1
|
Fernández-Fernández R, Elsherbini AMA, Lozano C, Martínez A, de Toro M, Zarazaga M, Peschel A, Krismer B, Torres C. Genomic Analysis of Bacteriocin-Producing Staphylococci: High Prevalence of Lanthipeptides and the Micrococcin P1 Biosynthetic Gene Clusters. Probiotics Antimicrob Proteins 2025; 17:159-174. [PMID: 37632676 PMCID: PMC11832629 DOI: 10.1007/s12602-023-10119-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria. This study aimed to in silico analyze the presence of bacteriocin gene clusters (BGCs) among the genomes of 22 commensal Staphylococcus isolates from different origins (environment/human/food/pet/wild animals) previously identified as bacteriocin producers. The resistome and plasmidome were studied in all isolates. Five types of BGC were detected in 18 genomes of the 22 bacteriocin-producing staphylococci included in this study: class I (Lanthipeptides), class II, circular bacteriocins, the non-ribosomal-peptide lugdunin and the thiopeptide micrococcin P1 (MP1). A high frequency of lanthipeptides was detected in this collection: BGC variants of BSA, bacCH91, and epilancin15X were identified in two Staphylococcus aureus and one Staphylococcus warneri isolates from food and wild animals. Moreover, two potentially new lanthipeptide-like BGCs with no identity to database entries were found in Staphylococcus epidermidis and Staphylococcus simulans from food and wild animal, respectively. Interestingly, four isolates (one S. aureus and one Staphylococcus hominis, environmental origin; two Staphylococcus sciuri, food) carried the MP1 BGC with differences to those previously described. On the other hand, seven of the 22 genomes (~32%) lacked known genes related with antibiotic or disinfectant-acquired resistance mechanisms. Moreover, the potential carriage of plasmids was evaluated, and several Rep-proteins were identified (~73% of strains). In conclusion, a wide variety of BGCs has been observed among the 22 genomes, and an interesting relationship between related Staphylococcus species and the type of bacteriocin has been revealed. Therefore, bacteriocin-producing Staphylococcus and especially coagulase-negative staphylococci (CoNS) can be considered good candidates as a source of novel bacteriocins.
Collapse
Affiliation(s)
- Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Ahmed M A Elsherbini
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Agustí Martínez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - María de Toro
- Genomics and Bioinformatics Core Facility, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
2
|
Renye JA, Chen CY, Miller A, Lee J, Oest A, Lynn KJ, Felton SM, Guragain M, Tomasula PM, Berger BW, Capobianco J. Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate L. monocytogenes Persistence. Int J Mol Sci 2025; 26:399. [PMID: 39796259 PMCID: PMC11721940 DOI: 10.3390/ijms26010399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium causing listeriosis, a severe infection responsible for significant morbidity and mortality globally. Its persistence on food processing surfaces via biofilm formation presents a major challenge, as conventional sanitizers and antimicrobials exhibit limited efficacy against biofilm-embedded cells. This study investigates a novel approach combining an engineered polysaccharide-degrading enzyme (CAase) with a bacteriocin (thermophilin 110) produced by Streptococcus thermophilus. Laboratory assays evaluated the effectiveness of this combination in disrupting biofilms and inactivating L. monocytogenes on various surfaces. The results demonstrated that CAase effectively disrupts biofilm structures, while thermophilin 110 significantly reduces bacterial growth and viability. The preliminary trials indicate a dual-action approach offers a potential alternative to conventional treatments, enhancing food safety by effectively controlling Listeria biofilms in food processing environments.
Collapse
Affiliation(s)
- John A. Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (J.A.R.J.); (A.M.); (A.O.); (P.M.T.)
| | - Chin-Yi Chen
- Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (C.-Y.C.); (J.L.); (M.G.)
| | - Amanda Miller
- Dairy and Functional Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (J.A.R.J.); (A.M.); (A.O.); (P.M.T.)
| | - Joe Lee
- Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (C.-Y.C.); (J.L.); (M.G.)
| | - Adam Oest
- Dairy and Functional Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (J.A.R.J.); (A.M.); (A.O.); (P.M.T.)
| | - Kevin J. Lynn
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA;
| | - Samantha M. Felton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA;
| | - Manita Guragain
- Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (C.-Y.C.); (J.L.); (M.G.)
| | - Peggy M. Tomasula
- Dairy and Functional Foods Research Unit, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (J.A.R.J.); (A.M.); (A.O.); (P.M.T.)
| | - Bryan W. Berger
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA;
| | - Joseph Capobianco
- Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA; (C.-Y.C.); (J.L.); (M.G.)
| |
Collapse
|
3
|
Damoczi J, Knoops A, Martou MS, Jaumaux F, Gabant P, Mahillon J, Veening JW, Mignolet J, Hols P. Uncovering the arsenal of class II bacteriocins in salivarius streptococci. Commun Biol 2024; 7:1511. [PMID: 39543239 PMCID: PMC11564875 DOI: 10.1038/s42003-024-07217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Facing the antibiotic resistance crisis, bacteriocins are considered as a promising alternative to treat bacterial infections. In the human commensal Streptococcus salivarius, the production of unmodified bacteriocins (or salivaricins) is directly controlled at the transcriptional level by quorum-sensing. To discover hidden bacteriocins, we harnessed here the unique molecular signatures of salivaricins not yet used in available computational pipelines and performed genome mining followed by orthogonal reconstitution and expression. From 100 genomes of S. salivarius, we identified more than 50 bacteriocin candidates clustered into 21 groups. Strain-based analysis of bacteriocin combinations revealed significant diversity, reflecting the plasticity of seven independent loci. Activity tests showed both narrow and broad-spectrum bacteriocins with overlapping activities against a wide panel of Gram-positive bacteria, including notorious multidrug-resistant pathogens. Overall, this work provides a search-to-test generic pipeline for bacteriocin discovery with high impact for bacterial ecology and broad applications in the food and biomedical fields.
Collapse
Affiliation(s)
- Julien Damoczi
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Adrien Knoops
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie-Sophie Martou
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johann Mignolet
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pascal Hols
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Li Y, Zhang S, Chen Z, Huang W, Huang Y, Fang H, Liu Q. Evolution of quorum sensing process and their regulatory role on biochemical metabolism during the organic loading rate increase in dry anaerobic digestion. CHEMOSPHERE 2024; 363:142954. [PMID: 39069103 DOI: 10.1016/j.chemosphere.2024.142954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The organic loading rate (OLR) is a critical parameter affecting the stability of dry anaerobic digestion (AD) of kitchen waste (KW), and significantly impacting the variations in physicochemical parameters and microbial communities. However, the evolution of quorum sensing (QS) and their role on anaerobic biochemical metabolism during the increase in OLR in dry AD remain unknown. Therefore, this study systematically elucidated the matter through multi-omics analysis based on a pilot-scale dry AD of KW. The results demonstrated that fluctuations in the OLR significantly influenced the microbial QS in dry AD. When the OLR ≤4.0 g·VS/L·d, the system operated stably, and methane production increased. The enrichment of Proteobacteria was crucial for sustaining high levels of functional genes associated with various types of QS, including acyl-homoserine lactones (AI-1), autoinducer-2 (AI-2), autoinducer-3 (AI-3), and gamma-aminobutyric acid (GABA). This enabled cooperative communication among microbes under low OLR. Furthermore, most genes associated with these QS processes positively affected hydrolysis, acidogenesis, and methanogenesis. When the OLR increased to 6.0 g·VS/L·d, the fatty acids and hydrogen partial pressure increased significantly. The autoinducing peptides (AIP)-type became the predominant QS and was positively correlated with fatty acids abundance. Syntrophaceticus and Syntrophomonas may promote syntrophic oxidation of acetate at high OLR through AIP-type QS. These findings provided new insights into the QS processes of microbes during dry AD of KW and a theoretical foundation for optimizing biochemical metabolic processes in dry AD through QS.
Collapse
Affiliation(s)
- Yanzeng Li
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China.
