1
|
Wang K, Ma X, Longchamps PL, Chou KC, Lu X. Single-Cell Identification and Characterization of Viable but Nonculturable Campylobacter jejuni Using Raman Optical Tweezers and Machine Learning. Anal Chem 2025; 97:2028-2035. [PMID: 39827452 DOI: 10.1021/acs.analchem.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Campylobacter jejuni is a leading foodborne pathogen that may enter a viable but nonculturable (VBNC) state to survive under environmental stresses, posing a significant health concern. VBNC cells can evade conventional culture-based detection methods, while viability-based assays are usually hindered by low sensitivity, insufficient specificity, or technical challenges. There are limited studies analyzing VBNC cells at the single-cell level for accurate detection and an understanding of their unique behavior. Here, we present a culture-independent approach to identify and characterize VBNC C. jejuni using single-cell Raman spectra collected by optical tweezers and machine learning. C. jejuni strains were induced into the VBNC state under osmotic pressure (7% w/v NaCl solution) and aerobic stress (atmospheric condition). Using single-cell Raman spectra and a convolutional neural network (CNN), VBNC C. jejuni cells were distinguished from their culturable counterparts with an accuracy of ∼92%. There were no significant spectral differences between the VBNC cells formed under different stressors or induction periods. Furthermore, we utilized gradient-weighted class activation mapping to highlight the spectral regions that contribute most to the CNN-based classification between culturable and VBNC cells. These regions align with previously identified changes in proteins, nucleic acids, lipids, and peptidoglycan in VBNC cells, providing insights into the molecular characterization of the VBNC state of C. jejuni.
Collapse
Affiliation(s)
- Kaidi Wang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Xiangyun Ma
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Pierre-Luc Longchamps
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Keng C Chou
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| |
Collapse
|
2
|
Schmidt S, Mondino S, Gomez-Valero L, Escoll P, Mascarenhas DPA, Gonçalves A, Camara PHM, Garcia Rodriguez FJ, Rusniok C, Sachse M, Moya-Nilges M, Fontaine T, Zamboni DS, Buchrieser C. The unique Legionella longbeachae capsule favors intracellular replication and immune evasion. PLoS Pathog 2024; 20:e1012534. [PMID: 39259722 PMCID: PMC11419355 DOI: 10.1371/journal.ppat.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/23/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Legionella longbeachae and Legionella pneumophila are the most common causative agents of Legionnaires' disease. While the clinical manifestations caused by both species are similar, species-specific differences exist in environmental niches, disease epidemiology, and genomic content. One such difference is the presence of a genomic locus predicted to encode a capsule. Here, we show that L. longbeachae indeed expresses a capsule in post-exponential growth phase as evidenced by electron microscopy analyses, and that capsule expression is abrogated when deleting a capsule transporter gene. Capsule purification and its analysis via HLPC revealed the presence of a highly anionic polysaccharide that is absent in the capsule mutant. The capsule is important for replication and virulence in vivo in a mouse model of infection and in the natural host Acanthamoeba castellanii. It has anti-phagocytic function when encountering innate immune cells such as human macrophages and it is involved in the low cytokine responses in mice and in human monocyte derived macrophages, thus dampening the innate immune response. Thus, the here characterized L. longbeachae capsule is a novel virulence factor, unique among the known Legionella species, which may aid L. longbeachae to survive in its specific niches and which partly confers L. longbeachae its unique infection characteristics.
Collapse
Affiliation(s)
- Silke Schmidt
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Sonia Mondino
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | | | - Augusto Gonçalves
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Pedro H. M. Camara
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | | | - Christophe Rusniok
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| | - Martin Sachse
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Maryse Moya-Nilges
- UTechS UBI, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Biologie et Pathogénicité fongiques, Institut Pasteur, Paris, France
| | - Dario S. Zamboni
- Department of Cell Biology, Medical School of Ribeirão Preto, FMRP/USP, Ribeirão Preto, Brazil
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, CNRS UMR 6047, Paris, France
| |
Collapse
|
3
|
Ramires T, Wilson R, Padilha da Silva W, Bowman JP. Identification of pH-specific protein expression responses by Campylobacter jejuni strain NCTC 11168. Res Microbiol 2023:104061. [PMID: 37055003 DOI: 10.1016/j.resmic.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
In this study a data dependent acquisition label-free based proteomics approach was used to identify pH-dependent proteins that respond in a growth phase independent manner in C. jejuni reference strain NCTC 11168. NCTC 11168 was grown within its pH physiological normal growth range (pH 5.8, 7.0 and 8.0, μ = ∼0.5 h-1) and exposed to pH 4.0 shock for 2 hours. It was discovered that gluconate 2-dehydrogenase GdhAB, NssR-regulated globins Cgb and Ctb, cupin domain protein Cj0761, cytochrome c protein CccC (Cj0037c), and phosphate-binding transporter protein PstB all show acidic pH dependent abundance increases but are not activated by sub-lethal acid shock. Glutamate synthase (GLtBD) and the MfrABC and NapAGL respiratory complexes were induced in cells grown at pH 8.0. The response to pH stress by C. jejuni is to bolster microaerobic respiration and at pH 8.0 this is assisted by accumulation of glutamate the conversion of which could bolster fumarate respiration. The pH dependent proteins linked to growth in C. jejuni NCTC 11168 aids cellular energy conservation maximising growth rate and thus competitiveness and fitness.
Collapse
Affiliation(s)
- Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - John P Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
4
|
Ramić D, Jug B, Šimunović K, Tušek Žnidarič M, Kunej U, Toplak N, Kovač M, Fournier M, Jamnik P, Smole Možina S, Klančnik A. The Role of luxS in Campylobacter jejuni Beyond Intercellular Signaling. Microbiol Spectr 2023; 11:e0257222. [PMID: 36722966 PMCID: PMC10100756 DOI: 10.1128/spectrum.02572-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/07/2023] [Indexed: 02/02/2023] Open
Abstract
The full role of the luxS gene in the biological processes, such as essential amino acid synthesis, nitrogen and pyruvate metabolism, and flagellar assembly, of Campylobacter jejuni has not been clearly described to date. Therefore, in this study, we used a comprehensive approach at the cellular and molecular levels, including transcriptomics and proteomics, to investigate the key role of the luxS gene and compared C. jejuni 11168ΔluxS (luxS mutant) and C. jejuni NCTC 11168 (wild type) strains. Transcriptomic analysis of the luxS mutant grown under optimal conditions revealed upregulation of luxS mutant metabolic pathways when normalized to wild type, including oxidative phosphorylation, carbon metabolism, citrate cycle, biosynthesis of secondary metabolites, and biosynthesis of various essential amino acids. Interestingly, induction of these metabolic pathways was also confirmed by proteomic analysis, indicating their important role in energy production and the growth of C. jejuni. In addition, genes important for the stress response of C. jejuni, including nutrient starvation and oxidative stress, were upregulated. This was also evident in the better survival of the luxS mutant under starvation conditions than the wild type. At the molecular level, we confirmed that metabolic pathways were upregulated under optimal conditions in the luxS mutant, including those important for the biosynthesis of several essential amino acids. This also modulated the utilization of various carbon and nitrogen sources, as determined by Biolog phenotype microarray analysis. In summary, transcriptomic and proteomic analysis revealed key biological differences in tricarboxylic acid (TCA) cycle, pyruvate, nitrogen, and thiamine metabolism as well as lipopolysaccharide biosynthesis in the luxS mutant. IMPORTANCE Campylobacter jejuni is the world's leading foodborne bacterial pathogen of gastrointestinal disease in humans. C. jejuni is a fastidious but widespread organism and the most frequently reported zoonotic pathogen in the European Union since 2005. This led us to believe that C. jejuni, which is highly sensitive to stress factors (starvation and oxygen concentration) and has a low growth rate, benefits significantly from the luxS gene. The role of this gene in the life cycle of C. jejuni is well known, and the expression of luxS regulates many phenotypes, including motility, biofilm formation, host colonization, virulence, autoagglutination, cellular adherence and invasion, oxidative stress, and chemotaxis. Surprisingly, this study confirmed for the first time that the deletion of the luxS gene strongly affects the central metabolic pathway of C. jejuni, which improves its survival, showing its role beyond the intercellular signaling system.
Collapse
Affiliation(s)
- Dina Ramić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Jug
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and System Biology, National institute of Biology, Ljubljana, Slovenia
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Marjorie Fournier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Polona Jamnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Cayron J, Dedieu-Berne A, Lesterlin C. Bacterial filaments recover by successive and accelerated asymmetric divisions that allow rapid post-stress cell proliferation. Mol Microbiol 2023; 119:237-251. [PMID: 36527185 DOI: 10.1111/mmi.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.
Collapse
Affiliation(s)
- Julien Cayron
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Annick Dedieu-Berne
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| |
Collapse
|
6
|
Frirdich E, Vermeulen J, Biboy J, Vollmer W, Gaynor EC. Multiple Campylobacter jejuni proteins affecting the peptidoglycan structure and the degree of helical cell curvature. Front Microbiol 2023; 14:1162806. [PMID: 37143542 PMCID: PMC10151779 DOI: 10.3389/fmicb.2023.1162806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative helical bacterium. Its helical morphology, maintained by the peptidoglycan (PG) layer, plays a key role in its transmission in the environment, colonization, and pathogenic properties. The previously characterized PG hydrolases Pgp1 and Pgp2 are important for generating C. jejuni helical morphology, with deletion mutants being rod-shaped and showing alterations in their PG muropeptide profiles in comparison to the wild type. Homology searches and bioinformatics were used to identify additional gene products involved in C. jejuni morphogenesis: the putative bactofilin 1104 and the M23 peptidase domain-containing proteins 0166, 1105, and 1228. Deletions in the corresponding genes resulted in varying curved rod morphologies with changes in their PG muropeptide profiles. All changes in the mutants complemented except 1104. Overexpression of 1104 and 1105 also resulted in changes in the morphology and in the muropeptide profiles, suggesting that the dose of these two gene products influences these characteristics. The related helical ε-Proteobacterium Helicobacter pylori has characterized homologs of C. jejuni 1104, 1105, and 1228 proteins, yet deletion of the homologous genes in H. pylori had differing effects on H. pylori PG muropeptide profiles and/or morphology compared to the C. jejuni deletion mutants. It is therefore apparent that even related organisms with similar morphologies and homologous proteins can have diverse PG biosynthetic pathways, highlighting the importance of studying PG biosynthesis in related organisms.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Emilisa Frirdich,
| | - Jenny Vermeulen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jacob Biboy
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Pokhrel D, Thames HT, Zhang L, Dinh TTN, Schilling W, White SB, Ramachandran R, Theradiyil Sukumaran A. Roles of Aerotolerance, Biofilm Formation, and Viable but Non-Culturable State in the Survival of Campylobacter jejuni in Poultry Processing Environments. Microorganisms 2022; 10:2165. [PMID: 36363757 PMCID: PMC9699079 DOI: 10.3390/microorganisms10112165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 08/11/2023] Open
Abstract
Campylobacter jejuni is one of the most common causes of foodborne human gastroenteritis in the developed world. This bacterium colonizes in the ceca of chickens, spreads throughout the poultry production chain, and contaminates poultry products. Despite numerous on farm intervention strategies and developments in post-harvest antimicrobial treatments, C. jejuni is frequently detected on broiler meat products. This indicates that C. jejuni is evolving over time to overcome the stresses/interventions that are present throughout poultry production and processing. The development of aerotolerance has been reported to be a major survival strategy used by C. jejuni in high oxygen environments. Recent studies have indicated that C. jejuni can enter a viable but non-culturable (VBNC) state or develop biofilm in response to environmental stressors such as refrigeration and freezing stress and aerobic stress. This review provides an overview of different stressors that C. jejuni are exposed to throughout the poultry production chain and the genotypic and phenotypic survival mechanisms, with special attention to aerotolerance, biofilm formation, and development of the VBNC state.
