1
|
Maher RL, Wülbern J, Zimmermann J, Yeh E, Benda L, Repnik U, Fuß J, Künzel S, Schulenburg H, Bohannan BJ, Adair KL, Johnke J. Comparative analysis of novel Pseudobdellovibrionaceae genera and species yields insights into the genomics and evolution of bacterial predation mode. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638989. [PMID: 40027812 PMCID: PMC11870529 DOI: 10.1101/2025.02.19.638989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacteria of the family Pseudobdellovibrionaceae belong to a group of bacteria that kill and feed on other bacteria. The diversity of predation strategies, habitats, and genome characteristics of these bacteria are largely unexplored, despite their ecological and evolutionary importance in microbial communities. Therefore, we characterized new Pseudobdellovibrionaceae strains isolated from the direct environments of three animal hosts: the zebrafish ( Danio rerio ), the threespine stickleback fish ( Gasterosteus aculeatus ), and the nematode Caenorhabditis elegans . We used transmission electron microscopy (TEM) and genomic analyses to characterize the morphology and predation modes of our isolates. While most of our isolates exhibited periplasmic (i.e. endoparasitic) predation, one isolate clearly exhibited epibiotic (i.e. exoparasitic) predation and represents only the third confirmed epibiotic strain within its clade. Of our isolates, six are members of five new species in the genus Bdellovibrio and two strains likely represent new genera within the family Pseudobdellovibrionaceae . From metabarcoding data, we found indications that Pseudobdellovibrionaceae are widespread among our three animal hosts. Genomic analyses showed that epibiotic predators lack genes involved in host independence (i.e. prey-independent feeding) and peptidoglycan modification. However, genes unique to epibiotic predators may underlie this predation mode, particularly those involved in cell wall remodeling and recycling. With robust phylogenomic analyses, we show that our novel isolates cluster with previously described Pseudobdellovibrionaceae isolates according to predation mode. Further, by placing Pseudobdellovibrionaceae predators within a wider evolutionary history including other predatory and non-predatory bacteria, we postulate periplasmic predation as the ancestral mode, with more derived epibiotic predators exhibiting genome streamlining.
Collapse
Affiliation(s)
- Rebecca L. Maher
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, USA
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Janna Wülbern
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Johannes Zimmermann
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Emily Yeh
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Liesl Benda
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Urska Repnik
- Central Microscopy, Department of Biology, Kiel University, Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic Resistance Group, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Brendan J.M. Bohannan
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Karen L. Adair
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Julia Johnke
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Romanowski EG, Brothers KM, Calvario RC, Stella NA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Predatory bacteria prevent the proliferation of intraocular Serratia marcescens and fluoroquinolone-resistant Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001433. [PMID: 38358321 PMCID: PMC10924457 DOI: 10.1099/mic.0.001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand white rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and to a lesser extent S. marcescens. However, it was not able to significantly reduce the number of intraocular S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa and S. marcescens requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data indicate in vivo inhibition of Gram-negative bacteria proliferation within the intra-ocular environment by predatory bacteria.
Collapse
Affiliation(s)
- Eric G. Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel C. Calvario
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Mun W, Choi SY, Upatissa S, Mitchell RJ. Predatory bacteria as potential biofilm control and eradication agents in the food industry. Food Sci Biotechnol 2023; 32:1729-1743. [PMID: 37780591 PMCID: PMC10533476 DOI: 10.1007/s10068-023-01310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are a major concern within the food industry since they have the potential to reduce productivity in situ (within the field), impact food stability and storage, and cause downstream food poisoning. Within this review, predatory bacteria as potential biofilm control and eradication agents are discussed, with a particular emphasis on the intraperiplasmic Bdellovibrio-and-like organism (BALO) grouping. After providing a brief overview of predatory bacteria and their activities, focus is given to how BALOs fulfill four attributes that are essential for biocontrol agents to be successful in the food industry: (1) Broad spectrum activity against pathogens, both plant and human; (2) Activity against biofilms; (3) Safety towards humans and animals; and (4) Compatibility with food. As predatory bacteria possess all of these characteristics, they represent a novel form of biofilm biocontrol that is ripe for use within the food industry.
Collapse
Affiliation(s)
- Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Seong Yeol Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
4
|
Romanowski EG, Brothers KM, Calvario RC, Stella NA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Intra-ocular Predation of Fluoroquinolone-Resistant Pseudomonas aeruginosa and Serratia marcescens by Predatory Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558130. [PMID: 37745563 PMCID: PMC10516018 DOI: 10.1101/2023.09.17.558130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand White rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and S. marcescens. However, it was not able to significantly reduce S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data suggest in vivo predation of Gram-negative bacteria within the intra-ocular environment.
Collapse
Affiliation(s)
- Eric G Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Kimberly M Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Rachel C Calvario
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Nicholas A Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Robert M Q Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
5
|
Kaplan M, Chang YW, Oikonomou CM, Nicolas WJ, Jewett AI, Kreida S, Dutka P, Rettberg LA, Maggi S, Jensen GJ. Bdellovibrio predation cycle characterized at nanometre-scale resolution with cryo-electron tomography. Nat Microbiol 2023; 8:1267-1279. [PMID: 37349588 PMCID: PMC11061892 DOI: 10.1038/s41564-023-01401-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/27/2023] [Indexed: 06/24/2023]
Abstract
Bdellovibrio bacteriovorus is a microbial predator that offers promise as a living antibiotic for its ability to kill Gram-negative bacteria, including human pathogens. Even after six decades of study, fundamental details of its predation cycle remain mysterious. Here we used cryo-electron tomography to comprehensively image the lifecycle of B. bacteriovorus at nanometre-scale resolution. With high-resolution images of predation in a native (hydrated, unstained) state, we discover several surprising features of the process, including macromolecular complexes involved in prey attachment/invasion and a flexible portal structure lining a hole in the prey peptidoglycan that tightly seals the prey outer membrane around the predator during entry. Unexpectedly, we find that B. bacteriovorus does not shed its flagellum during invasion, but rather resorbs it into its periplasm for degradation. Finally, following growth and division in the bdelloplast, we observe a transient and extensive ribosomal lattice on the condensed B. bacteriovorus nucleoid.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew I Jewett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stefan Kreida
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
6
|
Romanowski EG, Stella NA, Brazile BL, Lathrop KL, Franks JM, Sigal IA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Predatory bacteria can reduce Pseudomonas aeruginosa induced corneal perforation and proliferation in a rabbit keratitis model. Ocul Surf 2023; 28:254-261. [PMID: 37146902 PMCID: PMC11265785 DOI: 10.1016/j.jtos.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. METHODS Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic ΔlasR mutant and co-injected with PBS or B. bacteriovorus. After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. RESULTS We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n = 24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n = 25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The ΔlasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus. CONCLUSION These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.
