1
|
Wang A, Cordova M, Navarre WW. Evolutionary and functional divergence of Sfx, a plasmid-encoded H-NS homolog, underlies the regulation of IncX plasmid conjugation. mBio 2025; 16:e0208924. [PMID: 39714162 PMCID: PMC11796372 DOI: 10.1128/mbio.02089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Conjugative plasmids are widespread among prokaryotes, highlighting their evolutionary success. Conjugation systems on most natural plasmids are repressed by default. The negative regulation of F-plasmid conjugation is partially mediated by the chromosomal nucleoid-structuring protein (H-NS). Recent bioinformatic analyses have revealed that plasmid-encoded H-NS homologs are widespread and exhibit high sequence diversity. However, the functional roles of most of these homologs and the selective forces driving their phylogenetic diversification remain unclear. In this study, we characterized the functionality and evolution of Sfx, a H-NS homolog encoded by the model IncX2 plasmid R6K. We demonstrate that Sfx, but not chromosomal H-NS, can repress R6K conjugation. Notably, we find evidence of positive selection acting on the ancestral Sfx lineage. Positively selected sites are located in the dimerization, oligomerization, and DNA-binding interfaces, many of which contribute to R6K repression activity-indicating that adaptive evolution drove the functional divergence of Sfx. We additionally show that Sfx can physically interact with various chromosomally encoded proteins, including H-NS, StpA, and Hha. Hha enhances the ability of Sfx to regulate R6K conjugation, suggesting that Sfx retained functionally important interactions with chromosomal silencing proteins. Surprisingly, the loss of Sfx does not negatively affect the stability or dissemination of R6K in laboratory conditions, reflecting the complexity of selective pressures favoring conjugation repression. Overall, our study sheds light on the functional and evolutionary divergence of a plasmid-borne H-NS-like protein, highlighting how these loosely specific DNA-binding proteins evolved to specifically regulate different plasmid functions.IMPORTANCEConjugative plasmids play a crucial role in spreading antimicrobial resistance and virulence genes. Most natural conjugative plasmids conjugate only under specific conditions. Therefore, studying the molecular mechanisms underlying conjugation regulation is essential for understanding antimicrobial resistance and pathogen evolution. In this study, we characterized the conjugation regulation of the model IncX plasmid R6K. We discovered that Sfx, a H-NS homolog carried by the plasmid, represses conjugation. Molecular evolutionary analyses combined with gain-of-function experiments indicate that positive selection underlies the conjugation repression activity of Sfx. Additionally, we demonstrate that the loss of Sfx does not adversely affect R6K maintenance under laboratory conditions, suggesting additional selective forces favoring Sfx carriage. Overall, this work underscores the impact of protein diversification on plasmid biology, enhancing our understanding of how molecular evolution affects broader plasmid ecology.
Collapse
Affiliation(s)
- Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martha Cordova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Hoang J, Stoebel DM. The transcriptional response to low temperature is weakly conserved across the Enterobacteriaceae. mSystems 2024; 9:e0078524. [PMID: 39589147 DOI: 10.1128/msystems.00785-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type Escherichia coli, Salmonella enterica, Citrobacter rodentium, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens, as well as ∆rpoS strains of E. coli and S. enterica. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there were only 16 differentially expressed genes in common among the six species. Species-specific transcriptional patterns of shared genes were a prominent cause of this lack of conservation. Gene ontology enrichment of regulated genes suggested many species-specific phenotypic responses to temperature changes, but enriched terms associated with iron metabolism, central metabolism, and biofilm formation were implicated in at least half of the species. The alternative sigma factor RpoS regulated about 200 genes between 37°C and 15°C in both E. coli and S. enterica, with only 83 genes in common between the two species. Overall, there was limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically. This study suggests that species-specific patterns of transcription of shared genes, rather than horizontal acquisition of unique genes, are the major reason for the lack of conservation of the transcriptomic response to low temperature. IMPORTANCE We studied how different species of bacteria from the same Family (Enterobacteriaceae) change the expression of their genes in response to a decrease in temperature. Using de novo-generated parallel RNA-seq data sets, we found that the six species in this study change the level of expression of many of their genes in response to a shift from human body temperature (37°C) to a temperature that might be found out of doors (15°C). Surprisingly, there were very few genes that change expression in all six species. This was due in part to differences in gene content, and in part due to shared genes with distinct expression profiles between the species. This study is important to the field because it illustrates that closely related species can share many genes but not use those genes in the same way in response to the same environmental change.
Collapse
Affiliation(s)
- Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
3
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Van Hofwegen DJ, Hovde CJ, Minnich SA. Comparison of Yersinia enterocolitica DNA Methylation at Ambient and Host Temperatures. EPIGENOMES 2023; 7:30. [PMID: 38131902 PMCID: PMC10742451 DOI: 10.3390/epigenomes7040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogenic bacteria recognize environmental cues to vary gene expression for host adaptation. Moving from ambient to host temperature, Yersinia enterocolitica responds by immediately repressing flagella synthesis and inducing the virulence plasmid (pYV)-encoded type III secretion system. In contrast, shifting from host to ambient temperature requires 2.5 generations to restore motility, suggesting a link to the cell cycle. We hypothesized that differential DNA methylation contributes to temperature-regulated gene expression. We tested this hypothesis by comparing single-molecule real-time (SMRT) sequencing of Y. enterocolitica DNA from cells growing exponentially at 22 °C and 37 °C. The inter-pulse duration ratio rather than the traditional QV scoring was the kinetic metric to compare DNA from cells grown at each temperature. All 565 YenI restriction sites were fully methylated at both temperatures. Among the 27,118 DNA adenine methylase (Dam) sites, 42 had differential methylation patterns, while 17 remained unmethylated regardless of the temperature. A subset of the differentially methylated Dam sites localized to promoter regions of predicted regulatory genes including LysR-type and PadR-like transcriptional regulators and a cyclic-di-GMP phosphodiesterase. The unmethylated Dam sites localized with a bias to the replication terminus, suggesting they were protected from Dam methylase. No cytosine methylation was detected at Dcm sites.
Collapse
Affiliation(s)
| | | | - Scott A. Minnich
- Department of Animal Veterinary and Food Science, University of Idaho, Moscow, ID 83843, USA; (D.J.V.H.); (C.J.H.)
| |
Collapse
|
5
|
Erkelens AM, Qin L, van Erp B, Miguel-Arribas A, Abia D, Keek HGJ, Markus D, Cajili MKM, Schwab S, Meijer WJJ, Dame R. The B. subtilis Rok protein is an atypical H-NS-like protein irresponsive to physico-chemical cues. Nucleic Acids Res 2022; 50:12166-12185. [PMID: 36408910 PMCID: PMC9757077 DOI: 10.1093/nar/gkac1064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) play a central role in chromosome organization and environment-responsive transcription regulation. The Bacillus subtilis-encoded NAP Rok binds preferentially AT-rich regions of the genome, which often contain genes of foreign origin that are silenced by Rok binding. Additionally, Rok plays a role in chromosome architecture by binding in genomic clusters and promoting chromosomal loop formation. Based on this, Rok was proposed to be a functional homolog of E. coli H-NS. However, it is largely unclear how Rok binds DNA, how it represses transcription and whether Rok mediates environment-responsive gene regulation. Here, we investigated Rok's DNA binding properties and the effects of physico-chemical conditions thereon. We demonstrate that Rok is a DNA bridging protein similar to prototypical H-NS-like proteins. However, unlike these proteins, the DNA bridging ability of Rok is not affected by changes in physico-chemical conditions. The DNA binding properties of the Rok interaction partner sRok are affected by salt concentration. This suggests that in a minority of Bacillus strains Rok activity can be modulated by sRok, and thus respond indirectly to environmental stimuli. Despite several functional similarities, the absence of a direct response to physico-chemical changes establishes Rok as disparate member of the H-NS family.
