1
|
Nkoh JN, Ye T, Shang C, Li C, Tu J, Li S, Wu Z, Chen P, Hussain Q, Esemu SN. Deciphering the mechanisms for preferential tolerance of Escherichia coli BL21 to Cd(II) over Cu(II) and Ni(II): A combined physiological, biochemical, and multiomics perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118195. [PMID: 40273607 DOI: 10.1016/j.ecoenv.2025.118195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Environmental pollution severely affects ecological functions/health, and nondegradable pollutants such as heavy metals (HMs) cause significant damage to living organisms. Escherichia coli is one of the most studied life forms, and its response to oxidative stress is driven by a complex ensemble of mechanisms driven by transcriptomic-level adjustments. However, the magnitude of the physiological, metabolic, and biochemical alterations and their relationships with transcriptomic changes remain unclear. Studying the growth of E. coli in Cd-, Cu-, and Ni-polluted media at pH 5.0, we observed that (i) downregulation of the alkyl hydroperoxide complex, glutathione reductase, and glutathione S-transferase by Cd inhibited H2O2 degradation, and the accumulated H2O2 was respectively 2.7, 1.7, and 2.4 times greater than that in the control, Cu, and Ni treatments; (ii) Zn-associated resistance protein (ZraP) was the major scavenger of Cd, with a 140.7-fold increase in its expression; (iii) the P-type Cu+ transporter (CopA), multicopper oxidase (CueO), and heteromultimeric transport system (CusCBAF) controlled the excretion and detoxification of Cu; (iv) the Cd2+/Zn2+/Pb2+-exporting P-type ATPase (ZntA) and transcriptional activator ZntR were the major transporters of Ni; (v) Cd upregulated biofilm formation and synthesis of secondary metabolites more than Cu and Ni, which resulted in increased adsorption and improved tolerance; and (vi) the activity of superoxide dismutase in Cu-spiked cells was 153.2 %, 141.7 %, and 172.7 % higher and corresponded to 85.7 %, 524.5 %, and 491.5 % lower O2●⁻ in the control, Cd-, and Ni-spiked cells, respectively. This study reveals E. coli's preferential tolerance mechanisms to Cd rather than Cu and Ni and demonstrates mechanisms for its survival in highly polluted environments.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Ting Ye
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Chenjing Shang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China.
| | - Chunyuan Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jianguang Tu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Sihui Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zuping Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Pengyu Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Quaid Hussain
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Seraphine Nkie Esemu
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon; Laboratory for Emerging Infectious Diseases, University of Buea, P.O. Box 63, Buea, Cameroon
| |
Collapse
|
2
|
Sun Y, Qiu M, Yang J, Wang S, Zhao T, Lu D, Yan B, Shao Z, Jiang Y, Zhang Y, Fu T. Chlorella pyrenoidosa-Based Antibiotic Liposomal Gel Promotes Wound Healing by Scavenging Biofilm and Accelerating Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29132-29145. [PMID: 40344529 DOI: 10.1021/acsami.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The biofilm functions as a physical barrier for bacteria, enhancing their resistance to antibiotics and contributing to recurrent infections. Therefore, the scavenging of biofilms has become an important strategy for treating chronic infections. In this study, we demonstrated that Chlorella pyrenoidosa (CP) downregulates the biofilm adhesion genes of Staphylococcus aureus and inhibits biofilm formation. Through the combination of CP with the antibiotic drug berberine hydrochloride (BH) and stabilizers (Poloxamer 188 and Poloxamer 407), we developed a biologically active hydrogel system, which we termed the BHLip@CP gel. Under laser irradiation, the BHLip@CP gel generated reactive oxygen species, which assisted BH to effectively inhibit biofilm formation in S. aureus and reduce the production of virulence factors. In addition, the BHLip@CP gel accelerated wound healing in S. aureus infections by promoting angiogenesis and skin regeneration. This study proposes an innovative strategy to simultaneously eliminate bacterial biofilms and promote wound healing via a synergistic approach that combines chemical and photodynamic processes.
Collapse
Affiliation(s)
- Yuping Sun
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengmeng Qiu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingwen Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siting Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianlong Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danya Lu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baofei Yan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - ZhiTao Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yitian Jiang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Saito M, McIlvin MR. The Iron Metalloproteome of Pseudomonas aeruginosa Under Oxic and Anoxic Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633287. [PMID: 39868235 PMCID: PMC11760780 DOI: 10.1101/2025.01.15.633287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Pseudomonas aeruginosa is a major contributor to human infections and is widely distributed in the environment. Its ability for growth under aerobic and anaerobic conditions provides adaptability to environmental changes and in confronting immune responses. We applied native 2-dimensional metalloproteomics to P. aeruginosa to examine how use of iron within the metallome responds to oxic and anoxic conditions. Analyses revealed four iron peaks comprised of metalloproteins with synergistic functions, including: 1) respiratory and metabolic enzymes, 2) oxidative stress response enzymes, 3) DNA synthesis and nitrogen assimilation enzymes, and 4) denitrification enzymes and related copper enzymes. Fe peaks were larger under anoxic conditions, consistent with increased iron demand due to anaerobic metabolism and with the denitrification peak absent under oxic conditions. Three ferritins co-eluted with the first and third iron peaks, localizing iron storage with these functions. Several enzymes were more abundant at low oxygen, including alkylhydroperoxide reductase C that deactivates organic radicals produced by denitrification, all three classes of ribonucleotide reductases (including monomers and oligomer forms), ferritin (increasing in ratio relative to bacterioferritin), and denitrification enzymes. Superoxide dismutase and homogentisate 1,2-dioxygenase were more abundant at high oxygen. Several Fe peaks contained iron metalloproteins that co-eluted earlier than their predicted size, implying additional protein-protein interactions and suggestive of cellular organization that contributes to iron prioritization in Pseudomonas with its large genome and flexible metabolism. This study characterized the iron metalloproteome of one of the more complex prokaryotic microorganisms, attributing enhanced iron use under anaerobic denitrifying metabolism to its specific metalloprotein constituents.
