1
|
Lin JS, Lai EM. Protein-Protein Interactions: Yeast Two Hybrid. Methods Mol Biol 2024; 2715:235-246. [PMID: 37930532 DOI: 10.1007/978-1-0716-3445-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The yeast two-hybrid system is a powerful and commonly used genetic tool to investigate the interaction between artificial fusion proteins inside the nucleus of yeast. Here, we describe how to use the Matchmaker GAL4-based yeast two-hybrid system to detect the interaction of the Agrobacterium type VI secretion system (T6SS) sheath components TssB and TssC41. The bait and prey gene are expressed as a fusion to the GAL4 DNA-binding domain (DNA-BD) and GAL4 activation domain (AD, prey/library fusion protein), respectively. When bait and prey fusion proteins interact in yeast nucleus, the DNA-BD and AD are brought into proximity, thus activating transcription of reporter genes. This technology can be widely used to identify interacting partners, confirm suspected interactions, and define interacting domains.
Collapse
Affiliation(s)
- Jer-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Zhang G, Li C, Li Y, Chen D, Li Z, Ouyang G, Wang Z. Discovery and Mechanism of Azatryptanthrin Derivatives as Novel Anti-Phytopathogenic Bacterial Agents for Potent Bactericide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6288-6300. [PMID: 37040536 DOI: 10.1021/acs.jafc.3c01120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The natural alkaloids of tryptanthrin and their derivatives have a wide range of biological activities. In this research, four series of azatryptanthrin derivatives containing 4-aza/3-aza/2-aza/1-aza tryptanthrin were prepared by condensation cyclization reaction against plant pathogens to develop a new natural product-based bacterial pesticide. Compound 4Aza-8 displayed a remarkable growth inhibitory effect on pathogenic bacteria of Xanthomonas axonopodis pv. citri (Xac), Xanthomonas oryzae pv. Oryzae (Xoo), and Pseudomonas syringae pv. actinidiae (Psa) with the final corrected EC50 values of 0.312, 1.91, and 18.0 μg/mL, respectively, which were greatly superior than that of tryptanthrin (Tryp). Moreover, 4Aza-8 also showed effective therapeutic and protective activities in vivo on citrus canker. Further mechanism studies on Xac elucidated that compound 4Aza-8 was able to affect the growth curve of Xac and the formation of biofilm, cause severe shrinkage in bacterial morphology, increase reactive oxygen species levels, and induce apoptosis in bacterial cells. Quantitative analysis of differential protein profiles found that the major differences were mainly concentrated on the endometrial protein in the bacterial secretion system pathway, which blocked the membrane transport and affected the transfer of DNA to the host cell. In summary, these research results suggest that 4Aza-8 represents a promising anti-phytopathogenic-bacteria agent, which is worth being further investigated as a bactericide candidate.
Collapse
Affiliation(s)
- Guanglong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chengpeng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Danping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuirui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Guiping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhenchao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
3
|
Koch B, Callaghan MM, Tellechea-Luzardo J, Seeger AY, Dillard JP, Krasnogor N. Protein interactions within and between two F-type type IV secretion systems. Mol Microbiol 2020; 114:823-838. [PMID: 32738086 DOI: 10.1111/mmi.14582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023]
Abstract
Bacterial type IV secretion systems (T4SSs) can mediate conjugation. The T4SS from Neisseria gonorrhoeae possesses the unique ability to mediate DNA secretion into the extracellular environment. The N. gonorrhoeae T4SS can be grouped with F-type conjugative T4SSs based on homology. We tested 17 proteins important for DNA secretion by N. gonorrhoeae for protein interactions. The BACTH-TM bacterial two-hybrid system was successfully used to study periplasmic interactions. By determining if the same interactions were observed for F-plasmid T4SS proteins and when one interaction partner was replaced by the corresponding protein from the other T4SS, we aimed to identify features associated with the unique function of the N. gonorrhoeae T4SS as well as generic features of F-type T4SSs. For both systems, we observed already described interactions shared by homologs from other T4SSs as well as new and described interactions between F-type T4SS-specific proteins. Furthermore, we demonstrate, for the first-time, interactions between proteins with homology to the conserved T4SS outer membrane core proteins and F-type-specific proteins and we confirmed two of them by co-purification. The F-type-specific protein TraHN was found to localize to the outer membrane and the presence of significant amounts of TraHN in the outer membrane requires TraGN .
Collapse
Affiliation(s)
- Birgit Koch
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
| | - Melanie M Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan Tellechea-Luzardo
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
| | - Ami Y Seeger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Mukhtar MU, Iqbal N, Yang J, Niu Q, Zhao S, Li Z, Zhao Y, Rashid M, Chen Z, Guan G, Liu Z, Yin H. Identification and evaluation of UL36 protein from Dermacentor silvarum salivary gland and its interaction with Anaplasma ovis VirB10. Parasit Vectors 2020; 13:105. [PMID: 32103780 PMCID: PMC7045605 DOI: 10.1186/s13071-020-3975-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anaplasma ovis is a gram-negative, tick-borne obligate intraerythrocytic pathogen, which causes ovine anaplasmosis in small ruminants worldwide. VirB10 of A. ovis is an integral component of the Type IV Secretion System (T4SS). The T4SS is used by bacteria to transfer DNA and/or proteins undeviatingly into the host cell to increase their virulence. To more thoroughly understand the interaction between A. ovis and Dermacentor silvarum, a vector containing the virb10 gene of A. ovis was used as a bait plasmid to screen interacting proteins from the cDNA library of the D. silvarum salivary gland using the yeast two-hybrid system. METHODS The cDNA of the D. silvarum salivary gland was cloned into the pGADT7-SmaI vector (prey plasmid) to construct the yeast two-hybrid cDNA library. The virb10 gene was cloned into the pGBKT7 vector to generate a bait plasmid. Any gene auto-activation or toxicity effects in the yeast strain Y2HGold were excluded. The screening was performed by combining the bait and prey plasmids in yeast strains to identify positive preys. The positive preys were then sequenced, and the obtained sequences were subjected to further analyses using Gene Ontology, UniProt, SMART, and STRING. Additionally, the interaction between the bait and the prey was evaluated using the glutathione S-transferase (GST) pull-down assay. RESULTS A total of two clones were obtained from the cDNA library using the yeast two-hybrid system, and the sequence analysis showed that both clones encoded the same large tegument protein, UL36. Furthermore, the proteins GST-UL36 and His-VirB10 were successfully expressed in vitro and the interaction between the two proteins was successfully demonstrated by the GST pull-down assay. CONCLUSIONS To our knowledge, this study is the first to screen for D. silvarum salivary gland proteins that interact with A. ovis VirB10. The resulting candidate, UL36, is a multi-functional protein. Further investigations into the functionality of UL36 should be carried out, which might help in identifying novel prevention and treatment strategies for A. ovis infection. The present study provides a base for exploring and further understanding the interactions between A. ovis and D. silvarum.
Collapse
Affiliation(s)
- Muhammad Uzair Mukhtar
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Naveed Iqbal
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zhi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yaru Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Muhammad Rashid
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
5
|
Abstract
Type IV secretion systems (T4SSs) are nanomachines that Gram-negative, Gram-positive bacteria, and some archaea use to transport macromolecules across their membranes into bacterial or eukaryotic host targets or into the extracellular milieu. They are the most versatile secretion systems, being able to deliver both proteins and nucleoprotein complexes into targeted cells. By mediating conjugation and/or competence, T4SSs play important roles in determining bacterial genome plasticity and diversity; they also play a pivotal role in the spread of antibiotic resistance within bacterial populations. T4SSs are also used by human pathogens such as Legionella pneumophila, Bordetella pertussis, Brucella sp., or Helicobacter pylori to sustain infection. Since they are essential virulence factors for these important pathogens, T4SSs might represent attractive targets for vaccines and therapeutics. The best-characterized conjugative T4SSs of Gram-negative bacteria are composed of twelve components that are conserved across many T4SSs. In this chapter, we will review our current structural knowledge on the T4SSs by describing the structures of the individual components and how they assemble into large macromolecular assemblies. With the combined efforts of X-ray crystallography, nuclear magnetic resonance (NMR), and more recently electron microscopy, structural biology of the T4SS has made spectacular progress during the past fifteen years and has unraveled the properties of unique proteins and complexes that assemble dynamically in a highly sophisticated manner.
