1
|
Rønne ME, Dybdahl Andersen C, Teze D, Petersen AB, Fredslund F, Stender EGP, Chaberski EK, Holck J, Aachmann FL, Welner DH, Svensson B. Action and cooperation in alginate degradation by three enzymes from the human gut bacterium Bacteroides eggerthii DSM 20697. J Biol Chem 2024; 300:107596. [PMID: 39032652 PMCID: PMC11381880 DOI: 10.1016/j.jbc.2024.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Alginate is a polysaccharide consumed by humans in edible seaweed and different foods where it is applied as a texturizing hydrocolloid or in encapsulations of drugs and probiotics. While gut bacteria are found to utilize and ferment alginate to health-beneficial short-chain fatty acids, knowledge on the details of the molecular reactions is sparse. Alginates are composed of mannuronic acid (M) and its C-5 epimer guluronic acid (G). An alginate-related polysaccharide utilization locus (PUL) has been identified in the gut bacterium Bacteroides eggerthii DSM 20697. The PUL encodes two polysaccharide lyases (PLs) from the PL6 (BePL6) and PL17 (BePL17) families as well as a KdgF-like metalloprotein (BeKdgF) known to catalyze ring-opening of 4,5-unsaturated monouronates yielding 4-deoxy-l-erythro-5-hexoseulose uronate (DEH). B. eggerthii DSM 20697 does not grow on alginate, but readily proliferates with a lag phase of a few hours in the presence of an endo-acting alginate lyase A1-I from the marine bacterium Sphingomonas sp. A1. The B. eggerthii lyases are both exo-acting and while BePL6 is strictly G-block specific, BePL17 prefers M-blocks. BeKdgF retained 10-27% activity in the presence of 0.1-1 mM EDTA. X-ray crystallography was used to investigate the three-dimensional structure of BeKdgF, based on which a catalytic mechanism was proposed to involve Asp102, acting as acid/base having pKa of 5.9 as determined by NMR pH titration. BePL6 and BePL17 cooperate in alginate degradation with BeKdgF linearizing producing 4,5-unsaturated monouronates. Their efficiency of alginate degradation was much enhanced by the addition of the A1-I alginate lyase.
Collapse
Affiliation(s)
- Mette E Rønne
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Dybdahl Andersen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - David Teze
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Agnes Beenfeldt Petersen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Folmer Fredslund
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil G P Stender
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Evan Kirk Chaberski
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ditte Hededam Welner
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Rønne ME, Tandrup T, Madsen M, Hunt CJ, Myers PN, Moll JM, Holck J, Brix S, Strube ML, Aachmann FL, Wilkens C, Svensson B. Three alginate lyases provide a new gut Bacteroides ovatus isolate with the ability to grow on alginate. Appl Environ Microbiol 2023; 89:e0118523. [PMID: 37791757 PMCID: PMC10617595 DOI: 10.1128/aem.01185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 10/05/2023] Open
Abstract
Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel β-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.
Collapse
Affiliation(s)
- Mette E. Rønne
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tobias Tandrup
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikkel Madsen
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cameron J. Hunt
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pernille N. Myers
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Janne M. Moll
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael L. Strube
- Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Finn L. Aachmann
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Biotechnology and Biomedicine, Structural Enzymology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Substrate size-dependent conformational changes of bacterial pectin-binding protein crucial for chemotaxis and assimilation. Sci Rep 2022; 12:12653. [PMID: 35879323 PMCID: PMC9314435 DOI: 10.1038/s41598-022-16540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Gram-negative Sphingomonas sp. strain A1 exhibits positive chemotaxis toward acidic polysaccharide pectin. SPH1118 has been identified as a pectin-binding protein involved in both pectin chemotaxis and assimilation. Here we show tertiary structures of SPH1118 with six different conformations as determined by X-ray crystallography. SPH1118 consisted of two domains with a large cleft between the domains and substrates bound to positively charged and aromatic residues in the cleft through hydrogen bond and stacking interactions. Substrate-free SPH1118 adopted three different conformations in the open form. On the other hand, the two domains were closed in substrate-bound form and the domain closure ratio was changed in response to the substrate size, suggesting that the conformational change upon binding to the substrate triggered the expression of pectin chemotaxis and assimilation. This study first clarified that the solute-binding protein with dual functions recognized the substrate through flexible conformational changes in response to the substrate size.
Collapse
|
4
|
Sphingopyxis lutea sp. nov., a novel moderately halotolerant bacterium isolated from pebbles. Arch Microbiol 2022; 204:406. [PMID: 35723741 DOI: 10.1007/s00203-022-03042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
A Gram-stain-negative, aerobic, motile and rod-shaped bacterium was isolated from pebbles collected from the coast near Taejongdae Park, Busan, South Korea. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DHUNG17T belonged to the family Sphingomonadaceae, and it showed the highest sequence similarity found with Sphingopyxis panaciterrulae DCY34T (98.4%) and Sphingopyxis granuli TFAT (98.4%). The strain grew at 10-45 °C, at pH 5.0-9.0 and with 0-12% (w/v) NaCl. Chemotaxonomic data revealed that strain DHUNG17T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone. The predominant fatty acids were C16: 0, C18: 0, summed feature 4 (C16: 1 ω7c and/or C15: 0 iso 2-OH) and summed feature 8 (C19: 1 ω6c and/or unknown 18.864). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and a sphingoglycolipid and spermidine were detected as the major polyamines. Strain DHUNG17T was able to produce carotenoid-type pigment. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values with its closest neighbors were 79.3-81.7% and 22.0-24.4%, respectively. The genome of strain DHUNG17T is 3,129,415 bp long with a DNA G + C content of 64.7% and encodes 2,951 predicted proteins, 3 rRNAs and 47 tRNAs. Gene related to transportation of polycyclic aromatic hydrocarbons (PAHs) was found in the genome of strain DHUNG17T. According to the genotypic, phylogenetic and chemotaxonomic data, strain DHUNG17T represents a novel species within the genus Sphingopyxis, for which the name Sphingopyxis lutea sp. nov. is proposed. The type strain is DHUNG17T (= KACC 21746T = NBRC 114643T).
Collapse
|
5
|
Kawai S, Hashimoto W. 4-Deoxy-l- erythro-5-hexoseulose Uronate (DEH) and DEH Reductase: Key Molecule and Enzyme for the Metabolism and Utilization of Alginate. Molecules 2022; 27:338. [PMID: 35056653 PMCID: PMC8778563 DOI: 10.3390/molecules27020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
4-Deoxy-l-erythro-5-hexoseulose uronate (DEH), DEH reductase, and alginate lyase have key roles in the metabolism of alginate, a promising carbon source in brown macroalgae for biorefinery. In contrast to the widely reviewed alginate lyase, DEH and DEH reductase have not been previously reviewed. Here, we summarize the current understanding of DEH and DEH reductase, with emphasis on (i) the non-enzymatic and enzymatic formation and structure of DEH and its reactivity to specific amino groups, (ii) the molecular identification, classification, function, and structure, as well as the structural determinants for coenzyme specificity of DEH reductase, and (iii) the significance of DEH for biorefinery. Improved understanding of this and related fields should lead to the practical utilization of alginate for biorefinery.
Collapse
Affiliation(s)
- Shigeyuki Kawai
- Laboratory for Environmental Biotechnology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Kyoto, Japan
| |
Collapse
|
6
|
MURATA K, KAWAI S, HASHIMOTO W. Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:529-552. [PMID: 36504195 PMCID: PMC9751261 DOI: 10.2183/pjab.98.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.
