1
|
Pham VD, Gänzle MG. Fructilactobacillus frigidiflavus sp. nov., a pigmented species, and Levilactobacillus lettrarii sp. nov., a propionate-producing species isolated from sourdough. Int J Syst Evol Microbiol 2025; 75:006726. [PMID: 40111394 PMCID: PMC11925284 DOI: 10.1099/ijsem.0.006726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The sourdough isolates FUA3702, FUA3912 and FUA3913T, as well as FUA3695T and FUA3914, could not be identified to known species of the Lactobacillaceae. The 16S rRNA gene sequences of FUA3702 and FUA3913, FUA3695 and FUA3914 were>99% identical to Fructilactobacillus sanfranciscensis and Levilactobacillus lanxiensis, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strain FUA3913T when compared to Fl. sanfranciscensis were 83.67 and 26.60%, respectively. In addition, strains FUA3702, FUA3912 and FUA3913T produce different levels of a yellow C30 carotenoid, but pigmentation has not been described in Fl. sanfranciscensis. The ANI and dDDH values of FUA3695T and FUA3914 when compared to Lv. langxiensis were 95.22 and 61.20%, respectively. In addition, FUA3695 and FUA3914 convert lactate to 1,2-propanediol and further to propionate. The conversion of lactate to propionate by a single strain has not been documented for any of the species in the Lactobacillaceae. Based on the genomic and physiological characteristics, we proposed the novel species Fructilactobacillus frigidiflavus sp. nov. FUA3913T (=DSM 118650T=LMG 33758T) and Levilactobacillus lettrarii sp. nov. FUA3695T (=DSM 118651T=LMG 33759T).
Collapse
Affiliation(s)
- Vi D. Pham
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Szmolka A, Lancz ZS, Rapcsák F, Egyed L. Emergence and Comparative Genome Analysis of Salmonella Ohio Strains from Brown Rats, Poultry, and Swine in Hungary. Int J Mol Sci 2024; 25:8820. [PMID: 39201506 PMCID: PMC11354295 DOI: 10.3390/ijms25168820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Rats are particularly important from an epidemiological point of view, because they are regarded as reservoirs for diverse zoonotic pathogens including enteric bacteria. This study is the first to report the emergence of Salmonella serovar Ohio in brown rats (Rattus norvegicus) and food-producing animals in Hungary. We first reveal the genomic diversity of the strains and their phylogenomic relationships in the context of the international collection of S. Ohio genomes. This pathogen was detected in 4.3% (4/92) of rats, captured from multiple sites in Hungary. A whole-genome-based genotype comparison of S. Ohio, Infantis, Enteritidis, and Typhimurium strains showed that 76.4% (117/153) of the virulence and antimicrobial resistance genes were conserved among these serovars, and none of the genes were specific to S. Ohio. All S. Ohio strains lacked virulence and resistance plasmids. The cgMLST phylogenomic comparison highlighted a close genetic relationship between rat and poultry strains of S. Ohio from Hungary. These strains clustered together with the international S. Ohio genomes from aquatic environments. Overall, this study contributes to our understanding of the epidemiology of Salmonella spp. in brown rats and highlights the importance of monitoring to minimize the public health risk of rodent populations. However, further research is needed to understand the route of infection and evolution of this serovar.
Collapse
Affiliation(s)
- Ama Szmolka
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary (L.E.)
| | | | - Fanni Rapcsák
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary (L.E.)
| | - László Egyed
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary (L.E.)
| |
Collapse
|
3
|
Leleiwi I, Kokkinias K, Kim Y, Baniasad M, Shaffer M, Sabag-Daigle A, Daly RA, Flynn RM, Wysocki VH, Ahmer BMM, Borton MA, Wrighton KC. Gut microbiome carbon and sulfur metabolisms support Salmonella during pathogen infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575907. [PMID: 38293109 PMCID: PMC10827160 DOI: 10.1101/2024.01.16.575907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and an ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting the microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, here we performed multi-omics approaches on fecal microbial communities from untreated and Salmonella -infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. This data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella- induced inflammation significantly reduced the diversity of transcriptionally active members in the gut microbiome, yet increased gene expression was detected for 7 members, with Luxibacter and Ligilactobacillus being the most active. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst transcriptionally active members. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that supports Salmonella respiration. Advancement of pathobiome understanding beyond inferences from prior amplicon-based approaches can hold promise for infection mitigation, with the active community outlined here offering intriguing organismal and metabolic therapeutic targets.
Collapse
|
4
|
Leleiwi I, Kokkinias K, Kim Y, Baniasad M, Shaffer M, Sabag-Daigle A, Daly RA, Flynn RM, Wysocki VH, Ahmer BMM, Borton MA, Wrighton KC. Gut microbiota carbon and sulfur metabolisms support Salmonella infections. THE ISME JOURNAL 2024; 18:wrae187. [PMID: 39404095 PMCID: PMC11482014 DOI: 10.1093/ismejo/wrae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/15/2024] [Indexed: 10/18/2024]
Abstract
Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, we performed multi-omics on fecal microbial communities from untreated and Salmonella-infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. These data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella-induced inflammation significantly reduced the diversity of genomes that recruited transcripts in the gut microbiome, yet increased transcript mapping was observed for seven members, among which Luxibacter and Ligilactobacillus transcript read recruitment was most prevalent. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst members with detected transcript recruitment. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that support Salmonella respiration. This research advances physiological microbiome insights beyond prior amplicon-based approaches, with the transcriptionally active organismal and metabolic pathways outlined here offering intriguing intervention targets in the Salmonella-infected intestine.
Collapse
Affiliation(s)
- Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Katherine Kokkinias
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Microbiology, Immunology, and Pathology, Microbiology Building, 1682 Campus Delivery Colorado State University, Fort Collins, CO 80523, United States
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
| | - Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Anice Sabag-Daigle
- Department of Microbial Infection and immunity, The Ohio State University, 776 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210-2210, United States
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Rory M Flynn
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, 280 Biomedical Research Tower 460 W. 12th Ave. Columbus, OH 43210, United States
| | - Brian M M Ahmer
- Department of Microbial Infection and immunity, The Ohio State University, 776 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210-2210, United States
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Kelly C Wrighton
- Department of Cell and Molecular Biology, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Microbiology, Immunology, and Pathology, Microbiology Building, 1682 Campus Delivery Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
5
|
Zangara MT, Darwish L, Coombes BK. Characterizing the Pathogenic Potential of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. EcoSal Plus 2023; 11:eesp00182022. [PMID: 37220071 PMCID: PMC10729932 DOI: 10.1128/ecosalplus.esp-0018-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 01/28/2024]
Abstract
The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of Enterobacteriaceae species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new Escherichia coli subtype called adherent-invasive E. coli (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original in vitro phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lena Darwish
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB. J Bacteriol 2022; 204:e0057621. [PMID: 35575582 DOI: 10.1128/jb.00576-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here, we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is critical for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy, we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and system-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis. IMPORTANCE MCPs are unique, genetically encoded organelles used by many bacteria to survive in resource-limited environments. There is significant interest in understanding the biogenesis and function of these organelles, both as potential antibiotic targets in enteric pathogens and also as useful tools for overcoming metabolic engineering bottlenecks. However, the mechanism by which these organelles are formed natively is still not completely understood. Here, we provide evidence of a potential mechanism in S. enterica by which a single protein, PduB, links the MCP shell and metabolic core. This finding is critical for those seeking to disrupt MCPs during pathogenic infections or for those seeking to harness MCPs as nanobioreactors in industrial settings.