Collapse
|
6
|
VirB8 homolog TraE from plasmid pKM101 forms a hexameric ring structure and interacts with the VirB6 homolog TraD. Proc Natl Acad Sci U S A 2018; 115:5950-5955. [PMID: 29784815 PMCID: PMC6003364 DOI: 10.1073/pnas.1802501115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The overproduction and purification of membrane proteins are intrinsically difficult, making their analysis challenging. We purified the TraE membrane protein from a bacterial conjugation system that is involved in plasmid transfer. Our results suggest that this protein forms hexamers with a central pore, and we also show that it binds to the TraD protein. The structure of TraE is completely different from that of the previously characterized periplasmic domain. This has intriguing implications for the role of TraE and of its interaction partner TraD in substrate translocation across the bacterial cell envelope. This work makes an important contribution to understanding of the mechanism of plasmid transfer, contributing to the design of approaches to inhibit the spread of antibiotic resistance genes. Type IV secretion systems (T4SSs) are multiprotein assemblies that translocate macromolecules across the cell envelope of bacteria. X-ray crystallographic and electron microscopy (EM) analyses have increasingly provided structural information on individual T4SS components and on the entire complex. As of now, relatively little information has been available on the exact localization of the inner membrane-bound T4SS components, notably the mostly periplasmic VirB8 protein and the very hydrophobic VirB6 protein. We show here that the membrane-bound, full-length version of the VirB8 homolog TraE from the plasmid pKM101 secretion system forms a high-molecular-mass complex that is distinct from the previously characterized periplasmic portion of the protein that forms dimers. Full-length TraE was extracted from the membranes with detergents, and analysis by size-exclusion chromatography, cross-linking, and size exclusion chromatography (SEC) multiangle light scattering (MALS) shows that it forms a high-molecular-mass complex. EM and small-angle X-ray scattering (SAXS) analysis demonstrate that full-length TraE forms a hexameric complex with a central pore. We also overproduced and purified the VirB6 homolog TraD and show by cross-linking, SEC, and EM that it binds to TraE. Our results suggest that TraE and TraD interact at the substrate translocation pore of the secretion system.
Collapse
|
7
|
Sharifahmadian M, Nlend IU, Lecoq L, Omichinski JG, Baron C. The type IV secretion system core component VirB8 interacts via the β1-strand with VirB10. FEBS Lett 2017; 591:2491-2500. [PMID: 28766702 DOI: 10.1002/1873-3468.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/09/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Abstract
In this work, we provide evidence for the interactions between VirB8 and VirB10, two core components of the type IV secretion system (T4SS). Using nuclear magnetic resonance experiments, we identified residues on the β1-strand of Brucella VirB8 that undergo chemical shift changes in the presence of VirB10. Bacterial two-hybrid experiments confirm the importance of the β1-strand, whereas phage display experiments suggest that the α2-helix of VirB8 may also contribute to the interaction with VirB10. Conjugation assays using the VirB8 homolog TraE as a model show that several residues on the β1-strand of TraE are important for T4SS function. Together, our results suggest that the β1-strand of VirB8-like proteins is essential for their interaction with VirB10 in the T4SS complex.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Ingrid U Nlend
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
8
|
Gordon JE, Costa TRD, Patel RS, Gonzalez-Rivera C, Sarkar MK, Orlova EV, Waksman G, Christie PJ. Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol Microbiol 2017; 105:273-293. [PMID: 28452085 PMCID: PMC5518639 DOI: 10.1111/mmi.13700] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Recent studies have shown that conjugation systems of Gram-negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved - but also intrinsically conformationally flexible - scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.
Collapse
Affiliation(s)
- Jay E. Gordon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Tiago R. D. Costa
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Roosheel S. Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Mayukh K. Sarkar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| |
Collapse
|
9
|
Gunasinghe SD, Webb CT, Elgass KD, Hay ID, Lithgow T. Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria. Front Cell Infect Microbiol 2017; 7:220. [PMID: 28611954 PMCID: PMC5447050 DOI: 10.3389/fcimb.2017.00220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022] Open
Abstract
Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i) outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii) the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii) translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Chaille T Webb
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | | | - Iain D Hay
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
10
|
Kumar N, Shariq M, Kumar A, Kumari R, Subbarao N, Tyagi RK, Mukhopadhyay G. Analyzing the role of CagV, a VirB8 homolog of the type IV secretion system of Helicobacter pylori. FEBS Open Bio 2017; 7:915-933. [PMID: 28680806 PMCID: PMC5494299 DOI: 10.1002/2211-5463.12225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
The type IV secretion system of Helicobacter pylori (Cag‐T4SS) is composed of ~ 27 components including a VirB8 homolog, CagV. We have characterized CagV and reported that it is an inner membrane protein and, like VirB8, forms a homodimer. Its stability is not dependent on the other Cag components and the absence of cagV affects the stability of only CagI, a protein involved in pilus formation. CagV is not required for the stability and localization of outer membrane subcomplex proteins, but interacts with them through CagX. It also interacts with the inner membrane‐associated components, CagF and CagZ, and is required for the surface localization of CagA. The results of this study might help in deciphering the mechanistic contributions of CagV in the Cag‐T4SS biogenesis and function.
Collapse
Affiliation(s)
- Navin Kumar
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India.,Present address: School of Biotechnology Gautam Buddha University Yamuna Expressway Greater Noida Gautam Budh Nagar Uttar Pradesh India
| | - Mohd Shariq
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India.,Present address: School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Amarjeet Kumar
- School of Computational and Integrative Sciences Jawaharlal Nehru University New Delhi India
| | - Rajesh Kumari
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences Jawaharlal Nehru University New Delhi India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India
| | | |
Collapse
|
11
|
Sharifahmadian M, Arya T, Bessette B, Lecoq L, Ruediger E, Omichinski JG, Baron C. Monomer-to-dimer transition of Brucella suis type IV secretion system component VirB8 induces conformational changes. FEBS J 2017; 284:1218-1232. [PMID: 28236662 DOI: 10.1111/febs.14049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Abstract
Secretion systems are protein complexes essential for bacterial virulence and potential targets for antivirulence drugs. In the intracellular pathogen Brucella suis, a type IV secretion system mediates the translocation of virulence factors into host cells and it is essential for pathogenicity. VirB8 is a core component of the secretion system and dimerization is important for functionality of the protein complex. We set out to study dimerization and possible conformational changes of VirB8 from B. suis (VirB8s) using nuclear magnetic resonance, X-ray crystallography, and differential scanning fluorimetry. We identified changes of the protein induced by a concentration-dependent monomer-to-dimer transition of the periplasmic domain (VirB8sp). We also show that the presence of the detergent CHAPS alters several signals in the heteronuclear single quantum coherence (HSQC) spectra and some of these chemical shift changes correspond to those observed during monomer-dimer transition. X-ray analysis of a monomeric variant (VirB8spM102R ) demonstrates that significant structural changes occur in the protein's α-helical regions (α2 and α4). We localized chemical shift changes of residues at the dimer interface as well as to the α1 helix that links this interface to a surface groove that binds dimerization inhibitors. Fragment-based screening identified small molecules that bind to VirB8sp and two of them have differential binding affinity for wild-type and the VirB8spM102R variant underlining their different conformations. The observed chemical shift changes suggest conformational changes of VirB8s during monomer-dimer transition that may play a role during secretion system assembly or function and they provide insights into the mechanism of inhibitor action. DATABASE BMRB accession no. 26852 and PDB 5JBS.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Tarun Arya
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Benoit Bessette
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Edward Ruediger
- Institut de Recherche en Immunologie et Cancer (IRIC), Université de Montréal, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| |
Collapse
|
12
|
Conjugative type IV secretion in Gram-positive pathogens: TraG, a lytic transglycosylase and endopeptidase, interacts with translocation channel protein TraM. Plasmid 2017; 91:9-18. [PMID: 28219792 DOI: 10.1016/j.plasmid.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 11/24/2022]
Abstract
Conjugative transfer plays a major role in the transmission of antibiotic resistance in bacteria. pIP501 is a Gram-positive conjugative model plasmid with the broadest transfer host-range known so far and is frequently found in Enterococcus faecalis and Enterococcus faecium clinical isolates. The pIP501 type IV secretion system is encoded by 15 transfer genes. In this work, we focus on the VirB1-like protein TraG, a modular peptidoglycan metabolizing enzyme, and the VirB8-homolog TraM, a potential member of the translocation channel. By providing full-length traG in trans, but not with a truncated variant, we achieved full recovery of wild type transfer efficiency in the traG-knockout mutant E. faecalis pIP501ΔtraG. With peptidoglycan digestion experiments and tandem mass spectrometry we could assign lytic transglycosylase and endopeptidase activity to TraG, with the CHAP domain alone displaying endopeptidase activity. We identified a novel interaction between TraG and TraM in a bacterial-2-hybrid assay. In addition we found that both proteins localize in focal spots at the E. faecalis cell membrane using immunostaining and fluorescence microscopy. Extracellular protease digestion to evaluate protein cell surface exposure revealed that correct membrane localization of TraM requires the transmembrane helix of TraG. Thus, we suggest an essential role for TraG in the assembly of the pIP501 type IV secretion system.