Collapse
Affiliation(s)
- Eric G Romanowski
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicholas A Stella
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan M Franks
- Center for Biological Imaging, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Robert M Q Shanks
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Romanowski EG, Stella NA, Brazile BL, Lathrop KL, Franks J, Sigal IA, Kim T, Elsayed M, Kadouri DE, Shanks RM. Predatory Bacteria can Reduce Pseudomonas aeruginosa Induced Corneal Perforation and Proliferation in a Rabbit Keratitis Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532777. [PMID: 36993476 PMCID: PMC10055036 DOI: 10.1101/2023.03.15.532777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Purpose Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. Methods Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic Δ lasR mutant and co-injected with PBS or B. bacteriovorus . After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. Results We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n=24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n=25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The Δ lasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus . Conclusion These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.
Collapse
Affiliation(s)
- Eric G. Romanowski
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nicholas A. Stella
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bryn L. Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Robert M.Q. Shanks
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
8
|
Zhang WJ, Wu LF. Flagella and Swimming Behavior of Marine Magnetotactic Bacteria. Biomolecules 2020; 10:biom10030460. [PMID: 32188162 PMCID: PMC7175107 DOI: 10.3390/biom10030460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Marine environments are generally characterized by low bulk concentrations of nutrients that are susceptible to steady or intermittent motion driven by currents and local turbulence. Marine bacteria have therefore developed strategies, such as very fast-swimming and the exploitation of multiple directional sensing–response systems in order to efficiently migrate towards favorable places in nutrient gradients. The magnetotactic bacteria (MTB) even utilize Earth’s magnetic field to facilitate downward swimming into the oxic–anoxic interface, which is the most favorable place for their persistence and proliferation, in chemically stratified sediments or water columns. To ensure the desired flagella-propelled motility, marine MTBs have evolved an exquisite flagellar apparatus, and an extremely high number (tens of thousands) of flagella can be found on a single entity, displaying a complex polar, axial, bounce, and photosensitive magnetotactic behavior. In this review, we describe gene clusters, the flagellar apparatus architecture, and the swimming behavior of marine unicellular and multicellular magnetotactic bacteria. The physiological significance and mechanisms that govern these motions are discussed.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, F-13402 CNRS-Marseille, France/CAS-Sanya 572000, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, F-13402 CNRS-Marseille, France/CAS-Sanya 572000, China
- Aix Marseille Univ, CNRS, LCB, IMM, IM2B, CENTURI, F-13402 Marseille, France
- Correspondence: ; Tel.: +33-4-9116-4157
| |
Collapse
|
9
|
Chu J, Liu J, Hoover TR. Phylogenetic Distribution, Ultrastructure, and Function of Bacterial Flagellar Sheaths. Biomolecules 2020; 10:biom10030363. [PMID: 32120823 PMCID: PMC7175336 DOI: 10.3390/biom10030363] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
A number of Gram-negative bacteria have a membrane surrounding their flagella, referred to as the flagellar sheath, which is continuous with the outer membrane. The flagellar sheath was initially described in Vibrio metschnikovii in the early 1950s as an extension of the outer cell wall layer that completely surrounded the flagellar filament. Subsequent studies identified other bacteria that possess flagellar sheaths, most of which are restricted to a few genera of the phylum Proteobacteria. Biochemical analysis of the flagellar sheaths from a few bacterial species revealed the presence of lipopolysaccharide, phospholipids, and outer membrane proteins in the sheath. Some proteins localize preferentially to the flagellar sheath, indicating mechanisms exist for protein partitioning to the sheath. Recent cryo-electron tomography studies have yielded high resolution images of the flagellar sheath and other structures closely associated with the sheath, which has generated insights and new hypotheses for how the flagellar sheath is synthesized. Various functions have been proposed for the flagellar sheath, including preventing disassociation of the flagellin subunits in the presence of gastric acid, avoiding activation of the host innate immune response by flagellin, activating the host immune response, adherence to host cells, and protecting the bacterium from bacteriophages.
Collapse
Affiliation(s)
- Joshua Chu
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
| | - Jun Liu
- Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, West Haven, CT 06516, USA;
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
10
|
Aschtgen MS, Brennan CA, Nikolakakis K, Cohen S, McFall-Ngai M, Ruby EG. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 2019; 5:32. [PMID: 31666982 PMCID: PMC6814793 DOI: 10.1038/s41522-019-0106-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Flagella are essential and multifunctional nanomachines that not only move symbionts towards their tissue colonization site, but also play multiple roles in communicating with the host. Thus, untangling the activities of flagella in reaching, interacting, and signaling the host, as well as in biofilm formation and the establishment of a persistent colonization, is a complex problem. The squid-vibrio system offers a unique model to study the many ways that bacterial flagella can influence a beneficial association and, generally, other bacteria-host interactions. Vibrio fischeri is a bioluminescent bacterium that colonizes the Hawaiian bobtail squid, Euprymna scolopes. Over the last 15 years, the structure, assembly, and functions of V. fischeri flagella, including not only motility and chemotaxis, but also biofilm formation and symbiotic signaling, have been revealed. Here we discuss these discoveries in the perspective of other host-bacteria interactions.
Collapse
Affiliation(s)
- Marie-Stephanie Aschtgen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, 171 76 Sweden
| | - Caitlin A. Brennan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Kiel Nikolakakis
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Natural and Applied Sciences, University of Wisconsin – Green Bay, Green Bay, WI 54311 USA
| | - Stephanie Cohen
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, and Center for Advanced Surface Analysis, Institute of Earth Sciences, Université de Lausanne, CH-1015 Lausanne, Switzerland
- Kewalo Marine Laboratory, University of Hawaii-Manoa, Honolulu, HI 96813 USA
| | | | - Edward G. Ruby
- Kewalo Marine Laboratory, University of Hawaii-Manoa, Honolulu, HI 96813 USA
| |
Collapse
|
11
|
Sathyamoorthy R, Maoz A, Pasternak Z, Im H, Huppert A, Kadouri D, Jurkevitch E. Bacterial predation under changing viscosities. Environ Microbiol 2019; 21:2997-3010. [DOI: 10.1111/1462-2920.14696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/23/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Anat Maoz
- Bio‐statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research Chaim Sheba Medical Center Tel Hashomer Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Hansol Im
- School of Life Sciences Ulsan National Institute of Science & Technology 50 UNIST‐gil Ulju‐gun, Ulsan 44919 Republic of Korea
| | - Amit Huppert
- Bio‐statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research Chaim Sheba Medical Center Tel Hashomer Israel
| | - Daniel Kadouri
- Department of Oral Biology Rutgers School of Dental Medicine Newark NJ USA
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| |
Collapse
|
12
|
Said N, Chatzinotas A, Schmidt M. Have an Ion on It: The Life-Cycle of Bdellovibrio bacteriovorus Viewed by Helium-Ion Microscopy. ACTA ACUST UNITED AC 2018; 3:e1800250. [PMID: 32627346 DOI: 10.1002/adbi.201800250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Indexed: 11/12/2022]
Abstract
Helium-ion microscopy (HIM) has so far rarely been employed to image microbial interactions. Here, the visualization of the life-cycle of the bacterial predator Bdellovibrio bacteriovorus HD100 with Escherichia coli and Pseudomonas putida, respectively, as prey is presented. The predator is brought in contact with prey and samples are taken at selected times. The system is monitored by phase-contrast microscopy and HIM. For HIM imaging, a sample preparation protocol is established that preserves the structure of Bdellovibrio, prey, and bdelloplasts. The micrographs show the attachment of the predator to its prey, the evolution of bdelloplasts, their lysis, and the release of predator progeny. The combination of HIM with two more approaches allows for investigating predator-prey interactions from different angles: First, phase-contrast micrographs provide quantitative information for the numbers of predator, prey, and bdelloplasts. Second, a numerical model solving the retarded differential equations that describe the system's time-evolution is developed and fits the experimentally determined cell numbers. In conclusion, the high resolution, the large depth of focus, and surface sensitivity of HIM hold promise to expand future studies on so far neglected ecological interactions within the microbial food web, in particular in samples with pronounced topography such as bacterial biofilms.