Collapse
|
4
|
Xu XJ, Cui R, Liu YY, Liu WR, Wang ZL, Li CM, Ju YX. Regulation of alkyl hydroperoxidase D by AhpdR in the antioxidant enzyme system of Pseudomonas aeruginosa. Biochem Biophys Res Commun 2025; 763:151797. [PMID: 40222331 DOI: 10.1016/j.bbrc.2025.151797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
An overabundance of reactive oxygen species (ROS) can disrupt the initial redox equilibrium within cells, resulting in metabolic issues, cellular harm, and potentially death. Pseudomonas aeruginosa is a widespread gram-negative environmental pathogen that causes serious infectious diseases in humans. P. aeruginosa has developed various antioxidant defense systems. In this study, we analyzed the transcription factor AhpdR, encoded by PA0268, which regulates the alkyl hydroperoxide D (AhpD, encoded by PA0269) and is involved in the antioxidant enzyme system of P. aeruginosa. Our experimental results demonstrated that the deletion of PA0268 significantly increase the mRNA transcription levels of various genes of the operon ahpD-PA0270-PA0271 in P. aeruginosa. Moreover, the absence of PA0268 increased AhpD protein expression. Sensitivity assays showed that AhpD was likely to play a role in resisting hydrogen peroxide at low concentrations of hydrogen peroxide, whereas P. aeruginosa seemed to use other more efficient antioxidant strategies to resist higher concentrations of hydrogen peroxide. These findings indicate that P. aeruginosa possesses the transcription factor PA0268, which is involved in alkyl hydroperoxide reductase systems and two-tiered defense pathways against hydrogen peroxide, involving AhpD and KatA. Furthermore, ahpD and PA0270-PA0271 genes may play novel roles in cellular activities against ROS.
Collapse
Affiliation(s)
- Xue-Jie Xu
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China.
| | - Rui Cui
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Yuan-Yuan Liu
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Wei-Rong Liu
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Zan-Li Wang
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Chao-Meng Li
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| | - Ye-Xuan Ju
- Medical school (Health School), Xianyang Polytechnic Institute, Xi'an, ShaanXi, 712000, China
| |
Collapse
|
5
|
Mu B, Lei X, Zhang Y, Zhang J, Du Q, Li Y, Huang D, Wang L, Li J, Li Y, Zuo Y. Injectable and Conductive Polyurethane Gel with Load-Responsive Antibiosis for Sustained Root Canal Disinfection. Gels 2025; 11:346. [PMID: 40422366 DOI: 10.3390/gels11050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
To address the limitations of conventional antibacterial therapies, we developed an injectable, conductive polyurethane-based composite gel system for sustained root canal disinfection. This gel incorporates piezoelectric nanoparticles (n-BaTiO3) and conductive segments (aniline trimer, AT) within a polyurethane matrix, which synergistically interact with a static antimicrobial agent (n-ZnO) to achieve dynamic, mechano-responsive antibacterial activity. Under cyclic compression (simulating mastication), the piezoelectric gels exhibited enhanced electroactivity via the mechano-electric coupling effect, generating 2-fold higher voltage and a 1.8-1.9× increase in current compared to non-piezoelectric controls. The dynamic electroactivity of the gels enabled superior long-term performance, achieving 92-97% biofilm eradication, significantly higher than the static n-ZnO-only gel (88%). XPS and UV-vis spectroscopy analyses confirmed mechano-electrochemically amplified reactive oxygen species (ROS) generation, which contributed to improved biofilm disruption. The ISO-compliant gel provides durable, load-responsive disinfection while maintaining good biocompatibility, offering a promising solution to prevent post-treatment reinfection.
Collapse
Affiliation(s)
- Bo Mu
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaoyu Lei
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yinglong Zhang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jingzheng Zhang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Qingda Du
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yuping Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Dongyu Huang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Li Wang
- School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu 610500, China
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Imlay JA. The Barrier Properties of Biological Membranes Dictate How Cells Experience Oxidative Stress. Mol Microbiol 2025; 123:454-463. [PMID: 40091849 PMCID: PMC12051229 DOI: 10.1111/mmi.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Molecular oxygen, superoxide, and hydrogen peroxide are related oxidants that can each impair the growth of microorganisms. Strikingly, these species exhibit large differences in their abilities to cross biological membranes. This Perspective explains the basis of those differences, and it describes natural situations in which the permeability of membranes to oxidants determines the amount of stress that a bacterium experiences.
Collapse
Affiliation(s)
- James A. Imlay
- Department of MicrobiologyUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
7
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial. PLoS Genet 2025; 21:e1011610. [PMID: 40053555 PMCID: PMC11918324 DOI: 10.1371/journal.pgen.1011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been described, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. A pyocyanin tolerant CodY mutant also had a survival advantage in co-culture with P. aeruginosa, likely through tolerance specifically to pyocyanin. The transcriptional response of the CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. First, the CodY mutant strongly suppressed metabolism by downregulating core metabolic pathways , especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Second, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways upon pyocyanin exposure, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain against purified pyocyanin and in co-culture with WT P. aeruginosa. Together, these results suggest that both transcriptional responses of reduced metabolism and an increased oxidative stress response likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. eLife 2025; 13:RP98409. [PMID: 39819645 PMCID: PMC11741522 DOI: 10.7554/elife.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Scot P Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
9
|
Tawiah PO, Gaessler LF, Anderson GM, Oladokun EP, Dahl JU. A Novel Silver-Ruthenium-Based Antimicrobial Kills Gram-Negative Bacteria Through Oxidative Stress-Induced Macromolecular Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631245. [PMID: 39803548 PMCID: PMC11722212 DOI: 10.1101/2025.01.03.631245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal Escherichia coli (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed. These include silver nanoparticles, which have been used as antimicrobial surface-coatings on catheters to eliminate biofilm-forming uropathogens and reduce the risk of nosocomial infections. AGXX® is a promising silver coating that presumably kills bacteria through the generation of reactive oxygen species (ROS) but is more potent than silver. However, neither is AGXX®'s mode of action fully understood, nor have its effects on Gram-negative bacteria or bacterial response and defense mechanisms towards AGXX® been studied in detail. Here, we report that the bactericidal effects of AGXX® are primarily based on ROS formation, as supplementation of the media with a ROS scavenger completely abolished AGXX®-induced killing. We further show that AGXX® impairs the integrity of the bacterial cell envelope and causes substantial protein aggregation and DNA damage already at sublethal concentrations. ExPEC strains appear to be more resistant to the proteotoxic effects of AGXX® compared to non-pathogenic E. coli, indicating improved defense capabilities of the uropathogen. Global transcriptomic studies of AGXX®-stressed ExPEC revealed a strong oxidative stress response, perturbations in metal homeostasis, as well as the activation of heat shock and DNA damage responses. Finally, we present evidence that ExPEC counter AGXX® damage through the production of the chaperone polyphosphate.