Collapse
|
13
|
Kumari R, Shariq M, Kumar N, Mukhopadhyay G. Biochemical characterization of theHelicobacter pyloriCag-type IV secretion system unique component CagU. FEBS Lett 2017; 591:500-512. [DOI: 10.1002/1873-3468.12564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Rajesh Kumari
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Mohd Shariq
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Navin Kumar
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
- School of Biotechnology; Gautam Buddha University; Uttar Pradesh India
| | | |
Collapse
|
14
|
Sharifahmadian M, Baron C. Type IV Secretion in Agrobacterium tumefaciens and Development of Specific Inhibitors. Curr Top Microbiol Immunol 2017. [PMID: 29536359 DOI: 10.1007/978-3-319-75241-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) comprises 12 membrane-bound proteins, and it assembles a surface-exposed T-pilus. It is considered to be the archetypical system that is generally used to orient the nomenclature of other T4SS. Whereas the sequence similarities between T4SSs from different organisms are often limited, the general mechanism of action appears to be conserved, and the evolutionary relationship to bacterial conjugation systems and to T4SSs from animal pathogens is well established. Agrobacterium is a natural genetic engineer that is extensively used for the generation of transgenic plants for research and for agro-biotechnological applications. It also served as an early model for the understanding of pathogen-host interactions and for the transfer of macromolecular virulence factors into host cells. The knowledge on the mechanism of its T4SS inspired the search for small molecules that inhibit the virulence of bacterial pathogens and of bacterial conjugation. Inhibitors of bacterial virulence and of conjugation have interesting potential as alternatives to antibiotics and as inhibitors of antimicrobial resistance gene transfer. Mechanistic work on the Agrobacterium T4SS will continue to inspire the search for inhibitor target sites and drug design.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
15
|
Abstract
The yeast two-hybrid system is a powerful and commonly used genetic tool to investigate interactions between artificial fusion proteins inside the nucleus of yeast. Here we describe how to use the Matchmaker GAL4-based yeast two-hybrid system to detect the interaction of the Agrobacterium type VI secretion system (T6SS) sheath components TssB and TssC41. The bait and prey gene are expressed as a fusion to the GAL4 DNA-binding domain (DNA-BD) and GAL4 activation domain (AD, prey/library fusion protein) respectively. When bait and prey fusion proteins interact in yeast nucleus, the DNA-BD and AD are brought into proximity, thereby activating the transcription of reporter genes. This technology can be widely used to identify interacting partners, confirm suspected interactions, and define interacting domains.
Collapse
Affiliation(s)
- Jer-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, 11529, Taipei, Taiwan.
| |
Collapse
|
16
|
Casu B, Smart J, Hancock MA, Smith M, Sygusch J, Baron C. Structural Analysis and Inhibition of TraE from the pKM101 Type IV Secretion System. J Biol Chem 2016; 291:23817-23829. [PMID: 27634044 DOI: 10.1074/jbc.m116.753327] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacteria use type IV secretion systems (T4SSs) for a variety of macromolecular transport processes that include the exchange of genetic material. The pKM101 plasmid encodes a T4SS similar to the well-studied model systems from Agrobacterium tumefaciens and Brucella suis Here, we studied the structure and function of TraE, a homolog of VirB8 that is an essential component of all T4SSs. Analysis by X-ray crystallography revealed a structure that is similar to other VirB8 homologs but displayed an altered dimerization interface. The dimerization interface observed in the X-ray structure was corroborated using the bacterial two-hybrid assay, biochemical characterization of the purified protein, and in vivo complementation, demonstrating that there are different modes of dimerization among VirB8 homologs. Analysis of interactions using the bacterial two-hybrid and cross-linking assays showed that TraE and its homologs from Agrobacterium, Brucella, and Helicobacter pylori form heterodimers. They also interact with heterologous VirB10 proteins, indicating a significant degree of plasticity in the protein-protein interactions of VirB8-like proteins. To further assess common features of VirB8-like proteins, we tested a series of small molecules derived from inhibitors of Brucella VirB8 dimerization. These molecules bound to TraE in vitro, docking predicted that they bind to a structurally conserved surface groove of the protein, and some of them inhibited pKM101 plasmid transfer. VirB8-like proteins thus share functionally important sites, and these can be exploited for the design of specific inhibitors of T4SS function.
Collapse
Affiliation(s)
- Bastien Casu
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Jonathan Smart
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Mark A Hancock
- the SPR-MS Facility, Faculty of Medicine, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Mark Smith
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Jurgen Sygusch
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Christian Baron
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| |
Collapse
|
17
|
Fercher C, Probst I, Kohler V, Goessweiner-Mohr N, Arends K, Grohmann E, Zangger K, Meyer NH, Keller W. VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis. Sci Rep 2016; 6:24643. [PMID: 27103580 PMCID: PMC4840375 DOI: 10.1038/srep24643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/04/2016] [Indexed: 12/02/2022] Open
Abstract
Untreatable bacterial infections caused by a perpetual increase of antibiotic resistant strains represent a serious threat to human healthcare in the 21(st) century. Conjugative DNA transfer is the most important mechanism for antibiotic resistance and virulence gene dissemination among bacteria and is mediated by a protein complex, known as type IV secretion system (T4SS). The core of the T4SS is a multiprotein complex that spans the bacterial envelope as a channel for macromolecular secretion. We report the NMR structure and functional characterization of the transfer protein TraH encoded by the conjugative Gram-positive broad-host range plasmid pIP501. The structure exhibits a striking similarity to VirB8 proteins of Gram-negative secretion systems where they play an essential role in the scaffold of the secretion machinery. Considering TraM as the first VirB8-like protein discovered in pIP501, TraH represents the second protein affiliated with this family in the respective transfer operon. A markerless traH deletion in pIP501 resulted in a total loss of transfer in Enterococcus faecalis as compared with the pIP501 wild type (wt) plasmid, demonstrating that TraH is essential for pIP501 mediated conjugation. Moreover, oligomerization state and topology of TraH in the native membrane were determined providing insights in molecular organization of a Gram-positive T4SS.
Collapse
Affiliation(s)
- Christian Fercher
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| | - Ines Probst
- Division of Infectious Diseases, University Medical Center Freiburg, Germany
- Faculty of Biology, Microbiology, Albert-Ludwigs-University Freiburg, Germany
| | - Verena Kohler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| | - Nikolaus Goessweiner-Mohr
- Center for Structural System Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Germany
- Beuth University of Applied Sciences, Berlin, Germany
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Graz, Austria
| | - N. Helge Meyer
- Department of General and Visceral Surgery, University of Oldenburg, Germany
| | - Walter Keller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| |
Collapse
|
18
|
Abstract
Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.
Collapse
Affiliation(s)
- Vidya Chandran Darbari
- Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
19
|
Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems. mBio 2015; 6:e01867-15. [PMID: 26646013 PMCID: PMC4676284 DOI: 10.1128/mbio.01867-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonellatrw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. Assembly of multiprotein complexes at the right time and at the right cellular location is a fundamentally important task for any organism. In this respect, bacteria that express multiple analogous type IV secretion systems (T4SSs), each composed of around 12 different components, face an overwhelming complexity. Our work here presents the first structural investigation on factors regulating the maintenance of multiple T4SSs within a single bacterium. The structural data imply that the T4SS-expressing bacteria rely on two strategies to prevent cross-system interchangeability: (i) tight temporal regulation of expression or (ii) rapid diversification of the T4SS components. T4SSs are ideal drug targets provided that no analogous counterparts are known from eukaryotes. Drugs targeting the barriers to cross-system interchangeability (i.e., regulators) could dysregulate the structural and functional independence of discrete systems, potentially creating interference that prevents their efficient coordination throughout bacterial infection.
Collapse
|
20
|
Hwang HH, Liu YT, Huang SC, Tung CY, Huang FC, Tsai YL, Cheng TF, Lai EM. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions. PHYTOPATHOLOGY 2015; 105:160-168. [PMID: 25163013 DOI: 10.1094/phyto-05-14-0133-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.