Collapse
Affiliation(s)
- Nedal Said
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
13
|
Jurkevitch E. Isolation and classification of Bdellovibrio and like organisms. CURRENT PROTOCOLS IN MICROBIOLOGY 2012; Chapter 7:Unit7B.1. [PMID: 22875568 DOI: 10.1007/978-3-642-39044-9_379] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predators of Gram-negative bacteria. BALOs are isolated as plaques growing at the expense of their prey and are cultivated as two-member cultures. The growth cycle is composed of an extracellular attack phase and an intraperiplasmic elongation and replication phase. However, there are methods for obtaining host-independent (HI) mutants that grow without prey on rich media. BALOs are commonly found in the environment but generally constitute small populations; therefore, their isolation may require enrichment steps. Contamination by other bacteria during isolation necessitates efficient separation between the smaller BALO cells from the majority of larger bacteria. BALOs can also be directly detected and quantified in environmental samples using specific PCR. Synchronous cultures of both wild-type and HI derivatives can be obtained to study the different growth phases. These can be further separated by centrifugation. Classification is based on 16S rDNA analysis. Protocols relevant to these aspects of BALO detection, isolation, growth, classification, and quantitation are presented in this unit.
Collapse
Affiliation(s)
- Edouard Jurkevitch
- Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Hobley L, Fung RKY, Lambert C, Harris MATS, Dabhi JM, King SS, Basford SM, Uchida K, Till R, Ahmad R, Aizawa SI, Gomelsky M, Sockett RE. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog 2012; 8:e1002493. [PMID: 22319440 PMCID: PMC3271064 DOI: 10.1371/journal.ppat.1002493] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022] Open
Abstract
Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP), which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742) resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434) resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367) abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125) substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766) had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly useful in anti-pathogen applications. In contrast to many studies in other bacteria, Bdellovibrio shows specificity and lack of overlap in c-di-GMP signalling pathways. Bdellovibrio bacteriovorus is a tiny bacterium that preys upon other bacteria including pathogenic bacteria that cause infections in humans, animals, or crop plants. Bdellovibrio don't attack human, plant or animal cells and so could in future be used as “living antibiotics”. Here we have discovered, using genetics chemical analyses and microscopy, that proteins with a sequence in them called “GGDEF” control whether Bdellovibrio grow by preying upon other bacteria or whether they grow “normally” without attacking prey. The GGDEF proteins all synthesise the small signalling molecule cyclic- di GMP, but interestingly the production of this signal has different effects depending on which GGDEF protein makes it. If we remove one GGDEF protein this makes a Bdellovibrio that can't eat bacteria anymore and has to survive on environmental nutrients. Removing a different GGDEF protein gives Bdellovibrio that can only survive by eating prey bacteria such as pathogens- they lose the ability to eat “normal” nutrients. This is very useful when trying to produce Bdellovibrio as a therapy. The correct GGDEF mutant would have to “eat” pathogens only and couldn't grow using the nutrients present in the blood and serum of a wound, for example, so it would be a self-limiting treatment.
Collapse
Affiliation(s)
- Laura Hobley
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
| | - Rowena K. Y. Fung
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
| | - Carey Lambert
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
| | - Maximilian A. T. S. Harris
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
| | - Jayesh M. Dabhi
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Simon S. King
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
| | - Sarah M. Basford
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
| | - Kaoru Uchida
- Prefectural University of Hiroshima Department of Life Sciences, Shobara, Hiroshima, Japan
| | - Robert Till
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
| | - Rashidah Ahmad
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
| | - Shin-Ichi Aizawa
- Prefectural University of Hiroshima Department of Life Sciences, Shobara, Hiroshima, Japan
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - R. Elizabeth Sockett
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Predatory Bdellovibrio bacteria use gliding motility to scout for prey on surfaces. J Bacteriol 2011; 193:3139-41. [PMID: 21515772 DOI: 10.1128/jb.00224-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bdellovibrio bacteriovorus is a famously fast, flagellate predatory bacterium, preying upon Gram-negative bacteria in liquids; how it interacts with prey on surfaces such as in medical biofilms is unknown. Here we report that Bdellovibrio bacteria "scout" for prey bacteria on solid surfaces, using slow gliding motility that is present in flagellum-negative and pilus-negative strains.