Collapse
|
7
|
Wilson JW. Manipulating microcompartment operons to study mechanism and function. Curr Opin Microbiol 2021; 60:66-72. [PMID: 33611144 DOI: 10.1016/j.mib.2021.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
The gene systems that encode functional bacterial microcompartments (BMCs) are typically comprised of between 10-23 genes, often in a contiguous operon. BMC genes can be studied as whole native operons or as subsets of genes that form structures for specific applications. Recent examples of such studies highlight the flexible modular nature of BMC operons/genes and the options that exist to harness their functions via manipulation at the DNA level. This work also demonstrates the transfer and functional expression of BMC operons/genes across bacterial species. Recombineering, DNA synthesis technology, and advanced cloning techniques have all been applied in creative ways to study the nature of BMC mechanism and function.
Collapse
Affiliation(s)
- James W Wilson
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
| |
Collapse
|
8
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
9
|
Llama‐Palacios A, Potupa O, Sánchez MC, Figuero E, Herrera D, Sanz M. Proteomic analysis ofFusobacterium nucleatumgrowth in biofilm versus planktonic state. Mol Oral Microbiol 2020; 35:168-180. [DOI: 10.1111/omi.12303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Arancha Llama‐Palacios
- Oral Microbiology Laboratory at the Faculty of Odontology University Complutense Madrid Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| | - Oksana Potupa
- Oral Microbiology Laboratory at the Faculty of Odontology University Complutense Madrid Spain
| | - María C. Sánchez
- Oral Microbiology Laboratory at the Faculty of Odontology University Complutense Madrid Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| |
Collapse
|
10
|
Audette GF, Yaseen A, Bragagnolo N, Bawa R. Protein Nanotubes: From Bionanotech towards Medical Applications. Biomedicines 2019; 7:biomedicines7020046. [PMID: 31234611 PMCID: PMC6630890 DOI: 10.3390/biomedicines7020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. This review aims to highlight some of the current research employing protein nanotubes (PNTs) for the development of molecular imaging biosensors, conducting wires for microelectronics, fuel cells, and drug delivery systems. The translational potential of PNTs is highlighted.
Collapse
Affiliation(s)
- Gerald F Audette
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Ayat Yaseen
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Nicholas Bragagnolo
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Raj Bawa
- Patent Law Department, Bawa Biotech LLC, Ashburn, VA 20147, USA.
- Guanine Inc., Rensselaer, NY 12144-3463, USA.
- Pharmaceutical Research Institute of Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| |
Collapse
|
11
|
Host-associated niche metabolism controls enteric infection through fine-tuning the regulation of type 3 secretion. Nat Commun 2018; 9:4187. [PMID: 30305622 PMCID: PMC6180029 DOI: 10.1038/s41467-018-06701-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Niche-adaptation of a bacterial pathogen hinges on the ability to recognize the complexity of signals from the environment and integrate that information with the regulation of genes critical for infection. Here we report the transcriptome of the attaching and effacing pathogen Citrobacter rodentium during infection of its natural murine host. Pathogen gene expression in vivo was heavily biased towards the virulence factor repertoire and was found to be co-ordinated uniquely in response to the host. Concordantly, we identified the host-specific induction of a metabolic pathway that overlapped with the regulation of virulence. The essential type 3 secretion system and an associated suite of distinct effectors were found to be modulated co-ordinately through a unique mechanism involving metabolism of microbiota-derived 1,2-propanediol, which dictated the ability to colonize the host effectively. This study provides novel insights into how host-specific metabolic adaptation acts as a cue to fine-tune virulence. Infection of mice with Citrobacter rodentium is a common model of infection with attaching-and-effacing pathogens. Here, Connolly et al. analyse the transcriptome of C. rodentium during mouse infection, showing host-induced coordinated upregulation of virulence factors and 1,2-propanediol metabolism.
Collapse
|
12
|
Uddin I, Frank S, Warren MJ, Pickersgill RW. A Generic Self-Assembly Process in Microcompartments and Synthetic Protein Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704020. [PMID: 29573556 DOI: 10.1002/smll.201704020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Bacterial microcompartments enclose a biochemical pathway and reactive intermediate within a protein envelope formed by the shell proteins. Herein, the orientation of the propanediol-utilization (Pdu) microcompartment shell protein PduA in bacterial microcompartments and in synthetic nanotubes, and the orientation of PduB in synthetic nanotubes are revealed. When produced individually, PduA hexamers and PduB trimers, tessellate to form flat sheets in the crystal, or they can self-assemble to form synthetic protein nanotubes in solution. Modelling the orientation of PduA in the 20 nm nanotube so as to preserve the shape complementarity and key interactions seen in the crystal structure suggests that the concave surface of the PduA hexamer faces out. This orientation is confirmed experimentally in synthetic nanotubes and in the bacterial microcompartment produced in vivo. The PduB nanotubes described here have a larger diameter, 63 nm, with the concave surface of the trimer again facing out. The conserved concave surface out characteristic of these nano-structures reveals a generic assembly process that causes the interface between adjacent subunits to bend in a common direction that optimizes shape complementarity and minimizes steric clashes. This understanding underpins engineering strategies for the biotechnological application of protein nanotubes.
Collapse
Affiliation(s)
- Ismail Uddin
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4AA, UK
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent, CT2 7NJ, UK
| | - Richard W Pickersgill
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4AA, UK
| |
Collapse
|
13
|
Staib L, Fuchs TM. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front Microbiol 2015; 6:1116. [PMID: 26528264 PMCID: PMC4600919 DOI: 10.3389/fmicb.2015.01116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
After ingestion, Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters a densely populated, competitive environment in the gastrointestinal tract. To escape nutrient limitation caused by the intestinal microbiota, this pathogen has acquired specific metabolic traits to use compounds that are not metabolized by the commensal bacteria. For example, the utilization of 1,2-propanediol (1,2-PD), a product of the fermentation of L-fucose, which is present in foods of herbal origin and is also a terminal sugar of gut mucins. Under anaerobic conditions and in the presence of tetrathionate, 1,2-PD can serve as an energy source for S. Typhimurium. Comprehensive database analysis revealed that the 1,2-PD and fucose utilization operons are present in all S. enterica serovars sequenced thus far. The operon, consisting of 21 genes, is expressed as a single polycistronic mRNA. As demonstrated here, 1,2-PD was formed and further used when S. Typhimurium strain 14028 was grown with L-fucose, and the gene fucA encoding L-fuculose-1-phosphate aldolase was required for this growth. Using promoter fusions, we monitored the expression of the propanediol utilization operon that was induced at very low concentrations of 1,2-PD and was inhibited by the presence of D-glucose.