Collapse
Affiliation(s)
- Diksha Pokhrel
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Hudson T. Thames
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Thu T. N. Dinh
- Tyson Foods, 2200 W. Don Tyson Parkway, Springdale, AR 72762, USA
| | - Wes Schilling
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Shecoya B. White
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Reshma Ramachandran
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | | |
Collapse
|
8
|
Khan F, Jeong GJ, Tabassum N, Mishra A, Kim YM. Filamentous morphology of bacterial pathogens: regulatory factors and control strategies. Appl Microbiol Biotechnol 2022; 106:5835-5862. [PMID: 35989330 DOI: 10.1007/s00253-022-12128-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that when exposed to physical, chemical, and biological stresses in the environment, many bacteria (Gram-positive and Gram-negative) change their morphology from a normal cell to a filamentous shape. The formation of filamentous morphology is one of the survival strategies against environmental stress and protection against phagocytosis or protist predators. Numerous pathogenic bacteria have shown filamentous morphologies when examined in vivo or in vitro. During infection, certain pathogenic bacteria adopt a filamentous shape inside the cell to avoid phagocytosis by immune cells. Filamentous morphology has also been seen in biofilms formed on biotic or abiotic surfaces by certain bacteria. As a result, in addition to protecting against phagocytosis by immune cells or predators, the filamentous shape aids in biofilm adhesion or colonization to biotic or abiotic surfaces. Furthermore, these filamentous morphologies of bacterial pathogens lead to antimicrobial drug resistance. Clinically, filamentous morphology has become one of the most serious challenges in treating bacterial infection. The current review went into great detail about the various factors involved in the change of filamentous morphology and the underlying mechanisms. In addition, the review discussed a control strategy for suppressing filamentous morphology in order to combat bacterial infections. Understanding the mechanism underlying the filamentous morphology induced by various environmental conditions will aid in drug development and lessen the virulence of bacterial pathogens. KEY POINTS: • The bacterial filamentation morphology is one of the survival mechanisms against several environmental stress conditions and protection from phagocytosis by host cells and protist predators. • The filamentous morphologies in bacterial pathogens contribute to enhanced biofilm formation, which develops resistance properties against antimicrobial drugs. • Filamentous morphology has become one of the major hurdles in treating bacterial infection, hence controlling strategies employed for inhibiting the filamentation morphology from combating bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Akanksha Mishra
- Department of Biotechnology, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Li S, Lam J, Souliotis L, Alam MT, Constantinidou C. Posttranscriptional Regulation in Response to Different Environmental Stresses in Campylobacter jejuni. Microbiol Spectr 2022; 10:e0020322. [PMID: 35678555 PMCID: PMC9241687 DOI: 10.1128/spectrum.00203-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
The survival strategies that Campylobacter jejuni (C. jejuni) employ throughout its transmission and infection life cycles remain largely elusive. Specifically, there is a lack of understanding about the posttranscriptional regulation of stress adaptations resulting from small noncoding RNAs (sRNAs). Published C. jejuni sRNAs have been discovered in specific conditions but with limited insights into their biological activities. Many more sRNAs are yet to be discovered as they may be condition-dependent. Here, we have generated transcriptomic data from 21 host- and transmission-relevant conditions. The data uncovered transcription start sites, expression patterns and posttranscriptional regulation during various stress conditions. This data set helped predict a list of putative sRNAs. We further explored the sRNAs' biological functions by integrating differential gene expression analysis, coexpression analysis, and genome-wide sRNA target prediction. The results showed that the C. jejuni gene expression was influenced primarily by nutrient deprivation and food storage conditions. Further exploration revealed a putative sRNA (CjSA21) that targeted tlp1 to 4 under food processing conditions. tlp1 to 4 are transcripts that encode methyl-accepting chemotaxis proteins (MCPs), which are responsible for chemosensing. These results suggested CjSA21 inhibits chemotaxis and promotes survival under food processing conditions. This study presents the broader research community with a comprehensive data set and highlights a novel sRNA as a potential chemotaxis inhibitor. IMPORTANCE The foodborne pathogen C. jejuni is a significant challenge for the global health care system. It is crucial to investigate C. jejuni posttranscriptional regulation by small RNAs (sRNAs) in order to understand how it adapts to different stress conditions. However, limited data are available for investigating sRNA activity under stress. In this study, we generate gene expression data of C. jejuni under 21 stress conditions. Our data analysis indicates that one of the novel sRNAs mediates the adaptation to food processing conditions. Results from our work shed light on the posttranscriptional regulation of C. jejuni and identify an sRNA associated with food safety.
Collapse
Affiliation(s)
- Stephen Li
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jenna Lam
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | |
Collapse
|
10
|
Interplay between Amoxicillin Resistance and Osmotic Stress in Helicobacter pylori. J Bacteriol 2022; 204:e0004522. [PMID: 35389254 DOI: 10.1128/jb.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rising antibiotic resistance rates are a growing concern for all pathogens, including Helicobacter pylori. We previously examined the association of specific mutations in PBP1 with amoxicillin resistance and fitness in H. pylori and found that V374L and N562Y mutations were associated with resistance, but also resulted in fitness defects. Furthermore, we found that hyperosmotic stress differentially altered the fitness of strains bearing these mutations; survival of the V374L strain was decreased by hyperosmotic stress, but the N562Y strain showed increased cell survival relative to that of wild-type G27. The finding that amoxicillin-resistant strains show environmentally dictated changes in fitness suggests a previously unexplored interaction between amoxicillin resistance and osmotic stress in H. pylori. Here, we further characterized the interaction between osmotic stress and amoxicillin resistance. Wild-type and isogenic PBP1 mutant strains were exposed to amoxicillin, various osmotic stressors, or combined antibiotic and osmotic stress, and viability was monitored. While subinhibitory concentrations of NaCl did not affect H. pylori viability, the combination of NaCl and amoxicillin resulted in synergistic killing; this was true even for the antibiotic-resistant strains. Moreover, similar synergy was found with other beta-lactams, but not with antibiotics that did not target the cell wall. Similar synergistic killing was also demonstrated when KCl was utilized as the osmotic stressor. Conversely, osmolar equivalent concentrations of sucrose antagonized amoxicillin-mediated killing. Taken together, our results support a previously unrecognized interaction between amoxicillin resistance and osmotic stress in H. pylori. These findings have interesting implications for the effectiveness of antibiotic therapy for this pathogen. IMPORTANCE Rising antibiotic resistance rates in H. pylori are associated with increased rates of treatment failure. Understanding how stressors impact antibiotic resistance may shed light on the development of future treatment strategies. Previous studies found that mutations in PBP1 that conferred resistance to amoxicillin were also associated with a decrease in bacterial fitness. The current study demonstrated that osmotic stress can enhance beta lactam-mediated killing of H. pylori. The source of osmotic stress was found to be important for these interactions. Given that relatively little is known about how H. pylori responds to osmotic stress, these findings fill important knowledge gaps on this topic and provide interesting implications for the effectiveness of antibiotic therapy for this pathogen.
Collapse
|
11
|
Gomes CN, Barker DOR, Duque SDS, Che EV, Jayamanna V, Taboada EN, Falcão JP. Campylobacter coli isolated in Brazil typed by core genome Multilocus Sequence Typing shows high genomic diversity in a global context. INFECTION GENETICS AND EVOLUTION 2021; 95:105018. [PMID: 34332158 DOI: 10.1016/j.meegid.2021.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
Campylobacter has been one of the most common causative agent of bacterial food-borne gastroenteritis in humans worldwide. However, in Brazil the campylobacteriosis has been a neglected disease and there is insufficient data to estimate the incidence of this pathogen in the country. AIMS The current study aimed to determine the phylogenetic relationships among Campylobacter coli strains isolated in Brazil and to compare them with international Campylobacter isolates available in some public databases. METHODS AND RESULTS A total of 63C. coli strains isolated in Brazil were studied. The MLST analysis showed 18 different STs including three STs not yet described in the PubMLST database. The cgMLST allocated the Brazilian strains studied into five main clusters and each cluster comprised groups of strains with nearly identical cgMLST profiles and with significant genetic distance observed among the distinct clusters. The comparison of the Brazilian strains with 3401 isolates from different countries showed a wide distribution of these strains isolated in this country. CONCLUSIONS The results showed a high similarity among some strains studied and a wide distribution of the Brazilian strains when compared to isolates from different countries, which is an interesting data set since it showed a high genetic diversity of these strains from Brazil in a global context. This study contributed for a better genomic characterization of C. coli strains isolated in Brazil and provided important information about the diversity of this clinically-relevant pathogen.
Collapse
Affiliation(s)
- Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Emily Victoria Che
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Vasena Jayamanna
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
12
|
Duqué B, Rezé S, Rossero A, Membré JM, Guillou S, Haddad N. Quantification of Campylobacter jejuni gene expression after successive stresses mimicking poultry slaughtering steps. Food Microbiol 2021; 98:103795. [PMID: 33875223 DOI: 10.1016/j.fm.2021.103795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Broiler meat is considered as the most important source of the foodborne pathogen Campylobacter jejuni. Exposure to stress conditions encountered during the slaughtering process may induce bacterial adaptation mechanisms, and enhance or decrease pathogen resistance to subsequent stress. This adaptation may result from changes in bacterial gene expression. This study aims to accurately quantify the expression of selected C. jejuni genes after stresses inspired from the poultry slaughtering process. RT-qPCR was used to quantify gene expression of 44 genes in three strains after successive heat and cold stresses. Main results indicated that 26 genes out of 44 were differentially expressed following the successive thermal stresses. Three clusters of genes were differentially expressed according to the strain and the stress condition. Up-regulated genes mainly included genes involved in the heat shock response, whereas down-regulated genes belonged to metabolic pathways (such as lipid, amino-acid metabolisms). However, four genes were similarly overexpressed in the three strains; they might represent indicators of the thermal stress response at the species scale. Advances in the molecular understanding of the stress response of pathogenic bacteria, such as Campylobacter, in real-life processing conditions will make it possible to identify technological levers and better mitigate the microbial risk.