Collapse
|
16
|
Morehouse KA, Hobley L, Capeness M, Sockett RE. Three motAB stator gene products in Bdellovibrio bacteriovorus contribute to motility of a single flagellum during predatory and prey-independent growth. J Bacteriol 2011; 193:932-43. [PMID: 21148728 PMCID: PMC3028683 DOI: 10.1128/jb.00941-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/29/2010] [Indexed: 12/31/2022] Open
Abstract
The predatory bacterium Bdellovibrio bacteriovorus uses flagellar motility to locate regions rich in Gram-negative prey bacteria, colliding and attaching to prey and then ceasing flagellar motility. Prey are then invaded to form a "bdelloplast" in a type IV pilus-dependent process, and prey contents are digested, allowing Bdellovibrio growth and septation. After septation, Bdellovibrio flagellar motility resumes inside the prey bdelloplast prior to its lysis and escape of Bdellovibrio progeny. Bdellovibrio can also grow slowly outside prey as long flagellate host-independent (HI) cells, cultured on peptone-rich media. The B. bacteriovorus HD100 genome encodes three pairs of MotAB flagellar motor proteins, each of which could potentially form an inner membrane ion channel, interact with the FliG flagellar rotor ring, and produce flagellar rotation. In 2004, Flannagan and coworkers (R. S. Flannagan, M. A. Valvano, and S. F. Koval, Microbiology 150:649-656, 2004) used antisense RNA and green fluorescent protein (GFP) expression to downregulate a single Bdellovibrio motA gene and reported slowed release from the bdelloplast and altered motility of the progeny. Here we inactivated each pair of motAB genes and found that each pair contributes to motility, both predatorily, inside the bdelloplast and during HI growth; however, each pair was dispensable, and deletion of no pair abolished motility totally. Driving-ion studies with phenamil, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and different pH and sodium conditions indicated that all Mot pairs are proton driven, although the sequence similarities of each Mot pair suggests that some may originate from halophilic species. Thus, Bdellovibrio is a "dedicated motorist," retaining and expressing three pairs of mot genes.
Collapse
Affiliation(s)
- Karen A. Morehouse
- Institute of Genetics, School of Biology, QMC Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Laura Hobley
- Institute of Genetics, School of Biology, QMC Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Michael Capeness
- Institute of Genetics, School of Biology, QMC Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - R. Elizabeth Sockett
- Institute of Genetics, School of Biology, QMC Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
17
|
Ferooz J, Letesson JJ. Morphological analysis of the sheathed flagellum of Brucella melitensis. BMC Res Notes 2010; 3:333. [PMID: 21143933 PMCID: PMC3017070 DOI: 10.1186/1756-0500-3-333] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/09/2010] [Indexed: 11/24/2022] Open
Abstract
Background It was recently shown that B. melitensis is flagellated. However, the flagellar structure remains poorly described. Findings We analyzed the structure of the polar sheathed flagellum of B. melitensis by TEM analysis and demonstrated that the Ryu staining is a good method to quickly visualize the flagellum by optical microscopy. The TEM analysis demonstrated that an extension of the outer membrane surrounds a filament ending by a club-like structure. The ΔftcR, ΔfliF, ΔflgE and ΔfliC flagellar mutants still produce an empty sheath. Conclusions Our results demonstrate that the flagellum of B. melitensis has the characteristics of the sheathed flagella. Our results also suggest that the flagellar sheath production is not directly linked to the flagellar structure assembly and is not regulated by the FtcR master regulator.
Collapse
Affiliation(s)
- Jonathan Ferooz
- Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium.
| | | |
Collapse
|
18
|
Lefèvre CT, Santini CL, Bernadac A, Zhang WJ, Li Y, Wu LF. Calcium ion-mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium. Mol Microbiol 2010; 78:1304-12. [DOI: 10.1111/j.1365-2958.2010.07404.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Immunomagnetic separation and coagglutination of Vibrio parahaemolyticus with anti-flagellar protein monoclonal antibody. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1541-6. [PMID: 18753337 DOI: 10.1128/cvi.00141-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice were immunized by injection of Vibrio parahaemolyticus ATCC 17802 polar flagellin in order to produce monoclonal antibodies (mAbs). mAbs were analyzed by anti-H enzyme-linked immunosorbent assay using V. parahaemolyticus polar flagellar cores. The mAb exhibiting the highest anti-H titer was coated onto Cowan I Staphylococcus aureus cells at a concentration of 75 microg/ml cell suspension and used for slide coagglutination. Of 41 isolates identified genetically as V. parahaemolyticus, 100% coagglutinated with the anti-H mAb within 30 s, and the mAb did not react with 30 isolates identified as Vibrio vulnificus. A strong coagglutination reaction with V. parahaemolyticus ATCC 17802 was still observed when the S. aureus cells were armed with as little as 15 microg of mAb/ml S. aureus cell suspension. At this concentration, the mAb cross-reacted with three other Vibrio species, suggesting that they share an identical H antigen or antigens. The anti-H mAb was then used to optimize an immunomagnetic separation protocol which exhibited from 35% to about 45% binding of 10(2) to 10(3) V. parahaemolyticus cells in phosphate-buffered saline. The mAb would be useful for the rapid and selective isolation, concentration, and detection of V. parahaemolyticus cells from environmental sources.
Collapse
|
20
|
A Predatory Patchwork: Membrane and Surface Structures of Bdellovibrio bacteriovorus. Adv Microb Physiol 2008; 54:313-61. [DOI: 10.1016/s0065-2911(08)00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Lambert C, Morehouse KA, Chang CY, Sockett RE. Bdellovibrio: growth and development during the predatory cycle. Curr Opin Microbiol 2006; 9:639-44. [PMID: 17056298 DOI: 10.1016/j.mib.2006.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 10/10/2006] [Indexed: 10/24/2022]
Abstract
Predatory Bdellovibrio enter the periplasm of other Gram-negative bacteria, growing within and consuming them. Unravelling molecular details of this intimate association between bacterial predator and prey is challenging yet fascinating, and might lead to novel antibacterials in the future. Pioneering physiological and biochemical studies described the predatory life of Bdellovibrio in the 1960s and 1970s, later followed by recombinant DNA work in the 1990s, which led to a revival in Bdellovibrio molecular research. This revival continues in the 21st century with the advent of a genome sequence. Now worldwide research is underway on the comparative genomics and transcriptomics of predatory bacteria, and will illuminate the evolutionary adaptations to become predatory, and will hopefully ultimately illuminate how the predatory processes of Bdellovibrio can be employed against pathogenic bacteria and for humankind.
Collapse
Affiliation(s)
- Carey Lambert
- Institute of Genetics, School of Biology QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
22
|
Logan SM. Flagellar glycosylation - a new component of the motility repertoire? MICROBIOLOGY-SGM 2006; 152:1249-1262. [PMID: 16622043 DOI: 10.1099/mic.0.28735-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biosynthesis, assembly and regulation of the flagellar apparatus has been the subject of extensive studies over many decades, with considerable attention devoted to the peritrichous flagella of Escherichia coli and Salmonella enterica. The characterization of flagellar systems from many other bacterial species has revealed subtle yet distinct differences in composition, regulation and mode of assembly of this important subcellular structure. Glycosylation of the major structural protein, the flagellin, has been shown most recently to be an important component of numerous flagellar systems in both Archaea and Bacteria, playing either an integral role in assembly or for a number of bacterial pathogens a role in virulence. This review focuses on the structural diversity in flagellar glycosylation systems and demonstrates that as a consequence of the unique assembly processes, the type of glycosidic linkage found on archaeal and bacterial flagellins is distinctive.