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weizhao Huang
- Xiamen Xinyuan Environmental Service Co., LTD., Xiamen, 361000, China
| | - Yunfeng Huang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China
| | - Hongda Fang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China
| | - Qin Liu
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China
| |
Collapse
|
5
|
Gardan R, Honvo-Houeto E, Mézange C, Maillot NJ, Balvay A, Rabot S, Bermúdez-Humarán LG, Langella P, Monnet V, Juillard V. Use of Rgg quorum-sensing machinery to create an innovative recombinant protein expression system in Streptococcus thermophilus. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001487. [PMID: 39302176 PMCID: PMC11414475 DOI: 10.1099/mic.0.001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
Streptococcus thermophilus holds promise as a chassis for producing and secreting heterologous proteins. Used for thousands of years to ferment milk, this species has generally recognized as safe (GRAS) status in the USA and qualified presumption of safety (QPS) status in Europe. In addition, it can be easily genetically modified thanks to its natural competence, and it secretes very few endogenous proteins, which means less downstream processing is needed to purify target proteins, reducing costs. Extracellular degradation of heterologous proteins can be eliminated by introducing mutations that inactivate the genes encoding the bacterium's three major surface proteases. Here, we constructed an inducible expression system that utilizes a peptide pheromone (SHP1358) and a transcriptional regulator (Rgg1358) involved in quorum-sensing regulation. We explored the functionality of a complete version of the system, in which the inducer is produced by the bacterium itself, by synthesizing a luciferase reporter protein. This complete version was assessed with bacteria grown in a chemically defined medium but also in vivo, in the faeces of germ-free mice. We also tested an incomplete version, in which the inducer had to be added to the culture medium, by synthesizing luciferase and a secreted form of elafin, a human protein with therapeutic properties. Our results show that, in our system, protein production can be modulated by employing different concentrations of the SHP1358 inducer or other SHPs with closed amino acid sequences. We also constructed a genetic background in which all system leakiness was eliminated. In conclusion, with this new inducible expression system, we have added to the set of tools currently used to produce secreted proteins in S. thermophilus, whose myriad applications include the delivery of therapeutic peptides or proteins.
Collapse
Affiliation(s)
- Rozenn Gardan
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Edith Honvo-Houeto
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Mézange
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Aurélie Balvay
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Véronique Monnet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Vincent Juillard
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
6
|
Renye JA, Somkuti GA, Qi PX, Steinberg DH, McAnulty MJ, Miller AL, Guron GKP, Oest AM. BlpU is a broad-spectrum bacteriocin in Streptococcus thermophilus. Front Microbiol 2024; 15:1409359. [PMID: 39081891 PMCID: PMC11286413 DOI: 10.3389/fmicb.2024.1409359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
Streptococcus thermophilus strain B59671 naturally produces thermophilin 110, a broad-spectrum bacteriocin encoded within the bacteriocin-like peptide (blp) gene cluster, and thermophilin 13 from a separate chromosomal locus. Analysis of the blp gene cluster revealed two genes, blpU and blpK, as potentially encoding bacteriocins. Deletion of blpK from the B59671 chromosome did not result in a loss of antimicrobial activity against either S. thermophilus ST113 or Pediococcus acidilactici F. A deletion mutant of blpU could not be generated in B59671, but the mature BlpU peptide obtained through overexpression in E. coli BL21 or chemical synthesis inhibited the growth of S. thermophilus strains, Streptococcus mutans UA159, P. acidilactici F, and Listeria innocua GV9 L-S, evidencing as a broad-spectrum bacteriocin that does not require modification for activity. This study also showed that the transcription of blpU was approximately 16-fold higher in B59671 than in an induced culture of S. thermophilus LMD-9, which produces a blp-encoded bacteriocin. The increased expression of BlpU in B59671 may explain the unique antimicrobial spectrum associated with this strain. Additionally, it was shown that a blpC deletion mutant of B59671, which prevents expression of BlpU and BlpK, inhibited the growth of other S. thermophilus strains and Bacillus cereus, suggesting that thermophilin 13 produced by B59671 possessed both intra- and interspecies antimicrobial activity. While this study confirmed that BlpU can function as an independent antimicrobial peptide, further studies are required to determine if BlpK can function independently as a broad-spectrum antimicrobial.
Collapse
Affiliation(s)
- John A. Renye
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agricultural, Wyndmoor, PA, United States
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Miller AL, Renye JA, Oest AM, Liang C, Garcia RA, Plumier BM, Tomasula PM. Bacteriocin production by lactic acid bacteria using ice cream co-product as the fermentation substrate. J Dairy Sci 2024; 107:3468-3477. [PMID: 38246535 DOI: 10.3168/jds.2023-24249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Ice cream manufacture commonly results in the accumulation of wasted product that contains valuable food-grade quality components, including fat, carbohydrates, and protein. Methods have been developed for recovering the fat from this waste stream, but this results in the generation of a co-product rich in fermentable carbohydrates. This study aimed to investigate the potential for using this co-product as a fermentation substrate for production of antimicrobial peptides, called bacteriocins, by dairy starter cultures. Results showed that Streptococcus thermophilus B59671 and Lactococcus lactis 11454 produced the broad-spectrum bacteriocins thermophilin 110 and nisin, respectively, when the fermentation substrate was melted ice cream, or a co-product generated by a modified butter churning technique. Bacteriocin production varied depending on the brand and variety of vanilla ice cream used in this study. When an alternate enzyme-assisted fat extraction technique was used, S. thermophilus metabolism was impaired within the resulting co-product, and thermophilin 110 production was not observed. Lactococcus lactis was still able to grow in this co-product, but antimicrobial activity was not observed. Results from this study suggest the co-product generated when using the churning technique is a better choice to use as a base medium for future studies to optimize bacteriocin production.
Collapse
Affiliation(s)
- Amanda L Miller
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038.
| | - John A Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Adam M Oest
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Chen Liang
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616
| | - Rafael A Garcia
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Benjamin M Plumier
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Peggy M Tomasula
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| |
Collapse
|
8
|
Hsieh YYP, Sun W, Young JM, Cheung R, Hogan DA, Dandekar AA, Malik HS. Widespread fungal-bacterial competition for magnesium lowers bacterial susceptibility to polymyxin antibiotics. PLoS Biol 2024; 22:e3002694. [PMID: 38900845 PMCID: PMC11218974 DOI: 10.1371/journal.pbio.3002694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
Fungi and bacteria coexist in many polymicrobial communities, yet the molecular basis of their interactions remains poorly understood. Here, we show that the fungus Candida albicans sequesters essential magnesium ions from the bacterium Pseudomonas aeruginosa. To counteract fungal Mg2+ sequestration, P. aeruginosa expresses the Mg2+ transporter MgtA when Mg2+ levels are low. Thus, loss of MgtA specifically impairs P. aeruginosa in co-culture with C. albicans, but fitness can be restored by supplementing Mg2+. Using a panel of fungi and bacteria, we show that Mg2+ sequestration is a general mechanism of fungal antagonism against gram-negative bacteria. Mg2+ limitation enhances bacterial resistance to polymyxin antibiotics like colistin, which target gram-negative bacterial membranes. Indeed, experimental evolution reveals that P. aeruginosa evolves C. albicans-dependent colistin resistance via non-canonical means; antifungal treatment renders resistant bacteria colistin-sensitive. Our work suggests that fungal-bacterial competition could profoundly impact polymicrobial infection treatment with antibiotics of last resort.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Wanting Sun
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Janet M. Young
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Robin Cheung
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Czárán T, Scheuring I, Zachar I, Számadó S. Cue-driven microbial cooperation and communication: evolving quorum sensing with honest signaling. BMC Biol 2024; 22:73. [PMID: 38561772 PMCID: PMC10986144 DOI: 10.1186/s12915-024-01857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) is the ability of microorganisms to assess local clonal density by measuring the extracellular concentration of signal molecules that they produce and excrete. QS is also the only known way of bacterial communication that supports the coordination of within-clone cooperative actions requiring a certain threshold density of cooperating cells. Cooperation aided by QS communication is sensitive to cheating in two different ways: laggards may benefit from not investing in cooperation but enjoying the benefit provided by their cooperating neighbors, whereas Liars explicitly promise cooperation but fail to do so, thereby convincing potential cooperating neighbors to help them, for almost free. Given this double vulnerability to cheats, it is not trivial why QS-supported cooperation is so widespread among prokaryotes. RESULTS We investigated the evolutionary dynamics of QS in populations of cooperators for whom the QS signal is an inevitable side effect of producing the public good itself (cue-based QS). Using spatially explicit agent-based lattice simulations of QS-aided threshold cooperation (whereby cooperation is effective only above a critical cumulative level of contributions) and three different (analytical and numerical) approximations of the lattice model, we explored the dynamics of QS-aided threshold cooperation under a feasible range of parameter values. We demonstrate three major advantages of cue-driven cooperation. First, laggards cannot wipe out cooperation under a wide range of reasonable environmental conditions, in spite of an unconstrained possibility to mutate to cheating; in fact, cooperators may even exclude laggards at high cooperation thresholds. Second, lying almost never pays off, if the signal is an inevitable byproduct (i.e., the cue) of cooperation; even very cheap fake signals are selected against. And thirdly, QS is most useful if local cooperator densities are the least predictable, i.e., if their lattice-wise mean is close to the cooperation threshold with a substantial variance. CONCLUSIONS Comparing the results of the four different modeling approaches indicates that cue-driven threshold cooperation may be a viable evolutionary strategy for microbes that cannot keep track of past behavior of their potential cooperating partners, in spatially viscous and in well-mixed environments alike. Our model can be seen as a version of the famous greenbeard effect, where greenbeards coexist with defectors in a evolutionarily stable polymorphism. Such polymorphism is maintained by the condition-dependent trade-offs of signal production which are characteristic of cue-based QS.