Collapse
Affiliation(s)
- Benjamin Duqué
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Sandrine Rezé
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Albert Rossero
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | | | - Sandrine Guillou
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Nabila Haddad
- SECALIM, INRAE, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| |
Collapse
|
13
|
Mouftah SF, Cobo-Díaz JF, Álvarez-Ordóñez A, Mousa A, Calland JK, Pascoe B, Sheppard SK, Elhadidy M. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiol 2020; 95:103706. [PMID: 33397624 DOI: 10.1016/j.fm.2020.103706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
One of the emerging conundrums of Campylobacter food-borne illness is the bacterial ability to survive stressful environmental conditions. We evaluated the heterogeneity among 90 C. jejuni and 21 C. coli isolates from different sources in Egypt with respect to biofilm formation capabilities (under microaerobic and aerobic atmosphere) and resistance to a range of stressors encountered along the food chain (aerobic stress, refrigeration, freeze-thaw, heat, peracetic acid, and osmotic stress). High prevalence (63%) of hyper-aerotolerant (HAT) isolates was observed, exhibiting also a significantly high tolerance to heat, osmotic stress, refrigeration, and freeze-thaw stress, coupled with high biofilm formation ability which was clearly enhanced under aerobic conditions, suggesting a potential link between stress adaptation and biofilm formation. Most HAT multi-stress resistant and strong biofilm producing C. jejuni isolates belonged to host generalist clonal complexes (ST-21, ST-45, ST-48 and ST-206). These findings highlight the potential role of oxidative stress response systems in providing cross-protection (resistance to other multiple stress conditions) and enhancing biofilm formation in Campylobacter and suggest that selective pressures encountered in hostile environments have shaped the epidemiology of C. jejuni in Egypt by selecting the transmission of highly adapted isolates, thus promoting the colonization of multiple host species by important disease-causing lineages.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Ahmed Mousa
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Jessica K Calland
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand
| | - Samuel K Sheppard
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand; Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
14
|
Windham IH, Merrell DS. Analysis of fitness costs associated with metronidazole and amoxicillin resistance in Helicobacter pylori. Helicobacter 2020; 25:e12724. [PMID: 32677105 DOI: 10.1111/hel.12724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increasing rates of antibiotic resistance are a major concern for all pathogens, including H. pylori. However, increased resistance often coincides with a decrease in relative fitness of the pathogen in the absence of the antibiotic, raising the possibility that increased resistance can be mitigated for some antibiotics by improved antibiotic husbandry. Therefore, a greater understanding of which types of antibiotic resistance create fitness defects in H. pylori may aid rational treatment strategies. MATERIALS AND METHODS While a wealth of H. pylori literature reports mutations that correlate with increased resistance, few studies demonstrate causation for these same mutations. Herein, we examined fitness costs associated with metronidazole and amoxicillin resistance. Isogenic strains bearing literature reported point mutations in the rdxA and pbp1 genes were engineered and tested in in vitro competition assays to assess relative fitness. RESULTS None of the metronidazole resistance mutations resulted in a fitness cost under the tested conditions. In contrast, amoxicillin-resistant mutant strains demonstrated a defect in competition by 24 hours. This change in fitness was further enhanced by moderate osmotic stress. However, under extreme osmotic stress, the amoxicillin-resistant N562Y PBP1 mutant strain showed enhanced fitness, suggesting that there are some pbp1 mutations that can give a conditional fitness advantage. CONCLUSIONS Our results demonstrate the role of specific point mutations in rdxA and pbp1 in antibiotic resistance and suggest that amoxicillin-resistant strains of H. pylori show environmentally dictated changes in fitness. These later finding may be responsible for the relatively low rates of amoxicillin resistance seen in the United States.
Collapse
Affiliation(s)
- Ian H Windham
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
15
|
Phosphate Transporter PstSCAB of Campylobacter jejuni Is a Critical Determinant of Lactate-Dependent Growth and Colonization in Chickens. J Bacteriol 2020; 202:JB.00716-19. [PMID: 31932316 DOI: 10.1128/jb.00716-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni causes acute gastroenteritis worldwide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous transcriptome sequencing (RNA-Seq) experiment showed that transcripts from an operon encoding a high-affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when the bacterium was grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNA-Seq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni Our results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, in nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. The mutant strain was highly attenuated for colonization of newly hatched chicks, with levels of bacteria at several orders of magnitude below wild-type levels. Mutant and wild type grew similarly in complex media, but the pstS::kan mutant exhibited a significant growth defect in minimal medium supplemented with l-lactate, postulated as a carbon source in vivo Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival.IMPORTANCE Campylobacter jejuni causes millions of human gastrointestinal infections annually, with poultry a major source of infection. Due to the emergence of multidrug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB are highly expressed by C. jejuni in chickens and humans. In this study, we address the role of PstSCAB on chicken colonization and other C. jejuni phenotypes. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses, and during growth on lactate, a potential growth substrate in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms for controlling bacterial burden in both chicken and human.
Collapse
|
16
|
Lv R, Wang K, Feng J, Heeney DD, Liu D, Lu X. Detection and Quantification of Viable but Non-culturable Campylobacter jejuni. Front Microbiol 2020; 10:2920. [PMID: 31998253 PMCID: PMC6965164 DOI: 10.3389/fmicb.2019.02920] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Campylobacter can enter a viable but non-culturable (VBNC) state to evade various stresses, and this state is undetectable using traditional microbiological culturing techniques. These VBNC bacterial cells retain metabolism and demonstrate pathogenic potential due to their ability to resuscitate under favorable conditions. Rapid and accurate determination of VBNC Campylobacter is critical to further understand the induction and resuscitation of the dormancy state of this microbe in the agri-food system. Here, we integrated propidium monoazide (PMA) with real-time polymerase chain reaction (qPCR) targeting the rpoB gene to detect and quantify Campylobacter jejuni in the VBNC state. First, we optimized the concentration of PMA (20 μM) that could significantly inhibit the amplification of dead cells by qPCR with no significant interference on the amplification of viable cell DNA. PMA-qPCR was highly specific to C. jejuni with a limit of detection (LOD) of 2.43 log CFU/ml in pure bacterial culture. A standard curve for C. jejuni cell concentrations was established with the correlation coefficient of 0.9999 at the linear range of 3.43 to 8.43 log CFU/ml. Induction of C. jejuni into the VBNC state by osmotic stress (i.e., 7% NaCl) was rapid (<48 h) and effective (>10% population). The LOD of PMA-qPCR for VBNC C. jejuni exogenously applied to chicken breasts was 3.12 log CFU/g. In conclusion, PMA-qPCR is a rapid, specific, and sensitive method for the detection and quantification of VBNC C. jejuni in poultry products. This technique can give insight into the prevalence of VBNC Campylobacter in the environment and agri-food production system.
Collapse
Affiliation(s)
- Ruiling Lv
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Kaidi Wang
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jinsong Feng
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Dustin D Heeney
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaonan Lu
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Oh E, Andrews KJ, McMullen LM, Jeon B. Tolerance to stress conditions associated with food safety in Campylobacter jejuni strains isolated from retail raw chicken. Sci Rep 2019; 9:11915. [PMID: 31417115 PMCID: PMC6695378 DOI: 10.1038/s41598-019-48373-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Campylobacter jejuni is a microaerophilic foodborne pathogen that is sensitive to stress conditions. However, it is not yet understood how this stress-sensitive pathogen may cause a significant number of cases of human gastroenteritis worldwide. In this study, we examined stress tolerance in 70 C. jejuni strains isolated from retail chicken under several stress conditions related to food safety. Compared to oxygen-sensitive (OS) strains of C. jejuni, C. jejuni strains with increased aerotolerance, such as hyper-aerotolerant (HAT) and aerotolerant (AT) strains, were more tolerant to peracetic acid, refrigeration and freeze-thaw stresses. However, the levels of thermotolerance and hyper-osmotolerance were not associated with the aerotolerance level of C. jejuni. The HAT and AT strains of C. jejuni exhibited significantly increased activities of catalase and superoxide dismutase (SOD), compared to the OS strains. Consistently, the HAT and AT strains were highly tolerant to oxidants, such as hydrogen peroxide, cumene hydroperoxide and menadione, compared to the OS strains. The AT and HAT strains that were tolerant to stresses, particularly peracetic acid and refrigeration, predominantly belonged to multilocus sequence typing (MLST) clonal complex (CC)-21. This study shows that oxidative stress resistance plays a role in determining the differential level of aerotolerance in C. jejuni and that AT and HAT strains of C. jejuni are more tolerant to oxidants and low temperatures than OS strains.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Katelyn J Andrews
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Lynn M McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
- Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
18
|
Kiatsomphob S, Taniguchi T, Tarigan E, Latt KM, Jeon B, Misawa N. Aerotolerance and multilocus sequence typing among Campylobacter jejuni strains isolated from humans, broiler chickens, and cattle in Miyazaki Prefecture, Japan. J Vet Med Sci 2019; 81:1144-1151. [PMID: 31270309 PMCID: PMC6715926 DOI: 10.1292/jvms.19-0228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is one of the leading causes of human gastroenteritis in Japan. As chickens and cattle are common reservoirs for C. jejuni, this microaerophilic, stress-sensitive bacterium can overcome and survive various stress conditions during zoonotic transmission, particularly foodborne, to humans. How C. jejuni overcomes stress conditions is, however, unclear. In the present study, 70 C. jejuni strains isolated from various sources (26 human, 20 broilers, and 24 cattle isolates) in Miyazaki, Japan, from 2010 to 2012, were subjected to multilocus sequence typing (MLST) and aerotolerance testing (aerobic shaking at 200 rpm). The results demonstrated that C. jejuni strains from Miyazaki belonged to 12 clonal complexes (CCs) and 43 sequence types (STs). CC-21 and CC-460 were mainly detected in human clinical strains. Most tested strains were aerotolerant, and only one (1.4%) was deemed sensitive to aerobic stress. Approximately 40% strains survived the 24-hr vigorous aerobic shaking at 200 rpm, and these hyper-aerotolerant strains were more prevalent in broiler and cattle isolates than in human isolates. Phylogenetic analysis divided the strains into five clusters, each showing a different pattern of host association. Thus, we have demonstrated for the first time that C. jejuni strains with increased tolerance to aerobic stress are highly prevalent in broilers and cattle in Miyazaki, Japan, and that certain clonal populations are frequently implicated in human infection in this area.