Collapse
Affiliation(s)
- Susan M Logan
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A OR6, Canada
| |
Collapse
|
23
|
Lambert C, Evans KJ, Till R, Hobley L, Capeness M, Rendulic S, Schuster SC, Aizawa SI, Sockett RE. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol Microbiol 2006; 60:274-86. [PMID: 16573680 PMCID: PMC1453311 DOI: 10.1111/j.1365-2958.2006.05081.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2006] [Indexed: 11/28/2022]
Abstract
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.
Collapse
Affiliation(s)
- Carey Lambert
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Katy J Evans
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Rob Till
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Laura Hobley
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Michael Capeness
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| | - Snjezana Rendulic
- Department of Biochemistry and Molecular Biology Center for Comparative Genomics and Bioinformatics310 Wartik Building, Penn State University, University Park, PA 16802, USA
| | - Stephan C Schuster
- Department of Biochemistry and Molecular Biology Center for Comparative Genomics and Bioinformatics310 Wartik Building, Penn State University, University Park, PA 16802, USA
| | - Shin-Ichi Aizawa
- CREST ‘Soft Nano-Machine Project’ Innovation Plaza Hiroshima3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046 Japan.
| | - R Elizabeth Sockett
- Institute of Genetics School of Biology, University of Nottingham, Queens Medical CentreNottingham NG7 2UH, UK
| |
Collapse
|
24
|
Fretin D, Fauconnier A, Köhler S, Halling S, Léonard S, Nijskens C, Ferooz J, Lestrate P, Delrue RM, Danese I, Vandenhaute J, Tibor A, DeBolle X, Letesson JJ. The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 2005; 7:687-98. [PMID: 15839898 DOI: 10.1111/j.1462-5822.2005.00502.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Persistence infection is the keystone of the ruminant and human diseases called brucellosis and Malta fever, respectively, and is linked to the intracellular tropism of Brucella spp. While described as non-motile, Brucella spp. have all the genes except the chemotactic system, necessary to assemble a functional flagellum. We undertook to determine whether these genes are expressed and are playing a role in some step of the disease process. We demonstrated that in the early log phase of a growth curve in 2YT nutrient broth, Brucella melitensis expresses genes corresponding to the basal (MS ring) and the distal (hook and filament) parts of the flagellar apparatus. Under these conditions, a polar and sheathed flagellar structure is visible by transmission electron microscopy (TEM). We evaluated the effect of mutations in flagellar genes of B. melitensis encoding various parts of the structure, MS ring, P ring, motor protein, secretion apparatus, hook and filament. None of these mutants gave a discernible phenotype as compared with the wild-type strain in cellular models of infection. In contrast, all these mutants were unable to establish a chronic infection in mice infected via the intraperitoneal route, raising the question of the biological role(s) of this flagellar appendage.
Collapse
Affiliation(s)
- D Fretin
- Unité de Recherche en Biologie Moléculaire, University of Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McCarter LL. Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 2004; 7:18-29. [PMID: 15170400 DOI: 10.1159/000077866] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Flagella are extremely effective organelles of locomotion used by a variety of bacteria and archaea. Some bacteria, including Aeromonas, Azospirillum, Rhodospirillum, and Vibrio species, possess dual flagellar systems that are suited for movement under different circumstances. Swimming in liquid is promoted by a single polar flagellum. Swarming over surfaces or in viscous environments is enabled by the production of numerous peritrichous, or lateral, flagella. The polar flagellum is produced continuously, while the lateral flagella are produced under conditions that disable polar flagellar function. Thus at times, two types of flagellar organelles are assembled simultaneously. This review focuses on the polar and lateral flagellar systems of Vibrio parahaemolyticus. Approximately 50 polar and 40 lateral flagellar genes have been identified encoding distinct structural, motor, export/assembly, and regulatory elements. The sodium motive force drives polar flagellar rotation, and the proton motive force powers lateral translocation. Polar genes are found exclusively on the large chromosome, and lateral genes reside entirely on the small chromosome of the organism. The timing of gene expression corresponds to the temporal demand for components during assembly of the organelle: RpoN and lateral- and polar-specific sigma(54)-dependent transcription factors control early/intermediate gene transcription; lateral- and polar-specific sigma(28) factors direct late flagellar gene expression. Although a different gene set encodes each flagellar system, the constituents of a central navigation system (i.e., chemotaxis signal transduction) are shared.
Collapse
Affiliation(s)
- Linda L McCarter
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52246, USA.
| |
Collapse
|
26
|
Abstract
Polar flagella of Vibrio species can rotate at speeds as high as 100,000 rpm and effectively propel the bacteria in liquid as fast as 60 microm/s. The sodium motive force powers rotation of the filament, which acts as a propeller. The filament is complex, composed of multiple subunits, and sheathed by an extension of the cell outer membrane. The regulatory circuitry controlling expression of the polar flagellar genes of members of the Vibrionaceae is different from the peritrichous system of enteric bacteria or the polar system of Caulobacter crescentus. The scheme of gene control is also pertinent to other members of the gamma purple bacteria, in particular to Pseudomonas species. This review uses the framework of the polar flagellar system of Vibrio parahaemolyticus to provide a synthesis of what is known about polar motility systems of the Vibrionaceae. In addition to its propulsive role, the single polar flagellum of V. parahaemolyticus is believed to act as a tactile sensor controlling surface-induced gene expression. Under conditions that impede rotation of the polar flagellum, an alternate, lateral flagellar motility system is induced that enables movement through viscous environments and over surfaces. Although the dual flagellar systems possess no shared structural components and although distinct type III secretion systems direct the simultaneous placement and assembly of polar and lateral organelles, movement is coordinated by shared chemotaxis machinery.
Collapse
Affiliation(s)
- L L McCarter
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Watanabe Y, Nakajima M, Hoshino T, Jayasimhulu K, Brooks EE, Kaneshiro ES. A novel sphingophosphonolipid head group 1-hydroxy-2-aminoethyl phosphonate in Bdellovibrio stolpii. Lipids 2001; 36:513-9. [PMID: 11432465 DOI: 10.1007/s11745-001-0751-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Members of the bacterial genus Bdellovibrio include strains that are free-living, whereas others are known to invade and parasitize larger Gram-negative bacteria. The bacterium can synthesize several sphingophospholipid compounds including those with phosphoryl bonds as well as phosphonyl bonds. In the present study, the dominant sphingophosphonolipid component was isolated by column chromatography, and the long-chain bases, fatty acids, and polar head groups were identified by thin-layer and gas-liquid chromatographic procedures. The definitive structural identity of the sphingolipid was established by nuclear magnetic resonance and mass spectrometry of hydrolysis products and the intact compound. The compound was identified as N-2'-hydroxypentadecanoyl-2-amino-3,4-dihydroxyheptadecan-1-phosphono-(1-hydroxy-2-aminoethane).