Collapse
Affiliation(s)
- Patrick Ofori Tawiah
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | - Luca Finn Gaessler
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | - Greg M. Anderson
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| | | | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790
| |
Collapse
|
10
|
Dahedl EK, Hancock TL, Kratz MA, Urakawa H. A combination cyanobacterial treatment approach using hydrogen peroxide and L-lysine successfully improved the removal efficiency of toxic cyanobacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123503. [PMID: 39672044 DOI: 10.1016/j.jenvman.2024.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Harmful cyanobacterial blooms have been increasing globally, introducing new challenges for protecting aquatic ecosystems and human health. A combined algaecide treatment, similar to combination antibiotic therapy, may more rapidly and effectively remove cyanobacteria by broad targeting of different growth mechanisms, reducing the recovery of bloom-forming cyanobacteria. To confirm this hypothesis, hydrogen peroxide (10.5 mg/L), L-lysine (8.2 mg/L), and mixed treatment (hydrogen peroxide: 8.4 mg/L; L-lysine: 6.7 mg/L) of both chemicals were examined for cyanobacterial removal in a 7-day mesocosm study. We found that both hydrogen peroxide and L-lysine effectively reduced cyanobacterial abundance to less than 1% at the end of the experiment. Mixed mesocosm phytoplankton communities responded similarly to hydrogen peroxide treatment throughout the sampling period. Microcystis abundance sharply dropped within 24 h (94% reduction) and Microcystis was no longer detected by day 7. Of the three treatments, the mixed treatment had the greatest impact on Microcystis abundance and gene expression. In lysine mesocosms, cyanobacteria were replaced by Chlorophyta, whereas the hydrogen peroxide and mixed treatments led to a shift toward the eustigmatophyte Nannochloropsis. Transcriptomics revealed that heterotrophic bacteria such as Exiguobacterium, which was resilient to hydrogen peroxide and mixed treatments, benefited from increased catalase expression, which helped mitigate oxidative stress and allowed them to dominate in bacterial succession. Lysine toxicity on microbial communities and taxa sensitivity likely stemmed from amino acid homeostasis disruptions as well as abnormal lysine riboswitch and degradation activity. Overall, a combination cyanobacterial treatment approach using hydrogen peroxide and L-lysine successfully improved the removal efficiency of toxic cyanobacteria.
Collapse
Affiliation(s)
- Elizabeth K Dahedl
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Taylor L Hancock
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA; School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
| | - Michael A Kratz
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, 33965, USA; School of Geosciences, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
11
|
Zimmermann J, Lang L, Calabrese G, Laporte H, Amponsah PS, Michalk C, Sukmann T, Oestreicher J, Tursch A, Peker E, Owusu TNE, Weith M, Roma LP, Deponte M, Riemer J, Morgan B. Tsa1 is the dominant peroxide scavenger and a source of H 2O 2-dependent GSSG production in yeast. Free Radic Biol Med 2025; 226:408-420. [PMID: 39515595 DOI: 10.1016/j.freeradbiomed.2024.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Hydrogen peroxide (H2O2) is an important biological molecule, functioning both as a second messenger in cell signaling and, especially at higher concentrations, as a cause of cell damage. Cells harbor multiple enzymes that have peroxide reducing activity in vitro. However, the contribution of each of these enzymes towards peroxide scavenging in vivo is less clear. Therefore, to directly investigate in vivo peroxide scavenging, we used the genetically encoded peroxide probes, roGFP2-Tsa2ΔCR and HyPer7, to systematically screen the peroxide scavenging capacity of baker's yeast thiol and heme peroxidase mutants. We show that the 2-Cys peroxiredoxin Tsa1 alone is responsible for almost all exogenous H2O2 and tert-butyl hydroperoxide scavenging. Furthermore, Tsa1 can become an important source of H2O2-dependent cytosolic glutathione disulfide production. The two catalases and cytochrome c peroxidase only produce observable scavenging defects at higher H2O2 concentrations when these three heme peroxidases are removed in combination. We also analyzed the reduction of Tsa1 in vitro, revealing that the enzyme is efficiently reduced by thioredoxin-1 with a rate constant of 2.8 × 106 M-1s-1 but not by glutaredoxin-2. Tsa1 reduction by reduced glutathione occurs nonenzymatically with a rate constant of 2.9 M-1s-1. Hence, the observed Tsa1-dependent glutathione disulfide production in yeast probably requires the oxidation of thioredoxins. Our findings clarify the importance of the various thiol and heme peroxidases for peroxide removal and suggest that most thiol peroxidases have alternative or specialized functions in specific subcellular compartments.
Collapse
Affiliation(s)
- Jannik Zimmermann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Gaetano Calabrese
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Hugo Laporte
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Prince S Amponsah
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany; Cellular Biochemistry, RPTU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Christoph Michalk
- Cellular Biochemistry, RPTU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Tobias Sukmann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Julian Oestreicher
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Anja Tursch
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Esra Peker
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Theresa N E Owusu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Matthias Weith
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Leticia Prates Roma
- Institute of Biophysics, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66424, Homburg, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Jan Riemer
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
12
|
Sharma A, Shuppara AM, Padron GC, Sanfilippo JE. Combining multiple stressors blocks bacterial migration and growth. Curr Biol 2024; 34:5774-5781.e4. [PMID: 39549703 DOI: 10.1016/j.cub.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024]
Abstract
In nature, organisms experience combinations of stressors. However, laboratory studies use batch cultures, which simplify reality and focus on population-level responses to individual stressors.1,2,3,4,5 In recent years, bacterial stress responses have been examined with single-cell resolution using microfluidics.6,7,8,9,10,11,12 Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H2O2) to the human pathogen Pseudomonas aeruginosa. By treating cells with levels of flow and H2O2 that commonly co-occur in human host tissues,13,14,15,16,17,18 we discover that previous reports significantly overestimate the H2O2 levels required to block bacterial growth. Specifically, we establish that flow increases H2O2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H2O2 levels, we identify the core H2O2 regulon, characterize OxyR-mediated dynamic regulation, and demonstrate that multiple H2O2 scavenging systems have redundant roles. By examining single-cell behavior, we serendipitously discover that the combined effects of H2O2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H2O2 and flow synergize to restrict bacterial motility and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexander M Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gilberto C Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph E Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Choudhary D, Foster KR, Uphoff S. The master regulator OxyR orchestrates bacterial oxidative stress response genes in space and time. Cell Syst 2024; 15:1033-1045.e6. [PMID: 39541985 DOI: 10.1016/j.cels.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Bacteria employ diverse gene regulatory networks to survive stress, but deciphering the underlying logic of these complex networks has proved challenging. Here, we use time-resolved single-cell imaging to explore the functioning of the E. coli regulatory response to oxidative stress. We observe diverse gene expression dynamics within the network. However, by controlling for stress-induced growth-rate changes, we show that these patterns involve just three classes of regulation: downregulated genes, upregulated pulsatile genes, and gradually upregulated genes. The two upregulated classes are distinguished by differences in the binding of the transcription factor, OxyR, and appear to play distinct roles during stress protection. Pulsatile genes activate transiently in a few cells for initial protection of a group of cells, whereas gradually upregulated genes induce evenly, generating a lasting protection involving many cells. Our study shows how bacterial populations use simple regulatory principles to coordinate stress responses in space and time. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biochemistry, University of Oxford, Oxford, UK; Department of Biology, University of Oxford, Oxford, UK; Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK.