Collapse
Affiliation(s)
- Savek Kiatsomphob
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-kiyotakecho, Miyazaki 889-1692, Japan.,Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takako Taniguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Elpita Tarigan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Khin Maung Latt
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Naoaki Misawa
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
19
|
Cain JA, Dale AL, Niewold P, Klare WP, Man L, White MY, Scott NE, Cordwell SJ. Proteomics Reveals Multiple Phenotypes Associated with N-linked Glycosylation in Campylobacter jejuni. Mol Cell Proteomics 2019; 18:715-734. [PMID: 30617158 PMCID: PMC6442361 DOI: 10.1074/mcp.ra118.001199] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a major gastrointestinal pathogen generally acquired via consumption of poorly prepared poultry. N-linked protein glycosylation encoded by the pgl gene cluster targets >80 membrane proteins and is required for both nonsymptomatic chicken colonization and full human virulence. Despite this, the biological functions of N-glycosylation remain unknown. We examined the effects of pgl gene deletion on the C. jejuni proteome using label-based liquid chromatography/tandem mass spectrometry (LC-MS/MS) and validation using data independent acquisition (DIA-SWATH-MS). We quantified 1359 proteins corresponding to ∼84% of the C. jejuni NCTC 11168 genome, and 1080 of these were validated by DIA-SWATH-MS. Deletion of the pglB oligosaccharyltransferase (ΔpglB) resulted in a significant change in abundance of 185 proteins, 137 of which were restored to their wild-type levels by reintroduction of pglB (Δaaz.batpglB::ΔpglB). Deletion of pglB was associated with significantly reduced abundances of pgl targets and increased stress-related proteins, including ClpB, GroEL, GroES, GrpE and DnaK. pglB mutants demonstrated reduced survival following temperature (4 °C and 46 °C) and osmotic (150 mm NaCl) shock and altered biofilm phenotypes compared with wild-type C. jejuni Targeted metabolomics established that pgl negative C. jejuni switched from aspartate (Asp) to proline (Pro) uptake and accumulated intracellular succinate related to proteome changes including elevated PutP/PutA (proline transport and utilization), and reduced DctA/DcuB (aspartate import and succinate export, respectively). ΔpglB chemotaxis to some substrates (Asp, glutamate, succinate and α-ketoglutarate) was reduced and associated with altered abundance of transducer-like (Tlp) proteins. Glycosylation negative C. jejuni were depleted of all respiration-associated proteins that allow the use of alternative electron acceptors under low oxygen. We demonstrate for the first time that N-glycosylation is required for a specific enzyme activity (Nap nitrate reductase) that is associated with reduced abundance of the NapAB glycoproteins. These data indicate a multifactorial role for N-glycosylation in C. jejuni physiology.
Collapse
Affiliation(s)
- Joel A Cain
- From the ‡School of Life and Environmental Sciences,; §Charles Perkins Centre
| | - Ashleigh L Dale
- From the ‡School of Life and Environmental Sciences,; §Charles Perkins Centre
| | - Paula Niewold
- §Charles Perkins Centre,; ¶Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006
| | - William P Klare
- From the ‡School of Life and Environmental Sciences,; §Charles Perkins Centre
| | - Lok Man
- From the ‡School of Life and Environmental Sciences,; §Charles Perkins Centre
| | - Melanie Y White
- §Charles Perkins Centre,; ¶Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006
| | | | - Stuart J Cordwell
- From the ‡School of Life and Environmental Sciences,; §Charles Perkins Centre,; ¶Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006;; ‖Sydney Mass Spectrometry, The University of Sydney, Australia 2006.
| |
Collapse
|
20
|
Wheeler NE, Blackmore T, Reynolds AD, Midwinter AC, Marshall J, French NP, Savoian MS, Gardner PP, Biggs PJ. Genomic correlates of extraintestinal infection are linked with changes in cell morphology in Campylobacter jejuni. Microb Genom 2019; 5:e000251. [PMID: 30777818 PMCID: PMC6421344 DOI: 10.1099/mgen.0.000251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial diarrheal disease in the world. Clinical outcomes of infection can range from asymptomatic infection to life-threatening extraintestinal infections. This variability in outcomes for infected patients has raised questions as to whether genetic differences between C. jejuni isolates contribute to their likelihood of causing severe disease. In this study, we compare the genomes of ten C. jejuni isolates that were implicated in extraintestinal infections with reference gastrointestinal isolates, in order to identify unusual patterns of sequence variation associated with infection outcome. We identified a collection of genes that display a higher burden of uncommon mutations in invasive isolates compared with gastrointestinal close relatives, including some that have been previously linked to virulence and invasiveness in C. jejuni. Among the top genes identified were mreB and pgp1, which are both involved in determining cell shape. Electron microscopy confirmed morphological differences in isolates carrying unusual sequence variants of these genes, indicating a possible relationship between extraintestinal infection and changes in cell morphology.
Collapse
Affiliation(s)
- Nicole E. Wheeler
- Center for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Hinxton, UK
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | | | - Angela D. Reynolds
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jonathan Marshall
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nigel P. French
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North, New Zealand
| | - Matthew S. Savoian
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Paul P. Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Genomics Ltd (NZGL – as Massey Genome Service) Massey University, Palmerston North, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| |
Collapse
|
21
|
Siroli L, Braschi G, de Jong A, Kok J, Patrignani F, Lanciotti R. Transcriptomic approach and membrane fatty acid analysis to study the response mechanisms of Escherichia coli to thyme essential oil, carvacrol, 2-(E)-hexanal and citral exposure. J Appl Microbiol 2018; 125:1308-1320. [PMID: 30028070 DOI: 10.1111/jam.14048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/21/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
AIMS The application of essential oils (EOs) and their components as food preservatives is promising but requires a deeper understanding of their mechanisms of action. This study aims to evaluate the effects of thyme EO, carvacrol, citral and 2-(E)-hexenal, on whole-genome gene expression (the transcriptome), as well as the fatty acid (FA) composition of the cell membranes of Escherichia coli K12. METHODS AND RESULTS Therefore, we studied the response against 1 h of exposure to sublethal concentrations of natural antimicrobials, of exponentially growing E. coli K12, using DNA microarray technology and a gas chromatographic method. The results show that treatment with a sublethal concentration of the antimicrobials strongly affects global gene expression in E. coli for all antimicrobials used. Major changes in the expression of genes involved in metabolic pathways as well as in FA biosynthesis and protection against oxidative stress were evidenced. Moreover, the sublethal treatments resulted in increased levels of unsaturated and cyclic FAs as well as an increase in the chain length compared to the controls. CONCLUSIONS The down-regulation of genes involved in aerobic metabolism indicates a shift from respiration to fermentative growth. Moreover, the results obtained suggest that the cytoplasmic membrane of E. coli is the major cellular target of EOs and their components. In addition, the key role of membrane unsaturated FAs in the response mechanisms of E. coli to natural antimicrobials has been confirmed in this study. SIGNIFICANCE AND IMPACT OF THE STUDY The transcriptomic data obtained signify a further step to understand the mechanisms of action of natural antimicrobials also when sublethal concentrations and short-term exposure. In addition, this research goes in deep correlating the transcriptomic modification with the changes in E. coli FA composition of cell membrane identified as the main target of the natural antimicrobials.
Collapse
Affiliation(s)
- L Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy.,Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| | - G Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy
| | - A de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, AG Groningen, The Netherlands
| | - J Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, AG Groningen, The Netherlands
| | - F Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy.,Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| | - R Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy.,Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| |
Collapse
|
22
|
Salvador M, Argandoña M, Naranjo E, Piubeli F, Nieto JJ, Csonka LN, Vargas C. Quantitative RNA-seq Analysis Unveils Osmotic and Thermal Adaptation Mechanisms Relevant for Ectoine Production in Chromohalobacter salexigens. Front Microbiol 2018; 9:1845. [PMID: 30158907 PMCID: PMC6104435 DOI: 10.3389/fmicb.2018.01845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/24/2018] [Indexed: 01/18/2023] Open
Abstract
Quantitative RNA sequencing (RNA-seq) and the complementary phenotypic assays were implemented to investigate the transcriptional responses of Chromohalobacter salexigens to osmotic and heat stress. These conditions trigger the synthesis of ectoine and hydroxyectoine, two compatible solutes of biotechnological interest. Our findings revealed that both stresses make a significant impact on C. salexigens global physiology. Apart from compatible solute metabolism, the most relevant adaptation mechanisms were related to “oxidative- and protein-folding- stress responses,” “modulation of respiratory chain and related components,” and “ion homeostasis.” A general salt-dependent induction of genes related to the metabolism of ectoines, as well as repression of ectoine degradation genes by temperature, was observed. Different oxidative stress response mechanisms, secondary or primary, were induced at low and high salinity, respectively, and repressed by temperature. A higher sensitivity to H2O2 was observed at high salinity, regardless of temperature. Low salinity induced genes involved in “protein-folding-stress response,” suggesting disturbance of protein homeostasis. Transcriptional shift of genes encoding three types of respiratory NADH dehydrogenases, ATP synthase, quinone pool, Na+/H+ antiporters, and sodium-solute symporters, was observed depending on salinity and temperature, suggesting modulation of the components of the respiratory chain and additional systems involved in the generation of H+ and/or Na+ gradients. Remarkably, the Na+ intracellular content remained constant regardless of salinity and temperature. Disturbance of Na+- and H+-gradients with specific ionophores suggested that both gradients influence ectoine production, but with differences depending on the solute, salinity, and temperature conditions. Flagellum genes were strongly induced by salinity, and further induced by temperature. However, salt-induced cell motility was reduced at high temperature, possibly caused by an alteration of Na+ permeability by temperature, as dependence of motility on Na+-gradient was observed. The transcriptional induction of genes related to the synthesis and transport of siderophores correlated with a higher siderophore production and intracellular iron content only at low salinity. An excess of iron increased hydroxyectoine accumulation by 20% at high salinity. Conversely, it reduced the intracellular content of ectoines by 50% at high salinity plus high temperature. These findings support the relevance of iron homeostasis for osmoadaptation, thermoadaptation and accumulation of ectoines, in C. salexigens.
Collapse
Affiliation(s)
- Manuel Salvador
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Montserrat Argandoña
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Emilia Naranjo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Francine Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Joaquín J Nieto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Lazslo N Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Carmen Vargas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
23
|
Liu MM, Boinett CJ, Chan ACK, Parkhill J, Murphy MEP, Gaynor EC. Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System. mBio 2018; 9:e01347-18. [PMID: 30087169 PMCID: PMC6083913 DOI: 10.1128/mbio.01347-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a pathogenic bacterium that causes gastroenteritis in humans yet is a widespread commensal in wild and domestic animals, particularly poultry. Using RNA sequencing, we assessed C. jejuni transcriptional responses to medium supplemented with human fecal versus chicken cecal extracts and in extract-supplemented medium versus medium alone. C. jejuni exposed to extracts had altered expression of 40 genes related to iron uptake, metabolism, chemotaxis, energy production, and osmotic stress response. In human fecal versus chicken cecal extracts, C. jejuni displayed higher expression of genes involved in respiration (fdhTU) and in known or putative iron uptake systems (cfbpA, ceuB, chuC, and CJJ81176_1649-1655 [here designated 1649-1655]). The 1649-1655 genes and downstream overlapping gene 1656 were investigated further. Uncharacterized homologues of this system were identified in 33 diverse bacterial species representing 6 different phyla, 21 of which are associated with human disease. The 1649 and 1650 (p19) genes encode an iron transporter and a periplasmic iron binding protein, respectively; however, the role of the downstream 1651-1656 genes was unknown. A Δ1651-1656 deletion strain had an iron-sensitive phenotype, consistent with a previously characterized Δp19 mutant, and showed reduced growth in acidic medium, increased sensitivity to streptomycin, and higher resistance to H2O2 stress. In iron-restricted medium, the 1651-1656 and p19 genes were required for optimal growth when using human fecal extracts as an iron source. Collectively, this implicates a function for the 1649-1656 gene cluster in C. jejuni iron scavenging and stress survival in the human intestinal environment.IMPORTANCE Direct comparative studies of C. jejuni infection of a zoonotic commensal host and a disease-susceptible host are crucial to understanding the causes of infection outcome in humans. These studies are hampered by the lack of a disease-susceptible animal model reliably displaying a similar pathology to human campylobacteriosis. In this work, we compared the phenotypic and transcriptional responses of C. jejuni to intestinal compositions of humans (disease-susceptible host) and chickens (zoonotic host) by using human fecal and chicken cecal extracts. The mammalian gut is a complex and dynamic system containing thousands of metabolites that contribute to host health and modulate pathogen activity. We identified C. jejuni genes more highly expressed during exposure to human fecal extracts in comparison to chicken cecal extracts and differentially expressed in extracts compared with medium alone, and targeted one specific iron uptake system for further molecular, genetic, and phenotypic study.