Collapse
Affiliation(s)
- Y Watanabe
- Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Samandari T, Kotloff KL, Losonsky GA, Picking WD, Sansonetti PJ, Levine MM, Sztein MB. Production of IFN-gamma and IL-10 to Shigella invasins by mononuclear cells from volunteers orally inoculated with a Shiga toxin-deleted Shigella dysenteriae type 1 strain. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2221-32. [PMID: 10657678 DOI: 10.4049/jimmunol.164.4.2221] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Volunteers were orally administered invasive, non-Shiga toxin-producing Shigella dysenteriae 1 to establish a challenge model to assess vaccine efficacy. In stepwise fashion, four separate groups were given 3 x 10(2), 7 x 10(3), 5 x 10(4), or 7 x 10(5) CFU. Using PBMC, proliferative responses and cytokine production were measured to S. dysenteriae whole-cell preparations and to purified recombinant invasion plasmid Ags (Ipa) C and IpaD. Anti-LPS and anti-Ipa Abs and Ab-secreting cells were also evaluated. Preinoculation PBMC produced considerable quantities of IL-10 and IFN-gamma, probably secreted by monocytes and NK cells, respectively, of the innate immune system. Following inoculation, PBMC from 95 and 87% of volunteers exhibited an increased production of IFN-gamma and IL-10, respectively, in response to Shigella Ags. These increases included responses to IpaC and IpaD among those volunteers receiving the lowest inoculum. No IL-4 or IL-5 responses were detected. Whereas there were no Ab or Ab-secreting cell responses in volunteers receiving the lowest inoculum, other dose groups had moderate to strong anti-LPS and anti-Ipa responses. These results suggest that in humans, type 1 responses play an important role in mucosal and systemic immunity to S. dysentariae 1.
Collapse
MESH Headings
- Adhesins, Bacterial
- Administration, Oral
- Adolescent
- Adult
- Antibodies, Bacterial/biosynthesis
- Antibody-Producing Cells/immunology
- Antibody-Producing Cells/metabolism
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Colony Count, Microbial
- Dose-Response Relationship, Immunologic
- Dysentery, Bacillary/immunology
- Dysentery, Bacillary/metabolism
- Dysentery, Bacillary/prevention & control
- Gene Deletion
- Humans
- Interferon-gamma/biosynthesis
- Interleukin-10/biosynthesis
- Interleukin-12/biosynthesis
- Interleukin-15/biosynthesis
- Interleukin-2/biosynthesis
- Interleukin-4/biosynthesis
- Interleukin-5/biosynthesis
- Kinetics
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Lymphocyte Activation
- Shiga Toxins
- Shigella dysenteriae/genetics
- Shigella dysenteriae/immunology
- Transforming Growth Factor beta/biosynthesis
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- T Samandari
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Noriega FR, Liao FM, Maneval DR, Ren S, Formal SB, Levine MM. Strategy for cross-protection among Shigella flexneri serotypes. Infect Immun 1999; 67:782-8. [PMID: 9916090 PMCID: PMC96386 DOI: 10.1128/iai.67.2.782-788.1999] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based upon the lipopolysaccharide (LPS) structure and antigenicity of Shigella group B, a strategy for broad cross-protection against 14 Shigella flexneri serotypes was designed. This strategy involves the use of two S. flexneri serotypes (2a and 3a), which together bear the all of the major antigenic group factors of this group. The novel attenuated strains used in these studies were S. flexneri 2a strain CVD 1207 (DeltaguaB-A DeltavirG Deltaset1 Deltasen) and S. flexneri 3a strain CVD 1211 (DeltaguaB-A DeltavirG Deltasen). Guinea pigs were immunized with an equal mixture of these strains and later challenged (Sereny test) with a wild-type S. flexneri serotype 1a, 1b, 2b, 4b, 5b, Y, or 6 strain of demonstrated virulence in the same model. Guinea pigs that were immunized with these two vaccine strains produced serum and mucosal antibodies that cross-reacted with all the S. flexneri serotypes tested (except of S. flexneri serotype 6) as assessed by enzyme-linked immunosorbent assay, immunoblotting, and slide agglutination. Furthermore, the combination vaccine conferred significant protection against challenge with S. flexneri serotypes 1b, 2b, 5b, and Y but not with serotypes 1a, 4b, or (as predicted) 6.
Collapse
Affiliation(s)
- F R Noriega
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Winstanley C, Morgan JAW. The bacterial flagellin gene as a biomarker for detection, population genetics and epidemiological analysis. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3071-3084. [PMID: 9353913 DOI: 10.1099/00221287-143-10-3071] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Craig Winstanley
- Biosciences Group, School of Natural and Environmental Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - J Alun W Morgan
- Horticulture Research International, Wellesbourne, Warwickshire CV35 9EF, UK
| |
Collapse
|
31
|
|
32
|
Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 1996; 178:1310-9. [PMID: 8631707 PMCID: PMC177804 DOI: 10.1128/jb.178.5.1310-1319.1996] [Citation(s) in RCA: 563] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A flagellin gene from the fish pathogen Vibrio anguillarum was cloned, sequenced, and mutagenized. The DNA sequence suggests that the flaA gene encodes a 40.1-kDa protein and is a single transcriptional unit. A polar mutation and four in-frame deletion mutations (180 bp deleted from the 5' end of the gene, 153 bp deleted from the 3' end of the gene, a double deletion of both the 180- and 153-bp deletions, and 942 bp deleted from the entire gene) were made. Compared with the wild type, all mutants were partially motile, and a shortening of the flagellum was seen by electron microscopy. Wild-type phenotypes were regained when the mutations were transcomplemented with the flaA gene. Protein analysis indicated that the flaA gene corresponds to a 40-kDa protein and that the flagellum consists of three additional flagellin proteins with molecular masses of 41, 42, and 45 kDa. N-terminal sequence analysis confirmed that the additional proteins were flagellins with N termini that are 82 to 88% identical to the N terminus of FlaA. Virulence studies showed that the N terminal deletion, the double deletion, and the 942-bp deletion increased the 50% lethal dose between 70- and 700-fold via immersion infection, whereas infection via intraperitoneal injection showed no loss in virulence. In contrast, the polar mutant and the carboxy-terminal deletion mutant showed approximately a 10(4)-fold increase in the 50% lethal dose by both immersion and intraperitoneal infection. In summary, FlaA is needed for crossing the fish integument and may play a role in virulence after invasion of the host.