Collapse
Affiliation(s)
| | - Shigeyuki KAWAI
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Wataru HASHIMOTO
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
7
|
Okumura K, Maruyama Y, Takase R, Mikami B, Murata K, Hashimoto W. The role of calcium binding to the EF-hand-like motif in bacterial solute-binding protein for alginate import. Biosci Biotechnol Biochem 2021; 85:2410-2419. [PMID: 34610097 DOI: 10.1093/bbb/zbab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022]
Abstract
Gram-negative Sphingomonas sp. A1 incorporates acidic polysaccharide alginate into the cytoplasm via a cell-surface alginate-binding protein (AlgQ2)-dependent ATP-binding cassette transporter (AlgM1M2SS). We investigated the function of calcium bound to the EF-hand-like motif in AlgQ2 by introducing mutations at the calcium-binding site. The X-ray crystallography of the AlgQ2 mutant (D179A/E180A) demonstrated the absence of calcium binding and significant disorder of the EF-hand-like motif. Distinct from the wild-type AlgQ2, the mutant was quite unstable at temperature of strain A1 growth, although unsaturated alginate oligosaccharides stabilized the mutant by formation of substrate/protein complex. In the assay of ATPase and alginate transport by AlgM1M2SS reconstructed in the liposome, the wild-type and mutant AlgQ2 induced AlgM1M2SS ATPase activity in the presence of unsaturated alginate tetrasaccharide. These results indicate that the calcium bound to EF-hand-like motif stabilizes the substrate-unbound AlgQ2 but is not required for the complexation of substrate-bound AlgQ2 and AlgM1M2SS.
Collapse
Affiliation(s)
- Kenji Okumura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Yukie Maruyama
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Bunzo Mikami
- Laboratory of Metabolic Sciences of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Kousaku Murata
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
8
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
9
|
Murakami R, Hashikura N, Yoshida K, Xiao JZ, Odamaki T. Growth-promoting effect of alginate on Faecalibacterium prausnitzii through cross-feeding with Bacteroides. Food Res Int 2021; 144:110326. [PMID: 34053530 DOI: 10.1016/j.foodres.2021.110326] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Faecalibacterium prausnitzii is a commensal gut bacterium that is thought to provide protection against inflammatory diseases. However, this bacterium is extremely oxygen sensitive, which limits its industrial application as a probiotic. The use of prebiotics to increase the abundance of this bacterium in the gut is an alternative strategy to achieve its possible health-promoting effect. We evaluated nine substances as candidate prebiotics for F. prausnitzii using a pH-controlled single-batch fermenter as a human gut microbiota model. Of them, alginate markedly increased the relative abundance of F. prausnitzii, as determined by the significant increase in the number of 16S rRNA sequences corresponding to this bacterial taxon in the fecal fermentation samples detected by real-time PCR. However, F. prausnitzii strains were incapable of utilizing alginate in monoculture, implying that an interaction with another gut microbe was required. There was a positive correlation between the relative abundance of F. prausnitzii and that of Bacteroides when cultured in medium containing alginate as the sole carbon source, indicative of cross-feeding between these bacteria. Interestingly, the ratio of acetic acid, a known substrate for F. prausnitzii, produced by Bacteroides was significantly higher in the alginate-containing medium than in media containing other prebiotic candidates. Bacterially degraded alginate oligosaccharides (AOS) remained in the medium after Bacteroides monoculture, and an isolate of F. prausnitzii was able to utilize a portion of them. Genomic sequencing revealed that the strain that consumed the AOS contained an ATP-binding cassette transporter, an alginate lyase, and AlgQ1/2 homologs encoding solute-binding proteins. Furthermore, in real-time PCR analyses, AlgQ1/2 homologs were detected in fecal samples collected from 309 of 452 (68.4%) Japanese subjects. Thus, the products of alginate assimilation by Bacteroides may promote the growth of F. prausnitzii.
Collapse
Affiliation(s)
- Ryuta Murakami
- Next Generation Science Institute, Research & Development Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan.
| | - Nanami Hashikura
- Next Generation Science Institute, Research & Development Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Keisuke Yoshida
- Next Generation Science Institute, Research & Development Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Research & Development Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Research & Development Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| |
Collapse
|
10
|
Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci Rep 2020; 10:3977. [PMID: 32132546 PMCID: PMC7055323 DOI: 10.1038/s41598-020-60274-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
As opposed to typical bacteria exhibiting chemotaxis towards low-molecular-weight substances, such as amino acids and mono/oligosaccharides, gram-negative Sphingomonas sp. strain A1 shows chemotaxis towards alginate and pectin polysaccharides. To identify the mechanism of chemotaxis towards macromolecules, a genomic fragment was isolated from the wild-type strain A1 through complementation with the mutant strain A1-M5 lacking chemotaxis towards pectin. This fragment contained several genes including sph1118. Through whole-genome sequencing of strain A1-M5, sph1118 was found to harbour a mutation. In fact, sph1118 disruptant lost chemotaxis towards pectin, and this deficiency was recovered by complementation with wild-type sph1118. Interestingly, the gene disruptant also exhibited decreased pectin assimilation. Furthermore, the gene product SPH1118 was expressed in recombinant E. coli cells, purified and characterised. Differential scanning fluorimetry and UV absorption spectroscopy revealed that SPH1118 specifically binds to pectin with a dissociation constant of 8.5 μM. Using binding assay and primary structure analysis, SPH1118 was predicted to be a periplasmic pectin-binding protein associated with an ATP-binding cassette transporter. This is the first report on the identification and characterisation of a protein triggering chemotaxis towards the macromolecule pectin as well as its assimilation.
Collapse
|
11
|
Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture. mBio 2020; 11:mBio.03261-19. [PMID: 32071270 PMCID: PMC7029141 DOI: 10.1128/mbio.03261-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The high complexity of in situ ecosystems renders it difficult to study marine microbial photoautotroph-heterotroph interactions. Two-member coculture systems of picocyanobacteria and single heterotrophic bacterial strains have been thoroughly investigated. However, in situ interactions comprise far more diverse heterotrophic bacterial associations with single photoautotrophic organisms. In the present study, combined metagenomic and metaproteomic data supplied the metabolic potentials and activities of uncultured dominant bacterial populations in the coculture system. The results of this study shed light on the nature of interactions between photoautotrophs and heterotrophs, improving our understanding of the complexity of in situ environments. Microbial photoautotroph-heterotroph interactions underlie marine food webs and shape ecosystem diversity and structure in upper ocean environments. Here, bacterial community composition, lifestyle preference, and genomic- and proteomic-level metabolic characteristics were investigated for an open ocean Synechococcus ecotype and its associated heterotrophs over 91 days of cocultivation. The associated heterotrophic bacterial assembly mostly constituted five classes, including Flavobacteria, Bacteroidetes, Phycisphaerae, Gammaproteobacteria, and Alphaproteobacteria. The seven most abundant taxa/genera comprised >90% of the total heterotrophic bacterial community, and five of these displayed distinct lifestyle preferences (free-living or attached) and responses to Synechococcus growth phases. Six high-quality genomes, including Synechococcus and the five dominant heterotrophic bacteria, were reconstructed. The only primary producer of the coculture system, Synechococcus, displayed metabolic processes primarily involved in inorganic nutrient uptake, photosynthesis, and organic matter biosynthesis and release. Two of the flavobacterial populations, Muricauda and Winogradskyella, and an SM1A02 population, displayed preferences for initial degradation of complex compounds and biopolymers, as evinced by high abundances of TonB-dependent transporters (TBDTs), glycoside hydrolase, and peptidase proteins. Polysaccharide utilization loci present in the flavobacterial genomes influence their lifestyle preferences and close associations with phytoplankton. In contrast, the alphaproteobacterium Oricola sp. population mainly utilized low-molecular-weight dissolved organic carbon (DOC) through ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), and tripartite tricarboxylate transporter (TTT) transport systems. The heterotrophic bacterial populations exhibited complementary mechanisms for degrading Synechococcus-derived organic matter and driving nutrient cycling. In addition to nutrient exchange, removal of reactive oxygen species and vitamin trafficking might also contribute to the maintenance of the Synechococcus-heterotroph coculture system and the interactions shaping the system.