Collapse
|
21
|
Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 2014; 39:81-95. [PMID: 25154632 DOI: 10.1111/1574-6976.12085] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Alejandro Peña
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| |
Collapse
|
22
|
Ramsey ME, Hackett KT, Bender T, Kotha C, van der Does C, Dillard JP. TraK and TraB are conserved outer membrane proteins of the Neisseria gonorrhoeae Type IV secretion system and are expressed at low levels in wild-type cells. J Bacteriol 2014; 196:2954-68. [PMID: 24914183 PMCID: PMC4135638 DOI: 10.1128/jb.01825-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the medium, and this DNA is effective in transforming other gonococci via natural transformation. In addition, the T4SS is important in the initial stages of biofilm development and mediates intracellular iron uptake in the absence of TonB. To better understand the mechanism of type IV secretion in N. gonorrhoeae, we examined the expression levels and localization of two predicted T4SS outer membrane proteins, TraK and TraB, in the wild-type strain as well as in overexpression strains and in a strain lacking all of the T4SS proteins. Despite very low sequence similarity to known homologues, TraB (VirB10 homolog) and TraK (VirB9 homolog) localized similarly to related proteins in other systems. Additionally, we found that TraV (a VirB7 homolog) interacts with TraK, as in other T4SSs. However, unlike in other systems, neither TraK nor TraB required the presence of other T4SS components for proper localization. Unlike other gonococcal T4SS proteins we have investigated, protein levels of the outer membrane proteins TraK and TraB were extremely low in wild-type cells and were undetectable by Western blotting unless overexpressed or tagged with a FLAG3 triple-epitope tag. Localization of TraK-FLAG3 in otherwise wild-type cells using immunogold electron microscopy of thin sections revealed a single gold particle on some cells. These results suggest that the gonococcal T4SS may be present in single copy per cell and that small amounts of T4SS proteins TraK and TraB are sufficient for DNA secretion.
Collapse
Affiliation(s)
- Meghan E Ramsey
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tobias Bender
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Chaitra Kotha
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Chris van der Does
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Abstract
Bacteria have evolved several secretion machineries to bring about transport of various virulence factors, nutrients, nucleic acids and cell-surface appendages that are essential for their pathogenesis. T4S (Type IV secretion) systems are versatile secretion systems found in various Gram-negative and Gram-positive bacteria and in few archaea. They are large multisubunit translocons secreting a diverse array of substrates varying in size and nature from monomeric proteins to nucleoprotein complexes. T4S systems have evolved from conjugation machineries and are implicated in antibiotic resistance gene transfer and transport of virulence factors in Legionella pneumophila causing Legionnaires’ disease, Brucella suis causing brucellosis and Helicobacter pylori causing gastroduodenal diseases. The best-studied are the Agrobacterium tumefaciens VirB/D4 and the Escherichia coli plasmid pKM101 T4S systems. Recent structural advances revealing the cryo-EM (electron microscopy) structure of the core translocation assembly and high-resolution structure of the outer-membrane pore of T4S systems have made paradigm shifts in the understanding of T4S systems. The present paper reviews the advances made in biochemical and structural studies and summarizes our current understanding of the molecular architecture of this mega-assembly.
Collapse
|
24
|
Villamil Giraldo AM, Sivanesan D, Carle A, Paschos A, Smith MA, Plesa M, Coulton J, Baron C. Type IV secretion system core component VirB8 from Brucella binds to the globular domain of VirB5 and to a periplasmic domain of VirB6. Biochemistry 2012; 51:3881-90. [PMID: 22515661 DOI: 10.1021/bi300298v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type IV secretion systems are macromolecular assemblies in the cell envelopes of bacteria that function in macromolecular translocation. Structural biology approaches have provided insights into the interaction of core complex components, but information about proteins that undergo transient interactions with membrane components has not been forthcoming. We have pursued an unbiased approach using peptide arrays and phage display to identify interaction partners and interaction domains of type IV secretion system assembly factor VirB8. These approaches identified the globular domain from the VirB5 protein to interact with VirB8. This interaction was confirmed in cross-linking, pull-down, and fluorescence resonance energy transfer (FRET)-based interaction assays. In addition, using phage display analysis, we identified different regions of VirB6 as potential interaction partners of VirB8. Using a FRET-based interaction assay, we provide the first direct experimental evidence of the interaction of a VirB6 periplasmic domain with VirB8. These results will allow us to conduct directed structural biological work and structure-function analyses aimed at defining the molecular details and biological significance of these interactions with VirB8 in the future.
Collapse
Affiliation(s)
- Ana Maria Villamil Giraldo
- Department of Biochemistry, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Association and evidence for linked recognition of type IV secretion system proteins VirB9-1, VirB9-2, and VirB10 in Anaplasma marginale. Infect Immun 2011; 80:215-27. [PMID: 22038917 DOI: 10.1128/iai.05798-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Like several other bacterial pathogens, Anaplasma marginale has an outer membrane that induces complete protection from infection and disease. However, the proteins that confer protective immunity and whether protection requires interacting proteins and/or linked T-cell and immunoglobulin G epitopes are not known. Our goal is to target the conserved type IV secretion system (T4SS) to identify conserved, immunogenic membrane proteins that are interacting and linked recognition candidates. Linked recognition is a process by which a B cell is optimally activated by a helper T cell that responds to the same, or physically associated, antigen. A. marginale T4SS proteins VirB2, VirB4-1, VirB4-2, VirB6-1, VirB7, VirB8-2, VirB9-1, VirB9-2, VirB10, VirB11, and VirD4 were screened for their ability to induce IgG and to stimulate CD4+ T cells from outer membrane-vaccinated cattle. VirB9-1, VirB9-2, and VirB10 induced the strongest IgG and T-cell responses in the majority of cattle, although three animals with major histocompatibility complex class II DRB3 restriction fragment length polymorphism types 8/23, 3/16, and 16/27 lacked T-cell responses to VirB9-1, VirB9-1 and VirB9-2, or VirB9-2 and VirB10, respectively. For these animals, VirB9-1-, VirB9-2-, and VirB10-specific IgG production may be associated with T-cell help provided by responses to an interacting protein partner(s). Interacting protein partners indicated by far-Western blotting were confirmed by immunoprecipitation assays and revealed, for the first time, specific interactions of VirB9-1 with VirB9-2 and VirB10. The immunogenicity and interactions of VirB9-1, VirB9-2, and VirB10 justify their testing as a linked protein vaccine against A. marginale.
Collapse
|
26
|
Aguilar J, Cameron TA, Zupan J, Zambryski P. Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. mBio 2011; 2:e00218-11. [PMID: 22027007 PMCID: PMC3202754 DOI: 10.1128/mbio.00218-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain of Agrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in the A. tumefaciens octopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression following vir induction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles. vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiple vir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates. IMPORTANCE Transfer of DNA and/or proteins to host cells through multiprotein type IV secretion system (T4SS) complexes that span the bacterial cell envelope is critical to bacterial pathogenesis. Early reports suggested that T4SS components localized at the cell poles. Now, higher-resolution deconvolution fluorescence microscopy reveals that all structural components of the Agrobacterium tumefaciens vir-T4SS, as well as its transported protein substrates, localize to multiple foci around the cell perimeter. These results lead to a new model of A. tumefaciens attachment to a plant cell, where A. tumefaciens takes advantage of the multiple vir-T4SS along its length to make intimate lateral contact with plant cells and thereby effectively transfer DNA and/or proteins through the vir-T4SS. The T4SS of A. tumefaciens is among the best-studied T4SS, and the majority of its components are highly conserved in different pathogenic bacterial species. Thus, the results presented can be applied to a broad range of pathogens that utilize T4SS.
Collapse
Affiliation(s)
- Julieta Aguilar
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | |
Collapse
|
27
|
The dimer interface of Agrobacterium tumefaciens VirB8 is important for type IV secretion system function, stability, and association of VirB2 with the core complex. J Bacteriol 2011; 193:2097-106. [PMID: 21398549 DOI: 10.1128/jb.00907-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Type IV secretion systems are virulence factors used by many gram-negative bacteria to translocate macromolecules across the cell envelope. VirB8 is an essential inner membrane component of type IV secretion systems, and it is believed to form a homodimer. In the absence of VirB8, the levels of several other VirB proteins were reduced (VirB1, VirB3, VirB4, VirB5, VirB6, VirB7, and VirB11) in Agrobacterium tumefaciens, underlining its importance for complex stability. To assess the importance of dimerization, we changed residues at the predicted dimer interface (V97, A100, Q93, and E94) in order to strengthen or to abolish dimerization. We verified the impact of the changes on dimerization in vitro with purified V97 variants, followed by analysis of the in vivo consequences in a complemented virB8 deletion strain. Dimer formation was observed in vivo after the introduction of a cysteine residue at the predicted interface (V97C), and this variant supported DNA transfer, but the formation of elongated T pili was not detected by the standard pilus isolation technique. Variants with changes at V97 and A100 that weaken dimerization did not support type IV secretion system functions. The T-pilus component VirB2 cofractionated with high-molecular-mass core protein complexes extracted from the membranes, and the presence of VirB8 as well as its dimer interface were important for this association. We conclude that the VirB8 dimer interface is required for T4SS function, for the stabilization of many VirB proteins, and for targeting of VirB2 to the T-pilus assembly site.