Collapse
Affiliation(s)
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung Institute for Food and Health, Technische Universität MünchenFreising, Germany
| |
Collapse
|
14
|
Mazza R, Mazzette R, McAuliffe O, Jordan K, Fox EM. Differential Gene Expression of Three Gene Targets among Persistent and Nonpersistent Listeria monocytogenes Strains in the Presence or Absence of Benzethonium Chloride. J Food Prot 2015; 78:1569-73. [PMID: 26219372 DOI: 10.4315/0362-028x.jfp-14-510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Persistence of Listeria monocytogenes strains in food processing environments remains relatively common but is difficult to control. Understanding the basis for such persistence represents an important step in the potential control or eradication of this pathogen from these environments. In this study, reverse transcription PCR was used to determine the relative and absolute expression of selected gene targets (pocR, eutJ, and qacH) among five persistent and four presumed nonpersistent L. monocytogenes strains. The quantification of these genes as markers for the persistent phenotype and the effect of benzethonium chloride (BZT) on their expression was investigated. Although no markers correlated with the ability of strains to persist in food processing facilities were found, expression of pocR was upregulated in three of the five persistent strains, in contrast to the four presumed nonpersistent strains, which showed down-regulation of this gene. These results provide further knowledge of the differential expression of genes of persistent and presumed nonpersistent strains of L. monocytogenes grown in the presence or absence of BZT and identifies upregulation of pocR as a potential response of persistent strains of L. monocytogenes to exposure to BZT.
Collapse
Affiliation(s)
| | | | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.
| | - Edward M Fox
- CSIRO Food and Nutrition, Werribee, Victoria, Australia
| |
Collapse
|
15
|
Identification of Candidate Adherent-Invasive E. coli Signature Transcripts by Genomic/Transcriptomic Analysis. PLoS One 2015; 10:e0130902. [PMID: 26125937 PMCID: PMC4509574 DOI: 10.1371/journal.pone.0130902] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/25/2015] [Indexed: 12/30/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are detected more frequently within mucosal lesions of patients with Crohn’s disease (CD). The AIEC phenotype consists of adherence and invasion of intestinal epithelial cells and survival within macrophages of these bacteria in vitro. Our aim was to identify candidate transcripts that distinguish AIEC from non-invasive E. coli (NIEC) strains and might be useful for rapid and accurate identification of AIEC by culture-independent technology. We performed comparative RNA-Sequence (RNASeq) analysis using AIEC strain LF82 and NIEC strain HS during exponential and stationary growth. Differential expression analysis of coding sequences (CDS) homologous to both strains demonstrated 224 and 241 genes with increased and decreased expression, respectively, in LF82 relative to HS. Transition metal transport and siderophore metabolism related pathway genes were up-regulated, while glycogen metabolic and oxidation-reduction related pathway genes were down-regulated, in LF82. Chemotaxis related transcripts were up-regulated in LF82 during the exponential phase, but flagellum-dependent motility pathway genes were down-regulated in LF82 during the stationary phase. CDS that mapped only to the LF82 genome accounted for 747 genes. We applied an in silico subtractive genomics approach to identify CDS specific to AIEC by incorporating the genomes of 10 other previously phenotyped NIEC. From this analysis, 166 CDS mapped to the LF82 genome and lacked homology to any of the 11 human NIEC strains. We compared these CDS across 13 AIEC, but none were homologous in each. Four LF82 gene loci belonging to clustered regularly interspaced short palindromic repeats region (CRISPR)—CRISPR-associated (Cas) genes were identified in 4 to 6 AIEC and absent from all non-pathogenic bacteria. As previously reported, AIEC strains were enriched for pdu operon genes. One CDS, encoding an excisionase, was shared by 9 AIEC strains. Reverse transcription quantitative polymerase chain reaction assays for 6 genes were conducted on fecal and ileal RNA samples from 22 inflammatory bowel disease (IBD), and 32 patients without IBD (non-IBD). The expression of Cas loci was detected in a higher proportion of CD than non-IBD fecal and ileal RNA samples (p <0.05). These results support a comparative genomic/transcriptomic approach towards identifying candidate AIEC signature transcripts.
Collapse
|
16
|
Matthews TD, Schmieder R, Silva GGZ, Busch J, Cassman N, Dutilh BE, Green D, Matlock B, Heffernan B, Olsen GJ, Farris Hanna L, Schifferli DM, Maloy S, Dinsdale EA, Edwards RA. Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum. PLoS One 2015; 10:e0126883. [PMID: 26039056 PMCID: PMC4454671 DOI: 10.1371/journal.pone.0126883] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.
Collapse
Affiliation(s)
- T. David Matthews
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Robert Schmieder
- Department of Computer Science, San Diego State University, San Diego, California, 92182, United States of America
| | - Genivaldo G. Z. Silva
- Computational Science Research Center, San Diego State University, San Diego, California, 92182, United States of America
| | - Julia Busch
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Noriko Cassman
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dawn Green
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Matlock
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Heffernan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gary J. Olsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Leigh Farris Hanna
- Molecular Sciences Department, University of Tennessee Health Sciences Center, 858 Madison Ave, Memphis, Tennessee, United States of America
| | - Dieter M. Schifferli
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce St, Philadelphia, Pennsylvania, 19104, United States of America
| | - Stanley Maloy
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Elizabeth A. Dinsdale
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Robert A. Edwards
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
- Department of Computer Science, San Diego State University, San Diego, California, 92182, United States of America
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, Illinois, 60349, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
|
18
|
Meng DC, Wang Y, Wu LP, Shen R, Chen JC, Wu Q, Chen GQ. Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab Eng 2015; 29:189-195. [PMID: 25842374 DOI: 10.1016/j.ymben.2015.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/05/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022]
Abstract
Poly(3-hydroxypropionate) (P3HP) is the strongest family member of microbial polyhydroxyalkanoates (PHA) synthesized by bacteria grown on 1,3-propandiol or glycerol. In this study synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate (3HB) and 3-hydroxypropionate (3HP) were assembled respectively to allow their synthesis from glucose, a more abundant carbon source. Recombinant Escherichia coli was constructed harboring the P3HP synthetic pathway consisting of heterologous genes encoding glycerol-3-phosphate dehydrogenase (gpd1), glycerol-3-P phosphatase (gpp2) from Saccharomyces cerevisiae that catalyzes formation of glycerol from glucose, and genes coding glycerol dehydratase (dhaB123) with its reactivating factors (gdrAB) from Klebsiella pneumoniae that transfer glycerol to 3-hydroxypropionaldehyde, as well as gene encoding propionaldehyde dehydrogenase (pdup) from Salmonella typhimurium which converts 3-hydroxypropionaldehyde to 3-hydroxypropionyl-CoA, together with the gene of PHA synthase (phaC) from Ralstonia eutropha which polymerizes 3-hydroxypropionyl-CoA into P3HP. When phaA and phaB from Ralstonia eutropha respectively encoding β-ketothiolase and acetoacetate reductase, were introduced into the above P3HP producing recombinant E. coli, copolymers poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) were synthesized from glucose as a sole carbon source. The above E. coli recombinants grown on glucose LB medium successfully produced 5g/L cell dry weight containing 18% P3HP and 42% P(3HB-co-84mol% 3HP), respectively, in 48h shake flask studies.