Collapse
|
12
|
Maruyama Y, Hashimoto W, Murata K. Structural studies on bacterial system used in the recognition and uptake of the macromolecule alginate. Biosci Biotechnol Biochem 2019; 83:794-802. [PMID: 30744540 DOI: 10.1080/09168451.2019.1578642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alginate is an acidic heteropolysaccharide produced by brown seaweed and certain kinds of bacteria. The cells of Sphingomonas sp. strain A1, a gram-negative bacterium, have several alginate-degrading enzymes in their cytoplasm and efficiently utilize this polymer for their growth. Sphingomonas sp. strain A1 cells can directly incorporate alginate into their cytoplasm through a transport system consisting of a "pit" on their cell surface, substrate-binding proteins in their periplasm, and an ATP-binding cassette transporter in their inner membrane. This review deals with the structural and functional aspects of bacterial systems necessary for the recognition and uptake of alginate.
Collapse
Affiliation(s)
- Yukie Maruyama
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan.,b Department of Life Science, Faculty of Science and Engineering , Setsunan University , Neyagawa, Osaka , Japan
| | - Wataru Hashimoto
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan
| | - Kousaku Murata
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan.,b Department of Life Science, Faculty of Science and Engineering , Setsunan University , Neyagawa, Osaka , Japan
| |
Collapse
|
13
|
Kaneko A, Uenishi K, Maruyama Y, Mizuno N, Baba S, Kumasaka T, Mikami B, Murata K, Hashimoto W. A solute-binding protein in the closed conformation induces ATP hydrolysis in a bacterial ATP-binding cassette transporter involved in the import of alginate. J Biol Chem 2017; 292:15681-15690. [PMID: 28768763 DOI: 10.1074/jbc.m117.793992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Indexed: 01/31/2023] Open
Abstract
The Gram-negative bacterium Sphingomonas sp. A1 incorporates alginate into cells via the cell-surface pit without prior depolymerization by extracellular enzymes. Alginate import across cytoplasmic membranes thereby depends on the ATP-binding cassette transporter AlgM1M2SS (a heterotetramer of AlgM1, AlgM2, and AlgS), which cooperates with the periplasmic solute-binding protein AlgQ1 or AlgQ2; however, several details of AlgM1M2SS-mediated alginate import are not well-understood. Herein, we analyzed ATPase and transport activities of AlgM1M2SS after reconstitution into liposomes with AlgQ2 and alginate oligosaccharide substrates having different polymerization degrees (PDs). Longer alginate oligosaccharides (PD ≥ 5) stimulated the ATPase activity of AlgM1M2SS but were inert as substrates of AlgM1M2SS-mediated transport, indicating that AlgM1M2SS-mediated ATP hydrolysis can be stimulated independently of substrate transport. Using X-ray crystallography in the presence of AlgQ2 and long alginate oligosaccharides (PD 6-8) and with the humid air and glue-coating method, we determined the crystal structure of AlgM1M2SS in complex with oligosaccharide-bound AlgQ2 at 3.6 Å resolution. The structure of the ATP-binding cassette transporter in complex with non-transport ligand-bound periplasmic solute-binding protein revealed that AlgM1M2SS and AlgQ2 adopt inward-facing and closed conformations, respectively. These in vitro assays and structural analyses indicated that interactions between AlgM1M2SS in the inward-facing conformation and periplasmic ligand-bound AlgQ2 in the closed conformation induce ATP hydrolysis by the ATP-binding protein AlgS. We conclude that substrate-bound AlgQ2 in the closed conformation initially interacts with AlgM1M2SS, the AlgM1M2SS-AlgQ2 complex then forms, and this formation is followed by ATP hydrolysis.
Collapse
Affiliation(s)
- Ai Kaneko
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Kasumi Uenishi
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Yukie Maruyama
- the Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan, and
| | - Nobuhiro Mizuno
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Seiki Baba
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Bunzo Mikami
- the Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- the Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan, and
| | - Wataru Hashimoto
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| |
Collapse
|
14
|
Kobayashi M, Konishi H, Maruyama Y, Murata K, Hashimoto W. Lateral-typed flagellin responsible for formation of a polar flagellum but not of lateral flagella in Sphingomonas sp. strain A1. Microbiology (Reading) 2016; 162:2042-2052. [DOI: 10.1099/mic.0.000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Masahiro Kobayashi
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hidenori Konishi
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
15
|
Takase R, Maruyama Y, Oiki S, Mikami B, Murata K, Hashimoto W. Structural determinants in bacterial 2-keto-3-deoxy-D-gluconate dehydrogenase KduD for dual-coenzyme specificity. Proteins 2016; 84:934-47. [PMID: 27028675 DOI: 10.1002/prot.25042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 11/11/2022]
Abstract
Short-chain dehydrogenase/reductase (SDR) is distributed in many organisms, from bacteria to humans, and has significant roles in metabolism of carbohydrates, lipids, amino acids, and other biomolecules. An important intermediate in acidic polysaccharide metabolism is 2-keto-3-deoxy-d-gluconate (KDG). Recently, two short and long loops in Sphingomonas KDG-producing SDR enzymes (NADPH-dependent A1-R and NADH-dependent A1-R') involved in alginate metabolism were shown to be crucial for NADPH or NADH coenzyme specificity. Two SDR family enzymes-KduD from Pectobacterium carotovorum (PcaKduD) and DhuD from Streptococcus pyogenes (SpyDhuD)-prefer NADH as coenzyme, although only PcaKduD can utilize both NADPH and NADH. Both enzymes reduce 2,5-diketo-3-deoxy-d-gluconate to produce KDG. Tertiary and quaternary structures of SpyDhuD and PcaKduD and its complex with NADH were determined at high resolution (approximately 1.6 Å) by X-ray crystallography. Both PcaKduD and SpyDhuD consist of a three-layered structure, α/β/α, with a coenzyme-binding site in the Rossmann fold; similar to enzymes A1-R and A1-R', both arrange the two short and long loops close to the coenzyme-binding site. The primary structures of the two loops in PcaKduD and SpyDhuD were similar to those in A1-R' but not A1-R. Charge neutrality and moderate space at the binding site of the nucleoside ribose 2' coenzyme region were determined to be structurally crucial for dual-coenzyme specificity in PcaKduD by structural comparison of the NADH- and NADPH-specific SDR enzymes. The corresponding site in SpyDhuD was negatively charged and spatially shallow. This is the first reported study on structural determinants in SDR family KduD related to dual-coenzyme specificity. Proteins 2016; 84:934-947. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Kousaku Murata
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
16
|
Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies. Int J Mol Sci 2016; 17:145. [PMID: 26861307 PMCID: PMC4783879 DOI: 10.3390/ijms17020145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
Marine macroalgae (green, red and brown macroalgae) have attracted attention as an alternative source of renewable biomass for producing both fuels and chemicals due to their high content of suitable carbohydrates and to their advantages over terrestrial biomass. However, except for green macroalgae, which contain relatively easily-fermentable glucans as their major carbohydrates, practical utilization of red and brown macroalgae has been regarded as difficult due to the major carbohydrates (alginate and mannitol of brown macroalgae and 3,6-anhydro-L-galactose of red macroalgae) not being easily fermentable. Recently, several key biotechnologies using microbes have been developed enabling utilization of these brown and red macroalgal carbohydrates as carbon sources for the production of fuels (ethanol). In this review, we focus on these recent developments with emphasis on microbiological biotechnologies.