Collapse
Affiliation(s)
| | | | - Bert van Erp
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Helena G J Keek
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Dorijn Markus
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Marc K M Cajili
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Wilfried J J Meijer
- Correspondence may also be addressed to Wilfried J.J. Meijer. Tel: +34 91 196 4539;
| | - Remus T Dame
- To whom correspondence should be addressed. Tel: +31 71 527 5605;
| |
Collapse
|
6
|
Degradation of gene silencer is essential for expression of foreign genes and bacterial colonization of the mammalian gut. Proc Natl Acad Sci U S A 2022; 119:e2210239119. [PMID: 36161931 DOI: 10.1073/pnas.2210239119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer drives bacterial evolution. To confer new properties, horizontally acquired genes must overcome gene silencing by nucleoid-associated proteins, such as the heat-stable nucleoid structuring (H-NS) protein. Enteric bacteria possess proteins that displace H-NS from foreign genes, form nonfunctional oligomers with H-NS, and degrade H-NS, raising the question of whether any of these mechanisms play a role in overcoming foreign gene silencing in vivo. To answer this question, we mutagenized the hns gene and identified a variant specifying an H-NS protein that binds foreign DNA and silences expression of the corresponding genes, like wild-type H-NS, but resists degradation by the Lon protease. Critically, Escherichia coli expressing this variant alone fails to produce curli, which are encoded by foreign genes and required for biofilm formation, and fails to colonize the murine gut. Our findings establish that H-NS proteolysis is a general mechanism of derepressing foreign genes and essential for colonization of mammalian hosts.
Collapse
|
7
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
8
|
A Shift to Human Body Temperature (37°C) Rapidly Reprograms Multiple Adaptive Responses in Escherichia coli That Would Facilitate Niche Survival and Colonization. J Bacteriol 2021; 203:e0036321. [PMID: 34516284 PMCID: PMC8544407 DOI: 10.1128/jb.00363-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic time point analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli. Bacteria grown at 23°C under aerobic conditions were shifted to 37°C, and mRNA expression was measured at time points after the shift to 37°C (t = 0.5, 1, and 4 h). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS and directly correlated with RpoS, DsrA, and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 h, gene expression shifted to aerobic respiration pathways and decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid and nucleotides), iron uptake, and host defense. ompT, a gene that confers resistance to antimicrobial peptides, was highly thermoregulated, with a pattern conserved in enteropathogenic and uropathogenic E. coli strains. An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit the survival of the bacterium within the host. IMPORTANCE As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial for survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs.
Collapse
|
9
|
Liu X, Lin S, Liu T, Zhou Y, Wang W, Yao J, Guo Y, Tang K, Chen R, Benedik MJ, Wang X. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella. Nucleic Acids Res 2021; 49:3427-3440. [PMID: 33693785 PMCID: PMC8034616 DOI: 10.1093/nar/gkab137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Lateral gene transfer (LGT) plays a key role in shaping the genome evolution and environmental adaptation of bacteria. Xenogeneic silencing is crucial to ensure the safe acquisition of LGT genes into host pre-existing regulatory networks. We previously found that the host nucleoid structuring protein (H-NS) silences prophage CP4So at warm temperatures yet enables this prophage to excise at cold temperatures in Shewanella oneidensis. However, whether H-NS silences other genes and how bacteria modulate H-NS to regulate the expression of genes have not been fully elucidated. In this study, we discovered that the H-NS silences many LGT genes and the xenogeneic silencing of H-NS relies on a temperature-dependent phosphorylation at warm temperatures in S. oneidensis. Specifically, phosphorylation of H-NS at Ser42 is critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepresses the promoter activity of these genes/operons to enable their expression at cold temperatures. Taken together, our results reveal that the posttranslational modification of H-NS can function as a regulatory switch to control LGT gene expression in host genomes to enable the host bacterium to react and thrive when environmental temperature changes.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Genome-Wide Analyses of the Temperature-Responsive Genetic Loci of the Pectinolytic Plant Pathogenic Pectobacterium atrosepticum. Int J Mol Sci 2021; 22:ijms22094839. [PMID: 34063632 PMCID: PMC8125463 DOI: 10.3390/ijms22094839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.
Collapse
|
11
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
12
|
Zhao X, Shahul Hameed UF, Kharchenko V, Liao C, Huser F, Remington JM, Radhakrishnan AK, Jaremko M, Jaremko Ł, Arold ST, Li J. Molecular basis for the adaptive evolution of environment-sensing by H-NS proteins. eLife 2021; 10:57467. [PMID: 33410747 PMCID: PMC7817174 DOI: 10.7554/elife.57467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/06/2021] [Indexed: 12/02/2022] Open
Abstract
The DNA-binding protein H-NS is a pleiotropic gene regulator in gram-negative bacteria. Through its capacity to sense temperature and other environmental factors, H-NS allows pathogens like Salmonella to adapt their gene expression to their presence inside or outside warm-blooded hosts. To investigate how this sensing mechanism may have evolved to fit different bacterial lifestyles, we compared H-NS orthologs from bacteria that infect humans, plants, and insects, and from bacteria that live on a deep-sea hypothermal vent. The combination of biophysical characterization, high-resolution proton-less nuclear magnetic resonance spectroscopy, and molecular simulations revealed, at an atomistic level, how the same general mechanism was adapted to specific habitats and lifestyles. In particular, we demonstrate how environment-sensing characteristics arise from specifically positioned intra- or intermolecular electrostatic interactions. Our integrative approach clarified the exact modus operandi for H-NS-mediated environmental sensing and suggested that this sensing mechanism resulted from the exaptation of an ancestral protein feature.
Collapse
Affiliation(s)
- Xiaochuan Zhao
- Department of Chemistry, The University of Vermont, Burlington, United States
| | - Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Vladlena Kharchenko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Chenyi Liao
- Department of Chemistry, The University of Vermont, Burlington, United States
| | - Franceline Huser
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Jacob M Remington
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Anand K Radhakrishnan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia.,Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, United States
| |
Collapse
|
13
|
Zamora M, Ziegler CA, Freddolino L, Wolfe AJ. A Thermosensitive, Phase-Variable Epigenetic Switch: pap Revisited. Microbiol Mol Biol Rev 2020; 84:e00030-17. [PMID: 32727743 PMCID: PMC7392537 DOI: 10.1128/mmbr.00030-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has been more than a decade since the last comprehensive review of the phase-variable uropathogen-associated pyelonephritis-associated pilus (pap) genetic switch. Since then, important data have come to light, including additional factors that regulate pap expression, better characterization of H-NS regulation, the structure of the Lrp octamer in complex with pap regulatory DNA, the temperature-insensitive phenotype of a mutant lacking the acetyltransferase RimJ, evidence that key components of the regulatory machinery are acetylated, and new insights into the role of DNA binding by key regulators in shaping both the physical structure and regulatory state of the papI and papBA promoters. This review revisits pap, integrating these newer observations with older ones to produce a new model for the concerted behavior of this virulence-regulatory region.