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Li J, Yan Y, Yang L, Ding S, Zheng Y, Xiao Z, Yang A, Liang W. Duality of H 2O 2 detoxification and immune activation of Ralstonia solanacearum alkyl hydroperoxide reductase C (AhpC) in tobacco. Int J Biol Macromol 2024; 279:135138. [PMID: 39214231 DOI: 10.1016/j.ijbiomac.2024.135138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Although microbial pathogens utilize various strategies to evade plant immunity, host plants have evolved powerful defense mechanisms that can be activated in preparation for threat by infective organisms. Here, we identified one 24 kDa alkyl hydroperoxide reductase C (AhpC) from the culture supernatant of Ralstonia solanacearum strain FQY-4 (denoted RsAhpC) in the presence of host roots. RsAhpC contributes to H2O2 detoxification and the pathogenicity of R. solanacearum. However, the introduction of RsAhpC into the apoplast could activate immune defense, leading to suppression of pathogen colonization in both Nicotiana benthamiana and the Honghua Dajinyuan (HD) cultivar of N. tabacum. Consequently, overexpression of RsAhpC in the HD cultivar enhanced the resistance of tobacco to bacterial wilt disease caused by FQY-4. Overall, this study provides insight into the arms race between pathogens and their plant hosts. Specifically, it is firstly reported that plants can sense pathogen-derived AhpC to activate defenses, in addition to the role of AhpC in pathogen ROS detoxification. Therefore, the macromolecule AhpC produced by Ralstonia solanacearum has the ability to enhance plant defense as an elicitor, which provides a practical strategy for disease resistance breeding.
Collapse
Affiliation(s)
- Jingtao Li
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yu Yan
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Limei Yang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shuzhi Ding
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaning Zheng
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhiliang Xiao
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Aiguo Yang
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Wenxing Liang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
15
|
Kim M, Jung J, Kim W, Park Y, Jeon CO, Park W. Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems. J Microbiol 2024; 62:933-950. [PMID: 39377859 DOI: 10.1007/s12275-024-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges. Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Fan J, Mo X, Zhang H, Xu L, Yin J, Wan F. Identification of the organic peroxide scavenging system of Yersinia pseudotuberculosis and its regulation by OxyR. Appl Environ Microbiol 2024; 90:e0146824. [PMID: 39264182 PMCID: PMC11497825 DOI: 10.1128/aem.01468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Oxidative stress caused by reactive oxygen species (ROS) is inevitable for all aerobic microorganisms as ROS are the byproducts of aerobic respiration. For gut pathogens, ROS are an integrated part of colonization resistance which protects the host against bacteria invasion. Alkyl hydroperoxide reductase (AhpR) and organic hydroperoxide resistance (Ohr) proteins are considered as the main enzymes responsible for the degradation of organic peroxides (OPs) in most bacteria. To elucidate how enteric pathogen Yersinia pseudotuberculosis YPIII deals with oxidative stress induced by OPs, we performed transcriptomic analysis and identified the OP scavenging system, which is composed of glutathione peroxidase (Gpx), thiol peroxidase (Tpx), and AhpR. Gpx serves as the main scavenger of OPs, and Tpx assists in the degradation of OPs. Transcriptional factor OxyR regulates Gpx expression, suggesting that OxyR is the regulator mediating the cellular response to OPs. Although AhpR has little influence on OP degradation, its deletion would greatly impair the scavenging ability of OPs in the absence of gpx or tpx. In addition, we found that catalase KatG and KatE are responsive to OPs but do not participate in the removal of OPs.IMPORTANCEIn bacteria, oxidative stress caused by ROS is a continuously occurring cellular response and requires multiple genes to participate in this process. The elimination of OPs is mainly dependent on AhpR and Ohr protein. Here, we carried out transcriptomic analysis to search for enzymes responsible for the removal of organic peroxides in Yersinia pseudotuberculosis. We found that Gpx was the primary OP scavenger in bacteria, which was positively regulated by the oxidative stress regulator OxyR. The OP scavenging system in Y. pseudotuberculosis was composedof Gpx, Tpx, and AhpR. OxyR is the critical global regulator mediating gene expression involved in OPs and H2O2 stress. These findings suggest that Y. pseudotuberculosis has a unique defense system in response to oxidative stress.
Collapse
Affiliation(s)
- Junfeng Fan
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Xiaofen Mo
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Hui Zhang
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Linna Xu
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
| | - Jianhua Yin
- Institute of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Fen Wan
- School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Sirithanakorn C, Imlay JA. Evidence for endogenous hydrogen peroxide production by E. coli fatty acyl-CoA dehydrogenase. PLoS One 2024; 19:e0309988. [PMID: 39436877 PMCID: PMC11495604 DOI: 10.1371/journal.pone.0309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Aerobic organisms continuously generate internal superoxide and hydrogen peroxide, which can damage enzymes and impair growth. To avoid this problem cells maintain high levels of superoxide dismutases, catalases, and peroxidases. Surprisingly, we do not know the primary sources of these reactive oxygen species (ROS) in living cells. However, in vitro studies have shown that flavoenzymes can inadvertently transfer electrons to oxygen. Therefore, it seems plausible that substantial ROS may be generated when large metabolic fluxes flow through flavoproteins. Such a situation may arise during the catabolism of fatty acids. Acyl-CoA dehydrogenase (FadE) is a flavoprotein involved in each turn of the beta-oxidation cycle. In the present study the catabolism of dodecanoic acid specifically impaired the growth of strains that lack enzymes to scavenge hydrogen peroxide. The defect was absent from fadE mutants. Direct measurements confirmed that the beta-oxidation pathway amplified the rate of intracellular hydrogen peroxide formation. Scavenging-proficient cells did not display the FadE-dependent growth defect. Those cells also did not induce the peroxide stress response during dodecanoate catabolism, indicating that the basal defenses are sufficient to cope with moderately elevated peroxide formation. In vitro work still is needed to test whether the ROS evolve specifically from the FadE flavin site and to determine whether superoxide as well as peroxide is released. At present such experiments are challenging because the natural redox partner of FadE has not been identified. This study supports the hypothesis that the degree of internal ROS production can depend upon the type of active metabolism inside cells.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Division of Molecular and Cellular Medicine, King Mongkut’s Institute of Technology Ladkrabang, Faculty of Medicine, Bangkok, Thailand
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
18
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591247. [PMID: 39464112 PMCID: PMC11507673 DOI: 10.1101/2024.04.26.591247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: elementary body (EB) and reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. To test this, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
|
19
|
A. Ghomi F, Jung JJ, Langridge GC, Cain AK, Boinett CJ, Abd El Ghany M, Pickard DJ, Kingsley RA, Thomson NR, Parkhill J, Gardner PP, Barquist L. High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality. mBio 2024; 15:e0179824. [PMID: 39207104 PMCID: PMC11481867 DOI: 10.1128/mbio.01798-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism Escherichia coli, as well as major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio E. coli single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species. To investigate this, we have assembled a collection of 13 sequenced high-density transposon mutant libraries from five genera within the Enterobacteriaceae. We first assess several gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations, we develop a new classifier for gene essentiality. Using this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently acquired essentiality multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts that have emerged from within the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival and identifies several instances of essential stress responses masked by redundancy in free-living bacteria.IMPORTANCEThe essential genome, that is the set of genes absolutely required to sustain life, is a core concept in genetics. Essential genes in bacteria serve as drug targets, put constraints on the engineering of biological chassis for technological or industrial purposes, and are key to constructing synthetic life. Despite decades of study, relatively little is known about how gene essentiality varies across related bacteria. In this study, we have collected gene essentiality data for 13 bacteria related to the model organism Escherichia coli, including several human pathogens, and investigated the conservation of essentiality. We find that approximately a third of the genes essential in any particular strain are non-essential in another related strain. Surprisingly, we do not find evidence for essential genes unique to specific genera; rather it appears a substantial fraction of the essential genome rapidly gains or loses essentiality during evolution. This suggests that essentiality is not an immutable characteristic but depends crucially on the genomic context. We illustrate this through a comparison of our essential genes in free-living bacteria to genes conserved in 34 insect endosymbionts with naturally reduced genomes, finding several cases where genes generally regarded as being important for specific stress responses appear to have become essential in endosymbionts due to a loss of functional redundancy in the genome.