Collapse
Affiliation(s)
- De-Chuan Meng
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin-Ping Wu
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Rui Shen
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation. Inflamm Bowel Dis 2014; 20:1919-32. [PMID: 25230163 DOI: 10.1097/mib.0000000000000183] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Perturbations of the intestinal microbiome, termed dysbiosis, are linked to intestinal inflammation. Isolation of adherent-invasive Escherichia coli (AIEC) from intestines of patients with Crohn's disease (CD), dogs with granulomatous colitis, and mice with acute ileitis suggests these bacteria share pathoadaptive virulence factors that promote inflammation. METHODS To identify genes associated with AIEC, we sequenced the genomes of phylogenetically diverse AIEC strains isolated from people with CD (4), dogs with granulomatous colitis (2), and mice with ileitis (2) and 1 non-AIEC strain from CD ileum and compared them with 38 genome sequences of E. coli and Shigella. We then determined the prevalence of AIEC-associated genes in 49 E. coli strains from patients with CD and controls and correlated genotype with invasion of intestinal epithelial cells, persistence within macrophages, AIEC pathotype, and growth in standardized conditions. RESULTS Genes encoding propanediol utilization (pdu operon) and iron acquisition (yersiniabactin, chu operon) were overrepresented in AIEC relative to nonpathogenic E. coli. PduC (propanediol dehydratase) was enriched in CD-derived AIEC, correlated with increased cellular invasion, and persistence in vitro and was increasingly expressed in fucose-containing media. Growth of AIEC required iron, and the presence of chuA (heme acquisition) correlated with persistence in macrophages. CD-associated AIEC with lpfA 154 (long polar fimbriae) demonstrated increased invasion of epithelial cells and translocation across M cells. CONCLUSIONS Our findings provide novel insights into the genetic basis of the AIEC pathotype, supporting the concept that AIEC are equipped to exploit and promote intestinal inflammation and reveal potential targets for intervention against AIEC and inflammation-associated dysbiosis.
Collapse
|
20
|
Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 2014. [PMID: 25184561 DOI: 10.1128/mmbr.00009–14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sharmistha Sinha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sunny Chun
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Todd O Yeates
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, USA Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
21
|
Pang A, Frank S, Brown I, Warren MJ, Pickersgill RW. Structural insights into higher order assembly and function of the bacterial microcompartment protein PduA. J Biol Chem 2014; 289:22377-84. [PMID: 24873823 PMCID: PMC4139245 DOI: 10.1074/jbc.m114.569285] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacterial microcompartments are large proteinaceous assemblies that are found in the cytoplasm of some bacteria. These structures consist of proteins constituting a shell that houses a number of enzymes involved in specific metabolic processes. The 1,2-propanediol-utilizing microcompartment is assembled from seven different types of shell proteins, one of which is PduA. It is one of the more abundant components of the shell and intriguingly can form nanotubule-like structures when expressed on its own in the cytoplasm of Escherichia coli. We propose a model that accounts for the size and appearance of these PduA structures and underpin our model using a combinatorial approach. Making strategic mutations at Lys-26, Val-51, and Arg-79, we targeted residues predicted to be important for PduA assembly. We present the effect of the amino acid residue substitution on the phenotype of the PduA higher order assemblies (transmission electron microscopy) and the crystal structure of the K26D mutant with one glycerol molecule bound to the central pore. Our results support the view that the hexamer-hexamer interactions seen in PduA crystals persist in the cytoplasmic structures and reveal the profound influence of the two key amino acids, Lys-26 and Arg-79, on tiling, not only in the crystal lattice but also in the bacterial cytoplasm. Understanding and controlling PduA assemblies is valuable in order to inform manipulation for synthetic biology and biotechnological applications.
Collapse
Affiliation(s)
- Allan Pang
- From the School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom and
| | - Stefanie Frank
- the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Ian Brown
- the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Martin J Warren
- the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Richard W Pickersgill
- From the School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom and
| |
Collapse
|
22
|
Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ. Engineering the diversity of polyesters. Curr Opin Biotechnol 2014; 29:24-33. [PMID: 24632193 DOI: 10.1016/j.copbio.2014.02.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 11/26/2022]
Abstract
Many bacteria have been found to produce various polyhydroxyalkanoates (PHA) biopolyesters. In many cases, it is not easy to control the structures of PHA including homopolymers, random copolymers and block copolymers as well as ratios of monomers in the copolymers. It has become possible to engineer bacteria for controllable synthesis of PHA with the desirable structures by creating new PHA synthesis pathways. Remarkably, the weakening of β-oxidation cycle in Pseudomonas putida and Pseudomonas entomophila led to controllable synthesis of all kinds of PHA structures including monomer ratios in random and/or block copolymers when fatty acids are used as PHA precursors. Introduction of functional groups into PHA polymer chains in predefined proportions has become a reality provided fatty acids containing the functional groups are taken up by the bacteria for PHA synthesis. This allows the formation of functional PHA for further grafting. The PHA diversity is further widened by the endless possibility of controllable homopolymerization, random copolymerization, block copolymerization and grafting on functional PHA site chains.
Collapse
Affiliation(s)
- De-Chuan Meng
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Shen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Yao
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Sabet-Azad R, Linares-Pastén JA, Torkelson L, Sardari RRR, Hatti-Kaul R. Coenzyme A-acylating propionaldehyde dehydrogenase (PduP) from Lactobacillus reuteri: kinetic characterization and molecular modeling. Enzyme Microb Technol 2013; 53:235-42. [PMID: 23931688 DOI: 10.1016/j.enzmictec.2013.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
3-Hydroxypropionic acid (3-HP), an important C3 chemical for a bio-based industry, is natively produced by Lactobacillus reuteri from glycerol. Conversion of glycerol occurs via the intermediate 3-hydroxypropionaldehyde (3-HPA), followed by an ATP-producing pathway initiated by the CoA-acylating propionaldehyde dehydrogenase (PduP). The pduP gene of L. reuteri was cloned and expressed in Escherichia coli and the recombinant enzyme was purified to homogeneity for characterization of its activity and properties. Kinetic studies with propionaldehyde as substrate showed a maximum specific activity of 28.9 U/mg, which is 80-fold higher than that reported previously. Maximum activity of 18 U/mg was obtained at 3-HPA concentration of 7 mM, above which substrate inhibition was observed. Substrate inhibition was also seen with coenzyme A at a concentration above 0.5mM and with NADP(+) above 9 mM. A structure of PduP is proposed based on homology modeling. In silico docking of the co-factors coenzyme A and NAD(+), respectively, showed a common binding site consisting of amino acids Thr145, Ile275, Cys277 and Ser417, which through site-directed mutagenesis to alanine and kinetic studies, were confirmed as essential for the catalytic activity of PduP.
Collapse
Affiliation(s)
- Ramin Sabet-Azad
- Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Wang Q, Yang P, Liu C, Xue Y, Xian M, Zhao G. Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli. BIORESOURCE TECHNOLOGY 2013; 131:548-551. [PMID: 23414748 DOI: 10.1016/j.biortech.2013.01.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 06/01/2023]
Abstract
Poly(3-hydroxypropionate) (P3HP) is a biodegradable and biocompatible thermoplastic. In this study, a P3HP biosynthetic pathway from glycerol was constructed in recombinant Escherichia coli. The genes for glycerol dehydratase and its reactivating factor (dhaB123 and gdrAB, from Klebsiella pneumoniae), propionaldehyde dehydrogenase (pduP, from Salmonella typhimurium), and polyhydroxyalkanoate synthase (phaC1, from Cupriavidus necator) were cloned and expressed in E. coli. After culture condition optimization, the final engineered strain accumulated 10.1 g/L P3HP (46.4% of the cell dry weight) using glycerol and glucose as cosubstrates in an aerobic fed-batch fermentation. To date, this is the highest P3HP production without addition of any expensive precursor.