Collapse
Affiliation(s)
- Mario Zamora
- Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
14
|
Abstract
Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological mechanisms and mathematical models have been well-described, temperature as a control variable is only scarcely applied in bioprocess engineering, and as a conclusion, an exploitation strategy merging both in context has not yet been established. In this review, the most important models for physiological, biochemical, and physical properties governed by temperature are presented and discussed, along with application perspectives. As such, this review provides a toolset for future exploitation perspectives of temperature in bioprocess engineering.
Collapse
|
15
|
Shimada T, Yokoyama Y, Anzai T, Yamamoto K, Ishihama A. Regulatory Role of PlaR (YiaJ) for Plant Utilization in Escherichia coli K-12. Sci Rep 2019; 9:20415. [PMID: 31892694 PMCID: PMC6958661 DOI: 10.1038/s41598-019-56886-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Outside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization). The natural hosts of enterobacterium Escherichia coli are warm-blooded animals, but even outside hosts, E. coli can survive even under stressful environments. On earth, the most common organic materials to be used as nutrients by E. coli are plant-derived components, but up to the present time, the genetic system of E. coli for plant utilization is poorly understand. In the course of gSELEX screening of the regulatory targets for hitherto uncharacterized TFs, we identified in this study the involvement of the IclR-family YiaJ in the regulation of about 20 genes or operons, of which the majority are related to the catabolism of plant-derived materials such as ascorbate, galacturonate, sorbitol, fructose and fructoselysine. Therefore, we propose to rename YiaJ to PlaR (regulator of plant utilization).
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan. .,Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan.
| | - Yui Yokoyama
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Takumi Anzai
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kaneyoshi Yamamoto
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Akira Ishihama
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-0003, Japan. .,Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan.
| |
Collapse
|
16
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
17
|
A binding cooperativity switch driven by synergistic structural swelling of an osmo-regulatory protein pair. Nat Commun 2019; 10:1995. [PMID: 31040281 PMCID: PMC6491433 DOI: 10.1038/s41467-019-10002-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Uropathogenic E. coli experience a wide range of osmolarity conditions before and after successful infection. Stress-responsive regulatory proteins in bacteria, particularly proteins of the Hha family and H-NS, a transcription repressor, sense such osmolarity changes and regulate transcription through unknown mechanisms. Here we use an array of experimental probes complemented by molecular simulations to show that Cnu, a member of the Hha protein family, acts as an exquisite molecular sensor of solvent ionic strength. The osmosensory behavior of Cnu involves a fine-tuned modulation of disorder in the fourth helix and the three-dimensional structure in a graded manner. Order-disorder transitions in H-NS act synergistically with molecular swelling of Cnu contributing to a salt-driven switch in binding cooperativity. Thus, sensitivity to ambient conditions can be imprinted at the molecular level by tuning not just the degree of order in the protein conformational ensemble but also through population redistributions of higher-order molecular complexes. The bacterial protein Cnu together with the transcription repressor H-NS regulate expression of virulence factors in an osmo-sensitive manner. Here authors show that the structure of Cnu swells with decreasing ionic strength driving the oligomerization of H-NS and regulating osmo-sensory response.
Collapse
|
18
|
Król JE. Regulatory loop between the CsrA system and NhaR, a high salt/high pH regulator. PLoS One 2018; 13:e0209554. [PMID: 30589862 PMCID: PMC6307784 DOI: 10.1371/journal.pone.0209554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022] Open
Abstract
In E. coli, under high pH/high salt conditions, a major Na+/H+ antiporter (NhaA) is activated to maintain an internal pH level. Its expression is induced by a specific regulator NhaR, which is also responsible for osmC and pgaA regulation. Here I report that the NhaR regulator affects the carbon storage regulatory Csr system. I found that the expression of all major components of the Csr system-CsrA regulator, CsrB and CsrC small RNAs, and the CsrB and CsrC stability were indirectly affected by nhaR mutation under stress conditions. Using a combination of experimental and in silico analyses, I concluded that the mechanism of regulation included direct and indirect activation of a two-component system (TCS) response regulator-UvrY. NhaR regulation involved interactions with the regulators H-NS and SdiA and was affected by a naturally occurring spontaneous IS5 insertion in the promoter region. A regulatory circuit was proposed and discussed.
Collapse
Affiliation(s)
- Jarosław E. Król
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
19
|
Koo H, Hakim JA, Morrow CD, Crowley MR, Andersen DT, Bej AK. Metagenomic Analysis of Microbial Community Compositions and Cold-Responsive Stress Genes in Selected Antarctic Lacustrine and Soil Ecosystems. Life (Basel) 2018; 8:life8030029. [PMID: 29997353 PMCID: PMC6161096 DOI: 10.3390/life8030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
This study describes microbial community compositions, and various cold-responsive stress genes, encompassing cold-induced proteins (CIPs) and cold-associated general stress-responsive proteins (CASPs) in selected Antarctic lake water, sediment, and soil metagenomes. Overall, Proteobacteria and Bacteroidetes were the major taxa in all metagenomes. Prochlorococcus and Thiomicrospira were highly abundant in waters, while Myxococcus, Anaeromyxobacter, Haliangium, and Gloeobacter were dominant in the soil and lake sediment metagenomes. Among CIPs, genes necessary for DNA replication, translation initiation, and transcription termination were highly abundant in all metagenomes. However, genes for fatty acid desaturase (FAD) and trehalose synthase (TS) were common in the soil and lake sediment metagenomes. Interestingly, the Lake Untersee water and sediment metagenome samples contained histone-like nucleoid structuring protein (H-NS) and all genes for CIPs. As for the CASPs, high abundances of a wide range of genes for cryo- and osmo-protectants (glutamate, glycine, choline, and betaine) were identified in all metagenomes. However, genes for exopolysaccharide biosynthesis were dominant in Lake Untersee water, sediment, and other soil metagenomes. The results from this study indicate that although diverse microbial communities are present in various metagenomes, they share common cold-responsive stress genes necessary for their survival and sustenance in the extreme Antarctic conditions.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Michael R Crowley
- Department of Genetics, Heflin Center Genomics Core, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain View, California, CA 94043, USA.
| | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
Wong YC, Abd El Ghany M, Ghazzali RNM, Yap SJ, Hoh CC, Pain A, Nathan S. Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model. Front Microbiol 2018; 9:1118. [PMID: 29896180 PMCID: PMC5987112 DOI: 10.3389/fmicb.2018.01118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.