Collapse
Affiliation(s)
- Tamás Czárán
- Institute of Evolution, Centre for Ecological Research, HUN-REN, Konkoly-Thege Miklós Út 29-33, 1121, Budapest, Hungary
| | - István Scheuring
- Institute of Evolution, Centre for Ecological Research, HUN-REN, Konkoly-Thege Miklós Út 29-33, 1121, Budapest, Hungary
| | - István Zachar
- Institute of Evolution, Centre for Ecological Research, HUN-REN, Konkoly-Thege Miklós Út 29-33, 1121, Budapest, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Lóránd University, Pázmány Péter st. 1/c, 1117, Budapest, Hungary
| | - Szabolcs Számadó
- Department of Sociology and Communication, Budapest University of Technology and Economics, Egry J. U. 1, Budapest, 1111, Hungary.
- Centre for Social Science, Lendület Research Group, HUN-REN, CSS-RECENS, Tóth Kálmán U. 4, 1097, Budapest, Hungary.
| |
Collapse
|
10
|
McAnulty MJ, Guron GK, Oest AM, Miller AL, Renye JA. The quorum sensing peptide BlpC regulates the transcription of genes outside its associated gene cluster and impacts the growth of Streptococcus thermophilus. Front Microbiol 2024; 14:1304136. [PMID: 38293552 PMCID: PMC10826417 DOI: 10.3389/fmicb.2023.1304136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Bacteriocin production in Streptococcus thermophilus is regulated by cell density-dependent signaling molecules, including BlpC, which regulates transcription from within the bacteriocin-like peptide (blp) gene cluster. In some strains, such as S. thermophilus ST106, this signaling system does not function properly, and BlpC must be supplied exogenously to induce bacteriocin production. In other strains, such as S. thermophilus B59671, bacteriocin (thermophilin 110 in strain B59671) production occurs naturally. Here, transcriptomic analyses were used to compare global gene expression within ST106 in the presence or absence of synthetic BlpC and within B59671 to determine if BlpC regulates the expression of genes outside the blp cluster. Real-time semi-quantitative PCR was used to find genes differentially expressed in the absence of chromosomal blpC in the B59671 background. Growth curve experiments and bacteriocin activity assays were performed with knockout mutants and BlpC supplementation to identify effects on growth and bacteriocin production. In addition to the genes involved in bacteriocin production, BlpC affected the expression of several transcription regulators outside the blp gene cluster, including a putative YtrA-subfamily transcriptional repressor. In strain B59671, BlpC not only regulated the expression of thermophilin 110 but also suppressed the production of another bacteriocin, thermophilin 13, and induced the same YtrA-subfamily transcriptional repressor identified in ST106. Additionally, it was shown that the broad-spectrum antimicrobial activity associated with strain B59671 was due to the production of thermophilin 110, while thermophilin 13 appears to be a redundant system for suppressing intraspecies growth. BlpC production or induction negatively affected the growth of strains B59671 and ST106, revealing selective pressure to not produce bacteriocins that may explain bacteriocin production phenotype differences between S. thermophilus strains. This study identifies additional genes regulated by BlpC and assists in defining conditions to optimize the production of bacteriocins for applications in agriculture or human and animal health.
Collapse
Affiliation(s)
- Michael J. McAnulty
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States
| | | | | | | | | |
Collapse
|
11
|
Ormaasen I, Rudi K, Diep DB, Snipen L. Metagenome-mining indicates an association between bacteriocin presence and strain diversity in the infant gut. BMC Genomics 2023; 24:295. [PMID: 37259063 PMCID: PMC10230729 DOI: 10.1186/s12864-023-09388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Our knowledge about the ecological role of bacterial antimicrobial peptides (bacteriocins) in the human gut is limited, particularly in relation to their role in the diversification of the gut microbiota during early life. The aim of this paper was therefore to address associations between bacteriocins and bacterial diversity in the human gut microbiota. To investigate this, we did an extensive screening of 2564 healthy human gut metagenomes for the presence of predicted bacteriocin-encoding genes, comparing bacteriocin gene presence to strain diversity and age. RESULTS We found that the abundance of bacteriocin genes was significantly higher in infant-like metagenomes (< 2 years) compared to adult-like metagenomes (2-107 years). By comparing infant-like metagenomes with and without a given bacteriocin, we found that bacteriocin presence was associated with increased strain diversities. CONCLUSIONS Our findings indicate that bacteriocins may play a role in the strain diversification during the infant gut microbiota establishment.
Collapse
Affiliation(s)
- Ida Ormaasen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lars Snipen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
12
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Pan J, Zhou J, Tang X, Guo Y, Zhao Y, Liu S. Bacterial Communication Coordinated Behaviors of Whole Communities to Cope with Environmental Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4253-4265. [PMID: 36862939 DOI: 10.1021/acs.est.2c05780] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacterial communication plays an important role in coordinating microbial behaviors in a community. However, how bacterial communication organizes the entire community for anaerobes to cope with varied anaerobic-aerobic conditions remains unclear. We constructed a local bacterial communication gene (BCG) database comprising 19 BCG subtypes and 20279 protein sequences. BCGs in anammox-partial nitrification consortia coping with intermittent aerobic and anaerobic conditions as well as gene expressions of 19 species were inspected. We found that when suffering oxygen changes, intra- and interspecific communication by a diffusible signal factor (DSF) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) changed first, which in turn induced changes of autoinducer-2 (AI-2)-based interspecific and acyl homoserine lactone (AHLs)-based intraspecific communication. DSF and c-di-GMP-based communication regulated 455 genes, which covered 13.64% of the genomes and were mainly involved in antioxidation and metabolite residue degradation. For anammox bacteria, oxygen influenced DSF and c-di-GMP-based communication through RpfR to upregulate antioxidant proteins, oxidative damage-repairing proteins, peptidases, and carbohydrate-active enzymes, which benefited their adaptation to oxygen changes. Meanwhile, other bacteria also enhanced DSF and c-di-GMP-based communication by synthesizing DSF, which helped anammox bacteria survive at aerobic conditions. This study evidences the role of bacterial communication as an "organizer" within consortia to cope with environmental changes and sheds light on understanding bacterial behaviors from the perspective of sociomicrobiology.
Collapse
Affiliation(s)
- Juejun Pan
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Jianhang Zhou
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Xi Tang
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Yongzhao Guo
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Yunpeng Zhao
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Sitong Liu
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Dhaked HPS, Biswas I. Distribution of two-component signal transduction systems BlpRH and ComDE across streptococcal species. Front Microbiol 2022; 13:960994. [PMID: 36353461 PMCID: PMC9638458 DOI: 10.3389/fmicb.2022.960994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2023] Open
Abstract
Two-component signal transduction (TCS) systems are important regulatory pathways in streptococci. A typical TCS encodes a membrane-anchored sensor kinase (SK) and a cytoplasmic response regulator (RR). Approximately, 20 different types of TCSs are encoded by various streptococci. Among them, two TCSs, in particular BlpRH and ComDE, are required for bacteriocins production and competence development. The SK component of these two TCSs is highly similar and belongs to the protein kinase-10 (HPK-10) subfamily. While these two TCSs are present in streptococci, no systematic studies have been done to differentiate between these two TCSs, and the existence of these pathways in several species of the genus Streptococcus is also unknown. The lack of information about these pathways misguided researchers for decades into believing that the Streptococcus mutans BlpRH system is a ComDE system. Here, we have attempted to distinguish between the BlpRH and ComDE systems based on the location of the chromosome, genomic arrangement, and conserved residues. Using the SyntTax and NCBI databases, we investigated the presence of both TCS systems in the genome of several streptococcal species. We noticed that the NCBI database did not have proper annotations for these pathways in several species, and many of them were wrongly annotated, such as CitS or DpiB instead of BlpH. Nevertheless, our critical analyses led us to classify streptococci into two groups: class A (only the BlpRH system) and class B (both the BlpRH and ComDE systems). Most of the streptococcal groups, including bovis, pyogenic, mutans, salivarius, and suis, encode only the BlpRH system. In contrast, only in the mitis and anginosus groups were both the TCS systems present. The focus of this review is to identify and differentiate between the BlpRH and ComDE systems, and discuss these two pathways in various streptococci.