Collapse
Affiliation(s)
- Fatemeh A. Ghomi
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jakob J. Jung
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Moataz Abd El Ghany
- The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Derek J. Pickard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Kingsley
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Department of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul P. Gardner
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry, Otago University, Dunedin, New Zealand
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
20
|
Bannister KR, Prather KLJ. α-Substituted 3-hydroxy acid production from glucose in Escherichia coli. Metab Eng 2024; 86:124-134. [PMID: 39313110 DOI: 10.1016/j.ymben.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are renewably-derived, microbial polyesters composed of hydroxy acids (HAs). Demand for sustainable plastics alternatives, combined with the unfavorable thermal properties exhibited by some PHAs, motivates the discovery of novel PHA-based materials. Incorporation of α-substituted HAs yields thermostable PHAs; however, the reverse β-oxidation (rBOX) pathway, the canonical pathway for HA production, is unable to produce these monomers because it utilizes thiolases with narrow substrate specificity. Here, we present a thiolase-independent pathway to two α-substituted HAs, 3-hydroxyisobutyric acid (3HIB) and 3-hydroxy-2-methylbutyric acid (3H2MB). This pathway involves the conversion of glucose to various branched acyl-CoAs and ultimately to 3HIB or 3H2MB. As proof of concept, we engineered Escherichia coli for the specific production of 3HIB and 3H2MB from glucose at titers as high as 66 ± 5 mg/L and 290 ± 40 mg/L, respectively. Optimizing this pathway for 3H2MB production via a novel byproduct recycle increased titer by 60%. This work illustrates the utility of novel pathway design HA production leading to PHAs with industrially relevant properties.
Collapse
Affiliation(s)
- K'yal R Bannister
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
21
|
Plyuta VA, Sidorova DE, Koksharova OA, Khmel IA, Gnuchikh EY, Melkina OE. The effect of β-ionone on bacterial cells: the use of specific lux-biosensors. Res Microbiol 2024; 175:104214. [PMID: 38740236 DOI: 10.1016/j.resmic.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The diversity of the biological activity of volatile organic compounds (VOCs), including unsaturated ketone β-ionone, promising pharmacological, biotechnological, and agricultural agent, has aroused considerable interest. However, the functional role and mechanisms of action of VOCs remain insufficiently studied. In this work, the response of bacterial cells to the action of β-ionone was studied using specific bioluminescent lux-biosensors containing stress-sensitive promoters. We determined that in Escherichia coli cells, β-ionone induces oxidative stress (PkatG and Pdps promoters) through a specific response mediated by the OxyR/OxyS regulon, but not SoxR/SoxS (PsoxS promoter). It has been shown that β-ionone at high concentrations (50 μM and above) causes a weak induction of the expression from the PibpA promoter and slightly induces the PcolD promoter in the E. coli biosensors; the observed effect is enhanced in the ΔoxyR mutants. This indicates the presence of some damage to proteins and DNA. β-Ionone was found to inhibit the bichaperone-dependent DnaKJE-ClpB refolding of heat-inactivated bacterial luciferase in E. coli wild-type and ΔibpB mutant strains. In the cells of the Gram-positive bacterium Bacillus subtilis 168 pNK-MrgA β-ionone does not cause oxidative stress. Thus, in this work, the specificity of bacterial cell stress responses to the action of β-ionone was shown.
Collapse
Affiliation(s)
- Vladimir A Plyuta
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Daria E Sidorova
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Olga A Koksharova
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1-40, 119991 Moscow, Russia.
| | - Inessa A Khmel
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Evgeniy Y Gnuchikh
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Olga E Melkina
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia; Kurchatov Center for Genome Research, National Research Center "Kurchatov Institute", Kurchatov sq. 2, 123182 Moscow, Russia.
| |
Collapse
|
22
|
Wang C, Li X, Pan J, Ma C, Zhang S, Zang C, Yang K. Integrative transcriptomic and metabolomic analysis to elucidate the effect of gossypol on Enterobacter sp. GD5. PLoS One 2024; 19:e0306597. [PMID: 39106246 DOI: 10.1371/journal.pone.0306597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/19/2024] [Indexed: 08/09/2024] Open
Abstract
Gossypol, a yellow polyphenolic compound found in the Gossypium genus, is toxic to animals that ingest cotton-derived feed materials. However, ruminants display a notable tolerance to gossypol, attributed to the pivotal role of ruminal microorganisms in its degradation. The mechanisms of how rumen microorganisms degrade and tolerate gossypol remain unclear. Therefore, in this study, Enterobacter sp. GD5 was isolated from rumen fluid, and the effects of gossypol on its metabolism and gene expression were investigated using liquid chromatography-mass spectrometry (LC-MS) and RNA analyses. The LC-MS results revealed that gossypol significantly altered the metabolic profiles of 15 metabolites (eight upregulated and seven downregulated). The Kyoto Encyclopedia of Genes and Genomes analysis results showed that significantly different metabolites were associated with glutathione metabolism in both positive and negative ion modes, where gossypol significantly affected the biosynthesis of amino acids in the negative ion mode. Transcriptomic analysis indicated that gossypol significantly affected 132 genes (104 upregulated and 28 downregulated), with significant changes observed in the expression of catalase peroxidase, glutaredoxin-1, glutathione reductase, thioredoxin 2, thioredoxin reductase, and alkyl hydroperoxide reductase subunit F, which are related to antioxidative stress. Furthermore, Gene Ontology analysis revealed significant changes in homeostatic processes following gossypol supplementation. Overall, these results indicate that gossypol induces oxidative stress, resulting in the increased expression of antioxidative stress-related genes in Enterobacter sp. GD5, which may partially explain its tolerance to gossypol.