Collapse
Affiliation(s)
- Yee-Chin Wong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Moataz Abd El Ghany
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,The Westmead Institute for Medical Research and The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Raeece N M Ghazzali
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
21
|
Liakopoulos A, van der Goot J, Bossers A, Betts J, Brouwer MSM, Kant A, Smith H, Ceccarelli D, Mevius D. Genomic and functional characterisation of IncX3 plasmids encoding bla SHV-12 in Escherichia coli from human and animal origin. Sci Rep 2018; 8:7674. [PMID: 29769695 PMCID: PMC5955891 DOI: 10.1038/s41598-018-26073-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/03/2018] [Indexed: 01/09/2023] Open
Abstract
The blaSHV-12 β-lactamase gene is one of the most prevalent genes conferring resistance to extended-spectrum β-lactams in Enterobacteriaceae disseminating within and between reservoirs, mostly via plasmid-mediated horizontal gene transfer. Yet, studies regarding the biology of plasmids encoding blaSHV-12 are very limited. In this study, we revealed the emergence of IncX3 plasmids alongside IncI1α/γ in blaSHV-12 in animal-related Escherichia coli isolates. Four representative blaSHV-12-encoding IncX3 plasmids were selected for genome sequencing and further genetic and functional characterization. We report here the first complete sequences of IncX3 plasmids of animal origin and show that IncX3 plasmids exhibit remarkable synteny in their backbone, while the major differences lie in their blaSHV-12-flanking region. Our findings indicate that plasmids of this subgroup are conjugative and highly stable, while they exert no fitness cost on their bacterial host. These favourable features might have contributed to the emergence of IncX3 amongst SHV-12-producing E. coli in the Netherlands, highlighting the epidemic potential of these plasmids.
Collapse
Affiliation(s)
- Apostolos Liakopoulos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Institute of Biology, University of Leiden, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Jeanet van der Goot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jonathan Betts
- Department of Bacteriology, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Michael S M Brouwer
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Arie Kant
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Hilde Smith
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Dik Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Dawoud TM, Davis ML, Park SH, Kim SA, Kwon YM, Jarvis N, O’Bryan CA, Shi Z, Crandall PG, Ricke SC. The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review. Front Vet Sci 2017; 4:93. [PMID: 28660201 PMCID: PMC5469892 DOI: 10.3389/fvets.2017.00093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal) stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection.
Collapse
Affiliation(s)
- Turki M. Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Morgan L. Davis
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Si Hong Park
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Sun Ae Kim
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nathan Jarvis
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Corliss A. O’Bryan
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Zhaohao Shi
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Philip G. Crandall
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
23
|
Tramonti A, De Santis F, Pennacchietti E, De Biase D. The yhiM gene codes for an inner membrane protein involved in GABA export in Escherichia coli. AIMS Microbiol 2017; 3:71-87. [PMID: 31294150 PMCID: PMC6604978 DOI: 10.3934/microbiol.2017.1.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
In order to survive the exposure to acid pH, Escherichia coli activates molecular circuits leading from acid tolerance to extreme acid resistance (AR). The activation of the different circuits involves several global and specific regulators affecting the expression of membrane, periplasmic and cytosolic proteins acting at different levels to dampen the harmful consequences of the uncontrolled entry of protons intracellularly. Many genes coding for the structural components of the AR circuits (protecting from pH ≤ 2.5) and their specific transcriptional regulators cluster in a genomic region named AFI (acid fitness island) and respond in the same way to global regulators (such as RpoS and H-NS) as well as to anaerobiosis, alkaline, cold and respiratory stresses, in addition to the acid stress. Notably some genes coding for structural components of AR, though similarly regulated, are non-AFI localised. Amongst these the gadBC operon, coding for the major structural components of the glutamate-based AR system, and the ybaS gene, coding for a glutaminase required for the glutamine-based AR system. The yhiM gene, a non-AFI gene, appears to belong to this group. We mapped the transcription start of the 1.1 kb monocistronic yhiM transcript: it is an adenine residue located 22 nt upstream a GTG start codon. By real-time PCR we show that GadE and GadX equally affect the expression of yhiM under oxidative growth conditions. While YhiM is partially involved in the RpoS-dependent AR, we failed to detect a significant involvement in the glutamate- or glutamine-dependent AR at pH ≤ 2.5. However, when grown in EG at pH 5.0, the yhiM mutant displays impaired GABA export, whereas when YhiM is overexpressed, an increases of GABA export in EG medium in the pH range 2.5-5.5 is observed. Our data suggest that YhiM is a GABA transporter with a physiological role more relevant at mildly acidic pH, but not a key component of AR at pH < 2.5.
Collapse
Affiliation(s)
- Angela Tramonti
- Institute of Molecular Biology and Pathology, CNR, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Fiorenzo De Santis
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Eugenia Pennacchietti
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Daniela De Biase
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
24
|
Narayan A, Campos LA, Bhatia S, Fushman D, Naganathan AN. Graded Structural Polymorphism in a Bacterial Thermosensor Protein. J Am Chem Soc 2017; 139:792-802. [DOI: 10.1021/jacs.6b10608] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India
| | - Luis A. Campos
- National Biotechnology Center, Consejo Superior
de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sandhya Bhatia
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore 560065, India
| | - David Fushman
- Department
of Chemistry and Biochemistry, Center for Biomolecular Structure and
Organization, University of Maryland, College Park, Maryland 20742, United States
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India
| |
Collapse
|
25
|
Anderson MA, Mann MD, Evans MA, Sparks-Thissen RL. The inner membrane protein YhiM is necessary for Escherichia coli growth at high temperatures and low osmolarity. Arch Microbiol 2016; 199:171-175. [PMID: 27629277 DOI: 10.1007/s00203-016-1288-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/16/2016] [Accepted: 09/01/2016] [Indexed: 11/30/2022]
Abstract
To survive, Escherichia coli must be able to survive in rapidly changing environmental conditions including changes in temperature and osmolarity. We have studied the role of the inner membrane protein YhiM in changing environmental conditions. Our data indicate that YhiM is required for normal growth at 37 and 41 °C but not 21 °C. YhiM-deficient cells grown at high temperatures spend more time in lag phase and stop growing at lower cell densities in comparison with their wild-type counterparts. They also have growth defects in low NaCl medium at 37 °C and do not grow at all at 41 °C. The effects of low NaCl can be rescued by addition of KCl or sucrose to the low salt medium. Finally, YhiM-deficient cells fail to grow in dilute medium at 41 °C. These data suggest that YhiM may be important in protecting the cells from changes in temperature and osmolarity.