Collapse
|
15
|
Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guédon E. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics 2022; 23:210. [PMID: 35291951 PMCID: PMC8925076 DOI: 10.1186/s12864-022-08459-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. Results In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. Conclusions The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08459-y.
Collapse
Affiliation(s)
- Emeline Roux
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Lorraine, CALBINOTOX, Nancy, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | | - Grégoire Siekaniec
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | - Jacques Nicolas
- Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
16
|
Zhao J, Wu L, Li W, Wang Y, Zheng H, Sun T, Zhang H, Xi R, Liu W, Sun Z. Genomics landscape of 185 Streptococcus thermophilus and identification of fermentation biomarkers. Food Res Int 2021; 150:110711. [PMID: 34865746 DOI: 10.1016/j.foodres.2021.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023]
Abstract
Streptococcus (S.) thermophilus, an indispensable dairy starter, has been used in autochthonous as well as industrial milk fermentation. However, the genetic architecture underlying S. thermophilus traits and phenotypes is largely unknown. Here, we sequenced 185 S. thermophilus strains, isolated from natural fermented dairy products of China and Mongolia and used comparative genomic and genome wide association study to provide novel point for genetic architecture underlying its traits and phenotypes. Genome analysis of S. thermophilus showed association of phylogeny with environmental and phenotypic features and revealed clades with high acid production potential or with substantial genome decay. A few S. thermophilus isolated from areas with high chloramphenicol emissions had a chloramphenicol-resistant gene CatB8. Most importantly, we defined a growth score and identified a missense mutation G1118698T located at the gene AcnA that were both predictive of acidification capability of S. thermophilus. Our findings provide novel insight in S. thermophilus genetic traits, antibiotic resistant and predictive of acidification capability which both may had huge help in culture starter screening.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Linjie Wu
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yu Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huijuan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
17
|
Three Distinct Proteases Are Responsible for Overall Cell Surface Proteolysis in Streptococcus thermophilus. Appl Environ Microbiol 2021; 87:e0129221. [PMID: 34550764 DOI: 10.1128/aem.01292-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The lactic acid bacterium Streptococcus thermophilus was believed to display only two distinct proteases at the cell surface, namely, the cell envelope protease PrtS and the housekeeping protease HtrA. Using peptidomics, we demonstrate here the existence of an additional active cell surface protease, which shares significant homology with the SepM protease of Streptococcus mutans. Although all three proteases-PrtS, HtrA, and SepM-are involved in the turnover of surface proteins, they demonstrate distinct substrate specificities. In particular, SepM cleaves proteins involved in cell wall metabolism and cell elongation, and its inactivation has consequences for cell morphology. When all three proteases are inactivated, the residual cell-surface proteolysis of S. thermophilus is approximately 5% of that of the wild-type strain. IMPORTANCE Streptococcus thermophilus is a lactic acid bacterium used widely as a starter in the dairy industry. Due to its "generally recognized as safe" status and its weak cell surface proteolytic activity, it is also considered a potential bacterial vector for heterologous protein production. Our identification of a new cell surface protease made it possible to construct a mutant strain with a 95% reduction in surface proteolysis, which could be useful in numerous biotechnological applications.
Collapse
|
18
|
Niehus R, Oliveira NM, Li A, Fletcher AG, Foster KR. The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. eLife 2021; 10:69756. [PMID: 34488940 PMCID: PMC8423443 DOI: 10.7554/elife.69756] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/01/2021] [Indexed: 12/21/2022] Open
Abstract
Bacteria inhibit and kill one another with a diverse array of compounds, including bacteriocins and antibiotics. These attacks are highly regulated, but we lack a clear understanding of the evolutionary logic underlying this regulation. Here, we combine a detailed dynamic model of bacterial competition with evolutionary game theory to study the rules of bacterial warfare. We model a large range of possible combat strategies based upon the molecular biology of bacterial regulatory networks. Our model predicts that regulated strategies, which use quorum sensing or stress responses to regulate toxin production, will readily evolve as they outcompete constitutive toxin production. Amongst regulated strategies, we show that a particularly successful strategy is to upregulate toxin production in response to an incoming competitor’s toxin, which can be achieved via stress responses that detect cell damage (competition sensing). Mirroring classical game theory, our work suggests a fundamental advantage to reciprocation. However, in contrast to classical results, we argue that reciprocation in bacteria serves not to promote peaceful outcomes but to enable efficient and effective attacks.
Collapse
Affiliation(s)
- Rene Niehus
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Harvard University, Boston, United States
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing, China.,Institue for Artificial Intelligence, Peking University, Beijing, China
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Vogel V, Spellerberg B. Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens 2021; 10:pathogens10070867. [PMID: 34358017 PMCID: PMC8308785 DOI: 10.3390/pathogens10070867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023] Open
Abstract
Beta-hemolytic streptococci cause a variety of infectious diseases associated with high morbidity and mortality. A key factor for successful infection is host colonization, which can be difficult in a multispecies environment. Secreting bacteriocins can be beneficial during this process. Bacteriocins are small, ribosomally produced, antimicrobial peptides produced by bacteria to inhibit the growth of other, typically closely related, bacteria. In this systematic review, bacteriocin production and regulation of beta-hemolytic streptococci was surveyed. While Streptococcus pyogenes produces eight different bacteriocins (Streptococcin A-FF22/A-M49, Streptin, Salivaricin A, SpbMN, Blp1, Blp2, Streptococcin A-M57), only one bacteriocin of Streptococcus agalactiae (Agalacticin = Nisin P) and one of Streptococcus dysgalactiae subsp. equisimilis (Dysgalacticin) has been described. Expression of class I bacteriocins is regulated by a two-component system, typically with autoinduction by the bacteriocin itself. In contrast, a separate quorum sensing system regulates expression of class II bacteriocins. Both identified class III bacteriocins are plasmid-encoded and regulation has not been elucidated.
Collapse
|
20
|
Analysis of the proteolytic system of Streptococcus thermophilus strains CS5, CS9, CS18 and CS20. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Renye JA, Steinberg DH. Thermophilin 110 inhibits growth and biofilm formation of Streptococcus mutans. ACTA ACUST UNITED AC 2021; 31:e00647. [PMID: 34307072 PMCID: PMC8258636 DOI: 10.1016/j.btre.2021.e00647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/06/2022]
Abstract
S. thermophilus B59671 naturally produces thermophilin 110, a bacteriocin that inhibits the growth of the oral pathogen Streptococcus mutans Thermophilin 110 was shown to prevent biofilm formation by S. mutans UA159 Co-culturing S. thermophilus B59671 with S. mutans UA159 prevented biofilm formation.
Dental caries continues to occur in both children and adults worldwide resulting in significant economic burden, and consumers have expressed interest in natural products that can prevent these recurrent infections. In this study, S. thermophilus B59671, which produces thermophilin 110, was shown to inhibit the growth of S. mutans UA159. A thermophilin concentration ≥ 80 AU ml−1 prevented the growth of S. mutans UA159 in batch culture, while ≥ 160 AU ml−1 was required to prevent biofilm growth. Co-culturing S. thermophilus B59671 and S. mutans UA159 also resulted in impaired biofilm growth. Thermophillin 110 was also shown inhibit additional S. mutans strains and commensal oral streptococci at higher concentrations (640-1280 AU ml−1). These results suggest that thermophilin 110 could be used as a natural antimicrobial in oral care products and support the need for additional studies to assess the probiotic potential of S. thermophilus B59671.