Collapse
Affiliation(s)
- D L Milton
- Department of Cell and Molecular Biology, Umeå University, Sweden
| | | | | | | |
Collapse
|
33
|
Abstract
Many bacterial species are motile by means of flagella. The structure and implantation of flagella seems related to the specific environments the cells live in. In some cases, the bacteria even adapt their flagellation pattern in response to the environmental conditions they encounter. Swarming cell differentiation is a remarkable example of this phenomenon. Flagella seem to have more functions than providing motility alone. For many pathogenic species, studies have been performed on the contribution of flagella to the virulence, but the result is not clear in all cases. Flagella are generally accepted as being important virulence factors, and expression and repression of flagellation and virulence have in several cases been shown to be linked. Providing motility is always an important feature of flagella of pathogenic bacteria, but adhesive and other properties also have been attributed to these flagella. In nonpathogenic bacterial colonization, flagella are important locomotive and adhesive organelles as well. In several cases where competition between several bacterial species exists, motility by means of flagella is shown to provide a specific advantage for a bacterium. This review gives an overview of studies that have been performed on the significance of flagellation in a wide variety of processes where flagellated bacteria are involved.
Collapse
Affiliation(s)
- S Moens
- F. A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | |
Collapse
|
34
|
McCarter LL. Genetic and molecular characterization of the polar flagellum of Vibrio parahaemolyticus. J Bacteriol 1995; 177:1595-609. [PMID: 7883718 PMCID: PMC176778 DOI: 10.1128/jb.177.6.1595-1609.1995] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Vibrio parahaemolyticus possesses two alternate flagellar systems adapted for movement under different circumstances. A single polar flagellum propels the bacterium in liquid (swimming), while multiple lateral flagella move the bacterium over surfaces (swarming). Energy to rotate the polar flagellum is derived from the sodium membrane potential, whereas lateral flagella are powered by the proton motive force. Lateral flagella are arranged peritrichously, and the unsheathed filaments are polymerized from a single flagellin. The polar flagellum is synthesized constitutively, but lateral flagella are produced only under conditions in which the polar flagellum is not functional, e.g., on surfaces. This work initiates characterization of the sheathed, polar flagellum. Four genes encoding flagellins were cloned and found to map in two loci. These genes, as well as three genes encoding proteins resembling HAPs (hook-associated proteins), were sequenced. A potential consensus polar flagellar promoter was identified by using upstream sequences from seven polar genes. It resembled the enterobacterial sigma 28 consensus promoter. Three of the four flagellin genes were expressed in Escherichia coli, and expression was dependent on the product of the fliA gene encoding sigma 28. The fourth flagellin gene may be different regulated. It was not expressed in E. coli, and inspection of upstream sequence revealed a potential sigma 54 consensus promoter. Mutants with single and multiple defects in flagellin genes were constructed in order to determine assembly rules for filament polymerization. HAP mutants displayed new phenotypes, which were different from those of Salmonella typhimurium and most probably were the result of the filament being sheathed.
Collapse
Affiliation(s)
- L L McCarter
- Immunology Department, Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
35
|
Johnson EA, Schroeder WA. Microbial carotenoids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1995; 53:119-78. [PMID: 8578971 DOI: 10.1007/bfb0102327] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carotenoids occur universally in photosynthetic organisms but sporadically in nonphotosynthetic bacteria and eukaryotes. The primordial carotenogenic organisms were cyanobacteria and eubacteria that carried out anoxygenic photosynthesis. The phylogeny of carotenogenic organisms is evaluated to describe groups of organisms which could serve as sources of carotenoids. Terrestrial plants, green algae, and red algae acquired stable endosymbionts (probably cyanobacteria) and have a predictable complement of carotenoids compared to prokaryotes, other algae, and higher fungi which have a more diverse array of pigments. Although carotenoids are not synthesized by animals, they are becoming known for their important role in protecting against damage by singlet oxygen and preventing chronic diseases in humans. The growth of aquaculture during the past decade as well as the biological roles of carotenoids in human disease will increase the demand for carotenoids. Microbial synthesis offers a promising method for production of carotenoids.
Collapse
Affiliation(s)
- E A Johnson
- University of Wisconsin, Department of Food Microbiology, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
36
|
Comstock LE, Maneval D, Panigrahi P, Joseph A, Levine MM, Kaper JB, Morris JG, Johnson JA. The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect Immun 1995; 63:317-23. [PMID: 7528734 PMCID: PMC172994 DOI: 10.1128/iai.63.1.317-323.1995] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vibrio cholerae O139 Bengal, although closely related to V. cholerae O1 El Tor, produces a polysaccharide capsule and has a distinct O antigen. We have identified a chromosomal region of at least 11 kb, as defined by three TnphoA mutations, that is required for the expression of both polysaccharides. Electron microscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis show that these TnphoA mutants have lost the abilities both to express capsule and to produce lipopolysaccharide beyond the core oligosaccharide. Reactivity with O139 typing serum and resistance to serum are also lost in the mutants. DNA probes for this region do not hybridize with O1 V. cholerae but do react with other vibrios, implying that the region was recently acquired.
Collapse
Affiliation(s)
- L E Comstock
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station 77843-3258
| |
Collapse
|
38
|
Kostrzynska M, Betts JD, Austin JW, Trust TJ. Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol 1991; 173:937-46. [PMID: 1704004 PMCID: PMC207209 DOI: 10.1128/jb.173.3.937-946.1991] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Flagellar filaments were isolated from Helicobacter pylori by shearing, and flagellar proteins were further purified by a variety of techniques, including CsCl density gradient ultracentrifugation, pH 2.0 acid disassociation-neutral pH reassociation, and differential ultracentrifugation followed by molecular sieving with a Sephacryl S-500 column or Mono Q anion-exchange column, and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to an Immobilon membrane. Two flagellin species of pI 5.2 and with apparent subunit molecular weights (Mrs) of 57,000 and 56,000 were obtained. N-terminal amino acid analysis showed that the two H. pylori flagellin species were related to each other and shared sequence similarity with the N-terminal amino acid sequence of Campylobacter coli, Bacillus, Salmonella, and Caulobacter flagellins. Analysis of the amino acid composition of the predominant 56,000-Mr flagellin species isolated from two strains showed that it was comparable to the flagellins of other species. The minor 57,000-Mr flagellin species contained a higher content of proline. Immunoelectron microscopic studies with polyclonal monospecific H. pylori antiflagellin antiserum and monoclonal antibody (MAb) 72c showed that the two different-Mr flagellin species were located in different regions of the assembled flagellar filament. The minor 57,000-Mr species was located proximal to the hook, and the major 56,000-Mr flagellin composed the remainder of the filament. Western immunoblot analysis with polyclonal rabbit antisera raised against H. pylori or Campylobacter jejuni flagellins and MAb 72c showed that the 56,000-Mr flagellin carried sequences antigenetically cross-reactive with the 57,000-Mr H. pylori flagellin and the flagellins of Campylobacter species. This antigenic cross-reactivity did not extend to the flagellins of other gram-negative bacteria. The 56,000-Mr flagellin also carried H. pylori-specific sequences recognized by two additional MAbs. The epitopes for these MAbs were not surface exposed on the assembled inner flagellar filament of H. pylori but were readily detected by immunodot blot assay of sodium dodecyl sulfate-lysed cells of H. pylori, suggesting that this serological test could be a useful addition to those currently employed in the rapid identification of this important pathogen.