Collapse
Affiliation(s)
- M A Anderson
- Department of Biology, University of Southern Indiana, 8600 University Blvd, Evansville, IN, 47712, USA
| | - M D Mann
- Department of Biology, University of Southern Indiana, 8600 University Blvd, Evansville, IN, 47712, USA
| | - M A Evans
- Department of Biology, University of Southern Indiana, 8600 University Blvd, Evansville, IN, 47712, USA
| | - R L Sparks-Thissen
- Department of Biology, University of Southern Indiana, 8600 University Blvd, Evansville, IN, 47712, USA.
| |
Collapse
|
26
|
Abstract
Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place. An appreciation of stress responses and their regulation is therefore essential for an understanding of bacterial pathogenesis. This review considers specific stresses in the host environment and their relevance to pathogenesis, with a particular focus on the enteric pathogen Salmonella.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7735, USA; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA.
| | - Elaine R Frawley
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA
| | - Timothy Tapscott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
27
|
The Histone-Like Nucleoid Structuring Protein (H-NS) Is a Negative Regulator of the Lateral Flagellar System in the Deep-Sea Bacterium Shewanella piezotolerans WP3. Appl Environ Microbiol 2016; 82:2388-2398. [PMID: 26873312 DOI: 10.1128/aem.00297-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
Although the histone-like nucleoid structuring protein (H-NS) is well known for its involvement in the adaptation of mesophilic bacteria, such as Escherichia coli, to cold environments and high-pressure stress, an understanding of the role of H-NS in the cold-adapted benthic microorganisms that live in the deep-sea ecosystem, which covers approximately 60% of the earth's surface, is still lacking. In this study, we characterized the function of H-NS in Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1,914 m. Anhns gene deletion mutant (WP3Δhns) was constructed, and comparative whole-genome microarray analysis was performed. H-NS had a significant influence (fold change, >2) on the expression of a variety of WP3 genes (274 and 280 genes were upregulated and downregulated, respectively), particularly genes related to energy production and conversion. Notably, WP3Δhnsexhibited higher expression levels of lateral flagellar genes than WP3 and showed enhanced swarming motility and lateral flagellar production compared to those of WP3. The DNA gel mobility shift experiment showed that H-NS bound specifically to the promoter of lateral flagellar genes. Moreover, the high-affinity binding sequences of H-NS were identified by DNase I protection footprinting, and the results support the "binding and spreading" model for H-NS functioning. To our knowledge, this is the first attempt to characterize the function of the universal regulator H-NS in a deep-sea bacterium. Our data revealed that H-NS has a novel function as a repressor of the expression of genes related to the energy-consuming secondary flagellar system and to swarming motility.
Collapse
|
28
|
Wasfi R, Elkhatib WF, Khairalla AS. Effects of Selected Egyptian Honeys on the Cellular Ultrastructure and the Gene Expression Profile of Escherichia coli. PLoS One 2016; 11:e0150984. [PMID: 26954570 PMCID: PMC4783026 DOI: 10.1371/journal.pone.0150984] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/21/2016] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to: (i) evaluate the antibacterial activities of three Egyptian honeys collected from different floral sources (namely, citrus, clover, and marjoram) against Escherichia coli; (ii) investigate the effects of these honeys on bacterial ultrastructure; and (iii) assess the anti-virulence potential of these honeys, by examining their impacts on the expression of eight selected genes (involved in biofilm formation, quorum sensing, and stress survival) in the test organism. The minimum inhibitory concentration (MIC) of the honey samples against E. coli ATCC 8739 were assessed by the broth microdilution assay in the presence and absence of catalase enzyme. Impacts of the honeys on the cellular ultrastructure and the expression profiles of the selected genes of E. coli were examined using transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qPCR) analysis, respectively. The susceptibility tests showed promising antibacterial activities of all the tested honeys against E. coli. This was supported by the TEM observations, which revealed “ghost” cells lacking DNA, in addition to cells with increased vacuoles, and/or with irregular shrunken cytoplasm. Among the tested honeys, marjoram exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. The qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Our results indicate that some varieties of the Egyptian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.
Collapse
Affiliation(s)
- Reham Wasfi
- Department of Microbiology & Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Walid F. Elkhatib
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed S. Khairalla
- Department of Microbiology & Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- * E-mail:
| |
Collapse
|
29
|
Abstract
This review provides a brief review of the current understanding of the structure-function relationship of the Escherichia coli nucleoid developed after the overview by Pettijohn focusing on the physical properties of nucleoids. Isolation of nucleoids requires suppression of DNA expansion by various procedures. The ability to control the expansion of nucleoids in vitro has led to purification of nucleoids for chemical and physical analyses and for high-resolution imaging. Isolated E. coli genomes display a number of individually intertwined supercoiled loops emanating from a central core. Metabolic processes of the DNA double helix lead to three types of topological constraints that all cells must resolve to survive: linking number, catenates, and knots. The major species of nucleoid core protein share functional properties with eukaryotic histones forming chromatin; even the structures are different from histones. Eukaryotic histones play dynamic roles in the remodeling of eukaryotic chromatin, thereby controlling the access of RNA polymerase and transcription factors to promoters. The E. coli genome is tightly packed into the nucleoid, but, at each cell division, the genome must be faithfully replicated, divided, and segregated. Nucleoid activities such as transcription, replication, recombination, and repair are all affected by the structural properties and the special conformations of nucleoid. While it is apparent that much has been learned about the nucleoid, it is also evident that the fundamental interactions organizing the structure of DNA in the nucleoid still need to be clearly defined.
Collapse
|
30
|
Guijarro JA, Cascales D, García-Torrico AI, García-Domínguez M, Méndez J. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front Microbiol 2015. [PMID: 26217329 PMCID: PMC4496569 DOI: 10.3389/fmicb.2015.00700] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Virulence gene expression in pathogenic bacteria is modulated by environmental parameters. A key factor in this expression is temperature. Its effect on virulence gene expression in bacteria infecting warm-blooded hosts is well documented. Transcription of virulence genes in these bacteria is induced upon a shift from low environmental to a higher host temperature (37°C). Interestingly, host temperatures usually correspond to the optimum for growth of these pathogenic bacteria. On the contrary, in ectothermic hosts such as fish, molluscs, and amphibians, infection processes generally occur at a temperature lower than that for the optimal growth of the bacteria. Therefore, regulation of virulence gene expression in response to temperature shift has to be modulated in a different way to that which is found in bacteria infecting warm-blooded hosts. The current understanding of virulence gene expression and its regulation in response to temperature in fish-pathogenic bacteria is limited, but constant extension of our knowledge base is essential to enable a rational approach to the problem of the bacterial fish diseases affecting the aquaculture industry. This is an interesting issue and progress needs to be made in order to diminish the economic losses caused by these diseases. The intention of this review is, for the first time, to compile the scattered results existing in the field in order to lay the groundwork for future research. This article is an overview of those relevant virulence genes that are expressed at temperatures lower than that for optimal bacterial growth in different fish-pathogenic bacteria as well as the principal mechanisms that could be involved in their regulation.
Collapse
Affiliation(s)
- José A. Guijarro
- *Correspondence: José A. Guijarro, Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias, Universidad de Oviedo, C/Julían Clavería 6, 33006 Oviedo, Spain,
| | | | | | | | | |
Collapse
|
31
|
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014; 75:1-11. [DOI: 10.1016/j.plasmid.2014.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
32
|
Abstract
Temperature, among other environmental factors, influences the incidence and severity of many plant diseases. Likewise, numerous traits, including the expression of virulence factors, are regulated by temperature. Little is known about the underlying genetic determinants of thermoregulation in plant-pathogenic bacteria. Previously, we showed that the expression of both fliC (encoding flagellin) and syfA (encoding a nonribosomal polypeptide synthetase) was suppressed at high temperatures in Pseudomonas syringae. In this work, we used a high-throughput screen to identify mutations that conferred overexpression of syfA at elevated temperatures (28°C compared to 20°C). Two genes, Psyr_2474, encoding an acyl-coenzyme A (CoA) dehydrogenase, and Psyr_4843, encoding an ortholog of RppH, which in Escherichia coli mediates RNA turnover, contribute to thermoregulation of syfA. To assess the global role of rppH in thermoregulation in P. syringae, RNA sequencing was used to compare the transcriptomes of an rppH deletion mutant and the wild-type strain incubated at 20°C and 30°C. The disruption of rppH had a large effect on the temperature-dependent transcriptome of P. syringae, affecting the expression of 569 genes at either 20°C or 30°C but not at both temperatures. Intriguingly, RppH is involved in the thermoregulation of ribosome-associated proteins, as well as of RNase E, suggesting a prominent role of rppH on the proteome in addition to its effect on the transcriptome.
