy to reduce transmission (cocoon strategy). For this to be effective, high levels of antibodies must be achieved rapidly after vaccination. We sought to determine whether the antibody response to tetanus-diphtheria-acellular pertussis vaccine (Tdap) is sufficiently rapid to support the cocoon strategy. METHODS Two sequential studies were performed. The first was a nonrandomized, open study of a 5-pertussis-component Tdap vaccine (tetanus toxoid, diphtheria toxoid, pertussis toxoid [PT], filamentous hemagglutinin [FHA], fimbriae types 2 and 3 [FIM], and pertactin [PRN]) given to women of childbearing age; the second was a randomized, open study of Tdap or no vaccine in postpartum women. Serum levels of immunoglobin (Ig) G and IgA against pertussis antigens, serum levels of IgG against diphtheria and tetanus, and breast milk levels of IgA against pertussis antigens were measured at various times after vaccination. RESULTS In both studies, the antibody response was relatively rapid, with serum IgG and IgA levels beginning to increase noticeably by days 5-7 and approaching peak levels by day 14. Greater than 68% and 84.4% of IgG and IgA responders, respectively, achieved ≥ 90% of their maximum titer by day 14. The diphtheria and tetanus antibody kinetics followed a similar time course. Breast milk levels of IgA against PT, FHA, and FIM were first detectable at day 7, peaked by day 10, and then slowly decreased through day 28. Antibodies against PRN showed a similar response, although the peak occurred at day 14. There were no significant antibody responses in the control group. CONCLUSIONS Although the antibody response to a dose of Tdap in healthy nonpregnant women of child-bearing age and postpartum women occurs by day 14 and is suggestive of an anamnestic immune response, it may not be sufficiently rapid to protect infants in the first weeks of life.
Collapse
Affiliation(s)
- B A Halperin
- Clinical Trials Research Center, Canadian Center for Vaccinology, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Seasonal breeding drives the incidence of a chronic bacterial infection in a free-living herbivore population. Epidemiol Infect 2010; 139:1210-9. [PMID: 20943004 DOI: 10.1017/s0950268810002311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Understanding seasonal changes in age-related incidence of infections can be revealing for disentangling how host heterogeneities affect transmission and how to control the spread of infections between social groups. Seasonal forcing has been well documented in human childhood diseases but the mechanisms responsible for age-related transmission in free-living and socially structured animal populations are still poorly known. Here we studied the seasonal dynamics of Bordetella bronchiseptica in a free-living rabbit population over 5 years and discuss the possible mechanisms of infection. This bacterium has been isolated in livestock and wildlife where it causes respiratory infections that rapidly spread between individuals and persist as subclinical infections. Sera were collected from rabbits sampled monthly and examined using an ELISA. Findings revealed that B. bronchiseptica circulates in the rabbit population with annual prevalence ranging between 88% and 97%. Both seroprevalence and antibody optical density index exhibited 1-year cycles, indicating that disease outbreaks were seasonal and suggesting that long-lasting antibody protection was transient. Intra-annual dynamics showed a strong seasonal signature associated with the recruitment of naive offspring during the breeding period. Infection appeared to be mainly driven by mother-to-litter contacts rather than by interactions with other members of the community. By age 2 months, 65% of the kittens were seropositive.
Collapse
|
41
|
Meyer T, Stratmann-Selke J, Meens J, Schirrmann T, Gerlach GF, Frank R, Dübel S, Strutzberg-Minder K, Hust M. Isolation of scFv fragments specific to OmpD of Salmonella Typhimurium. Vet Microbiol 2010; 147:162-9. [PMID: 20708859 DOI: 10.1016/j.vetmic.2010.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/26/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Pork meat is one of the major sources for human infections with Salmonella enterica subspecies enterica serovars. Further, zoonoses caused by S. enterica subspecies enterica serovars are responsible for substantial economical losses in industrial countries. Quick and reliable detection of this infection is urgently needed to improve consumer security. Due to its capability to identify infections independent of the species, a competitive ELISA is the preferable method for the detection of anti-Salmonella antibodies in serum. Recombinant antibody fragments (scFvs) were isolated from the naive human antibody gene library HAL7 by phage display. Recombinant produced outer membrane protein D (OmpD) of Salmonella Typhimurium was used as antigen. The characterization of the isolated single chain Fv (scFv) antibodies was done by enzyme-linked immunosorbent assay (ELISA), immunoblot, sequencing, epitope mapping and size exclusion chromatography (SEC). The detection of anti-OmpD IgGs in swine sera by competitive ELISA was shown in a proof of principle concept. Furthermore, the developed competitive ELISA would be compatible to a recently published DIVA vaccine, allow to distinguish between infected and vaccinated pigs.