Collapse
Affiliation(s)
- John A Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA 19038
| | - Dennis H Steinberg
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA 19038
| |
Collapse
|
22
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
23
|
Multi-omics Approach Reveals How Yeast Extract Peptides Shape Streptococcus thermophilus Metabolism. Appl Environ Microbiol 2020; 86:AEM.01446-20. [PMID: 32769193 DOI: 10.1128/aem.01446-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Peptides present in growth media are essential for nitrogen nutrition and optimal growth of lactic acid bacteria. In addition, according to their amino acid composition, they can also directly or indirectly play regulatory roles and influence global metabolism. This is especially relevant during the propagation phase to produce high cell counts of active lactic acid bacteria used as starters in the dairy industry. In the present work, we aimed at investigating how the respective compositions of two different yeast extracts, with a specific focus on peptide content, influenced Streptococcus thermophilus metabolism during growth under pH-controlled conditions. In addition to free amino acid quantification, we used a multi-omics approach (peptidomics, proteomics, and transcriptomics) to identify peptides initially present in the two culture media and to follow S. thermophilus gene expression and bacterial protein production during growth. The free amino acid and peptide compositions of the two yeast extracts differed qualitatively and quantitatively. Nevertheless, the two yeast extracts sustained similar levels of growth of S. thermophilus and led to equivalent final biomasses. However, transcriptomics and proteomics showed differential gene expression and protein production in several S. thermophilus metabolic pathways, especially amino acid, citrate, urease, purine, and pyrimidine metabolisms. The probable role of the regulator CodY is discussed in this context. Moreover, we observed significant differences in the production of regulators and of a quorum sensing regulatory system. The possible roles of yeast extract peptides on the modulation of the quorum sensing system expression are evaluated.IMPORTANCE Improving the performance and industrial robustness of bacteria used in fermentations and food industry remains a challenge. We showed here that two Streptococcus thermophilus fermentations, performed with the same strain in media that differ only by their yeast extract compositions and, more especially, their peptide contents, led to similar growth kinetics and final biomasses, but several genes and proteins were differentially expressed/produced. In other words, subtle variations in peptide composition of the growth medium can finely tune the metabolism status of the starter. Our work, therefore, suggests that acting on growth medium components and especially on their peptide content, we could modulate bacterial metabolism and produce bacteria differently programmed for further purposes. This might have applications for preparing active starter cultures.
Collapse
|
24
|
Canon F, Nidelet T, Guédon E, Thierry A, Gagnaire V. Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-cultures. Front Microbiol 2020; 11:2088. [PMID: 33013761 PMCID: PMC7500094 DOI: 10.3389/fmicb.2020.02088] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Microorganisms grow in concert, both in natural communities and in artificial or synthetic co-cultures. Positive interactions between associated microbes are paramount to achieve improved substrate conversion and process performance in biotransformation and fermented food production. The mechanisms underlying such positive interactions have been the focus of numerous studies in recent decades and are now starting to be well characterized. Lactic acid bacteria (LAB) contribute to the final organoleptic, nutritional, and health properties of fermented food products. However, interactions in LAB co-cultures have been little studied, apart from the well-characterized LAB co-culture used for yogurt manufacture. LAB are, however, multifunctional microorganisms that display considerable potential to create positive interactions between them. This review describes why LAB co-cultures are of such interest, particularly in foods, and how their extensive nutritional requirements can be used to favor positive interactions. In that respect, our review highlights the benefits of co-cultures in different areas of application, details the mechanisms underlying positive interactions and aims to show how mechanisms based on nutritional interactions can be exploited to create efficient LAB co-cultures.
Collapse
Affiliation(s)
| | - Thibault Nidelet
- SPO, INRAE, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
25
|
Stabili L, Rizzo L, Basso L, Marzano M, Fosso B, Pesole G, Piraino S. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar Drugs 2020; 18:md18090437. [PMID: 32839397 PMCID: PMC7551628 DOI: 10.3390/md18090437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- Institute of Water Research of the National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lucia Rizzo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
26
|
Weiland-Bräuer N, Prasse D, Brauer A, Jaspers C, Reusch TBH, Schmitz RA. Cultivable microbiota associated with Aurelia aurita and Mnemiopsis leidyi. Microbiologyopen 2020; 9:e1094. [PMID: 32652897 PMCID: PMC7520997 DOI: 10.1002/mbo3.1094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
The associated microbiota of marine invertebrates plays an important role to the host in relation to fitness, health, and homeostasis. Cooperative and competitive interactions between bacteria, due to release of, for example, antibacterial substances and quorum sensing (QS)/quorum quenching (QQ) molecules, ultimately affect the establishment and dynamics of the associated microbial community. Aiming to address interspecies competition of cultivable microbes associated with emerging model species of the basal animal phyla Cnidaria (Aurelia aurita) and Ctenophora (Mnemiopsis leidyi), we performed a classical isolation approach. Overall, 84 bacteria were isolated from A. aurita medusae and polyps, 64 bacteria from M. leidyi, and 83 bacteria from ambient seawater, followed by taxonomically classification by 16S rRNA gene analysis. The results show that A. aurita and M. leidyi harbor a cultivable core microbiome consisting of typical marine ubiquitous bacteria also found in the ambient seawater. However, several bacteria were restricted to one host suggesting host‐specific microbial community patterns. Interbacterial interactions were assessed by (a) a growth inhibition assay and (b) QS interference screening assay. Out of 231 isolates, 4 bacterial isolates inhibited growth of 17 isolates on agar plates. Moreover, 121 of the 231 isolates showed QS‐interfering activities. They interfered with the acyl‐homoserine lactone (AHL)‐based communication, of which 21 showed simultaneous interference with autoinducer 2. Overall, this study provides insights into the cultivable part of the microbiota associated with two environmentally important marine non‐model organisms and into interbacterial interactions, which are most likely considerably involved in shaping a healthy and resilient microbiota.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Daniela Prasse
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Annika Brauer
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| | - Cornelia Jaspers
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ruth A Schmitz
- Molekulare Mikrobiologie, Institut für Allgemeine Mikrobiologie, Kiel University, Kiel, Germany
| |
Collapse
|
27
|
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 2020; 77:1319-1343. [PMID: 31612240 PMCID: PMC11104945 DOI: 10.1007/s00018-019-03326-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules including acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology and synthetic ecology are discussed.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
28
|
Campanero C, Muñoz-Atienza E, Diep DB, Feito J, Arbulu S, del Campo R, Nes IF, Hernández PE, Herranz C, Cintas LM. Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantarius LP90. PLoS One 2020; 15:e0229417. [PMID: 32134941 PMCID: PMC7058333 DOI: 10.1371/journal.pone.0229417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae infections are one of the major causes of morbility and mortality worldwide. Although vaccination and antibiotherapy constitute fundamental and complementary strategies against pneumococcal infections, they present some limitations including the increase in non-vaccine serotypes and the emergence of multidrug-resistances, respectively. Ribosomally-synthesized antimicrobial peptides (i.e. bacteriocins) produced by Lactic Acid Bacteria (LAB) may represent an alternative or complementary strategy to antibiotics for the control of pneumococal infections. We tested the antimicrobial activity of 37 bacteriocinogenic LAB, isolated from food and other sources, against clinical S. pneumoniae strains. Streptococcus infantarius subsp. infantarius LP90, isolated from Venezuelan water-buffalo milk, was selected because of its broad and strong anti-pneumococcal spectrum. The in vitro safety assessment of S. infantarius LP90 revealed that it may be considered avirulent. The analysis of a 19,539-bp cluster showed the presence of 29 putative open reading frames (ORFs), including the genes encoding 8 new class II-bacteriocins, as well as the proteins involved in their secretion, immunity and regulation. Transcriptional analyses evidenced that the induction factor (IF) structural gene, the bacteriocin/IF transporter genes, the bacteriocin structural genes and most of the bacteriocin immunity genes were transcribed. MALDI-TOF analyses of peptides purified using different multichromatographic procedures revealed that the dairy strain S. infantarius LP90 produces at least 6 bacteriocins, including infantaricin A1, a novel anti-pneumococcal two-peptide bacteriocin.