Collapse
Affiliation(s)
- Martha M Liu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christine J Boinett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Gomes CN, Passaglia J, Vilela FP, Pereira da Silva FM, Duque SS, Falcão JP. High survival rates of Campylobacter coli under different stress conditions suggest that more rigorous food control measures might be needed in Brazil. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Trigui H, Lee K, Thibodeau A, Lévesque S, Mendis N, Fravalo P, Letellier A, Faucher SP. Phenotypic and Transcriptomic Responses of Campylobacter jejuni Suspended in an Artificial Freshwater Medium. Front Microbiol 2017; 8:1781. [PMID: 28979243 PMCID: PMC5611540 DOI: 10.3389/fmicb.2017.01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is linked to ingestion of contaminated water. The differences between C. jejuni strains originating from food products and those isolated from water are poorly understood. Working under the hypothesis that water-borne C. jejuni strains are better equipped at surviving the nutrient-poor aquatic environment than food-borne strains, the present study aims to characterize these differences using outbreak strains 81116 and 81-176. Strain 81116 caused a campylobacteriosis outbreak linked to consumption of water, while strain 81-176 was linked to consumption of raw milk. CFU counts and viability assays showed that 81116 survives better than 81-176 at 4°C in a defined freshwater medium (Fraquil). Moreover, 81116 was significantly more resistant to oxidative stress and bile salt than strain 81-176 in Fraquil. To better understand the genetic response of 81116 to water, a transcriptomic profiling study was undertaken using microarrays. Compared to rich broth, strain 81116 represses genes involved in amino acid uptake and metabolism, as well as genes involved in costly biosynthetic processes such as replication, translation, flagellum synthesis and virulence in response to Fraquil. In accordance with the observed increase in stress resistance in Fraquil, 81116 induces genes involved in resistance to oxidative stress and bile salt. Interestingly, genes responsible for cell wall synthesis were also induced upon Fraquil exposure. Finally, twelve unique genes were expressed in Fraquil; however, analysis of their distribution in animal and water isolates showed that they are not uniquely and ubiquitously present in water isolates, and thus, unlikely to play a major role in adaptation to water. Our results show that some C. jejuni strains are more resilient than others, thereby challenging current water management practices. The response of 81116 to Fraquil serves as a starting point to understand the adaptation of C. jejuni to water and its subsequent transmission.
Collapse
Affiliation(s)
- Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-BellevueQC, Canada
| | - Kristen Lee
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-BellevueQC, Canada
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, University of Montreal, Saint-HyacintheQC, Canada
| | - Simon Lévesque
- Laboratoire de Santé Publique du Québec (LSPQ)/Institut National de Santé Publique du Québec, Sainte-Anne-de-BellevueQC, Canada
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-BellevueQC, Canada
| | - Philippe Fravalo
- Research Chair in Meat Safety, Department of Pathology and Microbiology, University of Montreal, Saint-HyacintheQC, Canada
| | - Ann Letellier
- Research Chair in Meat Safety, Department of Pathology and Microbiology, University of Montreal, Saint-HyacintheQC, Canada
| | - Sébastien P. Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-BellevueQC, Canada
| |
Collapse
|
26
|
Yahara K, Méric G, Taylor AJ, de Vries SPW, Murray S, Pascoe B, Mageiros L, Torralbo A, Vidal A, Ridley A, Komukai S, Wimalarathna H, Cody AJ, Colles FM, McCarthy N, Harris D, Bray JE, Jolley KA, Maiden MCJ, Bentley SD, Parkhill J, Bayliss CD, Grant A, Maskell D, Didelot X, Kelly DJ, Sheppard SK. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol 2017; 19:361-380. [PMID: 27883255 DOI: 10.1111/1462-2920.13628] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023]
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, primarily associated with the consumption of contaminated poultry. C. jejuni lineages vary in host range and prevalence in human infection, suggesting differences in survival throughout the poultry processing chain. From 7343 MLST-characterised isolates, we sequenced 600 C. jejuni and C. coli isolates from various stages of poultry processing and clinical cases. A genome-wide association study (GWAS) in C. jejuni ST-21 and ST-45 complexes identified genetic elements over-represented in clinical isolates that increased in frequency throughout the poultry processing chain. Disease-associated SNPs were distinct in these complexes, sometimes organised in haplotype blocks. The function of genes containing associated elements was investigated, demonstrating roles for cj1377c in formate metabolism, nuoK in aerobic survival and oxidative respiration, and cj1368-70 in nucleotide salvage. This work demonstrates the utility of GWAS for investigating transmission in natural zoonotic pathogen populations and provides evidence that major C. jejuni lineages have distinct genotypes associated with survival, within the host specific niche, from farm to fork.
Collapse
Affiliation(s)
- Koji Yahara
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Stefan P W de Vries
- Department of Veterinary Medicine, University of Cambridge, Madingley, Cambridge, UK
| | - Susan Murray
- Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, UK
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.,MRC CLIMB Consortium, Oxford Bath, UK
| | - Leonardos Mageiros
- Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, UK
| | - Alicia Torralbo
- Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, UK
| | - Ana Vidal
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Anne Ridley
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Sho Komukai
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Alison J Cody
- Department of Zoology, Oxford University, Oxford, UK
| | | | - Noel McCarthy
- Department of Zoology, Oxford University, Oxford, UK.,NIHR Health Protections Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
| | - David Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - James E Bray
- Department of Zoology, Oxford University, Oxford, UK
| | | | - Martin C J Maiden
- Department of Zoology, Oxford University, Oxford, UK.,NIHR Health Protections Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
| | - Stephen D Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Andrew Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley, Cambridge, UK
| | - Duncan Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley, Cambridge, UK
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.,MRC CLIMB Consortium, Oxford Bath, UK.,Department of Zoology, Oxford University, Oxford, UK
| |
Collapse
|
27
|
Gill C, Bahrndorff S, Lowenberger C. Campylobacter jejuni in Musca domestica: An examination of survival and transmission potential in light of the innate immune responses of the house flies. INSECT SCIENCE 2017; 24:584-598. [PMID: 27134186 DOI: 10.1111/1744-7917.12353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/03/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
The house fly, Musca domestica, has been implicated as a vector of Campylobacter spp., a major cause of human disease. Little is known whether house flies serve as biological amplifying hosts or mechanical vectors for Campylobacter jejuni. We investigated the period after C. jejuni had been ingested by house flies in which viable C. jejuni colonies could be isolated from whole bodies, the vomitus and the excreta of adult M. domestica and evaluated the activation of innate immune responses of house flies to ingested C. jejuni over time. C. jejuni could be cultured from infected houseflies soon after ingestion but no countable C. jejuni colonies were observed > 24 h postingestion. We detected viable C. jejuni in house fly vomitus and excreta up to 4 h after ingestion, but no viable bacteria were detected ≥ 8 h. Suppression subtractive hybridization identified pathogen-induced gene expression in the intestinal tracts of adult house flies 4-24 h after ingesting C. jejuni. We measured the expression of immune regulatory (thor, JNK, and spheroide) and effector (cecropin, diptericin, attacin, defensing, and lysozyme) genes in C. jejuni-infected and -uninfected house flies using quantitative real time PCR. Some house fly factor, or combination of factors, eliminates C. jejuni within 24 h postingestion. Because C. jejuni is not amplified within the body of the housefly, this insect likely serves as a mechanical vector rather than as a true biological, amplifying vector for C. jejuni, and adds to our understanding of insect-pathogen interactions.
Collapse
Affiliation(s)
- Carson Gill
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Simon Bahrndorff
- National Food Institute, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| |
Collapse
|
28
|
RNAi screening identifies Trypanosoma brucei stress response protein kinases required for survival in the mouse. Sci Rep 2017; 7:6156. [PMID: 28733613 PMCID: PMC5522463 DOI: 10.1038/s41598-017-06501-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/26/2017] [Indexed: 01/05/2023] Open
Abstract
Protein kinases (PKs) are a class of druggable targets in Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (sleeping sickness), yet little is known about which PKs are essential for survival in mammals. A recent kinome-wide RNAi screen with 176 individual bloodstream form Trypanosoma brucei lines identified PKs required for proliferation in culture. In order to assess which PKs are also potential virulence factors essential in vivo, lines were pooled, inoculated into mice, and screened for loss of fitness after 48 h RNAi. The presence of trypanosomes in the bloodstream was assessed using RNAi target sequencing (RITseq) and compared to growth in culture. We identified 49 PKs with a significant loss of fitness in vivo in two independent experiments, and a strong correlation between in vitro and in vivo loss of fitness for the majority. Nine PKs had a more pronounced growth defect in vivo, than in vitro. Amongst these PKs were several with putative functions related to stress responses mediated through the PI3K/TOR or MAPK signaling cascades, which act to protect the parasite from complement-mediated and osmotic lysis. Identification of these virulence-associated PKs provides new insights into T. brucei-host interaction and reveals novel potential protein kinase drug targets.
Collapse
|
29
|
Beblo-Vranesevic K, Huber H, Rettberg P. High Tolerance of Hydrogenothermus marinus to Sodium Perchlorate. Front Microbiol 2017; 8:1369. [PMID: 28769918 PMCID: PMC5513930 DOI: 10.3389/fmicb.2017.01369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
On Mars, significant amounts (0.4-0.6%) of perchlorate ions were detected in dry soil by the Phoenix Wet Chemistry Laboratory and later confirmed with the Mars Science Laboratory. Therefore, the ability of Hydrogenothermus marinus, a desiccation tolerant bacterium, to survive and grow in the presence of perchlorates was determined. Results indicated that H. marinus was able to tolerate concentrations of sodium perchlorate up to 200 mM ( 1.6%) during cultivation without any changes in its growth pattern. After the addition of up to 440 mM ( 3.7%) sodium perchlorate, H. marinus showed significant changes in cell morphology; from single motile short rods to long cell chains up to 80 cells. Furthermore, it was shown that the known desiccation tolerance of H. marinus is highly influenced by a pre-treatment with different perchlorates; additive effects of desiccation and perchlorate treatments are visible in a reduced survival rate. These data demonstrate that thermophiles, especially H. marinus, have so far, unknown high tolerances against cell damaging treatments and may serve as model organisms for future space experiments.