Collapse
|
17
|
Kim HS, Chu YJ, Park CH, Lee EY, Kim HS. Site-Directed Mutagenesis-Based Functional Analysis and Characterization of Endolytic Lyase Activity of N- and C-Terminal Domains of a Novel Oligoalginate Lyase from Sphingomonas sp. MJ-3 Possessing Exolytic Lyase Activity in the Intact Enzyme. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:782-792. [PMID: 26342491 DOI: 10.1007/s10126-015-9658-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/14/2015] [Indexed: 06/05/2023]
Abstract
A novel oligoalginate lyase from a marine bacterium, Sphingomonas sp. strain MJ-3, exhibited a unique alginate degradation activity that completely depolymerizes alginate to monomers through the formation of oligomers. In order to reveal the reason why MJ-3 oligoalginate can exhibit both endolytic and exolytic alginate lyase activities, ten mutants were developed and characterized on the basis of homology modeling. When the recombinant cell lysates containing the mutated proteins of MJ-3 oligoalginate lyase were allowed to react with alginate, the Asn177Ala, His178Ala, Tyr234Phe, His389Ala, and Tyr426Phe mutants showed reduced oligoalginate lyase activity, whereas the Arg236Ala mutant exhibited endolytic activity. Interestingly, the overexpressed Arg236Ala protein (79.6 kDa) was proteolytically cleaved into two fragments, i.e., the N-terminal 32.0-kDa and the C-terminal 47.6-kDa fragments. Both the purified N-terminal and C-terminal fragments showed endolytic lyase activity. They preferentially degraded a heteropolymeric (polyMG) block than poly-β-D-mannuronate (polyM) or poly-α-L-guluronate (polyG) blocks. These results suggest that the oligoalginate lyase activity of MJ-3 enzyme is derived from the cooperative interaction between the N- and C-terminal endolytic alginate lyase domains in the intact enzyme.
Collapse
Affiliation(s)
- Hae Sol Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea
| | - Yu Jeong Chu
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea
| | - Chang-Ho Park
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 446-701, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 446-701, Republic of Korea.
| | - Hee Sook Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea.
| |
Collapse
|
18
|
Maruyama Y, Itoh T, Kaneko A, Nishitani Y, Mikami B, Hashimoto W, Murata K. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate. Structure 2015; 23:1643-1654. [PMID: 26235029 DOI: 10.1016/j.str.2015.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/24/2015] [Indexed: 12/15/2022]
Abstract
The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides.
Collapse
Affiliation(s)
- Yukie Maruyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takafumi Itoh
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ai Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yu Nishitani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Kousaku Murata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
19
|
Genome Sequence of Sphingobium yanoikuyae B1, a Polycyclic Aromatic Hydrocarbon-Degrading Strain. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01522-14. [PMID: 25657282 PMCID: PMC4319601 DOI: 10.1128/genomea.01522-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingobium yanoikuyae B1 can utilize biphenyl, naphthalene, phenanthrene, toluene, and m-/p-xylene as sole sources of carbon and energy. Here, we present a 5.2-Mb assembly of its genome. An analysis of the genome can provide insights into the mechanisms of polycyclic aromatic hydrocarbon (PAH) degradation and potentially aid in bioremediation applications.
Collapse
|
20
|
Takase R, Mikami B, Kawai S, Murata K, Hashimoto W. Structure-based conversion of the coenzyme requirement of a short-chain dehydrogenase/reductase involved in bacterial alginate metabolism. J Biol Chem 2014; 289:33198-214. [PMID: 25288804 DOI: 10.1074/jbc.m114.585661] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alginate-assimilating bacterium, Sphingomonas sp. strain A1, degrades the polysaccharides to monosaccharides through four alginate lyase reactions. The resultant monosaccharide, which is nonenzymatically converted to 4-deoxy-L-erythro-5-hexoseulose uronate (DEH), is further metabolized to 2-keto-3-deoxy-D-gluconate by NADPH-dependent reductase A1-R in the short-chain dehydrogenase/reductase (SDR) family. A1-R-deficient cells produced another DEH reductase, designated A1-R', with a preference for NADH. Here, we show the identification of a novel NADH-dependent DEH reductase A1-R' in strain A1, structural determination of A1-R' by x-ray crystallography, and structure-based conversion of a coenzyme requirement in SDR enzymes, A1-R and A1-R'. A1-R' was purified from strain A1 cells and enzymatically characterized. Except for the coenzyme requirement, there was no significant difference in enzyme characteristics between A1-R and A1-R'. Crystal structures of A1-R' and A1-R'·NAD(+) complex were determined at 1.8 and 2.7 Å resolutions, respectively. Because of a 64% sequence identity, overall structures of A1-R' and A1-R were similar, although a difference in the coenzyme-binding site (particularly the nucleoside ribose 2' region) was observed. Distinct from A1-R, A1-R' included a negatively charged, shallower binding site. These differences were caused by amino acid residues on the two loops around the site. The A1-R' mutant with the two A1-R-typed loops maintained potent enzyme activity with specificity for NADPH rather than NADH, demonstrating that the two loops determine the coenzyme requirement, and loop exchange is a promising method for conversion of coenzyme requirement in the SDR family.
Collapse
Affiliation(s)
- Ryuichi Takase
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Bunzo Mikami
- the Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shigeyuki Kawai
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Kousaku Murata
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Wataru Hashimoto
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| |
Collapse
|
21
|
Microbial Fucoidan Degradation byLuteolibacter algaeH18 with Deacetylation. Biosci Biotechnol Biochem 2014; 76:620-3. [DOI: 10.1271/bbb.110911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Characterization of Two Compatible Small Plasmids fromSphingobium yanoikuyae. Biosci Biotechnol Biochem 2014; 72:1130-3. [DOI: 10.1271/bbb.70813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Hayashi H, Kurusu Y. Analysis of a DNA region from low-copy-number plasmid pYAN-1 of Sphingobium yanoikuyae responsible for plasmid stability. Biosci Biotechnol Biochem 2014; 78:510-5. [PMID: 25036843 DOI: 10.1080/09168451.2014.890029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We identified and analyzed a DNA region that is required for the stable maintenance of plasmids in the genus Sphingomonas. This DNA fragment, a 244 bp, is localized in the upstream region of the repA gene of low-copy-number small plasmid pYAN-1 (4896 bp) of Sphingobium yanoikuyae. It has four inverted repeats and one direct repeat for possible secondary structures. We were able to stabilize not only another unstable plasmid, pYAN-2, in the genus Sphingomonas, but also the unstable plasmid pSC101 without par locus in Escherichia coli. The copy-number levels between the unstable plasmid and the parental plasmid were similar, and these results suggest that the stabilization of unstable plasmids by this DNA region of pYAN-1 was not due to an increase in plasmid copy number. We concluded that the stabilization of the plasmid was due to a plasmid partition mechanism encoded by a DNA fragment of pYAN-1.