Collapse
|
28
|
An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect Immun 2010; 79:1033-43. [PMID: 21173315 DOI: 10.1128/iai.00993-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
As bacterial pathogens develop resistance against most currently used antibiotics, novel alternatives for treatment of microbial infectious diseases are urgently needed. Targeting bacterial virulence functions in order to disarm pathogens represents a promising alternative to classical antibiotic therapy. Type IV secretion systems, which are multiprotein complexes in the cell envelope that translocate effectors into host cells, are critical bacterial virulence factors in many pathogens and excellent targets for such "antivirulence" drugs. The VirB8 protein from the mammalian pathogen Brucella was chosen as a specific target, since it is an essential type IV secretion system component, it participates in multiple protein-protein interactions, and it is essential for the assembly of this translocation machinery. The bacterial two-hybrid system was adapted to assay VirB8 interactions, and a high-throughput screen identified specific small-molecule inhibitors. VirB8 interaction inhibitors also reduced the levels of VirB8 and of other VirB proteins, and many of them inhibited virB gene transcription in Brucella abortus 2308, suggesting that targeting of the secretion system has complex regulatory effects in vivo. One compound strongly inhibited the intracellular proliferation of B. abortus 2308 in a J774 macrophage infection model. The results presented here show that in vivo screens with the bacterial two-hybrid assay are suited to the identification of inhibitors of Brucella type IV secretion system function.
Collapse
|
29
|
Sivanesan D, Hancock MA, Villamil Giraldo AM, Baron C. Quantitative analysis of VirB8-VirB9-VirB10 interactions provides a dynamic model of type IV secretion system core complex assembly. Biochemistry 2010; 49:4483-93. [PMID: 20426418 DOI: 10.1021/bi902201y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type IV secretion systems are multiprotein complexes that translocate macromolecules across the bacterial cell envelope. The type IV secretion system in Brucella species encodes 12 VirB proteins that permit this pathogen to translocate effectors into mammalian cells, where they contribute to its survival inside the host. The "core" complex proteins are conserved in all type IV secretion systems, and they are believed to form the channel for substrate translocation. We have investigated the in vitro interactions between the soluble periplasmic domains of three of these VirB components, VirB8, VirB9, and VirB10, using enzyme-linked immunosorbent assays, circular dichroism, and surface plasmon resonance techniques. The in vitro experiments helped in the quantification of the self-association and binary interactions of VirB8, VirB9, and VirB10. Individually, distinct binding properties were revealed that may explain their biological functions, and collectively, we provide direct evidence of the in vitro formation of the VirB8-VirB9-VirB10 ternary complex. To assess the dynamics of these interactions in a simplified in vivo model of complex assembly, we applied the bacterial two-hybrid system in studying interactions between the full-length proteins. This approach demonstrated that VirB9 stimulates the self-association of VirB8 but inhibits VirB10-VirB10 and VirB8-VirB10 interaction. Analysis of a dimerization site variant of VirB8 (VirB8(M102R)) suggested that the interactions with VirB9 and VirB10 are independent of its self-association, which stabilizes VirB8 in this model assay. We propose a dynamic model for secretion system assembly in which VirB8 plays a role as an assembly factor that is not closely associated with the functional core complex comprising VirB9 and VirB10.
Collapse
Affiliation(s)
- Durga Sivanesan
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | | | | | | |
Collapse
|
30
|
Agrobacterium tumefaciens type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol 2010; 192:2830-8. [PMID: 20348257 DOI: 10.1128/jb.01331-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Agrobacterium tumefaciens VirB proteins assemble a type IV secretion apparatus and a T-pilus for secretion of DNA and proteins into plant cells. The pilin-like protein VirB3, a membrane protein of unknown topology, is required for the assembly of the T-pilus and for T-DNA secretion. Using PhoA and green fluorescent protein (GFP) as periplasmic and cytoplasmic reporters, respectively, we demonstrate that VirB3 contains two membrane-spanning domains and that both the N and C termini of the protein reside in the cytoplasm. Fusion proteins with GFP at the N or C terminus of VirB3 were fluorescent and, like VirB3, localized to a cell pole. Biochemical fractionation studies demonstrated that VirB3 proteins encoded by three Ti plasmids, the octopine Ti plasmid pTiA6NC, the supervirulent plasmid pTiBo542, and the nopaline Ti plasmid pTiC58, are inner membrane proteins and that VirB4 has no effect on membrane localization of pTiA6NC-encoded VirB3 (pTiA6NC VirB3). The pTiA6NC and pTiBo542 VirB2 pilins, like VirB3, localized to the inner membrane. The pTiC58 VirB4 protein was earlier found to be essential for stabilization of VirB3. Stabilization of pTiA6NC VirB3 requires not only VirB4 but also two additional VirB proteins, VirB7 and VirB8. A binary interaction between VirB3 and VirB4/VirB7/VirB8 is not sufficient for VirB3 stabilization. We hypothesize that bacteria use selective proteolysis as a mechanism to prevent assembly of unproductive precursor complexes under conditions that do not favor assembly of large macromolecular structures.
Collapse
|
31
|
Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J 2010; 425:475-88. [PMID: 20070257 DOI: 10.1042/bj20091518] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gram-negative bacteria have evolved diverse secretion systems/machineries to translocate substrates across the cell envelope. These various machineries fulfil a wide variety of functions but are also essential for pathogenic bacteria to infect human or plant cells. Secretion systems, of which there are seven, utilize one of two secretion mechanisms: (i) the one-step mechanism, whereby substrates are translocated directly from the bacterial cytoplasm to the extracellular medium or into the eukaryotic target cell; (ii) the two-step mechanism, whereby substrates are first translocated across the bacterial inner membrane; once in the periplasm, substrates are targeted to one of the secretion systems that mediate transport across the outer membrane and released outside the bacterial cell. The present review provides an example for each of these two classes of secretion systems and contrasts the various solutions evolved to secrete substrates.
Collapse
|
32
|
Fronzes R, Christie PJ, Waksman G. The structural biology of type IV secretion systems. Nat Rev Microbiol 2009; 7:703-14. [PMID: 19756009 DOI: 10.1038/nrmicro2218] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type IV secretion systems (T4SSs) are versatile secretion systems that are found in both Gram-negative and Gram-positive bacteria and secrete a wide range of substrates, from single proteins to protein-protein and protein-DNA complexes. They usually consist of 12 components that are organized into ATP-powered, double-membrane-spanning complexes. The structures of single soluble components or domains have been solved, but an understanding of how these structures come together has only recently begun to emerge. This Review focuses on the structural advances that have been made over the past 10 years and how the corresponding structural insights have helped to elucidate many of the details of the mechanism of type IV secretion.
Collapse
Affiliation(s)
- Rémi Fronzes
- Institute of Structural and Molecular Biology, Malet Street, London WC1E 7HX, UK
| | | | | |
Collapse
|
33
|
Interactions between Brucella suis VirB8 and its homolog TraJ from the plasmid pSB102 underline the dynamic nature of type IV secretion systems. J Bacteriol 2009; 191:2985-92. [PMID: 19251859 DOI: 10.1128/jb.01426-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proteinVirB8 plays a critical role in the assembly and function of the Agrobacterium tumefaciens virB type IV secretion system (T4SS). The structure of the periplasmic domain of both A. tumefaciens and Brucella suis VirB8 has been determined, and site-directed mutagenesis has revealed amino acids involved in the dimerization of VirB8 and interactions with VirB4 and VirB10. We have shown previously that TraJ, the VirB8 homologue from pSB102, and the chimeric protein TraJB8, encompassing the cytoplasmic and transmembrane (TM) domains of TraJ and the periplasmic domain of VirB8, were unable to complement a B. suis mutant containing an in-frame deletion of the virB8 gene. This suggested that the presence of the TraJ cytoplasmic and TM domains could block VirB8 dimerization or assembly in the inner membrane. By bacterial two-hybrid analysis, we found that VirB8, TraJ, and the chimeras can all interact to form both homo- and heterodimers. However, the presence of the TM domain of TraJ resulted in much stronger interactions in both the homo- and heterodimers. We expressed the wild-type and chimeric proteins in wild-type B. suis. The presence of proteins carrying the TM domain of TraJ had a dominant negative effect, leading to complete loss of virulence. This suggests that the T4SS is a dynamic structure and that strong interactions block the spatial flexibility required for correct assembly and function.