Collapse
Affiliation(s)
- Kristina Beblo-Vranesevic
- Radiation Biology Division, Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.)Cologne, Germany
| | - Harald Huber
- Institute for Microbiology and Archaea Center, Faculty of Biology and Preclinical Medicine, University of RegensburgRegensburg, Germany
| | - Petra Rettberg
- Radiation Biology Division, Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.)Cologne, Germany
| |
Collapse
|
30
|
Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization. Microbiol Spectr 2017; 4. [PMID: 27227312 DOI: 10.1128/microbiolspec.vmbf-0007-2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as Campylobacter, Helicobacter, Salmonella, Listeria, and virulent strains of Escherichia have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.
Collapse
|
31
|
Salas-Massó N, Andree KB, Furones MD, Figueras MJ. Enhanced recovery of Arcobacter spp. using NaCl in culture media and re-assessment of the traits of Arcobacter marinus and Arcobacter halophilus isolated from marine water and shellfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1355-1361. [PMID: 27282494 DOI: 10.1016/j.scitotenv.2016.05.197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The genus Arcobacter is a relatively poorly known group of bacteria, and the number of new species and sequences from non-culturable strains has increased considerably in recent years. This study investigates whether using media that contain NaCl might help to improve the recovery of Arcobacter spp. from marine environments. To this aim, 62 water and shellfish samples were analysed in parallel, with both a commonly used culture method (enrichment in Arcobacter-CAT broth followed by culture on Blood Agar) and a new one that supplements the Arcobacter-CAT enrichment broth with 2.5% NaCl (w/v) followed by culturing on Marine Agar. The new method yielded ca. 40% more positive samples and provided a higher diversity of known (11 vs. 7) and unknown (7 vs. 2) Arcobacter species. Among the 11 known species recovered, Arcobacter marinus and Arcobacter halophilus were isolated only by this new method. No more strains of these species have been isolated since their original descriptions, both of which were based only on a single strain. In view of that, the phenotypic characteristics of these species are re-evaluated in the present study, using the new strains. Strains of A. halophilus had the same phenotypic profile as the type strain. However, some strains of A. marinus differed from the type strain in that they did not hydrolyse indoxyl-acetate, becoming, therefore, the first Arcobacter species to show a varying ability to hydrolyse indoxyl-acetate. This study shows to what extent a simple variation to the culture media can have a big influence on positive samples and on the community of species recovered.
Collapse
Affiliation(s)
- Nuria Salas-Massó
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain; IRTA-Sant Carles de la Rápita, Ctra. Poble Nou, km 5.5, 43540 Tarragona, Spain
| | - Karl B Andree
- IRTA-Sant Carles de la Rápita, Ctra. Poble Nou, km 5.5, 43540 Tarragona, Spain
| | - M Dolors Furones
- IRTA-Sant Carles de la Rápita, Ctra. Poble Nou, km 5.5, 43540 Tarragona, Spain
| | - M José Figueras
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain.
| |
Collapse
|
32
|
Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni. Appl Environ Microbiol 2016; 82:6158-6166. [PMID: 27520816 DOI: 10.1128/aem.01221-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Our study investigated the antimicrobial action of clove (Syzygium aromaticum) essential oil (EO) on the zoonotic pathogen Campylobacter jejuni After confirming the clove essential oil's general antibacterial effect, we analyzed the reference strain Campylobacter jejuni NCTC 11168. Phenotypic, proteomic, and transcriptomic methods were used to reveal changes in cell morphology and functions when exposed to sublethal concentrations of clove EO. The normally curved cells showed markedly straightened and shrunken morphology on the scanning electron micrographs as a result of stress. Although, oxidative stress, as a generally accepted response to essential oils, was also present, the dominance of a general stress response was demonstrated by reverse transcription-PCR (RT-PCR). The results of RT-PCR and two-dimensional (2D) PAGE revealed that clove oil perturbs the expression of virulence-associated genes taking part in the synthesis of flagella, PEB1, PEB4, lipopolysaccharide (LPS), and serine protease. Loss of motility was also detected by a phenotypic test. Bioautographic analysis revealed that besides its major component, eugenol, at least four other spots of clove EO possessed bactericidal activity against C. jejuni Our findings show that clove EO has a marked antibacterial and potential virulence-modulating effect on C. jejuni IMPORTANCE: This study demonstrates that the components of clove essential oil influence not only the expression of general stress genes but also the expression of virulence-associated genes. Based on this finding, alternative strategies can be worked on to control this important foodborne pathogen.
Collapse
|
33
|
Smith S, Meade J, Gibbons J, McGill K, Bolton D, Whyte P. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter. Infect Ecol Epidemiol 2016; 6:31685. [PMID: 27357236 PMCID: PMC4928068 DOI: 10.3402/iee.v6.31685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union, and poultry meat is an important vehicle for its transmission to humans. However, there is limited knowledge about how this organism persists in broiler litter and faeces. The aim of this study was to assess the impact of a number of environmental parameters, such as temperature, humidity, and oxygen, on Campylobacter survival in both broiler litter and faeces. MATERIALS AND METHODS Used litter was collected from a Campylobacter-negative broiler house after final depopulation and fresh faeces were collected from transport crates. Samples were confirmed as Campylobacter negative according to modified ISO methods for veterinary samples. Both sample matrices were inoculated with 9 log10 CFU/ml C. jejuni and incubated under high (≥85%) and low (≤70%) relative humidity conditions at three different temperatures (20°C, 25°C, and 30°C) under both aerobic and microaerophilic atmospheres. Inoculated litter samples were then tested for Campylobacter concentrations at time zero and every 2 hours for 12 hours, while faecal samples were examined at time zero and every 24 hours for 120 hours. A two-tailed t-test assuming unequal variance was used to compare mean Campylobacter concentrations in samples under the various temperature, humidity, and atmospheric conditions. RESULTS AND DISCUSSION C. jejuni survived significantly longer (P≤0.01) in faeces, with a minimum survival time of 48 hours, compared with 4 hours in used broiler litter. C. jejuni survival was significantly enhanced at 20°C in all environmental conditions in both sample matrices tested compared with survival at 25°C and 30°C. In general, survival was greater in microaerophilic compared with aerobic conditions in both sample matrices. Humidity, at the levels examined, did not appear to significantly impact C. jejuni survival in any sample matrix. The persistence of Campylobacter in broiler litter and faeces under various environmental conditions has implications for farm litter management, hygiene, and disinfection practices.
Collapse
Affiliation(s)
- Shaun Smith
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Joseph Meade
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - James Gibbons
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevina McGill
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan Bolton
- Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
34
|
Asymtomatic Bacteriuria as a Model to Study the Coevolution of Hosts and Bacteria. Pathogens 2016; 5:pathogens5010021. [PMID: 26891332 PMCID: PMC4810142 DOI: 10.3390/pathogens5010021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 01/21/2023] Open
Abstract
During asymptomatic bacteriuria (ABU), bacteria colonize the urinary tract for extended periods of time without causing symptoms of urinary tract infection. Previous studies indicate that many Escherichia coli (E. coli) strains that cause ABU have evolved from uropathogenic E. coli (UPEC) by reductive evolution and loss of the ability to express functional virulence factors. For instance, the prototype ABU strain 83972 has a smaller genome than UPEC strains with deletions or point mutations in several virulence genes. To understand the mechanisms of bacterial adaptation and to find out whether the bacteria adapt in a host-specific manner, we compared the complete genome sequences of consecutive reisolates of ABU strain 83972 from different inoculated individuals and compared them with the genome of the parent strain. Reisolates from different hosts exhibited individual patterns of genomic alterations. Non-synonymous SNPs predominantly occurred in coding regions and often affected the amino acid sequence of proteins with global or pleiotropic regulatory function. These gene products are involved in different bacterial stress protection strategies, and metabolic and signaling pathways. Our data indicate that adaptation of E. coli 83972 to prolonged growth in the urinary tract involves responses to specific growth conditions and stresses present in the individual hosts. Accordingly, modulation of gene expression required for survival and growth under stress conditions seems to be most critical for long-term growth of E. coli 83972 in the urinary tract.
Collapse
|
35
|
The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 2016; 221:37-53. [PMID: 26803272 DOI: 10.1016/j.ijfoodmicro.2015.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.
Collapse
|
36
|
Amieva M, Peek RM. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016; 150:64-78. [PMID: 26385073 PMCID: PMC4691563 DOI: 10.1053/j.gastro.2015.09.004] [Citation(s) in RCA: 625] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Colonization of the human stomach by Helicobacter pylori and its role in causing gastric cancer is one of the richest examples of a complex relationship among human cells, microbes, and their environment. It is also a puzzle of enormous medical importance given the incidence and lethality of gastric cancer worldwide. We review recent findings that have changed how we view these relationships and affected the direction of gastric cancer research. For example, recent data have indicated that subtle mismatches between host and microbe genetic traits greatly affect the risk of gastric cancer. The ability of H pylori and its oncoprotein CagA to reprogram epithelial cells and activate properties of stemness show the sophisticated relationship between H pylori and progenitor cells in the gastric mucosa. The observation that cell-associated H pylori can colonize the gastric glands and directly affect precursor and stem cells supports these observations. The ability to mimic these interactions in human gastric organoid cultures as well as animal models will allow investigators to more fully unravel the extent of H pylori control on the renewing gastric epithelium. Finally, our realization that external environmental factors, such as dietary components and essential micronutrients, as well as the gastrointestinal microbiota, can change the balance between H pylori's activity as a commensal or a pathogen has provided direction to studies aimed at defining the full carcinogenic potential of this organism.
Collapse
Affiliation(s)
- Manuel Amieva
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California; Department of Pediatrics, Stanford University, Palo Alto, California
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
37
|
Trigui H, Thibodeau A, Fravalo P, Letellier A, P Faucher S. Survival in water of Campylobacter jejuni strains isolated from the slaughterhouse. SPRINGERPLUS 2015; 4:799. [PMID: 26702388 PMCID: PMC4688295 DOI: 10.1186/s40064-015-1595-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/05/2015] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni cause gastroenteritis in humans. The main transmission vector is the consumption or handling of contaminated chicken meat, since chicken can be colonized asymptomatically by C. jejuni. However, water has been implicated as the transmission vector in a few outbreaks. One possibility is the contamination of water effluent by C. jejuni originating from chicken farm. The ability of C. jejuni to be transmitted by water would be closely associated to its ability to survive in water. Therefore, in this study, we have evaluated the ability of reference strains and chicken-isolated strains to survive in water. Defined water media were used, since the composition of tap water is variable. We showed that some isolates survive better than others in defined freshwater (Fraquil) and that the survival was affected by temperature and the concentration of NaCl. By comparing the ability of C. jejuni to survive in water with other phenotypic properties previously tested, we showed that the ability to survive in water was negatively correlated with autoagglutination. Our data showed that not all chicken isolates have the same ability to survive in water, which is probably due to difference in genetic content.