Collapse
Affiliation(s)
- M Kostrzynska
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
39
|
Jones CJ, Aizawa S. The bacterial flagellum and flagellar motor: structure, assembly and function. Adv Microb Physiol 1991; 32:109-72. [PMID: 1882727 DOI: 10.1016/s0065-2911(08)60007-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bacterial flagellum is a complex multicomponent structure which serves as the propulsive organelle for many species of bacteria. Rotation of the helical flagellar filament, driven by a proton-powered motor embedded in the cell wall, enables the flagellum to function as a screw propeller. It seems likely that almost all of the genes required for flagellar formation and function have been identified. Continuing analysis of the portions of the genome containing these genes may reveal the existence of a few more. Transcription of the flagellar genes is under the control of the products of a single operon, and so these genes constitute a regulon. Other controls, both transcriptional and post-transcriptional, have been identified. Many of these genes have been sequenced, and the information obtained will aid in the design of experiments to clarify the various regulatory mechanisms of the flagellar regulon. The flagellum is composed of several substructures. The long helical filament is connected via the flexible hook to the complex basal body which is located in the cell wall. The filament is composed of many copies of a single protein, and can adopt a number of distinct helical forms. Structural analyses of the filament are adding to our understanding of this dynamic polymer. The component proteins of the hook and filament have all been identified. Continuing studies on the structure of the basal body have revealed the presence of several hitherto unknown basal-body proteins, whose identities and functions have yet to be elucidated. The proteins essential for energizing the motor, the Mot and switch proteins, are thought to exist as multisubunit complexes peripheral to the basal body. These complexes have yet to be identified biochemically or morphologically. Not surprisingly, flagellar assembly is a complex process, occurring in several stages. Assembly occurs in a proximal-to-distal fashion; the basal body is assembled before the hook, and the hook before the filament. This pattern is also maintained within the filament, with monomers added at the distal end of the polymer; the same is presumably true of the other axial components. An exception to this general pattern is assembly of the Mot proteins into the motor, which appears to be possible at any time during flagellar assembly. With the identification of the genes encoding many of the flagellar proteins, the roles of these proteins in assembly is understood, but the function of a number of gene products in flagellar formation remains unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C J Jones
- ERATO, Research Development Corporation of Japan, Ibaraki
| | | |
Collapse
|
40
|
Richardson K, Kaper JB, Levine MM. Human immune response to Vibrio cholerae O1 whole cells and isolated outer membrane antigens. Infect Immun 1989; 57:495-501. [PMID: 2912896 PMCID: PMC313123 DOI: 10.1128/iai.57.2.495-501.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The serum immunoglobulin G (IgG) and mucosal secretory IgA (SIgA) response of human volunteers challenged with Vibrio cholerae O1 was analyzed for reactivity to V. cholerae O1 antigens by the immunoblot technique. Components of both in vitro- and in vivo (rabbit ligated ileal loop)-grown V. cholerae O1 were separated by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. Postchallenge serum IgG reacted uniquely with 15 antigens and with greater intensity than did prechallenge serum with at least 16 antigens. Serum IgG and SIgA reacted with antigens present in preparations from the homologous challenge strain of V. cholerae as well as antigens from strains of heterologous biotype or serotype. These heterologous antigens may represent antigens responsible for protection to rechallenge with a heterologous strain of V. cholerae. All the antigens detected by postchallenge jejunal fluid SIgA had an apparent molecular size of less than 25 kilodaltons. Serum IgG and jejunal fluid SIgA also reacted with antigens unique to in vivo-grown cells and several antigens in outer membrane preparations, suggesting that studies of protective immunity and V. cholerae O1 pathogenesis should include examination of both in vitro- and in vivo-grown V. cholerae O1 cellular antigens.
Collapse
Affiliation(s)
- K Richardson
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201
| | | | | |
Collapse
|
41
|
Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37697-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Fuerst JA, Perry JW. Demonstration of lipopolysaccharide on sheathed flagella of Vibrio cholerae O:1 by protein A-gold immunoelectron microscopy. J Bacteriol 1988; 170:1488-94. [PMID: 2450866 PMCID: PMC210992 DOI: 10.1128/jb.170.4.1488-1494.1988] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Monoclonal antibodies with group and type specificity for lipopolysaccharide antigens were used in combination with protein A-colloidal gold labeling and transmission electron microscopy to demonstrate the presence of lipopolysaccharide antigens on both the sheathed flagellum and the cell surface of Inaba and Ogawa strains of Vibrio cholerae O:1. Labeling was associated with the sheath of the flagellum rather than the core, and flagellar cores were not labeled. Flagellum and cell shared a common set of lipopolysaccharide antigens characteristic of the strain serotype.
Collapse
Affiliation(s)
- J A Fuerst
- Department of Microbiology, University of Queensland, St. Lucia, Australia
| | | |
Collapse
|
43
|
Thomashow LS, Rittenberg SC. Waveform analysis and structure of flagella and basal complexes from Bdellovibrio bacteriovorus 109J. J Bacteriol 1985; 163:1038-46. [PMID: 4030690 PMCID: PMC219235 DOI: 10.1128/jb.163.3.1038-1046.1985] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The structure of sheathed flagella from Bdellovibrio bacteriovorus was investigated. The first three periods of these flagella were characterized by progressively smaller wavelengths and amplitudes in periods more distal to the cell. The damped appearance was due to a single nonrandom transition between two helical structures within each filament. The intersection of the two helices, one of which was a threefold-reduced miniature of the other, occurred at a fixed distance along the filament and resulted in a shift in the flagellar axis. Flagella increased in length as the cells aged and assumed a constant miniature waveform at their distal ends. The core filament was the principal determinant of flagellar morphology. It was composed of 28,000- and 29,500-dalton polypeptides. The 28,000-dalton subunits were located in the cell-proximal segment of the filament, and the 29,500-dalton subunits were located in the more distal region. The heteromorphous appearance of bdellovibrio flagella arose from the sequential assembly of these subunits. The basal complex associated with core filaments was examined because of its potential involvement in sheath formation. Bdellovibrio basal organelles were generally similar to those of other gram-negative species, but appeared to lack a disk analogous to the outer membrane-associated L ring which is a normal component of gram-negative basal complexes.
Collapse
|