Collapse
|
34
|
Abstract
Type IV secretion systems (T4SSs) are important virulence factors used by Gram-negative bacterial pathogens to inject effectors into host cells or to spread plasmids harboring antibiotic resistance genes. We report the 15 angstrom resolution cryo-electron microscopy structure of the core complex of a T4SS. The core complex is composed of three proteins, each present in 14 copies and forming a approximately 1.1-megadalton two-chambered, double membrane-spanning channel. The structure is double-walled, with each component apparently spanning a large part of the channel. The complex is open on the cytoplasmic side and constricted on the extracellular side. Overall, the T4SS core complex structure is different in both architecture and composition from the other known double membrane-spanning secretion system that has been structurally characterized.
Collapse
Affiliation(s)
- Rémi Fronzes
- Institute of Structural and Molecular Biology, School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Eva Schäfer
- Institute of Structural and Molecular Biology, School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Luchun Wang
- Institute of Structural and Molecular Biology, School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
- Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
35
|
Jakubowski SJ, Kerr JE, Garza I, Krishnamoorthy V, Bayliss R, Waksman G, Christie PJ. Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 2008; 71:779-94. [PMID: 19054325 DOI: 10.1111/j.1365-2958.2008.06565.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Agrobacterium tumefaciens VirB10 couples inner membrane (IM) ATP energy consumption to substrate transfer through the VirB/D4 type IV secretion (T4S) channel and also mediates biogenesis of the virB-encoded T pilus. Here, we determined the functional importance of VirB10 domains denoted as the: (i) N-terminal cytoplasmic region, (ii) transmembrane (TM) alpha-helix, (iii) proline-rich region (PRR) and (iv) C-terminal beta-barrel domain. Mutations conferring a transfer- and pilus-minus (Tra(-), Pil(-)) phenotype included PRR deletion and beta-barrel substitution mutations that prevented VirB10 interaction with the outer membrane (OM) VirB7-VirB9 channel complex. Mutations permissive for substrate transfer but blocking pilus production (Tra(+), Pil(-)) included a cytoplasmic domain deletion and TM domain insertion mutations. Another class of Tra(+) mutations also selectively disrupted pilus biogenesis but caused release of pilin monomers to the milieu; these mutations included deletions of alpha-helical projections extending from the beta-barrel domain. Our findings, together with results of Cys accessibility studies, indicate that VirB10 stably integrates into the IM, extends via its PRR across the periplasm, and interacts via its beta-barrel domain with the VirB7-VirB9 channel complex. The data further support a model that distinct domains of VirB10 regulate formation of the secretion channel or the T pilus.
Collapse
Affiliation(s)
- Simon J Jakubowski
- University of Texas-Houston Medical School, Department of Microbiology and Molecular Genetics, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J Bacteriol 2008; 191:278-86. [PMID: 18952796 DOI: 10.1128/jb.01031-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type IV secretion system is an important virulence factor in several host cell-associated pathogens, as it delivers various bacterial macromolecules to target eukaryotic cells. Genes homologous to several virB genes and virD4 of Agrobacterium tumefaciens are found in an intravacuolar pathogen Ehrlichia chaffeensis, the tick-borne causative agent of human monocytic ehrlichiosis. In particular, despite its small genome size, E. chaffeensis has four tandem virB6 paralogs (virB6-1, -2, -3, and -4) that are 3- to 10-fold larger than A. tumefaciens virB6. The present study for the first time illustrates the relevance of the larger quadruple VirB6 paralogs by demonstrating the protein expression and interaction in E. chaffeensis. All four virB6 paralogs were cotranscribed in THP-1 human leukemia and ISE6 tick cell cultures. The four VirB6 proteins and VirB9 were expressed by E. chaffeensis in THP-1 cells, and amounts of these five proteins were similar in isolated E. chaffeensis-containing vacuoles and vacuole-free E. chaffeensis. In addition, an 80-kDa fragment of VirB6-2 was detected, which was strikingly more prevalent in E. chaffeensis-containing vacuoles than in vacuole-free E. chaffeensis. Coimmunoprecipitation analysis revealed VirB9 interaction with VirB6-1 and VirB6-2; VirB6-4 interaction with VirB6-1, VirB6-2, and VirB6-3; and VirB6-2 80-kDa fragment interaction with VirB6-3 and VirB6-4. The interaction of VirB9 and VirB6-2 was confirmed by far-Western blotting. The results suggest that E. chaffeensis VirB9, the quadruple VirB6 proteins, and the VirB6-2 80-kDa fragment form a unique molecular subassembly to cooperate in type IV secretion.
Collapse
|
37
|
Kutter S, Buhrdorf R, Haas J, Schneider-Brachert W, Haas R, Fischer W. Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 2008; 190:2161-71. [PMID: 18178731 PMCID: PMC2258873 DOI: 10.1128/jb.01341-07] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/23/2007] [Indexed: 12/16/2022] Open
Abstract
Type IV secretion systems are possibly the most versatile protein transport systems in gram-negative bacteria, with substrates ranging from small proteins to large nucleoprotein complexes. In many cases, such as the cag pathogenicity island of Helicobacter pylori, genes encoding components of a type IV secretion system have been identified due to their sequence similarities to prototypical systems such as the VirB system of Agrobacterium tumefaciens. The Cag type IV secretion system contains at least 14 essential apparatus components and several substrate translocation and auxiliary factors, but the functions of most components cannot be inferred from their sequences due to the lack of similarities. In this study, we have performed a comprehensive sequence analysis of all essential or auxiliary Cag components, and we have used antisera raised against a subset of components to determine their subcellular localization. The results suggest that the Cag system contains functional analogues to all VirB components except VirB5. Moreover, we have characterized mutual stabilization effects and performed a comprehensive yeast two-hybrid screening for potential protein-protein interactions. Immunoprecipitation studies resulted in identification of a secretion apparatus subassembly at the outer membrane. Combining these data, we provide a first low-resolution model of the Cag type IV secretion apparatus.
Collapse
Affiliation(s)
- Stefan Kutter
- Abteilung Bakteriologie, Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, Ludwig Maximilians Universität, 80336 München, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Baron C. VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem Cell Biol 2007; 84:890-9. [PMID: 17215876 DOI: 10.1139/o06-148] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type IV secretion systems are used by many gram-negative bacteria for the translocation of macromolecules (proteins, DNA, or DNA-protein complexes) across the cell envelope. Among them are many pathogens for which type IV secretion systems are essential virulence factors. Type IV secretion systems comprise 8-12 conserved proteins, which assemble into a complex spanning the inner and the outer membrane, and many assemble extracellular appendages, such as pili, which initiate contact with host and recipient cells followed by substrate translocation. VirB8 is an essential assembly factor for all type IV secretion systems. Biochemical, cell biological, genetic, and yeast two-hybrid analyses showed that VirB8 undergoes multiple interactions with other type IV secretion system components and that it directs polar assembly of the membrane-spanning complex in the model organism Agrobacterium tumefaciens. The availability of the VirB8 X-ray structure has enabled a detailed structure-function analysis, which identified sites for the binding of VirB4 and VirB10 and for self-interaction. Due to its multiple interactions, VirB8 is an excellent model for the analysis of assembly factors of multiprotein complexes. In addition, VirB8 is a possible target for drugs that target its protein-protein interactions, which would disarm bacteria by depriving them of their essential virulence functions.
Collapse
Affiliation(s)
- Christian Baron
- McMaster University, Department of Biology and Antimicrobial Research Centre, 1280 Main St. West, Hamilton, ON LS8 4K1, Canada.
| |
Collapse
|
39
|
Lopez JE, Palmer GH, Brayton KA, Dark MJ, Leach SE, Brown WC. Immunogenicity of Anaplasma marginale type IV secretion system proteins in a protective outer membrane vaccine. Infect Immun 2007; 75:2333-42. [PMID: 17339347 PMCID: PMC1865776 DOI: 10.1128/iai.00061-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rickettsial pathogens in the genera Anaplasma and Ehrlichia cause acute infection in immunologically naive hosts and are major causes of tick-borne disease in animals and humans. Immunization with purified outer membranes induces protection against acute Anaplasma marginale infection and disease, and a proteomic and genomic approach recently identified 21 proteins within the outer membrane immunogen in addition to the well-characterized major surface proteins MSP1 to MSP5. Among the newly described proteins were the type IV secretion system (TFSS) proteins VirB9, VirB10, and conjugal transfer protein (CTP). In other gram-negative bacteria, TFSS proteins form channels, facilitate secretion of molecules, and are required for intracellular survival. However, TFSS proteins have not been explored as vaccine antigens. In this study we demonstrate that in Anaplasma marginale outer membrane-vaccinated cattle, VirB9, VirB10, and CTP are recognized by serum immunoglobulin G2 (IgG2) and stimulate memory T-lymphocyte proliferation and gamma interferon secretion. VirB9 induced the greatest proliferation in CD4+ T-cell lines, and VirB9-specific CD4+ T-cell clones responded to three A. marginale strains, confirming the VirB9-specific T-cell responses are directed against epitopes in the native protein. The three TFSS proteins are highly conserved with orthologous proteins in Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Ehrlichia canis. Recognition of TFSS antigens by CD4+ T cells and by IgG2 from cattle immunized with the protective outer membrane fraction provides a rationale for including these proteins in development of vaccines against A. marginale and related pathogens.