Collapse
Affiliation(s)
- Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9 Canada
| | - Alexandre Thibodeau
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Philippe Fravalo
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Ann Letellier
- Department of Pathology and Microbiology, University of Montreeal, Saint-Hyacinthe, QC Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9 Canada
| |
Collapse
|
38
|
Rodrigues RC, Pocheron AL, Hernould M, Haddad N, Tresse O, Cappelier JM. Description of Campylobacter jejuni Bf, an atypical aero-tolerant strain. Gut Pathog 2015; 7:30. [PMID: 26594244 PMCID: PMC4653858 DOI: 10.1186/s13099-015-0077-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is a leading cause of bacterial enteritis worldwide. This microaerophilic bacterium can survive in aerobic environments, suggesting it has protective mechanisms against oxidative stress. The clinical C. jejuni Bf strain is characterized by an increased resistance to oxygen. This study aimed to characterize the behavior of the clinical C. jejuni Bf strain under an aerobic atmosphere and in response to ROS-promoter agents. METHODS Growth was studied in both aerobic and microaerobic conditions using classic cultivable methods. Electronic microscopy and mreB gene expression were used to evaluate the morphology of this strain under aerobic conditions. The survival under oxidative stress was tested in the presence of different concentrations of hydrogen peroxide (H2O2) and paraquat (PQ). RESULTS The results showed that C. jejuni Bf strain can grow aerobically, unlike other strains of C. jejuni tested. Cells of C. jejuni Bf exposed to oxidative stress presented changes in morphology and the gene mreB, responsible for maintaining the bacillary cell morphology, was down-expressed. In aerobically acclimated conditions, C. jejuni Bf exhibited a higher survival rate of 52 % in the presence of H2O2 (1 mM) compared to the reference strain NCTC 11168. Concentrations above 1 mM PQ were lethal for the reference strain but not for C. jejuni Bf. CONCLUSIONS Taken together, these data highlight the resistance to oxidative stress conditions of C. jejuni Bf, indicating that this microorganism seems more adapted to survival in hostile environmental conditions.
Collapse
Affiliation(s)
- Ramila Cristiane Rodrigues
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Anne-Lise Pocheron
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Mathieu Hernould
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Nabila Haddad
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Odile Tresse
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| | - Jean-Michel Cappelier
- />ONIRIS National College of Veterinary Medicine, Food Science and Engineering, Route de Gachet - La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France
- />Institut National de la Recherche Agronomique (INRA), Rue de la Geraudière, 44000 Nantes, France
| |
Collapse
|
39
|
Asakura H, Kawamoto K, Murakami S, Tachibana M, Kurazono H, Makino SI, Yamamoto S, Igimi S. Ex vivo proteomics of Campylobacter jejuni 81-176 reveal that FabG affects fatty acid composition to alter bacterial growth fitness in the chicken gut. Res Microbiol 2015; 167:63-71. [PMID: 26499093 DOI: 10.1016/j.resmic.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Campylobacter jejuni is one of the leading causes of foodborne gastrointestinal illness worldwide. Here we performed ex vivo proteomic analysis of C. jejuni 81-176 in chicken, a main reservoir for human infection. At 0, 1 and 4 weeks post-infection (p.i.) with the GFP-expressing 81-176 strain, inocula were recovered from chicken ceca by cell sorting using flow cytometry. iTRAQ-coupled 2D-LC-MS/MS analyses that detected 55 C. jejuni proteins, among which either 3 (FabG, HydB, CJJ81176_0876) or 7 (MscS, CetB, FlhF, PurH, PglJ, LpxC, Icd) proteins exhibited >1.4-fold-increased expression at 1 or 4 week(s) p.i. compared with those at 0 weeks p.i., respectively. Deletion of the fabG gene clearly decreased the proportion of bacterial unsaturated fatty acids (UFAs) and chicken colonization. The UFA proportion of the parental strain was not altered when grown at 42 °C. These findings suggest that FabG might play a pivotal role in UFA production, linked to bacterial adaptation in the poultry host. To our knowledge, this is the first example of ex vivo C. jejuni proteomics, in which fatty acid metabolism might affect bacterial adaptation to the chicken host.
Collapse
Affiliation(s)
- Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Keiko Kawamoto
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Inada 2-11, Obihiro, Hokkaido 080-8555, Japan
| | - Satoshi Murakami
- Department of Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa 243-0034, Japan
| | - Masato Tachibana
- Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hisao Kurazono
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Inada 2-11, Obihiro, Hokkaido 080-8555, Japan
| | - Sou-Ichi Makino
- Department of Domestic Science, Kyoto Seibo College, Fukakusatayacho 1, Fushimi-ku, Kyoto, Kyoto 612-0878, Japan
| | - Shigeki Yamamoto
- Department of Fisheries, Tokai University, 3-20-1 Orido, Shimizu-ku, Shimizu-shi, Shizuoka 424-8610, Japan
| | - Shizunobu Igimi
- Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
40
|
Tang S, Orsi RH, den Bakker HC, Wiedmann M, Boor KJ, Bergholz TM. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Growth on Vacuum-Packed Cold Smoked Salmon. Appl Environ Microbiol 2015; 81:6812-24. [PMID: 26209664 PMCID: PMC4561693 DOI: 10.1128/aem.01752-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/16/2015] [Indexed: 01/26/2023] Open
Abstract
The foodborne pathogen Listeria monocytogenes is able to survive and grow in ready-to-eat foods, in which it is likely to experience a number of environmental stresses due to refrigerated storage and the physicochemical properties of the food. Little is known about the specific molecular mechanisms underlying survival and growth of L. monocytogenes under different complex conditions on/in specific food matrices. Transcriptome sequencing (RNA-seq) was used to understand the transcriptional landscape of L. monocytogenes strain H7858 grown on cold smoked salmon (CSS; water phase salt, 4.65%; pH 6.1) relative to that in modified brain heart infusion broth (MBHIB; water phase salt, 4.65%; pH 6.1) at 7°C. Significant differential transcription of 149 genes was observed (false-discovery rate [FDR], <0.05; fold change, ≥2.5), and 88 and 61 genes were up- and downregulated, respectively, in H7858 grown on CSS relative to the genes in H7858 grown in MBHIB. In spite of these differences in transcriptomes under these two conditions, growth parameters for L. monocytogenes were not significantly different between CSS and MBHIB, indicating that the transcriptomic differences reflect how L. monocytogenes is able to facilitate growth under these different conditions. Differential expression analysis and Gene Ontology enrichment analysis indicated that genes encoding proteins involved in cobalamin biosynthesis as well as ethanolamine and 1,2-propanediol utilization have significantly higher transcript levels in H7858 grown on CSS than in that grown in MBHIB. Our data identify specific transcriptional profiles of L. monocytogenes growing on vacuum-packaged CSS, which may provide targets for the development of novel and improved strategies to control L. monocytogenes growth on this ready-to-eat food.
Collapse
Affiliation(s)
- Silin Tang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Renato H Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Henk C den Bakker
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Kathryn J Boor
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Teresa M Bergholz
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
41
|
High-Frequency Variation of Purine Biosynthesis Genes Is a Mechanism of Success in Campylobacter jejuni. mBio 2015; 6:e00612-15. [PMID: 26419875 PMCID: PMC4611032 DOI: 10.1128/mbio.00612-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Phenotypic variation is prevalent in the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity enhances the survival and adaptive malleability of bacterial populations because variable phenotypes may allow some cells to be protected against future stress. Exposure to hyperosmotic stress previously revealed prevalent differences in growth between C. jejuni strain 81-176 colonies due to resistant or sensitive phenotypes, and these isolated colonies continued to produce progeny with differential phenotypes. In this study, whole-genome sequencing of isolated colonies identified allelic variants of two purine biosynthesis genes, purF and apt, encoding phosphoribosyltransferases that utilize a shared substrate. Genetic analyses determined that purF was essential for fitness, while apt was critical. Traditional and high-depth amplicon-sequencing analyses confirmed extensive intrapopulation genetic variation of purF and apt that resulted in viable strains bearing alleles with in-frame insertion duplications, deletions, or missense polymorphisms. Different purF and apt alleles were associated with various stress survival capabilities under several niche-relevant conditions and contributed to differential intracellular survival in an epithelial cell infection model. Amplicon sequencing revealed that intracellular survival selected for stress-fit purF and apt alleles, as did exposure to oxygen and hyperosmotic stress. Putative protein recognition direct repeat sequences were identified in purF and apt, and a DNA-protein affinity screen captured a predicted exonuclease that promoted the global spontaneous mutation rate. This work illustrates the adaptive properties of high-frequency genetic variation in two housekeeping genes, which influences C. jejuni survival under stress and promotes its success as a pathogen. IMPORTANCE C. jejuni is an important cause of bacterial diarrheal illness. Bacterial populations have many strategies for stress survival, but phenotypic variation due to genetic diversity has a powerful advantage: no matter how swift the change in environment, a fraction of the population already expresses the survival trait. Nonclonality is thus increasingly viewed as a mechanism of population success. Our previous work identified prominent resistant/sensitive colonial variation in C. jejuni bacteria in response to hyperosmotic stress; in the work presented here, we attribute that to high-frequency genetic variation in two purine biosynthesis genes, purF and apt. We demonstrated selective pressure for nonlethal mutant alleles of both genes, showed that single-cell variants had the capacity to give rise to diverse purF and apt populations, and determined that stress exposure selected for desirable alleles. Thus, a novel C. jejuni adaptive strategy was identified, which was, unusually, reliant on prevalent genetic variation in two housekeeping genes.
Collapse
|
42
|
Kim JC, Oh E, Kim J, Jeon B. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front Microbiol 2015; 6:751. [PMID: 26284041 PMCID: PMC4518328 DOI: 10.3389/fmicb.2015.00751] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense.
Collapse
Affiliation(s)
| | | | | | - Byeonghwa Jeon
- School of Public Health, University of Alberta, EdmontonAB, Canada
| |
Collapse
|
43
|
Turonova H, Briandet R, Rodrigues R, Hernould M, Hayek N, Stintzi A, Pazlarova J, Tresse O. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions. Front Microbiol 2015. [PMID: 26217332 PMCID: PMC4499754 DOI: 10.3389/fmicb.2015.00709] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.