Collapse
Affiliation(s)
- Hiroe Hayashi
- a United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology , Fuchu, Tokyo , Japan
| | | |
Collapse
|
24
|
Alginate-dependent gene expression mechanism in Sphingomonas sp. strain A1. J Bacteriol 2014; 196:2691-700. [PMID: 24816607 DOI: 10.1128/jb.01666-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas sp. strain A1, a Gram-negative bacterium, directly incorporates alginate polysaccharide into the cytoplasm through a periplasmic alginate-binding protein-dependent ATP-binding cassette transporter. The polysaccharide is degraded to monosaccharides via the formation of oligosaccharides by endo- and exotype alginate lyases. The strain A1 proteins for alginate uptake and degradation are encoded in both strands of a genetic cluster in the bacterial genome and inducibly expressed in the presence of alginate. Here we show the function of the alginate-dependent transcription factor AlgO and its mode of action on the genetic cluster and alginate oligosaccharides. A putative gene within the genetic cluster seems to encode a transcription factor-like protein (AlgO). Mutant strain A1 (ΔAlgO mutant) cells with a disrupted algO gene constitutively produced alginate-related proteins. DNA microarray analysis indicated that wild-type cells inducibly transcribed the genetic cluster only in the presence of alginate, while ΔAlgO mutant cells constitutively expressed the genetic cluster. A gel mobility shift assay showed that AlgO binds to the specific intergenic region between algO and algS (algO-algS). Binding of AlgO to the algO-algS intergenic region diminished with increasing alginate oligosaccharides. These results demonstrated a novel alginate-dependent gene expression mechanism. In the absence of alginate, AlgO binds to the algO-algS intergenic region and represses the expression of both strands of the genetic cluster, while in the presence of alginate, AlgO dissociates from the algO-algS intergenic region via binding to alginate oligosaccharides produced through the lyase reaction and subsequently initiates transcription of the genetic cluster. This is the first report on the mechanism by which alginate regulates the expression of the gene cluster.
Collapse
|
25
|
Abstract
We have identified and analyzed two DNA regions responsible for stable maintenance of a plasmid in the genus Sphingomonas and Escherichia coli. A 37 bp fragment, upstream of the repA gene, is required for stable maintenance of the low-copy-number small plasmid pYAN-2 (4,687 bp) from Sphingobium yanoikuyae. It does not encode any significant protein sequence and has one direct repeat for possible secondary structures. Moreover, a 70 bp fragment, upstream of the above sequence, completely stabilized the unstable pSC101 plasmid in E. coli.
Collapse
Affiliation(s)
- Hiroe Hayashi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | | |
Collapse
|
26
|
Tsujikawa Y, Nomoto R, Osawa R. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2013; 32:157-65. [PMID: 24936375 PMCID: PMC4034334 DOI: 10.12938/bmfh.32.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/29/2013] [Indexed: 12/17/2022]
Abstract
Lactobacillus delbrueckii strains were assessed for their degradation
patterns of various carbohydrates with specific reference to inulin-type fructans in
comparison with those of Lactobacillus paracasei strains. Firstly, growth
curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of
fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the
strains were compared. L. paracasei DSM 20020 grew well on all these
sugars, while the growth rates of the 4 L. delbrueckii strains were
markedly higher on the fructans with a greater degree of polymerization than on fructose
and sucrose. Secondly, sugar compositions of spent cultures of the strains of L.
delbrueckii and L. paracasei grown in mMRS containing either
the fructans or inulin were determined by thin layer chromatography, in which the spent
cultures of L. paracasei DSM 20020 showed spots of short fructose and
sucrose fractions, whereas those of the L. delbrueckii strains did not
show such spots at all. These results suggest that, unlike the L.
paracasei strains, the L. delbrueckii strains do not degrade
the inulin-type fructans extracellularly, but transport the fructans capable of greater
polymerization preferentially into their cells to be degraded intracellularly for their
growth.
Collapse
Affiliation(s)
- Yuji Tsujikawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe 657-8501, Japan
| | - Ryohei Nomoto
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe 657-8501, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
27
|
Thomas F, Lundqvist LCE, Jam M, Jeudy A, Barbeyron T, Sandström C, Michel G, Czjzek M. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem 2013; 288:23021-37. [PMID: 23782694 DOI: 10.1074/jbc.m113.467217] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell walls of brown algae are complex supramolecular assemblies containing various original, sulfated, and carboxylated polysaccharides. Among these, the major marine polysaccharide component, alginate, represents an important biomass that is successfully turned over by the heterotrophic marine bacteria. In the marine flavobacterium Zobellia galactanivorans, the catabolism and uptake of alginate are encoded by operon structures that resemble the typical Bacteroidetes polysaccharide utilization locus. The genome of Z. galactanivorans contains seven putative alginate lyase genes, five of which are localized within two clusters comprising additional carbohydrate-related genes. This study reports on the detailed biochemical and structural characterization of two of these. We demonstrate here that AlyA1PL7 is an endolytic guluronate lyase, and AlyA5 cleaves unsaturated units, α-L-guluronate or β-D-manuronate residues, at the nonreducing end of oligo-alginates in an exolytic fashion. Despite a common jelly roll-fold, these striking differences of the mode of action are explained by a distinct active site topology, an open cleft in AlyA1(PL7), whereas AlyA5 displays a pocket topology due to the presence of additional loops partially obstructing the catalytic groove. Finally, in contrast to PL7 alginate lyases from terrestrial bacteria, both enzymes proceed according to a calcium-dependent mechanism suggesting an exquisite adaptation to their natural substrate in the context of brown algal cell walls.
Collapse
Affiliation(s)
- François Thomas
- University of Marie and Pierre Curie Paris 6, UMR 7139, Marine Plants and Biomolecules, Station Biologique de Roscoff, F-29682 Roscoff, Brittany, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Genome sequence of Sphingomonas wittichii DP58, the first reported phenazine-1-carboxylic acid-degrading strain. J Bacteriol 2012; 194:3535-6. [PMID: 22689229 DOI: 10.1128/jb.00330-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas wittichii DP58 (CCTCC M 2012027), the first reported phenazine-1-carboxylic acid (PCA)-degrading strain, was isolated from pimiento rhizosphere soils. Here we present a 5.6-Mb assembly of its genome. This sequence would contribute to the elucidation of the molecular mechanism of PCA degradation to improve the antifungal's effectiveness or remove superfluous PCA.