Collapse
Affiliation(s)
- Cristina Campanero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Dzung B. Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Arbulu
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Ingolf F. Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Herranz
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Chromosomal Conjugative and Mobilizable Elements in Streptococcus suis: Major Actors in the Spreading of Antimicrobial Resistance and Bacteriocin Synthesis Genes. Pathogens 2019; 9:pathogens9010022. [PMID: 31881744 PMCID: PMC7168690 DOI: 10.3390/pathogens9010022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen suspected to be a reservoir of antimicrobial resistance (AMR) genes. The genomes of 214 strains of 27 serotypes were screened for AMR genes and chromosomal Mobile Genetic Elements (MGEs), in particular Integrative Conjugative Elements (ICEs) and Integrative Mobilizable Elements (IMEs). The functionality of two ICEs that host IMEs carrying AMR genes was investigated by excision tests and conjugation experiments. In silico search revealed 416 ICE-related and 457 IME-related elements. These MGEs exhibit an impressive diversity and plasticity with tandem accretions, integration of ICEs or IMEs inside ICEs and recombination between the elements. All of the detected 393 AMR genes are carried by MGEs. As previously described, ICEs are major vehicles of AMR genes in S. suis. Tn5252-related ICEs also appear to carry bacteriocin clusters. Furthermore, whereas the association of IME-AMR genes has never been described in S. suis, we found that most AMR genes are actually carried by IMEs. The autonomous transfer of an ICE to another bacterial species (Streptococcus thermophilus)-leading to the cis-mobilization of an IME carrying tet(O)-was obtained. These results show that besides ICEs, IMEs likely play a major role in the dissemination of AMR genes in S. suis.
Collapse
|
30
|
Mignolet J, Fontaine L, Sass A, Nannan C, Mahillon J, Coenye T, Hols P. Circuitry Rewiring Directly Couples Competence to Predation in the Gut Dweller Streptococcus salivarius. Cell Rep 2019; 22:1627-1638. [PMID: 29444418 DOI: 10.1016/j.celrep.2018.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Small distortions in transcriptional networks might lead to drastic phenotypical changes, especially in cellular developmental programs such as competence for natural transformation. Here, we report a pervasive circuitry rewiring for competence and predation interplay in commensal streptococci. Canonically, in streptococci paradigms such as Streptococcus pneumoniae and Streptococcus mutans, the pheromone-based two-component system BlpRH is a central node that orchestrates the production of antimicrobial compounds (bacteriocins) and incorporates signal from the competence activation cascade. However, the human commensal Streptococcus salivarius does not contain a functional BlpRH pair, while the competence signaling system ComRS directly couples bacteriocin production and competence commitment. This network shortcut might underlie an optimal adaptation against microbial competitors and explain the high prevalence of S. salivarius in the human digestive tract. Moreover, the broad spectrum of bacteriocin activity against pathogenic bacteria showcases the commensal and genetically tractable S. salivarius species as a user-friendly model for competence and bacterial predation.
Collapse
Affiliation(s)
- Johann Mignolet
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Laetitia Fontaine
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Pascal Hols
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
31
|
Quorum Sensing Circuits in the Communicating Mechanisms of Bacteria and Its Implication in the Biosynthesis of Bacteriocins by Lactic Acid Bacteria: a Review. Probiotics Antimicrob Proteins 2019; 12:5-17. [DOI: 10.1007/s12602-019-09555-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Complete Genome Sequences of Bacteriocin-Producing Streptococcus thermophilus Strains ST106 and ST109. Microbiol Resour Announc 2019; 8:MRA01336-18. [PMID: 30801058 PMCID: PMC6376417 DOI: 10.1128/mra.01336-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/04/2019] [Indexed: 12/02/2022] Open
Abstract
Streptococcus thermophilus strains ST106 and ST109 produce broad-spectrum bacteriocins encoded within a bacteriocin-like peptide (blp) gene cluster. This study reports the complete genome sequences for both strains, with the ST109 chromosome containing 1,788,866 nucleotides (nt) and 1,572 predicted genes, and ST106 having 1,856,083 nt and 1,601 predicted genes. Streptococcus thermophilus strains ST106 and ST109 produce broad-spectrum bacteriocins encoded within a bacteriocin-like peptide (blp) gene cluster. This study reports the complete genome sequences for both strains, with the ST109 chromosome containing 1,788,866 nucleotides (nt) and 1,572 predicted genes, and ST106 having 1,856,083 nt and 1,601 predicted genes.
Collapse
|
33
|
Renye JA, Somkuti GA, Steinberg DH. Thermophilin 109 is a naturally produced broad spectrum bacteriocin encoded within the blp gene cluster of Streptococcus thermophilus. Biotechnol Lett 2018; 41:283-292. [DOI: 10.1007/s10529-018-02637-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/05/2018] [Indexed: 11/28/2022]
|
34
|
Zou Z, Qin H, Brenner AE, Raghavan R, Millar JA, Gu Q, Xie Z, Kreth J, Merritt J. LytTR Regulatory Systems: A potential new class of prokaryotic sensory system. PLoS Genet 2018; 14:e1007709. [PMID: 30296267 PMCID: PMC6193735 DOI: 10.1371/journal.pgen.1007709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/18/2018] [Accepted: 09/23/2018] [Indexed: 01/28/2023] Open
Abstract
The most commonly studied prokaryotic sensory signal transduction systems include the one-component systems, phosphosignaling systems, extracytoplasmic function (ECF) sigma factor systems, and the various types of second messenger systems. Recently, we described the regulatory role of two separate sensory systems in Streptococcus mutans that jointly control bacteriocin gene expression, natural competence development, as well as a cell death pathway, yet they do not function via any of the currently recognized signal transduction paradigms. These systems, which we refer to as LytTR Regulatory Systems (LRS), minimally consist of two proteins, a transcription regulator from the LytTR Family and a transmembrane protein inhibitor of this transcription regulator. Here, we provide evidence suggesting that LRS are a unique uncharacterized class of prokaryotic sensory system. LRS exist in a basal inactive state. However, when LRS membrane inhibitor proteins are inactivated, an autoregulatory positive feedback loop is triggered due to LRS regulator protein interactions with direct repeat sequences located just upstream of the -35 sequences of LRS operon promoters. Uncharacterized LRS operons are widely encoded by a vast array of Gram positive and Gram negative bacteria as well as some archaea. These operons also contain unique direct repeat sequences immediately upstream of their operon promoters indicating that positive feedback autoregulation is a globally conserved feature of LRS. Despite the surprisingly widespread occurrence of LRS operons, the only characterized examples are those of S. mutans. Therefore, the current study provides a useful roadmap to investigate LRS function in the numerous other LRS-encoding organisms.
Collapse
Affiliation(s)
- Zhengzhong Zou
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Hua Qin
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Amanda E. Brenner
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Jess A. Millar
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Qiang Gu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
35
|
Abstract
Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections.
Collapse
|
36
|
Technological properties assessment and two component systems distribution of Streptococcus thermophilus strains isolated from fermented milk. Arch Microbiol 2017; 200:567-580. [PMID: 29236144 DOI: 10.1007/s00203-017-1468-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Streptococcus thermophilus is one of the economically most representatives of lactic acid bacteria, which is widely used as a starter to produce fermented milk products. In this study, 22 S. thermophilus strains were isolated from 26 fermented milk samples. Most isolates showed the ability to ferment a broad range of carbohydrates. Interestingly, eight strains are galactose positive, which is a desirable property in various industrial dairy fermentations. Four different nucleotide sequences were found in the galR-galK intergenic regions. The 16S-23S intergenic spacer region sequences of most isolates were determined as ITS-St-II type, which are related with protease positive and fast acidification. CS18 presented excellent technological performances, and showed potential as a promising starter candidate. To gain a comprehensive view of stress response mechanisms of strains, the distribution of all the two-component systems (TCSs) in strains were investigated. TCS analysis indicated that the nucleotide sequence of TCSs have obvious differences in different strains. And the strains with the special nucleotide sequences of TCS have distinctive traits. Therefore, it was speculated that there is a certain connection between the traits' difference and the TCS difference of strains.
Collapse
|
37
|
Complete Genome Sequence of Streptococcus thermophilus Strain B59671, Which Naturally Produces the Broad-Spectrum Bacteriocin Thermophilin 110. GENOME ANNOUNCEMENTS 2017; 5:5/45/e01213-17. [PMID: 29122869 PMCID: PMC5679802 DOI: 10.1128/genomea.01213-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Streptococcus thermophilus strain B59671 is a Gram-positive lactic acid bacterium that naturally produces a broad-spectrum bacteriocin, thermophilin 110, and is capable of producing gamma-aminobutyric acid (GABA). The complete genome sequence for this strain contains 1,821,173 nucleotides, 1,936 predicted genes, and an average G+C content of 39.1%.