Collapse
Affiliation(s)
- Torsten Meyer
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Morales J, Martínez JJ, Rosetti M, Fleury A, Maza V, Hernandez M, Villalobos N, Fragoso G, de Aluja AS, Larralde C, Sciutto E. Spatial distribution of Taenia solium porcine cysticercosis within a rural area of Mexico. PLoS Negl Trop Dis 2008; 2:e284. [PMID: 18846230 PMCID: PMC2565694 DOI: 10.1371/journal.pntd.0000284] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 08/01/2008] [Indexed: 12/02/2022] Open
Abstract
Cysticercosis is caused by Taenia solium, a parasitic disease that affects humans and rurally bred pigs in developing countries. The cysticercus may localize in the central nervous system of the human, causing neurocysticercosis, the most severe and frequent form of the disease. There appears to be an association between the prevalence of porcine cysticercosis and domestic pigs that wander freely and have access to human feces. In order to assess whether the risk of cysticercosis infection is clustered or widely dispersed in a limited rural area, a spatial analysis of rural porcine cysticercosis was applied to 13 villages of the Sierra de Huautla in Central Mexico. Clustering of cases in specific households would indicate tapeworm carriers in the vicinity, whereas their dispersal would suggest that the ambulatory habits of both humans and pigs contribute to the spread of cysticercosis. A total of 562 pigs were included in this study (August–December 2003). A global positioning system was employed in order to plot the geographic distribution of both cysticercotic pigs and risk factors for infection within the villages. Prevalence of pig tongue cysticercosis varied significantly in sampled villages (p = 0.003), ranging from 0% to 33.3% and averaging 13.3%. Pigs were clustered in households, but no differences in the clustering of cysticercotic and healthy pigs were found. In contrast, the presence of pigs roaming freely and drinking stagnant water correlated significantly with porcine cysticercosis (p = 0.07), as did the absence of latrines (p = 0.0008). High prevalence of porcine cysticercosis proves that transmission is still quite common in rural Mexico. The lack of significant differentiation in the geographical clustering of healthy and cysticercotic pigs weakens the argument that focal factors (e.g., household location of putative tapeworm carriers) play an important role in increasing the risk of cysticercosis transmission in pigs. Instead, it would appear that other wide-ranging biological, physical, and cultural factors determine the geographic spread of the disease. Extensive geographic dispersal of the risk of cysticercosis makes it imperative that control measures be applied indiscriminately to all pigs and humans living in this endemic area. Taenia solium cysticercosis is a parasitic disease that severely affects human health in underdeveloped countries and has re-emerged in North America. The adult parasite lives in the intestines of humans, where it thrives and sheds packages (proglottids) loaded with thousands of eggs that are, in turn, expelled upon defecation. Cysticercosis occurs after tapeworm eggs are ingested by an intermediate host (pig or human) and then hatch, migrate, and lodge in the host's tissues, where they develop onto larval cysticerci. Deficient hygiene, inadequate feces disposal, outdoor defecation, freely roaming pigs, and inadequate meat inspection promote transmission. Success in lowering transmission is limited by the complex network of biological and social factors that maintain the endemia. Effective control will require social development and powerful, sustained interventions targeted at the transmission cycle's crucial nodes. Rural pigs are obligate intermediate hosts and thus prime targets for control through vaccination and treatment. It has been proposed that pigs be used as sentinels to monitor environmental T. solium contamination. We conducted a spatial study of cysticercotic pigs among 13 neighboring villages in rural Central Mexico, constituting the first step of an attempt to discover a cost-effective and accurately targeted control intervention. Cysticercotic pigs were not found clustered in specific households, suggesting that the risk of infection is widely dispersed in the area and indicating that extensive and inclusive control measures are needed.