Collapse
|
29
|
Nishitani Y, Maruyama Y, Itoh T, Mikami B, Hashimoto W, Murata K. Recognition of heteropolysaccharide alginate by periplasmic solute-binding proteins of a bacterial ABC transporter. Biochemistry 2012; 51:3622-33. [PMID: 22486720 DOI: 10.1021/bi300194f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alginate is a heteropolysaccharide that consists of β-D-mannuronate (M) and α-L-guluronate (G). The Gram-negative bacterium Sphingomonas sp. A1 directly incorporates alginate into the cytoplasm through the periplasmic solute-binding protein (AlgQ1 and AlgQ2)-dependent ABC transporter (AlgM1-AlgM2/AlgS-AlgS). Two binding proteins with at least four subsites strongly recognize the nonreducing terminal residue of alginate at subsite 1. Here, we show the broad substrate preference of strain A1 solute-binding proteins for M and G present in alginate and demonstrate the structural determinants in binding proteins for heteropolysaccharide recognition through X-ray crystallography of four AlgQ1 structures in complex with saturated and unsaturated alginate oligosaccharides. Alginates with different M/G ratios were assimilated by strain A1 cells and bound to AlgQ1 and AlgQ2. Crystal structures of oligosaccharide-bound forms revealed that in addition to interaction between AlgQ1 and unsaturated oligosaccharides, the binding protein binds through hydrogen bonds to the C4 hydroxyl group of the saturated nonreducing terminal residue at subsite 1. The M residue of saturated oligosaccharides is predominantly accommodated at subsite 1 because of the strict binding of Ser-273 to the carboxyl group of the residue. In unsaturated trisaccharide (ΔGGG or ΔMMM)-bound AlgQ1, the protein interacts appropriately with substrate hydroxyl groups at subsites 2 and 3 to accommodate M or G, while substrate carboxyl groups are strictly recognized by the specific residues Tyr-129 at subsite 2 and Lys-22 at subsite 3. Because of this substrate recognition mechanism, strain A1 solute-binding proteins can bind heteropolysaccharide alginate with different M/G ratios.
Collapse
Affiliation(s)
- Yu Nishitani
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Maruyama Y, Itoh T, Nishitani Y, Mikami B, Hashimoto W, Murata K. Crystallization and preliminary X-ray analysis of alginate importer from Sphingomonas sp. A1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:317-20. [PMID: 22442232 PMCID: PMC3310540 DOI: 10.1107/s1744309112001893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/16/2012] [Indexed: 11/10/2022]
Abstract
Sphingomonas sp. A1 directly incorporates alginate polysaccharides through a 'superchannel' comprising a pit on the cell surface, alginate-binding proteins in the periplasm and an ABC transporter (alginate importer) in the inner membrane. Alginate importer, consisting of four subunits, AlgM1, AlgM2 and two molecules of AlgS, was crystallized in the presence of the binding protein AlgQ2. Preliminary X-ray analysis showed that the crystal diffracted to 3.3 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 72.5, b = 136.8, c = 273.3 Å, suggesting the presence of one complex in the asymmetric unit.
Collapse
Affiliation(s)
- Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takafumi Itoh
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yu Nishitani
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
31
|
|
32
|
Heterosubunit composition and crystal structures of a novel bacterial M16B metallopeptidase. J Mol Biol 2011; 407:180-92. [PMID: 21262231 DOI: 10.1016/j.jmb.2011.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 11/20/2022]
Abstract
Three subfamilies of metallopeptidase family M16 enzymes--M16A, M16B, and M16C--are widely distributed among eukaryotes and prokaryotes. SPH2681, a periplasmic M16B protein found in Sphingomonas sp. strain A1, contains an HXXEH motif essential for Zn(2+) binding and catalytic activity. SPH2682 is another member of M16B, which lacks the metal-binding motif but conserves an active-site R/Y pair commonly found in the C-terminal half of M16 enzymes. Two genes coding for SPH2681 and SPH2682 assemble into a single operon in the bacterial genome. This study determined SPH2681 to be constitutively expressed in strain A1 cells grown on different carbon sources, suggesting a more general cellular function. SPH2681 and SPH2681/SPH2682 were overexpressed in Escherichia coli, purified, and characterized. SPH2681 was found to associate with SPH2682, forming a heterosubunit enzyme with peptidase activity, while SPH2681 alone exhibited no enzymatic activity. X-ray crystallography of the SPH2681/SPH2682 complex revealed two conformations (open and closed heterodimeric forms) within the same crystal. Compared with the closed form, the open form contains two subunits rotated away from each other by approximately 8°, increasing the distance between the zinc ion and active-site residues by up to 8 Å. In addition, many hydrogen bonds are formed or broken on change between the conformations of the heterodimers, suggesting that subunit dynamics is a prerequisite for catalysis. To our knowledge, this is the first report on both conformational forms of the same M16 peptidase, providing a unique insight into the general proteolytic mechanism of M16 proteases.
Collapse
|
33
|
Maruyama Y, Ochiai A, Mikami B, Hashimoto W, Murata K. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif. Biochem Biophys Res Commun 2011; 405:411-6. [PMID: 21238429 DOI: 10.1016/j.bbrc.2011.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10Å resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.
Collapse
Affiliation(s)
- Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
34
|
Ohshiro T, Ohmoto Y, Ono Y, Ohkita R, Miki Y, Kawamoto H, Izumi Y. Isolation and characterization of a novel fucoidan-degrading microorganism. Biosci Biotechnol Biochem 2010; 74:1729-32. [PMID: 20699559 DOI: 10.1271/bbb.100327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A bacterium utilizing fucoidan from the brown alga Cladosiphon okamuranus as sole carbon source was isolated and identified as Flavobacterium sp. F-31. The strain produced intracellular enzymes involved in fucoidan degradation and desulfation, but desulfation activity was not detected until the molecular weight of fucoidan fell to less than several tens of thousands due to enzymatic degradation. Only fucoidan proved to be an inducible substance for the production of the degrading enzymes.
Collapse
Affiliation(s)
- Takashi Ohshiro
- Department of Biotechnology, Tottori University, Tottori, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Hashimoto W, Kawai S, Murata K. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications. Bioeng Bugs 2009; 1:97-109. [PMID: 21326935 DOI: 10.4161/bbug.1.2.10322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/19/2022] Open
Abstract
Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology,; Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | |
Collapse
|
36
|
Hashimoto W, Ochiai A, He J, Itoh T, Mikami B, Murata K. Crystallization and preliminary crystallographic analysis of the cell-surface alginate-binding protein Algp7 isolated from Sphingomonas sp. A1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:515-7. [PMID: 19407391 DOI: 10.1107/s1744309109013669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/11/2009] [Indexed: 11/11/2022]
Abstract
Sphingomonas sp. A1, a Gram-negative bacterium, directly internalizes alginate macromolecules through a mouth-like pit that is present on its cell surface. The alginate-binding protein Algp7, which was found to be localized on the cell surface, contributes to the accumulation of alginate in the pit. Algp7 was crystallized at 293 K by means of the sitting-drop vapour-diffusion method with polyethylene glycol 3350 as a crystallizing agent. Preliminary X-ray analysis showed that the Algp7 crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 50.1, b = 98.0, c = 100.1 A, and that it diffracted to 2.8 A resolution.
Collapse
|
37
|
Abstract
Genome sequencing projects have resulted in a rapid accumulation of predicted protein sequences. With experimentally verified information on protein function lagging far behind, computational methods are used for functional annotation of proteins. Here we describe a number of protocols for protein sequence and structure analysis that can be used to infer function of uncharacterized proteins. These protocols rely on publicly available computational resources and tools and can be utilized by anyone with an Internet access.