Collapse
Affiliation(s)
- Qi Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | | | | | | | | |
Collapse
|
25
|
Goudeau DM, Parker CT, Zhou Y, Sela S, Kroupitski Y, Brandl MT. The salmonella transcriptome in lettuce and cilantro soft rot reveals a niche overlap with the animal host intestine. Appl Environ Microbiol 2013; 79:250-62. [PMID: 23104408 PMCID: PMC3536078 DOI: 10.1128/aem.02290-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/20/2012] [Indexed: 11/20/2022] Open
Abstract
Fresh vegetables have been recurrently associated with salmonellosis outbreaks, and Salmonella contamination of retail produce has been correlated positively with the presence of soft rot disease. We observed that population sizes of Salmonella enterica serovar Typhimurium SL1344 increased 56-fold when inoculated alone onto cilantro leaves, versus 2,884-fold when coinoculated with Dickeya dadantii, a prevalent pathogen that macerates plant tissue. A similar trend in S. enterica populations was observed for soft-rotted lettuce leaves. Transcriptome analysis of S. enterica cells that colonized D. dadantii-infected lettuce and cilantro leaves revealed a clear shift toward anaerobic metabolism and catabolism of substrates that are available due to the degradation of plant cells by the pectinolytic pathogen. Twenty-nine percent of the genes that were upregulated in cilantro macerates were also previously observed to have increased expression levels in the chicken intestine. Furthermore, multiple genes induced in soft rot lesions are also involved in the colonization of mouse, pig, and bovine models of host infection. Among those genes, the operons for ethanolamine and propanediol utilization as well as for the synthesis of cobalamin, a cofactor in these pathways, were the most highly upregulated genes in lettuce and cilantro lesions. In S. Typhimurium strain LT2, population sizes of mutants deficient in propanediol utilization or cobalamin synthesis were 10- and 3-fold lower, respectively, than those of the wild-type strain in macerated cilantro (P < 0.0002); in strain SL1344, such mutants behaved similarly to the parental strain. Anaerobic conditions and the utilization of nutrients in macerated plant tissue that are also present in the animal intestine indicate a niche overlap that may explain the high level of adaptation of S. enterica to soft rot lesions, a common postharvest plant disease.
Collapse
Affiliation(s)
- Danielle M. Goudeau
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Yaguang Zhou
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Shlomo Sela
- Microbial Food Safety Research Unit, Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, ARO, The Volcani Center, Beth-Dagan, Israel
| | - Yulia Kroupitski
- Microbial Food Safety Research Unit, Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, ARO, The Volcani Center, Beth-Dagan, Israel
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| |
Collapse
|
26
|
Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc Natl Acad Sci U S A 2012; 109:14995-5000. [PMID: 22927404 DOI: 10.1073/pnas.1207516109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial microcompartments (MCPs) are a widespread family of proteinaceous organelles that consist of metabolic enzymes encapsulated within a protein shell. For MCPs to function specific enzymes must be encapsulated. We recently reported that a short N-terminal targeting sequence of propionaldehyde dehydrogenase (PduP) is necessary and sufficient for the packaging of enzymes into a MCP that functions in 1,2-propanediol (1,2-PD) utilization (Pdu) by Salmonella enterica. Here we show that encapsulation is mediated by binding of the PduP targeting sequence to a short C-terminal helix of the PduA shell protein. In vitro studies indicated binding between PduP and PduA (and PduJ) but not other MCP shell proteins. Alanine scanning mutagenesis determined that the key residues involved in binding are E7, I10, and L14 of PduP and H81, V84, and L88 of PduA. In vivo targeting studies indicated that the binding between the N terminus of PduP and the C terminus of PduA is critical for encapsulation of PduP within the Pdu MCP. Structural models suggest that the N terminus of PduP and C terminus of PduA both form helical structures that bind one another via the key residues identified by mutagenesis. Cumulatively, these results show that the N-terminal targeting sequence of PduP promotes its encapsulation by binding to MCP shell proteins. This is a unique report determining the mechanism by which a MCP targeting sequence functions. We propose that specific interactions between the termini of shell proteins and lumen enzymes have general importance for guiding the assembly and the higher level organization of bacterial MCPs.
Collapse
|
27
|
|
28
|
Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal 2011; 2012:185942. [PMID: 22550465 PMCID: PMC3322544 DOI: 10.1100/2012/185942] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/20/2011] [Indexed: 11/21/2022] Open
Abstract
Phytoplasmas are specialised bacteria that are obligate parasites of plant phloem tissue and insects. These bacteria have resisted all attempts of cell-free cultivation. Genome research is of particular importance to analyse the genetic endowment of such bacteria. Here we review the gene content of the four completely sequenced ‘Candidatus Phytoplasma' genomes that include those of ‘Ca. P. asteris' strains OY-M and AY-WB, ‘Ca. P. australiense,' and ‘Ca. P. mali'. These genomes are characterized by chromosome condensation resulting in sizes below 900 kb and a G + C content of less than 28%. Evolutionary adaption of the phytoplasmas to nutrient-rich environments resulted in losses of genetic modules and increased host dependency highlighted by the transport systems and limited metabolic repertoire. On the other hand, duplication and integration events enlarged the chromosomes and contribute to genome instability. Present differences in the content of membrane and secreted proteins reflect the host adaptation in the phytoplasma strains. General differences are obvious between different phylogenetic subgroups. ‘Ca. P. mali' is separated from the other strains by its deviating chromosome organization, the genetic repertoire for recombination and excision repair of nucleotides or the loss of the complete energy-yielding part of the glycolysis. Apart from these differences, comparative analysis exemplified that all four phytoplasmas are likely to encode an alternative pathway to generate pyruvate and ATP.
Collapse
Affiliation(s)
- Michael Kube
- Department of Crop and Animal Sciences, Humboldt-University of Berlin, Lentzeallee 55/57, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
29
|
Stevens MJA, Vollenweider S, Meile L, Lacroix C. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Microb Cell Fact 2011; 10:61. [PMID: 21812997 PMCID: PMC3180264 DOI: 10.1186/1475-2859-10-61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 08/03/2011] [Indexed: 12/16/2022] Open
Abstract
Background Lactobacillus reuteri metabolizes glycerol to 3-hydroxypropionaldehyde (3-HPA) and further to 1,3-propanediol (1,3-PDO), the latter step catalysed by a propanediol dehydrogenase (PDH). The last step in this pathway regenerates NAD+ and enables therefore the energetically more favourable production of acetate over ethanol during growth on glucose. Results A search throughout the genome of L. reuteri DSM 20016 revealed two putative PDHs encoded by ORFs lr_0030 and lr_1734. ORF lr_1734 is situated in the pdu operon encoding the glycerol conversion machinery and therefore likely involved in 1,3-PDO formation. ORF lr_0030 has not been associated with PDH-activity so far. To elucidate the role of these two PDHs, gene deletion mutant strains were constructed. Growth behaviour on glucose was comparable between the wild type and both mutant strains. However, on glucose + glycerol, the exponential growth rate of Δlr_0030 was lower compared to the wild type and the lr_1734 mutant. Furthermore, glycerol addition resulted in decreased ethanol production in the wild type and Δlr_1734, but not in Δlr_0030. PDH activity measurements using 3-HPA as a substrate revealed lower activity of Δlr_0030 extracts from exponential growing cells compared to wild type and Δlr_1734 extracts. During biotechnological 3-HPA production using non-growing cells, the ratio 3-HPA to 1,3-PDO was approximately 7 in the wild type and Δlr_0030, whereas this ratio was 12.5 in the mutant Δlr_1734. Conclusion The enzyme encoded by lr_0030 plays a pivotal role in 3-HPA conversion in exponential growing L. reuteri cells. The enzyme encoded by lr_1734 is active during 3-HPA production by non-growing cells and this enzyme is a useful target to enhance 3-HPA production and minimize formation of the by-product 1,3-PDO.