Collapse
Affiliation(s)
- CaiDie Wang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - XiaoBin Li
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jun Pan
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Ma
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - ShiQi Zhang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Changjiang Zang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - KaiLun Yang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
23
|
Sharma R, Mishanina TV. A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in Escherichia coli at alkaline pH. J Bacteriol 2024; 206:e0016824. [PMID: 38869303 PMCID: PMC11270866 DOI: 10.1128/jb.00168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Cells use transition metal ions as structural components of biomolecules and cofactors in enzymatic reactions, making transition metal ions integral cellular components. Organisms optimize metal ion concentration to meet cellular needs by regulating the expression of proteins that import and export that metal ion, often in a metal ion concentration-dependent manner. One such regulation mechanism is via riboswitches, which are 5'-untranslated regions of an mRNA that undergo conformational changes to promote or inhibit the expression of the downstream gene, commonly in response to a ligand. The yybP-ykoY family of bacterial riboswitches shares a conserved aptamer domain that binds manganese ions (Mn2+). In Escherichia coli, the yybP-ykoY riboswitch precedes and regulates the expression of two different genes: mntP, which based on genetic evidence encodes an Mn2+ exporter, and alx, which encodes a putative metal ion transporter whose cognate ligand is currently in question. The expression of alx is upregulated by both elevated concentrations of Mn2+ and alkaline pH. With metal ion measurements and gene expression studies, we demonstrate that the alkalinization of media increases the cytoplasmic manganese pool, which, in turn, enhances alx expression. The Alx-mediated Mn2+ export prevents the toxic buildup of the cellular manganese, with the export activity maximal at alkaline pH. We pinpoint a set of acidic residues in the predicted transmembrane segments of Alx that play a critical role in Mn2+ export. We propose that Alx-mediated Mn2+ export serves as a primary protective mechanism that fine tunes the cytoplasmic manganese content, especially during alkaline stress.IMPORTANCEBacteria use clever ways to tune gene expression upon encountering certain environmental stresses, such as alkaline pH in parts of the human gut and high concentration of a transition metal ion manganese. One way by which bacteria regulate the expression of their genes is through the 5'-untranslated regions of messenger RNA called riboswitches that bind ligands to turn expression of genes on/off. In this work, we have investigated the roles and regulation of alx and mntP, the two genes in Escherichia coli regulated by the yybP-ykoY riboswitches, in alkaline pH and high concentration of Mn2+. This work highlights the intricate ways through which bacteria adapt to their surroundings, utilizing riboregulatory mechanisms to maintain Mn2+ levels amidst varying environmental factors.
Collapse
Affiliation(s)
- Ravish Sharma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
24
|
Li Y, Guo Y, Niu F, Gao H, Wang Q, Xu M. Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum. World J Microbiol Biotechnol 2024; 40:267. [PMID: 39004689 DOI: 10.1007/s11274-024-04066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.
Collapse
Affiliation(s)
- Yueshu Li
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuanyi Guo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fangyuan Niu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
25
|
Li B, Srivastava S, Shaikh M, Mereddy G, Garcia MR, Shah A, Ofori-Anyinam N, Chu T, Cheney N, Yang JH. Bioenergetic stress potentiates antimicrobial resistance and persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603336. [PMID: 39026737 PMCID: PMC11257553 DOI: 10.1101/2024.07.12.603336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Antimicrobial resistance (AMR) is a global health crisis and there is an urgent need to better understand AMR mechanisms. Antibiotic treatment alters several aspects of bacterial physiology, including increased ATP utilization, carbon metabolism, and reactive oxygen species (ROS) formation. However, how the "bioenergetic stress" induced by increased ATP utilization affects treatment outcomes is unknown. Here we utilized a synthetic biology approach to study the direct effects of bioenergetic stress on antibiotic efficacy. We engineered a genetic system that constitutively hydrolyzes ATP or NADH in Escherichia coli. We found that bioenergetic stress potentiates AMR evolution via enhanced ROS production, mutagenic break repair, and transcription-coupled repair. We also find that bioenergetic stress potentiates antimicrobial persistence via potentiated stringent response activation. We propose a unifying model that antibiotic-induced antimicrobial resistance and persistence is caused by antibiotic-induced. This has important implications for preventing or curbing the spread of AMR infections.
Collapse
|
26
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY Confer Tolerance to an Interspecies Redox-Active Antimicrobial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601769. [PMID: 39040146 PMCID: PMC11261909 DOI: 10.1101/2024.07.02.601769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been characterized, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. The transcriptional response of a pyocyanin tolerant CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. Firstly, the CodY mutant strongly suppressed metabolism, by downregulating pathways associated with core metabolism, especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Secondly, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain. Together, these results suggest that both transcriptional responses likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Green R, Wang H, Botchey C, Zhang SNN, Wadsworth C, Tyrrell F, Letton J, McBain AJ, Paszek P, Krašovec R, Knight CG. Collective peroxide detoxification determines microbial mutation rate plasticity in E. coli. PLoS Biol 2024; 22:e3002711. [PMID: 39008532 PMCID: PMC11272383 DOI: 10.1371/journal.pbio.3002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
Collapse
Affiliation(s)
- Rowan Green
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| | - Hejie Wang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Carol Botchey
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Siu Nam Nancy Zhang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Charles Wadsworth
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Francesca Tyrrell
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - James Letton
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, United Kingdom
| | - Pawel Paszek
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rok Krašovec
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| |
Collapse
|
28
|
Korshunov S, Imlay JA. Antioxidants are ineffective at quenching reactive oxygen species inside bacteria and should not be used to diagnose oxidative stress. Mol Microbiol 2024; 122:113-128. [PMID: 38889382 DOI: 10.1111/mmi.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