Collapse
Affiliation(s)
- Hana Turonova
- SECALIM UMR1014, Institut National de la Recherche Agronomique Nantes, France ; LUNAM Université, Oniris, Université de Nantes Nantes, France ; Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Romain Briandet
- MICALIS UMR1319, Institut National de la Recherche Agronomique Massy, France
| | - Ramila Rodrigues
- SECALIM UMR1014, Institut National de la Recherche Agronomique Nantes, France ; LUNAM Université, Oniris, Université de Nantes Nantes, France
| | | | - Nabil Hayek
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| | - Jarmila Pazlarova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Odile Tresse
- SECALIM UMR1014, Institut National de la Recherche Agronomique Nantes, France ; LUNAM Université, Oniris, Université de Nantes Nantes, France
| |
Collapse
|
44
|
Ghaffar NM, Connerton PL, Connerton IF. Filamentation of Campylobacter in broth cultures. Front Microbiol 2015; 6:657. [PMID: 26175723 PMCID: PMC4485223 DOI: 10.3389/fmicb.2015.00657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/16/2015] [Indexed: 12/25/2022] Open
Abstract
The transition from rod to filamentous cell morphology has been identified as a response to stressful conditions in many bacterial species and has been ascribed to confer certain survival advantages. Filamentation of Campylobacter jejuni was demonstrated to occur spontaneously on entry in to stationary phase distinguishing it from many other bacteria where a reduction in size is more common. The aim of this study was to investigate the cues that give rise to filamentation of C. jejuni and C. coli and gain insights into the process. Using minimal medium, augmentation of filamentation occurred and it was observed that this morphological change was wide spread amongst C. jejuni strains tested but was not universal in C. coli strains. Filamentation did not appear to be due to release of diffusible molecules, toxic metabolites, or be in response to oxidative stress in the medium. Separated filaments exhibited greater intracellular ATP contents (2.66 to 17.4 fg) than spiral forms (0.99 to 1.7 fg) and showed enhanced survival in water at 4 and 37°C compared to spiral cells. These observations support the conclusion that the filaments are adapted to survive extra-intestinal environments. Differences in cell morphology and physiology need to be considered in the context of the design of experimental studies and the methods adopted for the isolation of campylobacters from food, clinical, and environmental sources.
Collapse
Affiliation(s)
- Nacheervan M Ghaffar
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough UK
| | - Phillippa L Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough UK
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough UK
| |
Collapse
|
45
|
Kovač J, Šimunović K, Wu Z, Klančnik A, Bucar F, Zhang Q, Možina SS. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS One 2015; 10:e0122871. [PMID: 25830640 PMCID: PMC4382180 DOI: 10.1371/journal.pone.0122871] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/24/2015] [Indexed: 01/28/2023] Open
Abstract
The aim of the study was to investigate the mode of action of (-)-α-pinene in terms of its modulation of antibiotic resistance in Campylobacter jejuni. Broth microdilution and ethidium bromide accumulation assays were used to evaluate the (-)-α-pinene antimicrobial activity, modulation of antimicrobial resistance, and inhibition of antimicrobial efflux. The target antimicrobial efflux systems were identified using an insertion mutagenesis approach, and C. jejuni adaptation to (-)-α-pinene was evaluated using DNA microarrays. Knock-out mutants of the key up-regulated transcriptional regulators hspR and hrcA were constructed to investigate their roles in C. jejuni adaptation to several stress factors, including osmolytes, and pH, using Biolog phenotypical microarrays. Our data demonstrate that (-)-α-pinene efficiently modulates antibiotic resistance in C. jejuni by decreasing the minimum inhibitory concentrations of ciprofloxacin, erythromycin and triclosan by up to 512-fold. Furthermore, (-)-α-pinene promotes increased expression of cmeABC and another putative antimicrobial efflux gene, Cj1687. The ethidium bromide accumulation was greater in the wild-type strain than in the antimicrobial efflux mutant strains, which indicates that these antimicrobial efflux systems are a target of action of (-)-α-pinene. Additionally, (-)-α-pinene decreases membrane integrity, which suggests that enhanced microbial influx is a secondary mode of action of (-)-α-pinene. Transcriptomic analysis indicated that (-)-α-pinene disrupts multiple metabolic pathways, and particularly those involved in heat-shock responses. Thus, (-)-α-pinene has significant activity in the modulation of antibiotic resistance in C. jejuni, which appears to be mediated by multiple mechanisms that include inhibition of microbial efflux, decreased membrane integrity, and metabolic disruption. These data warrant further studies on (-)-α-pinene to develop its use in the control of antibiotic resistance in Campylobacter.
Collapse
Affiliation(s)
- Jasna Kovač
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, United States of America
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, United States of America
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
46
|
Analysis of the activity and regulon of the two-component regulatory system composed by Cjj81176_1484 and Cjj81176_1483 of Campylobacter jejuni. J Bacteriol 2015; 197:1592-605. [PMID: 25691530 DOI: 10.1128/jb.02564-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Campylobacter jejuni is a leading cause of bacterial diarrheal disease and a frequent commensal of the intestinal tract in poultry and other animals. For optimal growth and colonization of hosts, C. jejuni employs two-component regulatory systems (TCSs) to monitor environmental conditions and promote proper expression of specific genes. We analyzed the potential of C. jejuni Cjj81176_1484 (Cjj1484) and Cjj81176_1483 (Cjj1483) to encode proteins of a cognate TCS that influences expression of genes possibly important for C. jejuni growth and colonization. Transcriptome analysis revealed that the regulons of the Cjj81176_1484 (Cjj1484) histidine kinase and the Cjj81176_1483 (Cjj1483) response regulator contain many common genes, suggesting that these proteins likely form a cognate TCS. We found that this TCS generally functions to repress expression of specific proteins with roles in metabolism, iron/heme acquisition, and respiration. Furthermore, the TCS repressed expression of Cjj81176_0438 and Cjj81176_0439, which had previously been found to encode a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract. However, the TCS and other specific genes whose expression is repressed by the TCS were not required for colonization of chicks. We observed that the Cjj1483 response regulator binds target promoters in both unphosphorylated and phosphorylated forms and influences expression of some specific genes independently of the Cjj1484 histidine kinase. This work further expands the signaling mechanisms of C. jejuni and provides additional insights regarding the complex and multifactorial regulation of many genes involved in basic metabolism, respiration, and nutrient acquisition that the bacterium requires for optimal growth in different environments. IMPORTANCE Bacterial two-component regulatory systems (TCSs) link environmental cues to expression of specific genes that enable optimal bacterial growth or colonization of hosts. We found that the Campylobacter jejuni Cjj1484 histidine kinase and Cjj1483 response regulator function as a cognate TCS to largely repress expression of target genes encoding a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract, as well as other genes encoding proteins for heme or iron acquisition, metabolism, and respiration. We also discovered different modes by which Cjj1483 may mediate repression with and without Cjj1484. This work provides insight into the signal transduction mechanisms of a leading cause of bacterial diarrheal disease and emphasizes the multifactorial and complex regulation of specific biological processes in C. jejuni.
Collapse
|
47
|
Heinrich K, Leslie DJ, Jonas K. Modulation of bacterial proliferation as a survival strategy. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:127-71. [PMID: 26003935 DOI: 10.1016/bs.aambs.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell cycle is one of the most fundamental processes in biology, underlying the proliferation and growth of all living organisms. In bacteria, the cell cycle has been extensively studied since the 1950s. Most of this research has focused on cell cycle regulation in a few model bacteria, cultured under standard growth conditions. However in nature, bacteria are exposed to drastic environmental changes. Recent work shows that by modulating their own growth and proliferation bacteria can increase their survival under stressful conditions, including antibiotic treatment. Here, we review the mechanisms that allow bacteria to integrate environmental information into their cell cycle. In particular, we focus on mechanisms controlling DNA replication and cell division. We conclude this chapter by highlighting the importance of understanding bacterial cell cycle and growth control for future research as well as other disciplines.
Collapse
|
48
|
Justice SS, Harrison A, Becknell B, Mason KM. Bacterial differentiation, development, and disease: mechanisms for survival. FEMS Microbiol Lett 2014; 360:1-8. [PMID: 25228010 DOI: 10.1111/1574-6968.12602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022] Open
Abstract
Bacteria have the exquisite ability to maintain a precise diameter, cell length, and shape. The dimensions of bacteria size and shape are a classical metric in the distinction of bacterial species. Much of what we know about the particular morphology of any given species is the result of investigations of planktonic cultures. As we explore deeper into the natural habitats of bacteria, it is increasingly clear that bacteria can alter their morphology in response to the environment in which they reside. Specific morphologies are also becoming recognized as advantageous for survival in hostile environments. This is of particular importance in the context of both colonization and infection in the host. There are multiple examples of bacterial pathogens that use morphological changes as a mechanism for evasion of host immune responses and continued persistence. This review will focus on two systems where specific morphological changes are essential for persistence in animal models of human disease. We will also offer insight into the mechanism underlying the morphological changes and how these morphotypes aid in persistence. Additional examples of morphological changes associated with survival will be presented.
Collapse
Affiliation(s)
- Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University School of Medicine, Columbus, OH, USA
| | | | | | | |
Collapse
|
49
|
Stahl M, Ries J, Vermeulen J, Yang H, Sham HP, Crowley SM, Badayeva Y, Turvey SE, Gaynor EC, Li X, Vallance BA. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection. PLoS Pathog 2014; 10:e1004264. [PMID: 25033044 PMCID: PMC4102570 DOI: 10.1371/journal.ppat.1004264] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022] Open
Abstract
Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal model for studying the pathogenesis and innate immune responses to C. jejuni. Research into the key virulence strategies of the bacterial pathogen Campylobacter jejuni, as well as the host immune responses that develop against this microbe have, in many ways, been limited by the lack of relevant animal models. Here we describe the use of Sigirr deficient (−/−) mice as a model for C. jejuni pathogenesis. Not only do Sigirr−/− mice develop significant intestinal inflammation in response to colonization by C. jejuni, but the ability of this pathogen to trigger gastroenteritis was dependent on key virulence factors. We also found that the induction of the inflammatory and Th1/Th17 immune responses to infection in these mice depended on specific Toll-like receptors, principally TLR4, which we identified as the main driver of inflammation. In contrast, TLR2 signaling was found to protect mucosal integrity, with Tlr2−/−/Sigirr−/− mice suffering exaggerated mucosal damage and inflammation. Notably, we found that C. jejuni's capsule helped conceal it from the host's immune system as its loss led to significantly increased activation of host TLRs and exaggerated gastroenteritis. Our research shows that the increased sensitivity of Sigirr−/− mice can be used to generate a unique and exciting model that facilitates the study of C. jejuni pathogenesis as well as host immunity to this enteric pathogen.
Collapse
Affiliation(s)
- Martin Stahl
- Division of Gastroenterology, British Columbia Children's Hospital, the Child and Family Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenna Ries
- Division of Gastroenterology, British Columbia Children's Hospital, the Child and Family Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny Vermeulen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hong Yang
- Department of Pediatrics, British Columbia Children's Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ho Pan Sham
- Division of Gastroenterology, British Columbia Children's Hospital, the Child and Family Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Shauna M. Crowley
- Division of Gastroenterology, British Columbia Children's Hospital, the Child and Family Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuliya Badayeva
- Division of Gastroenterology, British Columbia Children's Hospital, the Child and Family Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children's Hospital and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Bruce A. Vallance
- Division of Gastroenterology, British Columbia Children's Hospital, the Child and Family Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
50
|
Cameron A, Gaynor EC. Hygromycin B and apramycin antibiotic resistance cassettes for use in Campylobacter jejuni. PLoS One 2014; 9:e95084. [PMID: 24751825 PMCID: PMC3994027 DOI: 10.1371/journal.pone.0095084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/22/2014] [Indexed: 01/13/2023] Open
Abstract
Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.
Collapse
Affiliation(s)
- Andrew Cameron
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|