Collapse
Affiliation(s)
- Marc J A Stevens
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, Zurich, Switzerland
| | | | | | | |
Collapse
|
30
|
Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Appl Environ Microbiol 2010; 77:281-90. [PMID: 21037291 DOI: 10.1128/aem.01403-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Only three pathogenic bacterial species, Salmonella enterica, Clostridium perfringens, and Listeria monocytogenes, are able to utilize both ethanolamine and 1,2-propanediol as a sole carbon source. Degradation of these substrates, abundant in food and the gut, depends on cobalamin, which is synthesized de novo only under anaerobic conditions. Although the eut, pdu, and cob-cbi gene clusters comprise 40 kb, the conditions under which they confer a selection advantage on these food-borne pathogens remain largely unknown. Here we used the luciferase reporter system to determine the response of the Salmonella enterica serovar Typhimurium promoters P(eutS), P(pocR), P(pduF), and P(pduA) to a set of carbon sources, to egg yolk, to whole milk, and to milk protein or fat fractions. Depending on the supplements, specific inductions up to 3 orders of magnitude were observed for P(eutS) and P(pduA), which drive the expression of most eut and pdu genes. To correlate these significant expression data with growth properties, nonpolar deletions of pocR, regulating the pdu and cob-cbi genes, and of eutR, involved in eut gene activation, were constructed in S. Typhimurium strain 14028. During exponential growth of the mutants 14028ΔpocR and 14028ΔeutR, 2- to 3-fold-reduced proliferation in milk and egg yolk was observed. Using the Caenorhabditis elegans infection model, we could also demonstrate that the proliferation of S. Typhimurium in the nematode is supported by an active ethanolamine degradation pathway. Taking these findings together, this study quantifies the differential expression of eut and pdu genes under distinct conditions and provides experimental evidence that the ethanolamine utilization pathway allows salmonellae to occupy specific metabolic niches within food environments and within their host organisms.
Collapse
|
31
|
Chowdhury SM, Shi L, Yoon H, Ansong C, Rommereim LM, Norbeck AD, Auberry KJ, Moore RJ, Adkins JN, Heffron F, Smith RD. A method for investigating protein-protein interactions related to salmonella typhimurium pathogenesis. J Proteome Res 2009; 8:1504-14. [PMID: 19206470 PMCID: PMC2720628 DOI: 10.1021/pr800865d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella enterica serovar Typhimurium (Salmonella Typhimurium). This method includes (i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques, (ii) in vivo cross-linking with formaldehyde, (iii) tandem affinity purification of bait proteins under fully denaturing conditions, and (iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions and permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of noncross-linked proteins to bait proteins. Two different negative controls were employed to eliminate the possibility of identifying background and nonspecific proteins as interacting partners, especially those caused by nonspecific binding to the stationary phase used for protein purification. In an initial demonstration of this approach, we tagged three Salmonella proteinsHimD, PduB and PhoPwith known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified for each bait protein, including the known binding partners such as HimA for HimD, as well as unexpected binding partners. Our results suggest that novel protein-protein interactions identified may be critical to pathogenesis by Salmonella.
Collapse
Affiliation(s)
| | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA-99352
| | - Hyunjin Yoon
- Oregon Health and Science University, Portland, OR-97239
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA-99352
| | | | | | | | | | | | - Fred Heffron
- Oregon Health and Science University, Portland, OR-97239
| | | |
Collapse
|
32
|
Sonck KAJ, Kint G, Schoofs G, Vander Wauven C, Vanderleyden J, De Keersmaecker SCJ. The proteome of Salmonella Typhimurium grown under in vivo-mimicking conditions. Proteomics 2009; 9:565-79. [DOI: 10.1002/pmic.200700476] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Exogenous or L-rhamnose-derived 1,2-propanediol is metabolized via a pduD-dependent pathway in Listeria innocua. Appl Environ Microbiol 2008; 74:7073-9. [PMID: 18805996 DOI: 10.1128/aem.01074-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,2-Propanediol (1,2-PD) added exogenously to cultures or produced endogenously from l-rhamnose is metabolized to n-propanol and propionate in Listeria innocua Lin11. The pduD gene, which encodes a diol dehydratase ss subunit homolog, is required for 1,2-PD catabolism. pduD and 16 other genes within the pduA-to-pduF region of a large gene cluster are induced in medium containing 1,2-PD.
Collapse
|
34
|
Hejnova J, Pages D, Rusniok C, Glaser P, Sebo P, Buchrieser C. Specific regions of genome plasticity and genetic diversity of the commensal Escherichia coli A0 34/86. Int J Med Microbiol 2006; 296:541-6. [PMID: 17049458 DOI: 10.1016/j.ijmm.2006.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 06/06/2006] [Accepted: 06/06/2006] [Indexed: 11/30/2022] Open
Abstract
Escherichia coli A0 34/86 (O83:K24:H31) is a commensal strain that has been used for prophylactic and therapeutic colonization of the intestine of newborn infants. To identify traits specific for E. coli A0 34/86, we used a minimal tiling set of 148 BAC clones of A0 34/86 genomic DNA, to construct restriction-digested BAC arrays. Hybridization with genomic DNA from four E. coli strains (CFT073; O157:H7; K12 and Nissle 1917) allowed selection of two BAC clones that were sequenced to identify A0 34/86-specific regions. Genes for the yersiniabactin siderophore system, several proteins homologous to Salmonella enterica serovar Typhimurium vitamin B12 synthesis proteins, as well as genes necessary for the degradation of propanediol, the pix fimbriae determinant and genes coding for a putative phosphoglycerate transport system present also on pathogenicity island V of E. coli strain 536 were all identified in E. coli A0 34/86. This comparative analysis underlines the important genome heterogeneity between E. coli strains.