Collapse
|
38
|
Renye JA, Somkuti GA, Garabal JI, Steinberg DH. Bacteriocin production by Streptococcus thermophilus in complex growth media. Biotechnol Lett 2016; 38:1947-1954. [PMID: 27515777 DOI: 10.1007/s10529-016-2184-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/21/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To test if the production of bacteriocins by Streptococcus thermophilus is influenced when grown in various complex media commonly used for the culturing of lactic acid bacteria. RESULTS Forty-one strains of S. thermophilus were screened for the production of bacteriocins in tryptone/yeast extract/lactose (TYL), M17-lactose (M17L), M17-glucose (M17G) and MRS media. Two strains, ST144 and ST145, were identified as novel bacteriocin producers, with constitutive production observed only in M17G. Strains ST110, ST114 and ST134 constitutively produced bacteriocins in all growth media but ST114 required growth in MRS for its antimicrobial activity to persist in a 24 h culture. The addition of a synthetic quorum sensing peptide (BlpC) induced bacteriocin production by ST106 in all media tested; and by ST118 in TYL and M17L. Strain ST109, which constitutively produced a bacteriocin in TYL and M17 broths, required BlpC induction when grown in MRS. Real-time PCR analysis showed that the natural expression of blpC in ST109 was lower when grown in MRS, suggesting that something in medium interfered with the blp quorum sensing system. CONCLUSION As the choice of growth medium influences both bacteriocin production and peptide stability, several types of production media should be tested when screening for novel bacteriocin-producing strains of S. thermophilus.
Collapse
Affiliation(s)
- J A Renye
- Dairy and Functional Food Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - G A Somkuti
- Dairy and Functional Food Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - J I Garabal
- Agricultural Research Center of Mabegondo (CIAM), Xunta de Galicia, 15318, Abegondo, Spain
| | - D H Steinberg
- Dairy and Functional Food Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| |
Collapse
|
39
|
|
40
|
Maldonado-Barragán A, Caballero-Guerrero B, Martín V, Ruiz-Barba JL, Rodríguez JM. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol 2016; 16:37. [PMID: 26969428 PMCID: PMC4788914 DOI: 10.1186/s12866-016-0663-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 03/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactobacillus gasseri is one of the dominant Lactobacillus species in the vaginal ecosystem. Some strains of this species have a high potential for being used as probiotics in order to maintain vaginal homeostasis, since they may confer colonization resistance against pathogens in the vagina by direct inhibition through production of antimicrobial compounds, as bacteriocins. In this work we have studied bacteriocin production of gassericin E (GasE), a novel bacteriocin produced by L. gasseri EV1461, a strain isolated from the vagina of a healthy woman, and whose production was shown to be promoted by the presence of certain specific bacteria in co-culture. Biochemical and genetic characterization of this novel bacteriocin are addressed. RESULTS We found that the inhibitory spectrum of L. gasseri EV1461 was broad, being directed to species both related and non-related to the producing strain. Interestingly, L. gasseri EV1461 inhibited the grown of pathogens usually associated with bacterial vaginosis (BV). The antimicrobial activity was due to the production of a novel bacteriocin, gassericin E (GasE). Production of this bacteriocin in broth medium only was achieved at high cell densities. At low cell densities, bacteriocin production ceased and only was restored after the addition of a supernatant from a previous bacteriocin-producing EV1461 culture (autoinduction), or through co-cultivation with several other Gram-positive strains (inducing bacteria). DNA sequence of the GasE locus revealed the presence of two putative operons which could be involved in biosynthesis and immunity of this bacteriocin (gaeAXI), and in regulation, transport and processing (gaePKRTC). The gaePKR encodes a putative three-component regulatory system, involving an autoinducer peptide (GaeP), a histidine protein kinase (GaeK) and a response regulator (GaeR), while the gaeTC encodes for an ABC transporter (GaeT) and their accessory protein (GaeC), involved in transport and processing of the bacteriocin. The gaeAXI, encodes for the bacteriocin gassericin E (GasE), a putative peptide bacteriocin (GaeX), and their immunity protein (GaeI). CONCLUSIONS The origin of the strain (vagina of healthy woman) and its ability to produce bacteriocins with inhibitory activity against vaginal pathogens may be an advantage for using L. gasseri EV1461 as a probiotic strain to fight and/or prevent bacterial infections as bacterial vaginosis (BV), since it could be better adapted to live and compete into the vaginal environment.
Collapse
Affiliation(s)
- Antonio Maldonado-Barragán
- Department of Food Biotechnology, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain. .,Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain. .,Present address: Department of Food Biotechnology, Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46. Carretera de Utrera, Km 1, 41013, Seville, Spain.
| | - Belén Caballero-Guerrero
- Department of Food Biotechnology, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Virginia Martín
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - José Luis Ruiz-Barba
- Department of Food Biotechnology, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
41
|
Davey L, Halperin SA, Lee SF. Immunoblotting conditions for small peptides from streptococci. J Microbiol Methods 2015; 114:40-2. [PMID: 25937086 DOI: 10.1016/j.mimet.2015.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022]
Abstract
Streptococci secrete small peptides with important biological functions. These peptides are not amenable to standard immunoblotting, and are often detected indirectly using activity assays, or by alternative approaches that may be expensive and laborious. Here we describe an immunoblotting method that enables reproducible detection of these small streptococcal peptides.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
42
|
Mantani Y, Ito E, Nishida M, Yuasa H, Masuda N, Qi WM, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Ultrastructural study on the morphological changes in indigenous bacteria of mucous layer and chyme throughout the rat intestine. J Vet Med Sci 2015; 77:1121-8. [PMID: 25890991 PMCID: PMC4591154 DOI: 10.1292/jvms.15-0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indigenous bacteria in the alimentary tract are exposed to various bactericidal
peptides and digestive enzymes, but the viability status and morphological changes of
indigenous bacteria are unclear. Therefore, the present study aimed to ultrastructurally
clarify the degeneration and viability status of indigenous bacteria in the rat intestine.
The majority of indigenous bacteria in the ileal mucous layer possessed intact cytoplasm,
but the cytoplasm of a few bacteria contained vacuoles. The vacuoles were more frequently
found in bacteria of ileal chyme than in those of ileal mucous layer and were found in a
large majority of bacteria in both the mucous layer and chyme throughout the large
intestine. In the dividing bacteria of the mucous layer and chyme throughout the
intestine, the ratio of area occupied by vacuoles was almost always less than 10%. Lysis
or detachment of the cell wall in the indigenous bacteria was more frequently found in the
large intestine than in the ileum, whereas bacterial remnants, such as cell walls, were
distributed almost evenly throughout the intestine. In an experimental control of
long-time-cultured Staphylococcus epidermidis on agar, similar vacuoles
were also found, but cell-wall degeneration was never observed. From these findings,
indigenous bacteria in the mucous layer were ultrastructurally confirmed to be the source
of indigenous bacteria in the chyme. Furthermore, the results suggested that indigenous
bacteria were more severely degenerated toward the large intestine and were probably
degraded in the intestine.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rul F, Monnet V. How microbes communicate in food: a review of signaling molecules and their impact on food quality. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Abstract
Within Gram-positive bacteria, the expression of target genes is controlled at the population level via signaling peptides, also known as pheromones. Pheromones control a wide range of functions, including competence, virulence, and others that remain unknown. Until now, their role in bacterial gene regulation has probably been underestimated; indeed, bacteria are able to produce, by ribosomal synthesis or surface protein degradation, an extraordinary variety of peptides which are released outside bacteria and among which, some are pheromones that mediate cell-to-cell communication. The review aims at giving an updated overview of these peptide-dependant communication pathways. More specifically, it follows the whole peptide circuit from the peptide production and secretion in the extracellular medium to its interaction with sensors at bacterial surface or re-import into the bacteria where it plays its regulation role. In recent years, as we have accumulated more knowledge about these systems, it has become apparent that they are more complex than they first appeared. For this reason, more research on peptide-dependant pathways is needed to develop new strategies for controlling functions of interest in Gram-positive bacteria. In particular, such research could lead to alternatives to the use of antibiotics against pathogenic bacteria. In perspective, the review identifies new research questions that emerge in this field and that have to be addressed.