A wide variety of stresses have been proposed to exert killing effects upon bacteria by stimulating the intracellular formation of reactive oxygen species (ROS). A key part of the supporting evidence has often been the ability of antioxidant compounds to protect the cells. In this study, some of the most-used antioxidants-thiourea, glutathione, N-acetylcysteine, and ascorbate-have been examined. Their ability to quench superoxide and hydrogen peroxide was verified in vitro, but the rate constants were orders of magnitude too slow for them to have an impact upon superoxide and peroxide concentrations in vivo, where these species are already scavenged by highly active enzymes. Indeed, the antioxidants were unable to protect the growth and ROS-sensitive enzymes of E. coli strains experiencing authentic oxidative stress. Similar logic posits that antioxidants cannot substantially quench hydroxyl radicals inside cells, which contain abundant biomolecules that react with them at diffusion-limited rates. Indeed, antioxidants were able to protect cells from DNA damage only if they were applied at concentrations that slow metabolism and growth. This protective effect was apparent even under anoxic conditions, when ROS could not possibly be involved, and it was replicated when growth was similarly slowed by other means. Experimenters should discard the use of antioxidants as a way of detecting intracellular oxidative stress and should revisit conclusions that have been based upon such experiments. The notable exception is that these compounds can effectively degrade hydrogen peroxide from environmental sources before it enters cells.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
29
|
Yang L, Han P, Wang Q, Lin H, Wang D, Mao J, Qi W, Bai Y, Qu J. Disinfectant-induced ammonia oxidation disruption in microbial N-cycling process in aquatic ecosystem after the COVID-19 outbreak. WATER RESEARCH 2024; 258:121761. [PMID: 38749183 DOI: 10.1016/j.watres.2024.121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 06/16/2024]
Abstract
Anthropogenic activities significantly impact the elemental cycles in aquatic ecosystems, with the N-cycling playing a critical role in potential nutrient turnover and substance cycling. We hypothesized that measures to prevent COVID-19 transmission profoundly altered the nitrogen cycle in riverine ecosystems. To investigate this, we re-analyzed metagenomic data and identified 60 N-cycling genes and 21 host metagenomes from four urban reaches (one upstream city, Wuhan, and two downstream cities) along the Yangtze River. Our analyses revealed a marked decrease in the abundance of bacterial ammonia monooxygenase genes, as well as in the host, ammonia-oxidizing autotrophic Nitrosomonas, followed by a substantial recovery post-pandemic. We posited that discharge of sodium hypochlorite (NaOCl) disinfectant may be a primary factor in the reduction of N-cycling process. To test this hypothesis, we exposed pure cultures of Nitrosomonas europaea to NaOCl to explore the microbial stress response. Results indicated that NaOCl exposure rapidly compromised the cell structure and inhibited ammonia oxidation of N. europaea, likely due to oxidative stress damage and reduced expression of nitrogen metabolism-related ammonia monooxygenase. Using the functional tagging technique, we determined that NaOCl directly destroyed the ammonia monooxygenase protein and DNA structure. This study highlights the negative impacts of chlorine disinfectants on the function of aquatic ecosystems and elucidates potential mechanisms of action.
Collapse
Affiliation(s)
- Lutong Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Donglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jie Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, Tsinghua University, Beijing, 100084, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
30
|
Mohite SV, Sharma KK. Gut microbial metalloproteins and its role in xenobiotics degradation and ROS scavenging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:495-538. [PMID: 38960484 DOI: 10.1016/bs.apcsb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-β-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.
Collapse
Affiliation(s)
- Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
31
|
Triandafilova G, Smirnova G, Krasnykh O, Boteva A, Oktyabrsky O. Antimicrobial and Antioxidant Activity of Some Nitrogen-Containing Heterocycles and Their Acyclic Analogues. Indian J Microbiol 2024; 64:482-491. [PMID: 39011024 PMCID: PMC11246309 DOI: 10.1007/s12088-023-01158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/17/2023] [Indexed: 07/17/2024] Open
Abstract
We investigated antimicrobial and antioxidant activity of nitrogen-containing heterocycles and their acyclic analogues, some of which can be considered as promising in terms of biological activity. Based on structure, 26 tested compounds were divided into 4 groups. In the test with 2,2-diphenyl-1-picrylhydrazyl (DPPH), the compounds of the group 2 had the highest radical-binding activity (RBA) (53-78%), while those of group 3 had the lowest values (1.5-5.2%). In oxygen radical absorbance capacity assay, all compounds from groups 1, 2 and 3 showed high RBA: 44-94% at 50 µM. The highest bacteriostatic activity against Escherichia coli was found for four compounds in group 2 (MIC = 0.25-1 mM) and low bacteriostatic activity for group 3 (MIC > 4 mM). Some relationships between the structure of compounds and the values of the MIC are revealed. It was also found that four substances from different groups had the ability to inhibit the formation of colonies in E. coli from 1.3 to 5.7 times. Four compounds reduced specific biofilm formation by 40-60%. The tested substances did not induce the expression of the sulA gene controlled by the SOS system, which indicates the lack of genotoxic activity. None of the tested compounds had pro-oxidant activity. This was shown by both the absence of production hydrogen peroxide in a bacteria-free medium and inability to induce expression of the katG gene encoding HPI catalase in growing E. coli. The data obtained could be useful in the development of new drugs.
Collapse
Affiliation(s)
- Galina Triandafilova
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
- Scientific and Educational Center for Applied Chemical and Biological Research, Perm National Research Polytechnic University, Perm, Russia
| | - Galina Smirnova
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| | - Olga Krasnykh
- Scientific and Educational Center for Applied Chemical and Biological Research, Perm National Research Polytechnic University, Perm, Russia
| | - Anastasija Boteva
- Scientific and Educational Center for Applied Chemical and Biological Research, Perm National Research Polytechnic University, Perm, Russia
| | - Oleg Oktyabrsky
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
32
|
Sharma A, Shuppara AM, Padron GC, Sanfilippo JE. Combining multiple stressors unexpectedly blocks bacterial migration and growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595753. [PMID: 38853869 PMCID: PMC11160647 DOI: 10.1101/2024.05.27.595753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In nature, organisms experience combinations of stressors. However, laboratory studies typically simplify reality and focus on the effects of an individual stressor. Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H 2 O 2 ) to the human pathogen Pseudomonas aeruginosa . By treating cells with levels of flow and H 2 O 2 that commonly co-occur in nature, we discover that previous reports significantly overestimate the H 2 O 2 levels required to block bacterial growth. Specifically, we establish that flow increases H 2 O 2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H 2 O 2 levels, we identify the core H 2 O 2 regulon, characterize OxyR-mediated dynamic regulation, and dissect the redundant roles of multiple H 2 O 2 scavenging systems. By examining single-cell behavior, we serendipitously discover that the combined effects of H 2 O 2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H 2 O 2 and flow synergize to restrict bacterial colonization and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.
Collapse
|
33
|
Rohaun SK, Sethu R, Imlay JA. Microbes vary strategically in their metalation of mononuclear enzymes. Proc Natl Acad Sci U S A 2024; 121:e2401738121. [PMID: 38743623 PMCID: PMC11127058 DOI: 10.1073/pnas.2401738121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.