Collapse
Affiliation(s)
- Jana Hejnova
- Unité de Génomique des Microorganismes Pathogènes, Institut Pasteur, 28 Rue du Dr. Roux, F-75724 Paris, France
| | | | | | | | | | | |
Collapse
|
35
|
Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, Altier C. Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 2003; 48:1633-45. [PMID: 12791144 DOI: 10.1046/j.1365-2958.2003.03535.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CsrA is a regulator of invasion genes in Salmonella enterica serovar Typhimurium. To investigate the wider role of CsrA in gene regulation, we compared the expression of Salmonella genes in a csrA mutant with those in the wild type using a DNA microarray. As expected, we found that expression of Salmonella pathogenicity island 1 (SPI-1) invasion genes was greatly reduced in the csrA mutant, as were genes outside the island that encode proteins translocated into eukaryotic cells by the SPI-1 type III secretion apparatus. The flagellar synthesis operons, flg and fli, were also poorly expressed, and the csrA mutant was aflagellate and non-motile. The genes of two metabolic pathways likely to be used by Salmonella in the intestinal milieu also showed reduced expression: the pdu operon for utilization of 1,2-propanediol and the eut operon for ethanolamine catabolism. Reduced expression of reporter fusions in these two operons confirmed the microarray data. Moreover, csrA was found to regulate co-ordinately the cob operon for synthesis of vitamin B12, required for the metabolism of either 1,2-propanediol or ethanolamine. Additionally, the csrA mutant poorly expressed the genes of the mal operon, required for transport and use of maltose and maltodextrins, and had reduced amounts of maltoporin, normally a dominant protein of the outer membrane. These results show that csrA controls a number of gene classes in addition to those required for invasion, some of them unique to Salmonella, and suggests a co-ordinated bacterial response to conditions that exist at the site of bacterial invasion, the intestinal tract of a host animal.
Collapse
Affiliation(s)
- Sara D Lawhon
- College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh 27606, USA
| | | | | | | | | | | |
Collapse
|
36
|
Roessner CA, Huang KX, Warren MJ, Raux E, Scott AI. Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). MICROBIOLOGY (READING, ENGLAND) 2002; 148:1845-1853. [PMID: 12055304 DOI: 10.1099/00221287-148-6-1845] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A search for genes encoding enzymes involved in cobalamin (vitamin B12) production in the commercially important organism Propionibacterium freudenreichii (P. shermanii) has resulted in the isolation of an additional 14 genes encoding enzymes responsible for 17 steps of the anaerobic B12 pathway in this organism. All of the genes believed to be necessary for the biosynthesis of adenosylcobinamide from uroporphyrinogen III have now been isolated except two (cbiA and an as yet unidentified gene encoding cobalt reductase). Most of the genes are contained in two divergent operons, one of which, in turn, is closely linked to the operon encoding the B12-dependent enzyme methylmalonyl-CoA mutase. The close linkage of the three genes encoding the subunits of transcarboxylase to the hemYHBXRL gene cluster is reported. The functions of the P. freudenreichii B12 pathway genes are discussed, and a mechanism for the regulation of cobalamin and propionic acid production by oxygen in this organism is proposed.
Collapse
Affiliation(s)
- Charles A Roessner
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| | - Ke-Xue Huang
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| | - Martin J Warren
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK2
| | - Evelyne Raux
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK2
| | - A Ian Scott
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| |
Collapse
|
37
|
Price-Carter M, Tingey J, Bobik TA, Roth JR. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 2001; 183:2463-75. [PMID: 11274105 PMCID: PMC95162 DOI: 10.1128/jb.183.8.2463-2475.2001] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage.
Collapse
Affiliation(s)
- M Price-Carter
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
38
|
Johnson CL, Pechonick E, Park SD, Havemann GD, Leal NA, Bobik TA. Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol 2001; 183:1577-84. [PMID: 11160088 PMCID: PMC95042 DOI: 10.1128/jb.183.5.1577-1584.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica degrades 1,2-propanediol by a pathway dependent on coenzyme B12 (adenosylcobalamin [AdoCb1]). Previous studies showed that 1,2-propanediol utilization (pdu) genes include those for the conversion of inactive cobalamins, such as vitamin B12, to AdoCbl. However, the specific genes involved were not identified. Here we show that the pduO gene encodes a protein with ATP:cob(I)alamin adenosyltransferase activity. The main role of this protein is apparently the conversion of inactive cobalamins to AdoCbl for 1,2-propanediol degradation. Genetic tests showed that the function of the pduO gene was partially replaced by the cobA gene (a known ATP:corrinoid adenosyltransferase) but that optimal growth of S. enterica on 1,2-propanediol required a functional pduO gene. Growth studies showed that cobA pduO double mutants were unable to grow on 1,2-propanediol minimal medium supplemented with vitamin B(12) but were capable of growth on similar medium supplemented with AdoCbl. The pduO gene was cloned into a T7 expression vector. The PduO protein was overexpressed, partially purified, and, using an improved assay procedure, shown to have cob(I)alamin adenosyltransferase activity. Analysis of the genomic context of genes encoding PduO and related proteins indicated that particular adenosyltransferases tend to be specialized for particular AdoCbl-dependent enzymes or for the de novo synthesis of AdoCbl. Such analyses also indicated that PduO is a bifunctional enzyme. The possibility that genes of unknown function proximal to adenosyltransferase homologues represent previously unidentified AdoCbl-dependent enzymes is discussed.
Collapse
Affiliation(s)
- C L Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 1999; 181:5967-75. [PMID: 10498708 PMCID: PMC103623 DOI: 10.1128/jb.181.19.5967-5975.1999] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 contains genes needed for the coenzyme B(12)-dependent catabolism of 1,2-propanediol. Here the completed DNA sequence of the pdu operon is presented. Analyses of previously unpublished pdu DNA sequence substantiated previous studies indicating that the pdu operon was acquired by horizontal gene transfer and allowed the identification of 16 hypothetical genes. This brings the total number of genes in the pdu operon to 21 and the total number of genes at the pdu locus to 23. Of these, six encode proteins of unknown function and are not closely related to sequences of known function found in GenBank. Two encode proteins involved in transport and regulation. Six probably encode enzymes needed for the pathway of 1,2-propanediol degradation. Two encode proteins related to those used for the reactivation of adenosylcobalamin (AdoCbl)-dependent diol dehydratase. Five encode proteins related to those involved in the formation of polyhedral organelles known as carboxysomes, and two encode proteins that appear distantly related to those involved in carboxysome formation. In addition, it is shown that S. enterica forms polyhedral bodies that are involved in the degradation of 1,2-propanediol. Polyhedra are formed during either aerobic or anaerobic growth on propanediol, but not during growth on other carbon sources. Genetic tests demonstrate that genes of the pdu operon are required for polyhedral body formation, and immunoelectron microscopy shows that AdoCbl-dependent diol dehydratase is associated with these polyhedra. This is the first evidence for a B(12)-dependent enzyme associated with a polyhedral body. It is proposed that the polyhedra consist of AdoCbl-dependent diol dehydratase (and perhaps other proteins) encased within a protein shell that is related to the shell of carboxysomes. The specific function of these unusual polyhedral bodies was not determined, but some possibilities are discussed.
Collapse
Affiliation(s)
- T A Bobik
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
41
|
Kofoid E, Rappleye C, Stojiljkovic I, Roth J. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 1999; 181:5317-29. [PMID: 10464203 PMCID: PMC94038 DOI: 10.1128/jb.181.17.5317-5329.1999] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eut operon of Salmonella typhimurium encodes proteins involved in the cobalamin-dependent degradation of ethanolamine. Previous genetic analysis revealed six eut genes that are needed for aerobic use of ethanolamine; one (eutR), encodes a positive regulator which mediates induction of the operon by vitamin B12 plus ethanolamine. The DNA sequence of the eut operon included 17 genes, suggesting a more complex pathway than that revealed genetically. We have correlated an open reading frame in the sequence with each of the previously identified genes. Nonpolar insertion and deletion mutations made with the Tn10-derived transposable element T-POP showed that at least 10 of the 11 previously undetected eut genes have no Eut phenotype under the conditions tested. Of the dispensable eut genes, five encode apparent homologues of proteins that serve (in other organisms) as shell proteins of the carboxysome. This bacterial organelle, found in photosynthetic and sulfur-oxidizing bacteria, may contribute to CO2 fixation by concentrating CO2 and excluding oxygen. The presence of these homologues in the eut operon of Salmonella suggests that CO2 fixation may be a feature of ethanolamine catabolism in Salmonella.