Collapse
Affiliation(s)
- Julio Morales
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Juan Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marcos Rosetti
- Department of Informatics, University of Sussex, United Kingdom
| | - Agnes Fleury
- Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, México
| | - Victor Maza
- Secretaría de Desarrollo Agropecuario, Dirección General de Ganadería, Gobierno del Estado de Morelos, Cuernavaca, México
| | - Marisela Hernandez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Nelly Villalobos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aline S. de Aluja
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carlos Larralde
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
43
|
Pertussis vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
44
|
Elahi S, Holmstrom J, Gerdts V. The benefits of using diverse animal models for studying pertussis. Trends Microbiol 2007; 15:462-8. [DOI: 10.1016/j.tim.2007.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/31/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
45
|
Mooi FR, de Greeff SC. The case for maternal vaccination against pertussis. THE LANCET. INFECTIOUS DISEASES 2007; 7:614-24. [PMID: 17537674 DOI: 10.1016/s1473-3099(07)70113-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite high vaccine coverage, the incidence of pertussis is increasing in a number of countries. Particularly alarming is the increase of pertussis in infants too young to be (fully) vaccinated, because the highest morbidity and mortality is observed in this category. Maternal vaccination offers the possibility to protect infants from birth until immunity is induced by active vaccination, and has been shown to be effective and safe for tetanus over long periods of time. Maternal vaccination studies with whole-cell pertussis vaccines have not shown serious adverse effects in mother and child. In one study, protection of newborn babies was found. Additional support for the efficacy of maternal vaccination comes from studies showing that transfer of antibodies confers protection against pertussis. Maternal vaccination might be an effective way to decrease morbidity and mortality caused by pertussis in newborn babies.
Collapse
Affiliation(s)
- Frits R Mooi
- Laboratory for Infectious Diseases and Perinatal Screening, National Institute of Public Health and the Environment, Bilthoven, Netherlands.
| | | |
Collapse
|
46
|
Lu W, Zhao Z, Zhao Y, Yu S, Zhao Y, Fan B, Kacskovics I, Hammarström L, Li N. Over-expression of the bovine FcRn in the mammary gland results in increased IgG levels in both milk and serum of transgenic mice. Immunology 2007; 122:401-8. [PMID: 17608809 PMCID: PMC2266012 DOI: 10.1111/j.1365-2567.2007.02654.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from catabolism and is also responsible for IgG absorption in the neonatal small intestine. However, whether it mediates the transfer of IgG from plasma to milk still remains speculative. In the present study, we have generated transgenic mice that over-express the bovine FcRn (bFcRn) in their lactating mammary glands. Significantly increased IgG levels were observed in the sera and milk from transgenic animals, suggesting that the over-expressed bFcRn could bind and protect endogenous mouse IgG and thus extend its lifespan. We also found that injected human IgG showed a significantly longer half-life (7-8 days) in the transgenic mice than in controls (2.9 days). Altogether, the data suggested that bFcRn could bind both mouse and human IgG, showing a cross-species FcRn-IgG binding activity. However, we found no selective accumulation of endogenous mouse IgG or injected bovine IgG in the milk of the transgenic females, supporting a previous hypothesis that IgG was transported from serum to milk in an inverse correlation to its binding affinity to FcRn.
Collapse
Affiliation(s)
- Wei Lu
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wolfe DN, Kirimanjeswara GS, Goebel EM, Harvill ET. Comparative role of immunoglobulin A in protective immunity against the Bordetellae. Infect Immun 2007; 75:4416-22. [PMID: 17591791 PMCID: PMC1951171 DOI: 10.1128/iai.00412-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genus Bordetella includes a group of closely related mammalian pathogens that cause a variety of respiratory diseases in a long list of animals (B. bronchiseptica) and whooping cough in humans (B. pertussis and B. parapertussis). While past research has examined how these pathogens are eliminated from the lower respiratory tract, the host factors that control and/or clear the bordetellae from the upper respiratory tract remain unclear. We hypothesized that immunoglobulin A (IgA), the predominant mucosal antibody isotype, would have a protective role against these mucosal pathogens. IgA(-/-) mice were indistinguishable from wild-type mice in their control and clearance of B. pertussis or B. parapertussis, suggesting that IgA is not crucial to immunity to these organisms. However, naïve and convalescent IgA(-/-) mice were defective in reducing the numbers of B. bronchiseptica in the upper respiratory tract compared to wild-type controls. Passively transferred serum from convalescent IgA(-/-) mice was not as effective as serum from convalescent wild-type mice in clearing this pathogen from the tracheae of naive recipient mice. IgA induced by B. bronchiseptica infection predominantly recognized lipopolysaccharide-containing O-antigen, and antibodies against O-antigen were important to bacterial clearance from the trachea. Since an IgA response contributes to the control of B. bronchiseptica infection of the upper respiratory tract, immunization strategies aimed at inducing B. bronchiseptica-specific IgA may be beneficial to preventing the spread of this bacterium among domestic animal populations.