Collapse
Affiliation(s)
- Raja Mazumder
- Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
38
|
|
39
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
40
|
He J, Ochiai A, Fukuda Y, Hashimoto W, Murata K. A putative lipoprotein of Sphingomonas sp. strain A1 binds alginate rather than a lipid moiety. FEMS Microbiol Lett 2008; 288:221-6. [PMID: 18803672 DOI: 10.1111/j.1574-6968.2008.01354.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Gram-negative Sphingomonas sp. strain A1 accumulates alginate in the cell surface pit and directly incorporates the polysaccharide into its cytoplasm through a 'superchannel'. A cell surface protein Algp7 (27 kDa) is inducibly expressed in the presence of alginate. Although the protein Algp7 was initially classified as a lipoprotein based on its primary structure, Algp7 purified from strain A1 cells did not possess a lipid moiety. Algp7 bound alginate efficiently at a neutral pH with a K(d) of 3.6 x 10(-8) M, suggesting that the cell surface protein contributed to accumulation of alginate in the pit.
Collapse
Affiliation(s)
- Jinshan He
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | |
Collapse
|
41
|
Maruyama Y, Momma M, Mikami B, Hashimoto W, Murata K. Crystal Structure of a Novel Bacterial Cell-Surface Flagellin Binding to a Polysaccharide,. Biochemistry 2008; 47:1393-402. [DOI: 10.1021/bi701872x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukie Maruyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan, and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Misato Momma
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan, and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan, and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan, and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan, and Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
42
|
Hu X, Mamoto R, Shimomura Y, Kimbara K, Kawai F. Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3. Arch Microbiol 2007; 188:235-41. [PMID: 17453173 DOI: 10.1007/s00203-007-0239-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/19/2007] [Accepted: 03/24/2007] [Indexed: 10/23/2022]
Abstract
Polyvinyl alcohol (PVA)-utilizing Sphingopyxis sp. 113P3 (re-identified from Sphingomonas sp. 113P3) removed almost 0.5% PVA from culture supernatants in 4 days. Faster degradation of 0.5% PVA was performed by the periplasmic fraction. The average molecular size of PVA in the culture supernatant or cell-bound PVA was gradually shifted higher, suggesting that lower molecular size molecules are degraded faster. Depolymerized products were found in neither the culture supernatant nor the cell-bound fraction; however they were recovered from the periplasmic fraction. As extracellular or cell-associated PVA oxidase activity was almost undetectable in strain 113P3, degradation of PVA must be performed by periplasmic PVA dehydrogenase after uptake into the periplasm. Following the consumption of PVA, a dent appeared on the cell surface on day 2 and increased in size and depth for 4 days and was maintained for 8 days. Ultrastructural change on the cell surface was only observed in PVA medium, but not in nutrient broth (NB), suggesting that the change is induced by PVA. Fluorescein-4-isothiocyanate-labeled PVA was bound more to cells grown in PVA than to cells grown in NB. No binding was found with PVA-grown cells treated with formaldehyde. Thus, a dent on the cell surface seems to be related to the uptake of PVA.
Collapse
Affiliation(s)
- Xiaoping Hu
- Laboratory of Applied Microbiology, Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| | | | | | | | | |
Collapse
|
43
|
Harada KM, Aso Y, Hashimoto W, Mikami B, Murata K. Sequence and analysis of the 46.6-kb plasmid pA1 from Sphingomonas sp. A1 that corresponds to the typical IncP-1β plasmid backbone without any accessory gene. Plasmid 2006; 56:11-23. [PMID: 16445980 DOI: 10.1016/j.plasmid.2005.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/16/2005] [Accepted: 12/19/2005] [Indexed: 11/20/2022]
Abstract
Sphingomonas sp. A1 (strain A1) is capable of directly incorporating macromolecules (e.g., alginate) through the specialized import system--"super-channel." Here, we report the complete DNA sequence and genetic organization of plasmid pA1 from strain A1. Nucleotide sequence analysis revealed that pA1 comprises 46,557 bp encoding 49 open reading frames (ORFs) with 65% G+C content and abundant GCCG/CGGC motifs. Many predicted pA1 ORFs showed high similarity to pA81 ORFs; pA81 is supposedly a self-transmissible promiscuous incompatibility (Inc) group P-1beta plasmid. Unlike any reported IncP-1 plasmids, pA1 contains no inserted mobile genetic elements. The genetic organization and predicted pA1 ORFs showed greater similarity to the IncP-1beta plasmid backbone than to the IncP-1alpha plasmid backbone. pA1 contains restriction site-associated repeat sequences typical of the IncP-1beta but absent in the IncP-1alpha and delta subgroups. Thus, the overall pA1 structure corresponds to that of the typical IncP-1beta plasmids. Phylogenetic analysis of the replication-associated proteins suggested that pA1 may have diverged later along with the two IncP-1beta plasmids--pA81 and pB4. The 2.4-kb duplicates of stable inheritance genes klcAB and korC in pA1 possibly resulted from insertion and/or recombination events via the repeat sequences flanking these duplicates.
Collapse
Affiliation(s)
- Karen Mine Harada
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
44
|
Ochiai A, Hashimoto W, Murata K. A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol 2006; 157:642-9. [PMID: 16545947 DOI: 10.1016/j.resmic.2006.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 02/01/2006] [Accepted: 02/09/2006] [Indexed: 11/30/2022]
Abstract
The Gram-negative bacterium Sphingomonas sp. strain A1 (strain A1) has a peculiar biosystem to directly import and depolymerize a macromolecule, alginate, which is encoded by a cluster of genes on the genome. We identified five clustered ORFs homologous to some genes of the strain A1 cluster in the genome of Agrobacterium tumefaciens strain C58 (strain C58). These ORFs are Atu3021, Atu3022, Atu3023, and Atu3024, encoding a putative sugar ABC transporter system and Atu3025, which encodes a putative alginate lyase. We analyzed the involvement of this gene cluster in alginate metabolism. Strain C58 cells grew significantly on low-molecular-weight (LMW) alginate (average molecular weight, 1000), and we detected specific alginate-induced expression of Atu3024 and Atu3025. This strain does not grow on alginate (average molecular weight, 25,600), suggesting that the strain C58 gene cluster is involved in importing and degrading LMW alginate. One protein, Atu3025, purified from strain C58, was identified as an alginate lyase, and the enzyme overexpressed in Escherichia coli was further characterized. Atu3025 released monosaccharides specifically from alginate most efficiently at pH 7.3 and 30 degrees C through a beta-elimination reaction, indicating that Atu3025 is an exotype alginate lyase potentially involved in the assimilation of LMW alginate in strain C58.
Collapse
Affiliation(s)
- Akihito Ochiai
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
45
|
Aso Y, Miyamoto Y, Harada KM, Momma K, Kawai S, Hashimoto W, Mikami B, Murata K. Engineered membrane superchannel improves bioremediation potential of dioxin-degrading bacteria. Nat Biotechnol 2006; 24:188-9. [PMID: 16415854 DOI: 10.1038/nbt1181] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 11/21/2005] [Indexed: 11/10/2022]
Abstract
Sphingomonas sp. A1 possesses specialized membrane structures termed 'superchannels' that enable the direct incorporation of macromolecules into the cell. We have engineered two related sphingomonads, the dioxin-degrading S. wittichii RW1 and the polypropylene glycol-degrading S. subarctica IFO 16058(T), to incorporate this superchannel into their cell membranes. In both cases the bioremediation capability of the organisms was substantially increased pointing at the potential of this approach as a general strategy to improve bacterial degradation of hazardous compounds in the environment.