Collapse
Affiliation(s)
- E Kofoid
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
42
|
Tsang AW, Horswill AR, Escalante-Semerena JC. Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J Bacteriol 1998; 180:6511-8. [PMID: 9851993 PMCID: PMC107752 DOI: 10.1128/jb.180.24.6511-6518.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the prpBCDE operon of Salmonella typhimurium LT2 required (i) the synthesis of propionyl-coenzyme A (CoA) by the PrpE protein or the acetyl-CoA-synthesizing systems of the cell and (ii) the synthesis of 2-methylcitrate from propionyl-CoA and oxaloacetate by the PrpC protein. We propose that either 2-methylcitrate or a derivative of it signals the presence of propionate in the environment. This as yet unidentified signal is thought to serve as a coregulator of the activity of PrpR, the member of the sigma-54 family of transcriptional activators needed for activation of prpBCDE transcription. The CobB protein was also required for expression of the prpBCDE operon, but its role is less well understood. Expression of the prpBCDE operon in cobB mutants was restored to wild-type levels upon induction of the propanediol utilization (pdu) operon by 1,2-propanediol. This effect did not require catabolism of 1,2-propanediol, suggesting that a Pdu protein, not a catabolite of 1,2-propanediol, was responsible for the observed effect. We explain the existence of these redundant functions in terms of metabolic pathway integration. In an environment with 1,2-propanediol as the sole carbon and energy source, expression of the prpBCDE operon is ensured by the Pdu protein that has CobB-like activity. Since synthesis of this Pdu protein depends on the availability of 1,2-propanediol, the cell solves the problem faced in an environment devoid of 1,2-propanediol where propionate is the sole carbon and energy source by having cobB located outside of the pdu operon and its expression independent of 1,2-propanediol. At present, it is unclear how the CobB and Pdu proteins affect prpBCDE expression.
Collapse
Affiliation(s)
- A W Tsang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706-1567, USA
| | | | | |
Collapse
|
43
|
Mori K, Tobimatsu T, Hara T, Toraya T. Characterization, sequencing, and expression of the genes encoding a reactivating factor for glycerol-inactivated adenosylcobalamin-dependent diol dehydratase. J Biol Chem 1997; 272:32034-41. [PMID: 9405397 DOI: 10.1074/jbc.272.51.32034] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diol dehydratase undergoes suicide inactivation by glycerol during catalysis involving irreversible cleavage of the Co-C bond of adenosylcobalamin. In permeabilized Klebsiella oxytoca and Klebsiella pneumoniae cells, the glycerol-inactivated holoenzyme or the enzyme-cyanocobalamin complex is rapidly activated by the exchange of the inactivated coenzyme or cyanocobalamin for free adenosylcobalamin in the presence of ATP and Mg2+ (Honda, S., Toraya, T., and Fukui, S. (1980) J. Bacteriol. 143, 1458-1465; Ushio, K., Honda, S., Toraya, T., and Fukui, S. (1982) J. Nutr. Sci. Vitaminol. 28, 225-236). Permeabilized Escherichia coli cells co-expressing the diol dehydratase genes with two open reading frames in the 3'-flanking region were capable of reactivating glycerol-inactivated diol dehydratase as well as activating the enzyme-cyanocobalamin complex in situ in the presence of free adenosylcobalamin, ATP, and Mg2+. These open reading frames, designated as ddrA and ddrB genes, were identified as the genes of a putative reactivating factor for inactivated diol dehydratase. The genes encoded polypeptides consisting of 610 and 125 amino acid residues with predicted molecular weights of 64,266 and 13,620, respectively. Co-expression of the open reading frame in the 5'-flanking region was stimulatory but not obligatory for conferring the reactivating activity upon E. coli. Thus, the product of this gene was considered not an essential component of the reactivating factor.
Collapse
Affiliation(s)
- K Mori
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-naka, Okayama 700, Japan
| | | | | | | |
Collapse
|
44
|
Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR. Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. J Bacteriol 1997; 179:6633-9. [PMID: 9352910 PMCID: PMC179589 DOI: 10.1128/jb.179.21.6633-6639.1997] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The propanediol utilization (pdu) operon of Salmonella typhimurium encodes proteins required for the catabolism of propanediol, including a coenzyme B12-dependent propanediol dehydratase. A clone that expresses propanediol dehydratase activity was isolated from a Salmonella genomic library. DNA sequence analysis showed that the clone included part of the pduF gene, the pduABCDE genes, and a long partial open reading frame (ORF1). The clone included 3.9 kbp of pdu DNA which had not been previously sequenced. Complementation and expression studies with subclones constructed via PCR showed that three genes (pduCDE) are necessary and sufficient for propanediol dehydratase activity. The function of ORF1 was not determined. Analyses showed that the S. typhimurium propanediol dehydratase was related to coenzyme B12-dependent glycerol dehydratases from Citrobacter freundii and Klebsiella pneumoniae. Unexpectedly, the S. typhimurium propanediol dehydratase was found to be 98% identical in amino acid sequence to the Klebsiella oxytoca propanediol dehydratase; this is a much higher identity than expected, given the relationship between these organisms. DNA sequence analyses also supported previous studies indicating that the pdu operon was inherited along with the adjacent cobalamin biosynthesis operon by a single horizontal gene transfer.
Collapse
Affiliation(s)
- T A Bobik
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA.
| | | | | | | | | |
Collapse
|
45
|
Ailion M, Roth JR. Repression of the cob operon of Salmonella typhimurium by adenosylcobalamin is influenced by mutations in the pdu operon. J Bacteriol 1997; 179:6084-91. [PMID: 9324256 PMCID: PMC179512 DOI: 10.1128/jb.179.19.6084-6091.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cob operon encodes functions needed for the biosynthesis of adenosylcobalamin (Ado-B12). Propanediol induces transcription of the cob operon and the neighboring pdu operon, which encodes proteins for the B12-dependent degradation of propanediol. Expression of the cob (but not the pdu) operon is repressed by exogenous cyanocobalamin. Evidence is provided that cob operon repression is signaled by internally generated Ado-B12, which can be formed either by the CobA adenosyltransferase or by an alternative adenosyltransferase (AdoT) that we infer is encoded within the pdu operon. Repression is also affected by mutations (AdoB) in the pdu operon that map upstream of the inferred pdu adenosyltransferase gene. Such mutations allow cobalamin to mediate repression at concentrations 100-fold lower than those needed in the wild type. It is proposed that these mutations eliminate a component of the propanediol dehydratase enzyme complex (PduCDE) and that this complex competes with the cob regulatory mechanism for a limited supply of Ado-B12.
Collapse
Affiliation(s)
- M Ailion
- Department of Biology, University of Utah, Salt Lake City, 84112, USA
| | | |
Collapse
|