Collapse
Affiliation(s)
- Daniel N Wolfe
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
48
|
Becker MI, De Ioannes AE, León C, Ebensperger LA. Females of the communally breeding rodent, Octodon degus, transfer antibodies to their offspring during pregnancy and lactation. J Reprod Immunol 2007; 74:68-77. [PMID: 17276515 DOI: 10.1016/j.jri.2007.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 10/30/2006] [Accepted: 01/03/2007] [Indexed: 11/24/2022]
Abstract
Females in numerous rodent species engage in communal nesting and breeding, meaning that they share a nest to rear their young together. One potential benefit to communally nesting mothers is that infants improve their immunocompetence. Thus, suckling from two or more females might provide newborns with a more diverse array of antibodies and defensive cells. As a first step toward testing the immunocompetence hypothesis, we assessed whether female degus (Octodon degus), a communally nesting and breeding caviomorph rodent, transfer immunoglobulins to their young through the yolk sac or placenta while in the uterus and, during lactation, through milk. With this aim, adult degu females were immunized with four antigens, including two mollusk hemocyanins from Concholepas and Megathura (CCH and KLH, respectively), porcine thyroglobulin and tetanus toxoid. Specific antibodies against the experimental antigens were used to track the origin of antibodies in the young. To establish the presence of specific antibodies of IgG and IgA isotypes in sera and milk of animals, an indirect enzyme-linked immunosorbent assay (ELISA) was developed. Degu females produced specific antibodies against antigens not found in their natural environment, and mothers were able to transfer the induced antibodies to their litters during pregnancy (IgG) and during lactation (IgA). However, we recorded only limited evidence of degu offspring acquiring antibodies from lactating mothers other than their own, giving little support to the increased immunocompetence hypothesis.
Collapse
|
49
|
Forsyth KD, Wirsing von Konig CH, Tan T, Caro J, Plotkin S. Prevention of pertussis: Recommendations derived from the second Global Pertussis Initiative roundtable meeting. Vaccine 2007; 25:2634-42. [PMID: 17280745 DOI: 10.1016/j.vaccine.2006.12.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/16/2006] [Accepted: 12/10/2006] [Indexed: 10/23/2022]
Abstract
The Global Pertussis Initiative (GPI) was established in 2001 to assess the global extent of the ongoing problem of pertussis and to evaluate and prioritize pertussis control strategies. Exchange of data, knowledge, and experience, facilitated by discussion and debate, resulted in the formulation, in 2002, of the following recommendation: all countries should consider expanding existing vaccination strategies to include adding pertussis booster doses to pre-school children (4-6 years old), to adolescents, and to those specific adults that have the highest risk of transmitting Bordetella pertussis infection to vulnerable infants. The GPI met again in 2005, where it reinforced its previous recommendation for universal adolescent immunization. Additionally, the GPI recommended implementation of the cocoon strategy (immunization of family members and close contacts of the newborn) in countries where it is economically feasible, and encouraged efforts toward global standardization of pertussis disease clinical definitions and diagnostics. Universal adult vaccination is a logical goal for the ultimate elimination of pertussis disease, but feasibility issues remain obstacles to implementation.
Collapse
Affiliation(s)
- Kevin D Forsyth
- Department of Pediatrics, Flinders Medical Centre and Flinders University, Adelaide, South Australia.
| | | | | | | | | |
Collapse
|