Collapse
|
33
|
Brambilla L, Morán-Barrio J, Viale AM. Expression of the Escherichia coli ompW colicin S4 receptor gene is regulated by temperature and modulated by the H-NS and StpA nucleoid-associated proteins. FEMS Microbiol Lett 2014; 352:238-44. [PMID: 24444297 DOI: 10.1111/1574-6968.12385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/15/2022] Open
Abstract
The OmpW family consists of a ubiquitous group of small outer membrane (OM) β-barrel proteins of Gram-negative bacteria with proposed roles in environmental adaptation but poorly understood mechanisms of expression. We report here that Escherichia coli K-12 OmpW contents are drastically modified by temperature changes compatible with the leap from the environment to warm-blooded hosts and/or vice versa. Thus, while OmpW is present in the OM of bacteria grown at 37 °C, it sharply disappears at 23 °C with the concomitant acquisition of colicin S4 resistance by the cells. ompW::lacZY fusions indicated that temperature regulation operates at the level of transcription, being ompW expression almost abolished at 23 °C as compared to 37 °C. Moreover, E. coli Δhns mutants lacking H-NS showed reductions in ompW transcription and OmpW contents at 37 °C, indicating positive modulatory roles for this nucleoid-structuring protein in ompW expression. Also, ΔhnsΔstpA double mutants simultaneously lacking H-NS and its paralog StpA showed more severe reductions in ompW expression at 37 °C, resulting in the complete loss of OmpW. The overall results indicate that OmpW contents in E. coli are regulated by both temperature and H-NS and reinforce OmpW functions in bacterial adaptation to warm-blooded hosts.
Collapse
Affiliation(s)
- Luciano Brambilla
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | | | | |
Collapse
|
34
|
Joyeux M, Vreede J. A model of H-NS mediated compaction of bacterial DNA. Biophys J 2013; 104:1615-22. [PMID: 23561538 DOI: 10.1016/j.bpj.2013.02.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 12/26/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) is a nucleoid-associated protein, which is involved in both gene regulation and DNA compaction. H-NS can bind to DNA in two different ways: in trans, by binding to two separate DNA duplexes, or in cis, by binding to different sites on the same duplex. Based on scanning force microscopy imaging and optical trap-driven unzipping assays, it has recently been suggested that DNA compaction may result from the antagonistic effects of H-NS binding to DNA in trans and cis configurations. To get more insight into the compaction mechanism, we constructed a coarse-grained model description of the compaction of bacterial DNA by H-NS. These simulations highlight the fact that DNA compaction indeed results from the subtle equilibrium between several competing factors, which include the deformation dynamics of the plasmid and the several binding modes of protein dimers to DNA, i.e., dangling configurations, cis- and trans-binding. In particular, the degree of compaction is extremely sensitive to the difference in binding energies of the cis and trans configurations. Our simulations also point out that the conformations of the DNA-protein complexes are significantly different in bulk and in planar conditions, suggesting that conformations observed on mica surfaces may differ significantly from those that prevail in living cells.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique UMR5588, Université Joseph Fourier Grenoble 1, St. Martin d'Hères, France.
| | | |
Collapse
|
35
|
H-NS is a novel transcriptional modulator of the ribonucleotide reductase genes in Escherichia coli. J Bacteriol 2013; 195:4255-63. [PMID: 23873909 DOI: 10.1128/jb.00490-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ribonucleotide reductases (RNRs) are essential enzymes for DNA synthesis because they are responsible for the production of the four deoxyribonucleotides (dNTPs) from their corresponding ribonucleotides. Escherichia coli contains two classes of aerobic RNRs, encoded by the nrdAB (class Ia) and nrdHIEF (class Ib) operons, and a third RNR class, which is functional under anaerobic conditions and is encoded by the nrdDG (class III) operon. Because cellular imbalances in the amounts of the four dNTPs cause an increase in the rate of mutagenesis, the activity and the expression of RNRs must be tightly regulated during bacterial chromosome replication. The transcriptional regulation of these genes requires several transcription factors (including DnaA, IciA, FIS [factor for inversion stimulation], Fnr, Fur, and NrdR), depending on the RNR class; however, the factors that dictate the expression of some RNR genes in response to different environmental conditions are not known. We show that H-NS modulates the expression of the nrdAB and nrdDG operons. H-NS represses expression both in aerobically and in anaerobically growing cells. Under aerobic conditions, repression occurs at the exponential phase of growth as well as at the transition from the exponential to the stationary phase, a period when no dNTPs are needed. Under anoxic conditions, repression occurs mainly in exponentially growing cells. Electrophoretic mobility assays performed with two DNA fragments from the regulatory region of the nrdAB operon demonstrated the direct interaction of H-NS with these sequences.
Collapse
|
36
|
Moreno R, Rojo F. The contribution of proteomics to the unveiling of the survival strategies used by Pseudomonas putida
in changing and hostile environments. Proteomics 2013; 13:2822-30. [DOI: 10.1002/pmic.201200503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Renata Moreno
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología; CSIC Madrid Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología; CSIC Madrid Spain
| |
Collapse
|
37
|
Steinmann R, Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiol 2013; 8:85-105. [PMID: 23252495 DOI: 10.2217/fmb.12.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifecycle of most microbial pathogens can be divided into two states: existence outside and inside their hosts. The sudden temperature upshift experienced upon entry from environmental or vector reservoirs into a warm-blooded host is one of the most crucial signals informing the pathogens to adjust virulence gene expression and their host-stress survival program. This article reviews the plethora of sophisticated strategies that bacteria have evolved to sense temperature, and outlines the molecular signal transduction mechanisms used to modulate synthesis of crucial virulence determinants. The molecular details of thermal control through conformational changes of DNA, RNA and proteins are summarized, complex and diverse thermosensing principles are introduced and their potential as drug targets or synthetic tools are discussed.
Collapse
Affiliation(s)
- Rebekka Steinmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
38
|
Abstract
Contrary to the traditional view that bacterial populations are clonal, single-cell analysis reveals that phenotypic heterogeneity is common in bacteria. Formation of distinct bacterial lineages appears to be frequent during adaptation to harsh environments, including the colonization of animals by bacterial pathogens. Formation of bacterial subpopulations is often controlled by epigenetic mechanisms that generate inheritable phenotypic diversity without altering the DNA sequence. Such mechanisms are diverse, ranging from relatively simple feedback loops to complex self-perpetuating DNA methylation patterns.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain.