Collapse
Affiliation(s)
- Yuji Aso
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Saito M, Ikunaga Y, Ohta H, Kurusu Y. Genetic Transformation System for Members of the Genera, Sphingomonas, Sphingobium, Novosphingobium and Sphingopyxis. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Hashimoto W, He J, Wada Y, Nankai H, Mikami B, Murata K. Proteomics-Based Identification of Outer-Membrane Proteins Responsible for Import of Macromolecules inSphingomonassp. A1: Alginate-Binding Flagellin on the Cell Surface†,‡. Biochemistry 2005; 44:13783-94. [PMID: 16229468 DOI: 10.1021/bi050873b] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nonmotile gram-negative bacterium, Sphingomonas sp. A1, directly incorporates macromolecules such as alginate through a "super-channel" consisting of a pit formed on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. Here, we demonstrate the proteomics-based identification of cell-surface proteins involved in the formation of the pit and/or import of alginate. Cell-surface proteins were prepared from the outer membrane released as vesicles during the conversion of intact cells to spheroplasts. Seven proteins (p1-p7) with acidic isoelectric points were inducibly expressed in the outer membrane of strain A1 cells grown on alginate and showed significant identity with bacterial cell-surface proteins (p1-p4, TonB-dependent outer-membrane transporter; p5 and p6, flagellin; and p7, lipoprotein). Each mutant with a disruption of the p1-p4 or p6 gene showed significant growth retardation in the alginate medium. Flagellin homologues (p5 and p6) were further analyzed because strain A1 forms no flagellum. p5 was found to be uniformly distributed on the cell surface by immunogold-labeling electron microscopy and to exhibit alginate binding with a nanomolar dissociation constant by a surface plasmon resonance sensor. The cell surface of the p6 gene disruptant differed from that of the wild-type strain A1 in that pit formation was incomplete and cell-surface structures shifted from pleats to networks. These results suggest that, distinct from bacterial flagellins constituting a helical filament of flagella, strain A1 cell-surface flagellin homologues function as receptors for alginate and/or regulators of cell-surface structures.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Klomklang W, Tani A, Kimbara K, Mamoto R, Ueda T, Shimao M, Kawai F. Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3. MICROBIOLOGY-SGM 2005; 151:1255-1262. [PMID: 15817792 DOI: 10.1099/mic.0.27655-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxidized polyvinyl alcohol hydrolase (OPH) and polyvinyl alcohol dehydrogenase were found to be constitutively present in the periplasm of Sphingomonas sp. strain 113P3 (formerly Pseudomonas sp. 113P3). The OPH was purified to homogeneity with a yield of 40 % and a 5.9-fold increase in specific activity. The enzyme was a homodimer consisting of 35 kDa subunits. Its activity was inhibited by PMSF, Hg(2+) and Zn(2+). The enzyme hydrolysed oxidized polyvinyl alcohol (oxidized PVA) and p-nitrophenyl acetate (PNPA), but did not hydrolyse any of the mono- or diketones tested. K(m) and V(max) values for oxidized PVA and PNPA were 0.2 and 0.3 mM, and 0.1 and 3.4 micromol min(-1) mg(-1), respectively. The gene for OPH was cloned and sequenced. Sequencing analysis revealed that the open reading frame consisted of 1095 bp, corresponding to a protein of 364 amino acids residues, encoding a signal peptide and a mature protein of 34 and 330 amino acids residues, respectively. The presence of a serine-hydrolase motif (a lipase box; Gly-X-Ser-X-Gly) strongly suggested that the enzyme belongs to the serine-hydrolase family. The protein exhibited homology with OPH of the Pseudomonas sp. strain VM15C (63 % identity) and the polyhydroxybutyrate depolymerases from Mesorhizobium loti, Rhizobium sp. and Sinorhizobium meliloti (29-32 % identity). The oph gene was expressed in Escherichia coli under the control of the lac promoter. The recombinant protein had the same molecular mass and N-terminal amino acid sequence as the purified OPH from strain 113P3.
Collapse
Affiliation(s)
- Wilailak Klomklang
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Akio Tani
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Kazuhide Kimbara
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Rie Mamoto
- Faculty of Nutrition, Kobegakuin University, Kobe, Hyogo 651-2180, Japan
| | - Takashi Ueda
- Faculty of Nutrition, Kobegakuin University, Kobe, Hyogo 651-2180, Japan
| | - Masayuki Shimao
- Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Fusako Kawai
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
49
|
Momma K, Mishima Y, Hashimoto W, Mikami B, Murata K. Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: molecular insights into alginate transport in the periplasm. Biochemistry 2005; 44:5053-64. [PMID: 15794643 DOI: 10.1021/bi047781r] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Gram-negative bacterium, Sphingomonas sp. A1, has a macromolecule (alginate) import system consisting of a pit on the cell surface and an alginate-specific ATP-binding cassette importer in the inner membrane. Transport of alginate from the pit to the ABC importer is probably mediated by two periplasmic binding protein homologues (AlgQ1 and AlgQ2). Here we describe characteristics of binding of AlgQ1 and AlgQ2 to alginate and its oligosaccharides through surface plasmon resonance biosensor analysis, UV absorption difference spectroscopy, and X-ray crystallography. Both AlgQ1 and AlgQ2 were inducibly expressed in the periplasm of alginate-grown cells of strain A1. Biosensor analysis indicated that both proteins specifically bind alginate with a high degree of polymerization (>100) and that dissociation constants for alginate with an average molecular mass of 26 kDa are 2.3 x 10(-)(7) M for AlgQ1 and 1.5 x 10(-)(7) M for AlgQ2. An in vitro ATPase assay using the membrane complex, including the alginate ABC importer, suggested that both alginate-bound forms of AlgQ1 and AlgQ2 are closely associated with the importer. X-ray crystallography showed that AlgQ1 consisted of two domains separated by a deep cleft that binds alginate oligosaccharides through a conformational change in the two domains. These results directly show that alginate-binding proteins play an important role in the efficient transport of alginate macromolecules with different degrees of polymerization in the periplasm.
Collapse
Affiliation(s)
- Keiko Momma
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
50
|
Osawa T, Matsubara Y, Muramatsu T, Kimura M, Kakuta Y. Crystal Structure of the Alginate (Poly α-l-guluronate) Lyase from Corynebacterium sp. at 1.2Å Resolution. J Mol Biol 2005; 345:1111-8. [PMID: 15644208 DOI: 10.1016/j.jmb.2004.10.081] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 10/23/2004] [Accepted: 10/28/2004] [Indexed: 11/23/2022]
Abstract
The crystal structure of alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. (ALY-1) was determined at 1.2A resolution using the MAD method and bromide ions. The structure of ALY-1 is abundant in beta-strands and has a deep cleft, similar to the jellyroll beta-sandwich found in 1,3-1,4-beta-glucanase. The structure suggests that alginate molecules may penetrate into the cleft to interact with the catalytic site of ALY-1. The reported crystal structure of another type of alginate lyase, A1-III, differs from that of ALY-1 in that it consists almost entirely of alpha-helical structure. Nevertheless, the putative catalytic residues in both enzymes are positioned in space in nearly identical arrangements. This finding suggests that both alginate lyases may have evolved through convergent evolution.
Collapse
Affiliation(s)
- Takuo Osawa
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|