Collapse
Affiliation(s)
- Job E Lopez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | |
Collapse
|
40
|
Rangrez AY, Dayananda KM, Atanur S, Joshi R, Patole MS, Shouche YS. Detection of conjugation related type four secretion machinery in Aeromonas culicicola. PLoS One 2006; 1:e115. [PMID: 17205119 PMCID: PMC1762418 DOI: 10.1371/journal.pone.0000115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 11/28/2006] [Indexed: 11/25/2022] Open
Abstract
Background Aeromonas sp. can now be considered relatively common enteropathogens due to the increase of diseases in humans. Aeromonas culicicola is a gram negative rod-shaped bacterium isolated for the first time from the mosquito mid-gut, but subsequently detected in other insects and waters also. Our previous study discovered that A. culicicola harbors three plasmids, which we designated as pAc3249A, pAc3249B and pAc3249C. We investigated and report here the existence and genetic organization of a Conjugal Type IV Secretion System (TFSS) in pAc3249A. Methodology/Principle Finding The complete operon is 11,061 bp in length and has G+C content of 47.20% code for 12 ORFs. The gene order and orientation were similar to those found in other bacteria with some differences. We have designated this system as AcTra for Aeromonas culicicola transfer system. BLAST results of ORFs and phylogenetic analysis showed significant similarity towards the respective proteins of the IncI2 plasmid R721 of E. coli. Other bioinformatics studies have been performed to predict conserved motifs/domains, signal peptides, transmembrane helices, etc. of the ORFs. Conclusions/Significance BLAST results of ORFs and phylogenetic analysis showed significant similarity towards the respective proteins of the IncI2 plasmid R721 of E. coli.
Collapse
Affiliation(s)
- Ashraf Yusuf Rangrez
- Molecular Biology Unit, National Centre for Cell Science, Pune University Campus, Pune, Maharashtra, India
| | | | - Santosh Atanur
- Centre for Development and Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Rajendra Joshi
- Centre for Development and Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Milind S. Patole
- Molecular Biology Unit, National Centre for Cell Science, Pune University Campus, Pune, Maharashtra, India
| | - Yogesh S. Shouche
- Molecular Biology Unit, National Centre for Cell Science, Pune University Campus, Pune, Maharashtra, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Draper O, Middleton R, Doucleff M, Zambryski PC. Topology of the VirB4 C terminus in the Agrobacterium tumefaciens VirB/D4 type IV secretion system. J Biol Chem 2006; 281:37628-35. [PMID: 17038312 DOI: 10.1074/jbc.m606403200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative type IV secretion systems (T4SSs) transfer proteins and DNA to eukaryotic and/or prokaryotic recipients resulting in pathogenesis or conjugative DNA transfer. VirB4, one of the most conserved proteins in these systems, has both energetic and structural roles in substrate translocation. We previously predicted a structural model for the large C-terminal domain (residues 425-789) of VirB4 of Agrobacterium tumefaciens. Here we have defined a homology-based structural model for Agrobacterium VirB11. Both VirB4 and VirB11 models predict hexameric oligomers. Yeast two-hybrid interactions define peptides in the C terminus of VirB4 and the N terminus of VirB11 that interact with each other. These interactions were mapped onto the homology models to predict direct interactions between the hexameric interfaces of VirB4 and VirB11 such that the VirB4 C terminus stacks above VirB11 in the periplasm. In support of this, fractionation and Western blotting show that the VirB4 C terminus is localized to the membrane and periplasm rather than the cytoplasm of cells. Additional high resolution yeast two-hybrid results demonstrate interactions between the C terminus of VirB4 and the periplasmic portions of VirB1, VirB8, and VirB10. Genetic studies reveal dominant negative interactions and thus function of the VirB4 C terminus in vivo. The above data are integrated with the existing body of literature to propose a structural, periplasmic role for the C-terminal half of the Agrobacterium VirB4 protein.
Collapse
Affiliation(s)
- Olga Draper
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
42
|
Busler VJ, Torres VJ, McClain MS, Tirado O, Friedman DB, Cover TL. Protein-protein interactions among Helicobacter pylori cag proteins. J Bacteriol 2006; 188:4787-800. [PMID: 16788188 PMCID: PMC1482994 DOI: 10.1128/jb.00066-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.
Collapse
Affiliation(s)
- Valerie J Busler
- Department of Microbiology and Immunology, Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
43
|
Paschos A, Patey G, Sivanesan D, Gao C, Bayliss R, Waksman G, O'Callaghan D, Baron C. Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc Natl Acad Sci U S A 2006; 103:7252-7. [PMID: 16648257 PMCID: PMC1464329 DOI: 10.1073/pnas.0600862103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
VirB8-like proteins are essential components of type IV secretion systems, bacterial virulence factors that mediate the translocation of effector molecules from many bacterial pathogens into eukaryotic cells. Based on cell biological, genetic, and x-ray crystallographic data, VirB8 was proposed to undergo multiple protein-protein interactions to mediate assembly of the translocation machinery. Here we report the results of a structure-function analysis of the periplasmic domain of VirB8 from the mammalian pathogen Brucella suis, which identifies amino acid residues required for three protein-protein interactions. VirB8 variants changed at residues proposed to be involved in dimerization, and protein-protein interactions were purified and characterized in vitro and in vivo. Changes at M102, Y105, and E214 affected the self-association as measured by analytical ultracentrifugation and gel filtration. The interaction with B. suis VirB10 was reduced by changes at T201, and change at R230 inhibited the interaction with VirB4 in vitro. The in vivo functionality of VirB8 variants was determined by complementation of growth in macrophages by a B. suis virB8 mutant and by using a heterologous assay of type IV secretion system assembly in Agrobacterium tumefaciens. Changes at Y105, T201, R230, and at several other residues impaired the in vivo function of VirB8, suggesting that we have identified interaction sites of relevance in the natural biological context.
Collapse
Affiliation(s)
- Athanasios Paschos
- *Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Gilles Patey
- Institut National de la Santé et de la Recherche Médicale U431, Faculté de Médecine, Avenue Kennedy, F-30900 Nîmes, France
| | - Durga Sivanesan
- *Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Chan Gao
- *Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Richard Bayliss
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
- Institute of Structural Molecular Biology, University College London/Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| | - Gabriel Waksman
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; and
- Institute of Structural Molecular Biology, University College London/Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| | - David O'Callaghan
- Institut National de la Santé et de la Recherche Médicale U431, Faculté de Médecine, Avenue Kennedy, F-30900 Nîmes, France
| | - Christian Baron
- *Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Bailey S, Ward D, Middleton R, Grossmann JG, Zambryski PC. Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci U S A 2006; 103:2582-7. [PMID: 16481621 PMCID: PMC1413848 DOI: 10.1073/pnas.0511216103] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial type IV secretion systems (T4SS) translocate DNA and/or proteins to recipient cells, thus providing a mechanism for conjugative transfer of genetic material and bacterial pathogenesis. Here we describe the first structure of a core component from the archetypal Agrobacterium tumefaciens T4SS: the 2.2-A resolution crystal structure of the VirB8 periplasmic domain (pVirB8(AT)). VirB8 forms a dimer in the crystal, and we identify residues likely important for stabilization of the dimer interface. Structural comparison of pVirB8(AT) with Brucella suis VirB8 confirms that the monomers have a similar fold. In addition, the pVirB8(AT) dimer superimposes very closely on the B. suis VirB8 dimer, supporting the proposal that dimer formation in the crystal reflects self-interactions that are biologically significant. The evolutionary conservation level for each residue was obtained from a data set of 84 VirB8 homologs and projected onto the protein structure to indicate conserved surface patches that likely contact other T4SS proteins.