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106.
| |
Collapse
|
39
|
Qu Y, Lim CJ, Whang YR, Liu J, Yan J. Mechanism of DNA organization by Mycobacterium tuberculosis protein Lsr2. Nucleic Acids Res 2013; 41:5263-72. [PMID: 23580555 PMCID: PMC3664827 DOI: 10.1093/nar/gkt249] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial nucleoid-associated proteins, such as H-NS-like proteins in Enterobacteriaceae, are abundant DNA-binding proteins that function in chromosomal DNA organization and gene transcription regulation. The Mycobacterium tuberculosis Lsr2 protein has been proposed to be the first identified H-NS analogue in Gram-positive bacteria based on its capability to complement numerous in vivo functions of H-NS. Here, we report that Lsr2 cooperatively binds to DNA forming a rigid Lsr2 nucleoprotein complex that restricts DNA accessibility, similar to H-NS. On large DNA, the rigid Lsr2 nucleoprotein complexes can mediate DNA condensation into highly compact DNA conformations. In addition, the responses of Lsr2 nucleoprotein complex to environmental factors (salt concentration, temperature and pH) were studied over physiological ranges. These results provide mechanistic insights into how Lsr2 may mediate its gene silencing, genomic DNA protection and organization functions in vivo. Finally, our results strongly support that Lsr2 is an H-NS-like protein in Gram-positive bacteria from a structural perspective.
Collapse
Affiliation(s)
- Yuanyuan Qu
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | | | | | | | | |
Collapse
|
40
|
Lehti TA, Bauchart P, Kukkonen M, Dobrindt U, Korhonen TK, Westerlund-Wikström B. Phylogenetic group-associated differences in regulation of the common colonization factor Mat fimbria in Escherichia coli. Mol Microbiol 2013; 87:1200-22. [PMID: 23347101 DOI: 10.1111/mmi.12161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 11/28/2022]
Abstract
Heterogeneity of cell population is a key component behind the evolutionary success of Escherichia coli. The heterogeneity supports species adaptation and mainly results from lateral gene transfer. Adaptation may also involve genomic alterations that affect regulation of conserved genes. Here we analysed regulation of the mat (or ecp) genes that encode a conserved fimbrial adhesin of E. coli. We found that the differential and temperature-sensitive expression control of the mat operon is dependent on mat promoter polymorphism and closely linked to phylogenetic grouping of E. coli. In the mat promoter lineage favouring fimbriae expression, the mat operon-encoded regulator MatA forms a positive feedback loop that overcomes the repression by H-NS and stabilizes the fimbrillin mRNA under low growth temperature, acidic pH or elevated levels of acetate. The study exemplifies phylogenetic group-associated expression of a highly common surface organelle in E. coli.
Collapse
Affiliation(s)
- Timo A Lehti
- Division of General Microbiology, Department of Biosciences, FI-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Predicting the effect of ions on the conformation of the H-NS dimerization domain. Biophys J 2012; 103:89-98. [PMID: 22828335 DOI: 10.1016/j.bpj.2012.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/11/2012] [Accepted: 05/15/2012] [Indexed: 11/23/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) is a DNA-organizing protein in bacteria. It contains a DNA-binding domain and a dimerization domain, connected by a flexible linker region. Dimerization occurs through the formation of a helical bundle, including a coiled-coil interaction motif. Two conformations have been resolved, for different sequences of Escherichia coli H-NS, resulting in an antiparallel coiled-coil for the shorter wild-type sequence, and a parallel coiled-coil for the longer C21S mutant. Because H-NS functions as a thermo- and osmosensor, these conformations may both be functionally relevant. Molecular simulation can complement experiments by modeling the dynamical time evolution of biomolecular systems in atomistic detail. We performed a molecular-dynamics study of the H-NS dimerization domain, showing that the parallel complex is sensitive to changes in salt conditions: it is unstable in absence of NaCl, but stable at physiological salt concentrations. In contrast, the stability of the antiparallel complex is not salt-dependent. The stability of the parallel complex also appears to be affected by mutation of the critical but nonconserved cysteine residue at position 21, whereas the antiparallel complex is not. Together, our simulations suggest that osmoregulation could be mediated by changes in the ratio of parallel- and antiparallel-oriented H-NS dimers.
Collapse
|
42
|
Shapiro RS, Cowen LE. Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. mBio 2012; 3:e00238-12. [PMID: 23033469 PMCID: PMC3518907 DOI: 10.1128/mbio.00238-12] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Temperature is a critical and ubiquitous environmental signal that governs the development and virulence of diverse microbial species, including viruses, archaea, bacteria, fungi, and parasites. Microbial survival is contingent upon initiating appropriate responses to the cellular stress induced by severe environmental temperature change. In the case of microbial pathogens, development and virulence are often coupled to sensing host physiological temperatures. As such, microbes have developed diverse molecular strategies to sense fluctuations in temperature, and nearly all cellular molecules, including proteins, lipids, RNA, and DNA, can act as thermosensors that detect changes in environmental temperature and initiate relevant cellular responses. The myriad of molecular mechanisms by which microbes sense and respond to temperature reveals an elegant repertoire of strategies to orchestrate cellular signaling, developmental programs, and virulence with spatial and temporal environmental cues.
Collapse
Affiliation(s)
- Rebecca S Shapiro
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
43
|
Cold shock genes cspA and cspB from Caulobacter crescentus are posttranscriptionally regulated and important for cold adaptation. J Bacteriol 2012; 194:6507-17. [PMID: 23002229 DOI: 10.1128/jb.01422-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cold shock proteins (CSPs) are nucleic acid binding chaperones, first described as being induced to solve the problem of mRNA stabilization after temperature downshift. Caulobacter crescentus has four CSPs: CspA and CspB, which are cold induced, and CspC and CspD, which are induced only in stationary phase. In this work we have determined that the synthesis of both CspA and CspB reaches the maximum levels early in the acclimation phase. The deletion of cspA causes a decrease in growth at low temperature, whereas the strain with a deletion of cspB has a very subtle and transient cold-related growth phenotype. The cspA cspB double mutant has a slightly more severe phenotype than that of the cspA mutant, suggesting that although CspA may be more important to cold adaptation than CspB, both proteins have a role in this process. Gene expression analyses were carried out using cspA and cspB regulatory fusions to the lacZ reporter gene and showed that both genes are regulated at the transcriptional and posttranscriptional levels. Deletion mapping of the long 5'-untranslated region (5'-UTR) of each gene identified a common region important for cold induction, probably via translation enhancement. In contrast to what was reported for other bacteria, these cold shock genes have no regulatory regions downstream from ATG that are important for cold induction. This work shows that the importance of CspA and CspB to C. crescentus cold adaptation, mechanisms of regulation, and pattern of expression during the acclimation phase apparently differs in many aspects from what has been described so far for other bacteria.
Collapse
|
44
|
Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, Thomas T. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS One 2011; 6:e27387. [PMID: 22162749 PMCID: PMC3230580 DOI: 10.1371/journal.pone.0027387] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/15/2011] [Indexed: 01/17/2023] Open
Abstract
Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS) dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised.