Collapse
Affiliation(s)
| | | | - Rozenn Gardan
- a INRA, MICALIS, Domaine de Vilvert , Jouy-en-Josas , France
| |
Collapse
|
45
|
Thevenard B, Besset C, Choinard S, Fourcassié P, Boyaval P, Monnet V, Rul F. Response of S. thermophilus LMD-9 to bacitracin: involvement of a BceRS/AB-like module and of the rhamnose-glucose polysaccharide synthesis pathway. Int J Food Microbiol 2014; 177:89-97. [PMID: 24607862 DOI: 10.1016/j.ijfoodmicro.2014.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/03/2014] [Accepted: 02/15/2014] [Indexed: 11/30/2022]
Abstract
Streptococcus thermophilus is a lactic acid bacterium of major importance to the dairy industry as it is found in numerous cheeses and is one of the two bacterial species involved in the fermentation of yogurt. Bacterial two-component signal transduction systems (TCSs) play important roles in the process of bacterial environmental adaptation. S. thermophilus LMD-9 possesses eight such TCS systems; however, their functions have thus far been only poorly investigated. Here, we focused on two of the TCSs in LMD-9, TCS06 and TCS07, whose encoding genes are located close to each other on the chromosome, and are associated with those of ABC transporters. TCS06 homologs are frequently found in Lactobacillales, but their function has not yet been determined, while TCS07 and its upstream potential ABC transporter are homologous to the BceRS/AB system, which is involved in bacitracin resistance in Bacillus and Streptococcus species. To investigate the function(s) of TCS06 and TCS07, we constructed and characterized deletion mutants and performed transcriptional analysis in the presence and absence of bacitracin. We show here that both TCS06 and TCS07 regulate the genes in their close vicinity, in particular those encoding ABC transporters. We propose that the response of S. thermophilus to bacitracin includes i) a bacitracin export system, regulated by TCS07 and constituting a BceRS/AB-like detoxification module, and ii) the modification of cell-envelope properties via modulation of rhamnose-glucose polysaccharide synthesis, at least partially regulated by TCS06.
Collapse
Affiliation(s)
- B Thevenard
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - C Besset
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - S Choinard
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - P Fourcassié
- DuPont Nutrition and Health, Danisco France, BP10, 386220 Dangé-Saint-Romain, France
| | - P Boyaval
- DuPont Nutrition and Health, Danisco France, BP10, 386220 Dangé-Saint-Romain, France
| | - V Monnet
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - F Rul
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
| |
Collapse
|
46
|
Cook LC, Federle MJ. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 2013; 38:473-92. [PMID: 24118108 DOI: 10.1111/1574-6976.12046] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023] Open
Abstract
Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways.
Collapse
Affiliation(s)
- Laura C Cook
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
47
|
Kimaro Mlacha SZ, Romero-Steiner S, Hotopp JCD, Kumar N, Ishmael N, Riley DR, Farooq U, Creasy TH, Tallon LJ, Liu X, Goldsmith CS, Sampson J, Carlone GM, Hollingshead SK, Scott JAG, Tettelin H. Phenotypic, genomic, and transcriptional characterization of Streptococcus pneumoniae interacting with human pharyngeal cells. BMC Genomics 2013; 14:383. [PMID: 23758733 PMCID: PMC3708772 DOI: 10.1186/1471-2164-14-383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 05/24/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a leading cause of childhood morbidity and mortality worldwide, despite the availability of effective pneumococcal vaccines. Understanding the molecular interactions between the bacterium and the host will contribute to the control and prevention of pneumococcal disease. RESULTS We used a combination of adherence assays, mutagenesis and functional genomics to identify novel factors involved in adherence. By contrasting these processes in two pneumococcal strains, TIGR4 and G54, we showed that adherence and invasion capacities vary markedly by strain. Electron microscopy showed more adherent bacteria in association with membranous pseudopodia in the TIGR4 strain. Operons for cell wall phosphorylcholine incorporation (lic), manganese transport (psa) and phosphate utilization (phn) were up-regulated in both strains on exposure to epithelial cells. Pneumolysin, pili, stress protection genes (adhC-czcD) and genes of the type II fatty acid synthesis pathway were highly expressed in the naturally more invasive strain, TIGR4. Deletion mutagenesis of five gene regions identified as regulated in this study revealed attenuation in adherence. Most strikingly, ∆SP_1922 which was predicted to contain a B-cell epitope and revealed significant attenuation in adherence, appeared to be expressed as a part of an operon that includes the gene encoding the cytoplasmic pore-forming toxin and vaccine candidate, pneumolysin. CONCLUSION This work identifies a list of novel potential pneumococcal adherence determinants.
Collapse
|
48
|
Rossi F, Marzotto M, Cremonese S, Rizzotti L, Torriani S. Diversity of Streptococcus thermophilus in bacteriocin production; inhibitory spectrum and occurrence of thermophilin genes. Food Microbiol 2013; 35:27-33. [PMID: 23628611 DOI: 10.1016/j.fm.2013.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/24/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
The bacteriocin-producing Streptococcus thermophilus strains that can dominate in natural dairy ecosystems, may also enhance safety in products obtained from natural cultures. In this study, we sought to identify bacteriocin production and bacteriocin genes in 75 strains of dairy and plant origin. The strains were tested for antimicrobial activity against pathogens or pathogen models, spoiling bacteria, and lactic acid bacteria associated with dairy products. All strains moderately inhibited Staphylococcus aureus P310, none inhibited Listeria innocua LMG 11387(T) or Clostridium tyrobutyricum LMG 1285(T). In addition, 14 were active against one or more indicators in addition to S. aureus P310. Inhibition of other starter bacteria was more common than the inhibition of unwanted microorganisms. The involvement of a proteinaceous compound was ascertained in all cases. Results suggested that the selection of bacteriocinogenic S. thermophilus strains for use in biopreservation must take into account the effects exerted on other lactic acid bacteria. PCR detection of thermophilin genes proved unreliable in predicting antimicrobial activity. For S. thermophilus PRI36 and PRI45, with relevant inhibitory features, the identity of the bacteriocin genes present in the thermophilin 9 cluster was defined, thus revealing novel variants for this genome region.
Collapse
Affiliation(s)
- Franca Rossi
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, Verona, Italy.
| | | | | | | | | |
Collapse
|
49
|
Abstract
The field of ecology has long recognized two types of competition: exploitative competition, which occurs indirectly through resource consumption, and interference competition, whereby one individual directly harms another. Here, we argue that these two forms of competition have played a dominant role in the evolution of bacterial regulatory networks. In particular, we argue that several of the major bacterial stress responses detect ecological competition by sensing nutrient limitation (exploitative competition) or direct cell damage (interference competition). We call this competition sensing: a physiological response that detects harm caused by other cells and that evolved, at least in part, for that purpose. A key prediction of our hypothesis is that bacteria will counter-attack when they sense ecological competition but not when they sense abiotic stress. In support of this hypothesis, we show that bacteriocins and antibiotics are frequently upregulated by stress responses to nutrient limitation and cell damage but very rarely upregulated by stress responses to heat or osmotic stress, which typically are not competition related. We argue that stress responses, in combination with the various mechanisms that sense secretions, enable bacteria to infer the presence of ecological competition and navigate the 'microbe-kill-microbe' world in which they live.
Collapse
|
50
|
Fontaine L, Goffin P, Dubout H, Delplace B, Baulard A, Lecat-Guillet N, Chambellon E, Gardan R, Hols P. Mechanism of competence activation by the ComRS signalling system in streptococci. Mol Microbiol 2013; 87:1113-32. [PMID: 23323845 DOI: 10.1111/mmi.12157] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2013] [Indexed: 11/28/2022]
Abstract
In many streptococci, competence for natural DNA transformation is regulated by the Rgg-type regulator ComR and the pheromone ComS, which is sensed intracellularly. We compared the ComRS systems of four model streptococcal species using in vitro and in silico approaches, to determine the mechanism of the ComRS-dependent regulation of competence. In all systems investigated, ComR was shown to be the proximal transcriptional activator of the expression of key competence genes. Efficient binding of ComR to DNA is strictly dependent on the presence of the pheromone (C-terminal ComS octapeptide), in contrast with other streptococcal Rgg-type regulators. The 20 bp palindromic ComR-box is the minimal genetic requirement for binding of ComR, and its sequence directly determines the expression level of genes under its control. Despite the apparent species-specific specialization of the ComR-ComS interaction, mutagenesis of ComS residues from Streptococcus thermophilus highlighted an unexpected permissiveness with respect to its biological activity. In agreement, heterologous ComS, and even primary sequence-unrelated, casein-derived octapeptides, were able to induce competence development in S. thermophilus. The lack of stringency of ComS sequence suggests that competence of a specific Streptococcus species may be modulated by other streptococci or by non-specific nutritive oligopeptides present in its environment.
Collapse
Affiliation(s)
- Laetitia Fontaine
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|