Collapse
Affiliation(s)
- Susan Bailey
- *Molecular Biophysics Group, Council for the Central Laboratory of the Research Councils Daresbury Laboratory, Warrington WA4 4AD, United Kingdom; and
| | - Doyle Ward
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Rebecca Middleton
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - J. Gunter Grossmann
- *Molecular Biophysics Group, Council for the Central Laboratory of the Research Councils Daresbury Laboratory, Warrington WA4 4AD, United Kingdom; and
| | - Patricia C. Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
45
|
Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 2006; 59:451-85. [PMID: 16153176 PMCID: PMC3872966 DOI: 10.1146/annurev.micro.58.030603.123630] [Citation(s) in RCA: 483] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type IV secretion (T4S) systems are ancestrally related to bacterial conjugation machines. These systems assemble as a translocation channel, and often also as a surface filament or protein adhesin, at the envelopes of Gram-negative and Gram-positive bacteria. These organelles mediate the transfer of DNA and protein substrates to phylogenetically diverse prokaryotic and eukaryotic target cells. Many basic features of T4S are known, including structures of machine subunits, steps of machine assembly, substrates and substrate recognition mechanisms, and cellular consequences of substrate translocation. A recent advancement also has enabled definition of the translocation route for a DNA substrate through a T4S system of a Gram-negative bacterium. This review emphasizes the dynamics of assembly and function of model conjugation systems and the Agrobacterium tumefaciens VirB/D4 T4S system. We also summarize salient features of the increasingly studied effector translocator systems of mammalian pathogens.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, UT-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
46
|
Judd PK, Mahli D, Das A. Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6. MICROBIOLOGY-SGM 2005; 151:3483-3492. [PMID: 16272372 DOI: 10.1099/mic.0.28337-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The VirB proteins of Agrobacterium tumefaciens assemble a T-pilus and a type IV secretion (T4S) apparatus for the transfer of DNA and proteins to plant cells. VirB6 is essential for DNA transfer and is a polytopic integral membrane protein with at least four membrane-spanning domains. VirB6 is postulated to function in T-pilus biogenesis and to be a component of the T4S apparatus. To identify amino acids required for VirB6 function, random mutations were introduced into virB6, and mutants that failed to complement a deletion in virB6 in tumour formation assays were isolated. Twenty-one non-functional mutants were identified, eleven of which had a point mutation that led to a substitution in a single amino acid. Characterization of the mutants indicated that the N-terminal large periplasmic domain and the transmembrane domain TM3 are required for VirB6 function. TM3 has an unusual sequence feature in that it is rich in bulky hydrophobic amino acids. This feature is found conserved in the VirB6 family of proteins. Studies on the effect of VirB6 on other VirB proteins showed that the octopine Ti-plasmid VirB6, unlike its nopaline Ti-plasmid counterpart, does not affect accumulation of VirB3 and VirB5, but has a strong negative effect on the accumulation of the VirB7-VirB7 dimer. Using indirect immunofluorescence microscopy the authors recently demonstrated that VirB6 localizes to a cell pole in a VirB-dependent manner. Mutations identified in the present study did not affect polar localization of the protein or the formation of the VirB7-VirB7 dimer. A VirB6-GFP fusion that contained the entire VirB6 ORF did not localize to a cell pole in either the presence or the absence of the other VirB proteins. IMF studies using dual labelling demonstrated that VirB6 colocalizes with VirB3 and VirB9, and not with VirB4, VirB5 and VirB11. These results support the conclusion that VirB6 is a structural component of the T4S apparatus.
Collapse
Affiliation(s)
- Paul K Judd
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - David Mahli
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Anath Das
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
de Paz HD, Sangari FJ, Bolland S, García-Lobo JM, Dehio C, de la Cruz F, Llosa M. Functional interactions between type IV secretion systems involved in DNA transfer and virulence. MICROBIOLOGY-SGM 2005; 151:3505-3516. [PMID: 16272374 DOI: 10.1099/mic.0.28410-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reports an analysis of the functional interactions between type IV secretion systems (T4SS) that are part of the conjugative machinery for horizontal DNA transfer (cT4SS), and T4SS involved in bacterial pathogenicity (pT4SS). The authors' previous work showed that a conjugative coupling protein (T4CP) interacts with the VirB10-type component of the T4SS in order to recruit the protein-DNA complex to the transporter for conjugative DNA transfer. This study now shows by two-hybrid analysis that conjugative T4CPs also interact with the VirB10 element of the pT4SS of Agrobacterium tumefaciens (At), Bartonella tribocorum (Bt) and Brucella suis (Bs). Moreover, the VirB10 component of a cT4SS (protein TrwE of plasmid R388) could be partially substituted by that of a pT4SS (protein TrwE of Bt) for conjugation. This result opens the way for the construction of hybrid T4SS that deliver DNA into animal cells. Interestingly, in the presence of part of the Bs T4SS the R388 T4SS protein levels were decreased and R388 conjugation was strongly inhibited. Complementation assays between the Trw systems of R388 and Bt showed that only individual components from the so-called 'core complex' could be exchanged, supporting the concept that this core is the common scaffold for the transport apparatus while the other 'peripheral components' are largely system-specific.
Collapse
Affiliation(s)
- Héctor D de Paz
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Félix J Sangari
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Silvia Bolland
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Juan M García-Lobo
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Christoph Dehio
- Division of Molecular Microbiology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Fernando de la Cruz
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Matxalen Llosa
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| |
Collapse
|
48
|
Baron C. From bioremediation to biowarfare: On the impact and mechanism of type IV secretion systems. FEMS Microbiol Lett 2005; 253:163-70. [PMID: 16239080 DOI: 10.1016/j.femsle.2005.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 11/28/2022] Open
Abstract
Type IV secretion systems are employed by a wide variety of Gram-negative microorganisms for the translocation of macromolecules across the cell envelope. The translocated substrates (proteins, protein-DNA complexes and DNA) are as diverse as the organisms on the donor and recipient side of the translocation process. Over the course of evolution, these macromolecular transporters were adapted to many different purposes, but their basic mechanism was conserved. They impact human life in various ways, as there are driving forces of horizontal gene transfer, which spreads biodegradative capabilities of environmental bacteria as well as antibiotic resistance of pathogens in hospitals. Also, they translocate toxins and other effectors, which have an effect on host cell metabolism and are essential for the virulence of bacterial pathogens. We here present recent developments of research on the mechanism of type IV secretion focusing on the energetization of transport and assembly processes, formation of the translocation channel and of surface-exposed pili, which initiate host cell interactions.
Collapse
Affiliation(s)
- Christian Baron
- McMaster University, Department of Biology, 1280 Main Street, West Hamilton, ON, Canada.
| |
Collapse
|
49
|
Schröder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 2005; 54:1-25. [PMID: 15907535 DOI: 10.1016/j.plasmid.2005.02.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The mating pair formation (Mpf) system functions as a secretion machinery for intercellular DNA transfer during bacterial conjugation. The components of the Mpf system, comprising a minimal set of 10 conserved proteins, form a membrane-spanning protein complex and a surface-exposed sex pilus, which both serve to establish intimate physical contacts with a recipient bacterium. To function as a DNA secretion apparatus the Mpf complex additionally requires the coupling protein (CP). The CP interacts with the DNA substrate and couples it to the secretion pore formed by the Mpf system. Mpf/CP conjugation systems belong to the family of type IV secretion systems (T4SS), which also includes DNA-uptake and -release systems, as well as effector protein translocation systems of bacterial pathogens such as Agrobacterium tumefaciens (VirB/VirD4) and Helicobacter pylori (Cag). The increased efforts to unravel the molecular mechanisms of type IV secretion have largely advanced our current understanding of the Mpf/CP system of bacterial conjugation systems. It has become apparent that proteins coupled to DNA rather than DNA itself are the actively transported substrates during bacterial conjugation. We here present a unified and updated view of the functioning and the molecular architecture of the Mpf/CP machinery.
Collapse
Affiliation(s)
- Gunnar Schröder
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
50
|
Christie PJ, Cascales E. Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol 2005; 22:51-61. [PMID: 16092524 PMCID: PMC3921681 DOI: 10.1080/09687860500063316] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The type IV secretion systems (T4SS) are widely distributed among the gram-negative and -positive bacteria. These systems mediate the transfer of DNA and protein substrates across the cell envelope to bacterial or eukaryotic cells generally through a process requiring direct cell-to-cell contact. Bacteria have evolved T4SS for survival during establishment of pathogenic or symbiotic relationships with eukaryotic hosts. The Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation machines serve as models for detailed mechanistic studies aimed at elucidating the nature of translocation signals, machine assembly pathways and architectures, and the dynamics of substrate translocation. The A. tumefaciens VirB/D4 T4SS are polar-localized organelles composed of a secretion channel and an extracellular T pilus. These T4SS are assembled from 11 or more subunits. whose membrane topologies, intersubunit contacts and, in some cases, 3-dimensional structures are known. Recently, powerful in vivo assays have identified C-terminal translocation signals, defined for the first time the translocation route for a DNA substrate through a type IV secretion channel, and supplied evidence that ATP energy consumption contributes to a late stage of machine morphogenesis. Together, these recent findings describe the mechanics of type IV secretion in unprecedented detail.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, UT-Houston Medical School, Houston, Texas 77030, USA.
| | | |
Collapse
|