Collapse
Affiliation(s)
- Neil Fernandes
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca J. Case
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sharon R. Longford
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter D. Steinberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
45
|
Adjusting the spokes of the flagellar motor with the DNA-binding protein H-NS. J Bacteriol 2011; 193:5914-22. [PMID: 21890701 DOI: 10.1128/jb.05458-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H-NS protein of bacteria is a global regulator that stimulates transcription of flagellar genes and that also acts directly to modulate flagellar motor function. H-NS is known to bind FliG, a protein of the rotor that interacts with the stator and is directly involved in rotation of the motor. Here, we find that H-NS, well known for its ability to organize DNA, acts in the flagellar motor to organize protein subunits in the rotor. It binds to a middle domain of FliG that bridges the core parts of the rotor and parts nearer the edge that interact with the stator. In the absence of H-NS the organization of FliG subunits is disrupted, whereas overexpression of H-NS enhances FliG organization as monitored by targeted disulfide cross-linking, alters the disposition of a helix joining the middle and C-terminal domains of FliG, and enhances motor performance under conditions requiring a strengthened rotor-stator interface. The H-NS homolog StpA was also shown to bind FliG and to act similarly, though less effectively, in organizing FliG. The motility-enhancing effects of H-NS contrast with those of the recently characterized motility inhibitor YcgR. The present findings provide an integrated, structurally grounded framework for understanding the roughly opposing effects of these motility regulators.
Collapse
|
46
|
Tran CN, Giangrossi M, Prosseda G, Brandi A, Di Martino ML, Colonna B, Falconi M. A multifactor regulatory circuit involving H-NS, VirF and an antisense RNA modulates transcription of the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 2011; 39:8122-34. [PMID: 21724612 PMCID: PMC3185424 DOI: 10.1093/nar/gkr521] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The icsA gene of Shigella encodes a structural protein involved in colonization of the intestinal mucosa by bacteria. This gene is expressed upon invasion of the host and is controlled by a complex regulatory circuit involving the nucleoid protein H-NS, the AraC-like transcriptional activator VirF, and a 450 nt antisense RNA (RnaG) acting as transcriptional attenuator. We investigated on the interplay of these factors at the molecular level. DNase I footprints reveal that both H-NS and VirF bind to a region including the icsA and RnaG promoters. H-NS is shown to repress icsA transcription at 30°C but not at 37°C, suggesting a significant involvement of this protein in the temperature-regulated expression of icsA. We also demonstrate that VirF directly stimulates icsA transcription and is able to alleviate H-NS repression in vitro. According to these results, icsA expression is derepressed in hns- background and overexpressed when VirF is provided in trans. Moreover, we find that RnaG-mediated transcription attenuation depends on 80 nt at its 5′-end, a stretch carrying the antisense region. Bases engaged in the initial contact leading to sense–antisense pairing have been identified using synthetic RNA and DNA oligonucleotides designed to rebuild and mutagenize the two stem–loop motifs of the antisense region.
Collapse
Affiliation(s)
- Chi Nhan Tran
- Laboratory of Molecular Genetics, School of Bioscience and Biotechnology., University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Moreira RN, Dressaire C, Domingues S, Arraiano CM. A new target for an old regulator: H-NS represses transcription of bolA morphogene by direct binding to both promoters. Biochem Biophys Res Commun 2011; 411:50-5. [PMID: 21708124 DOI: 10.1016/j.bbrc.2011.06.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/13/2011] [Indexed: 11/28/2022]
Abstract
The Escherichia coli bolA morphogene is very important in adaptation to stationary phase and stress response mechanisms. Genes of this family are widespread in gram negative bacteria and in eukaryotes. The expression of this gene is tightly regulated at transcriptional and post-transcriptional levels and its overexpression is known to induce round cellular morphology. The results presented in this report demonstrate that the H-NS protein, a pleiotropic regulator of gene expression, is a new transcriptional modulator of the bolA gene. In this work we show that and in vivo the levels of bolA are down-regulated by H-NS and in vitro this global regulator interacts directly with the bolA promoter region. Moreover, DNaseI foot-printing experiments mapped the interaction regions of H-NS and bolA and revealed that this global regulator binds not only one but both bolA promoters. We provide a new insight into the bolA regulation network demonstrating that H-NS represses the transcription of this important gene.
Collapse
Affiliation(s)
- Ricardo N Moreira
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
48
|
Fonseca P, Moreno R, Rojo F. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:329-339. [PMID: 23761279 DOI: 10.1111/j.1758-2229.2010.00229.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In its natural habitats (soil, water and rhizosphere), Pseudomonas putida can suffer frequent and long-term changes in temperature that affect its growth and survival. Pseudomonas putida KT2440, a well-characterized model strain, grows optimally at 30°C but can proliferate at temperatures as low as 4°C. However, little information is available on the physiological changes that occur when P. putida grows at low temperatures. To investigate this area, the transcriptome and proteome profiles of cells exponentially growing in a complex medium at 10°C were compared with those of cells exponentially growing at 30°C. Low temperature modified the expression of at least 266 genes (some 5% of the genome). Many of the genes showing differential expression were involved in energy metabolism or in the transport and binding of substrates, although genes implicated in other cellular functions were also affected. Several changes seemed directed towards neutralizing problems created by low temperature, such as increased protein misfolding, the increased stability of DNA/RNA secondary structures, reduced membrane fluidity and a reduced growth rate. The present results improve our understanding of the P. putida lifestyle at low temperature, which may be relevant for its applications in bioremediation and in promotion of plant growth.
Collapse
Affiliation(s)
- Pilar Fonseca
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
49
|
van Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. THE ISME JOURNAL 2011; 5:173-83. [PMID: 20574458 PMCID: PMC3105702 DOI: 10.1038/ismej.2010.80] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism's survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health.
Collapse
Affiliation(s)
- Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Comparison of the pathogenic potentials of environmental and clinical vibrio parahaemolyticus strains indicates a role for temperature regulation in virulence. Appl Environ Microbiol 2010; 76:7459-65. [PMID: 20889774 DOI: 10.1128/aem.01450-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although the presence of pathogenic Vibrio spp. in estuarine environments of northern New England has been known for some time (C. H. Bartley and L. W. Slanetz, Appl. Microbiol. 21: 965-966, 1971, and K. R. O'Neil, S. H. Jones, and D. J. Grimes, FEMS Microbiol. Lett. 60:163-167, 1990), their virulence and the relative threat they may pose to human health has yet to be evaluated. In this study, the virulence potential of 33 Vibrio parahaemolyticus isolates collected from the Great Bay Estuary of New Hampshire was assessed in comparison to that of clinical strains. The environmental isolates lack thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), which are encoded by tdh and trh, respectively. Though not hemolytic, they do possess putative virulence factors, such type III secretion system 1, and are highly cytotoxic to human gastrointestinal cells. The expression of known and putative virulence-associated traits, including hemolysin, protease, motility, biofilm formation, and cytotoxicity, by clinical reference isolates correlated with increased temperature from 28°C to 37°C. In contrast, the environmental isolates did not induce their putative virulence-associated traits in response to a temperature of 37°C. We further identified a significant correlation between hemolytic activity and growth phase among clinical strains, whereby hemolysin production decreases with increasing cell density. The introduction of a tdh::gfp promoter fusion into the environmental strains revealed that they regulate this virulence-associated gene appropriately in response to temperature, indicating that their existing regulatory mechanisms are primed to manage newly acquired virulence genes.
Collapse
|