Collapse
Affiliation(s)
| | | | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL61801
| |
Collapse
|
34
|
Verbeelen T, Fernandez CA, Nguyen TH, Gupta S, Leroy B, Wattiez R, Vlaeminck SE, Leys N, Ganigué R, Mastroleo F. Radiotolerance of N-cycle bacteria and their transcriptomic response to low-dose space-analogue ionizing irradiation. iScience 2024; 27:109596. [PMID: 38638570 PMCID: PMC11024918 DOI: 10.1016/j.isci.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
The advancement of regenerative life support systems (RLSS) is crucial to allow long-distance space travel. Within the Micro-Ecological Life Support System Alternative (MELiSSA), efficient nitrogen recovery from urine and other waste streams is vital to produce liquid fertilizer to feed food and oxygen production in subsequent photoautotrophic processes. This study explores the effects of ionizing radiation on nitrogen cycle bacteria that transform urea to nitrate. In particular, we assess the radiotolerance of Comamonas testosteroni, Nitrosomonas europaea, and Nitrobacter winogradskyi after exposure to acute γ-irradiation. Moreover, a comprehensive whole transcriptome analysis elucidates the effects of spaceflight-analogue low-dose ionizing radiation on the individual axenic strains and on their synthetic community o. This research sheds light on how the spaceflight environment could affect ureolysis and nitrification processes from a transcriptomic perspective.
Collapse
Affiliation(s)
- Tom Verbeelen
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Celia Alvarez Fernandez
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thanh Huy Nguyen
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Surya Gupta
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000 Mons, Belgium
| | - Siegfried E. Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Natalie Leys
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052 Ghent, Belgium
| | - Felice Mastroleo
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
35
|
Smith MM, Moran GR. Building on a theme: The redox hierarchy of pyridine nucleotide-disulfide oxidoreductases. Arch Biochem Biophys 2024; 755:109966. [PMID: 38537870 DOI: 10.1016/j.abb.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Flavin disulfide reductases (FDRs) are FAD-dependent enzymes that transmit electrons from NAD(P)H to reduce specific oxidant substrate disulfides. These enzymes have been studied extensively, most particularly the paradigm examples: glutathione reductase and thioredoxin reductase. The common, though not universal, traits of the family include a tyrosine- or phenylalanine-gated binding pocket for NAD(P) nicotinamides adjacent to the FAD isoalloxazine re-face, and a disulfide stacked against the si-face of the isoalloxazine whose dithiol form is activated for subsequent exchange reactions by a nearby histidine acting as a base. This arrangement promotes transduction of the reducing equivalents for disulfide exchange relay reactions. From an observational standpoint the proximal parallel stacking of three redox moieties induces up to three opportunities for unique charge transfer interactions (NAD(P)H FAD, NAD(P)+•FADH2, and FAD•thiolate). In transient state, the charge transfer transitions provide discrete signals to assign reaction sequences. This review summarizes the lineage of observations for the FDR enzymes that have been extensively studied. Where applicable and in order to chart a consistent interpretation of the record, only data derived from studies that used anaerobic methods are cited. These data reveal a recurring theme for catalysis that is elaborated with specific additional functionalities for each oxidant substrate.
Collapse
Affiliation(s)
- Madison M Smith
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, United States.
| |
Collapse
|
36
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, DuMont AL, Zwack EE, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. eLife 2024; 12:RP89098. [PMID: 38687677 PMCID: PMC11060713 DOI: 10.7554/elife.89098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Andrew I Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
- Microbial Computational Genomic Core Lab, NYU Grossman School of MedicineNew YorkUnited States
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of MedicineNew YorkUnited States
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Ashley L DuMont
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - Erin E Zwack
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Robert J Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - Theodora K Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of MedicineNew YorkUnited States
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Andreas F Haag
- School of Medicine, University of St AndrewsSt AndrewsUnited Kingdom
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Gregory A Wasserman
- Department of Surgery, Northwell Health Lenox Hill HospitalNew YorkUnited States
| | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of PittsburghPittsburghUnited States
| | - Jeffrey N Weiser
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Carla R Nowosad
- Department of Pathology, NYU Grossman School of MedicineNew YorkUnited States
| | - Desmond S Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers UniversityCamdenUnited States
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
- Microbial Computational Genomic Core Lab, NYU Grossman School of MedicineNew YorkUnited States
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen UniversityXiamenChina
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers UniversityNew YprkUnited States
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers UniversityNewarkUnited States
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of MedicineNew YorkUnited States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Victor J Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
37
|
Xu X, Song F, Zhang G, Ma L, Yang N. Proteomic insights into the response of Halomonas sp. MNB13 to excess Mn(Ⅱ) and the role of H 2S in Mn(Ⅱ) resistance. ENVIRONMENTAL RESEARCH 2024; 246:118157. [PMID: 38199468 DOI: 10.1016/j.envres.2024.118157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Halomonas spp. are moderately halophilic bacteria with the ability to tolerate various heavy metals. However, the role of basic cellular metabolism, particularly amino acid metabolism, has not been investigated in Halomonas spp. under excess Mn(Ⅱ). The strain Halomonas sp. MNB13 was isolated from a deep-sea ferromanganese nodule and can tolerate 80 mM Mn(Ⅱ). To comprehensively explore the mechanisms underlying its resistance to excess Mn(Ⅱ), we conducted a comparative proteome analysis. The data revealed that both 10 mM and 50 mM Mn(Ⅱ) significantly up-regulated the expression of proteins involved in Mn(Ⅱ) transport (MntE), oxidative stress response (alkyl hydroperoxide reductase and the Suf system), and amino acid metabolism (arginine, cysteine, methionine, and phenylalanine). We further investigated the role of cysteine metabolism in Mn(Ⅱ) resistance by examining the function of its downstream product, H2S. Consistent with the up-regulation of cysteine desulfurase, we detected an elevated level of H2S in Halomonas sp. MNB13 cells under Mn(Ⅱ) stress, along with increased intracellular levels of H2O2 and O2•-. Upon exogenous addition of H2S, we observed a significant restoration of the growth of Halomonas sp. MNB13. Moreover, we identified decreased intracellular levels of H2O2 and O2•- in MNB13 cells, which coincided with a decreased formation of Mn-oxides during cultivation. In contrast, in cultures containing NaHS, the residual Mn(Ⅱ) levels were higher than in cultures without NaHS. Therefore, H2S improves Mn(Ⅱ) tolerance by eliminating intracellular reactive oxygen species rather than decreasing Mn(Ⅱ) concentration in solution. Our findings indicate that cysteine metabolism, particularly the intermediate H2S, plays a pivotal role in Mn(Ⅱ) resistance by mitigating the damage caused by reactive oxygen species. These findings provide new insights into the amino acid mechanisms associated with Mn(Ⅱ) resistance in bacteria.
Collapse
Affiliation(s)
- Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, 29 Xueyuan Road, Beijing, 100083, China
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Guoliang Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Linlin Ma
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, 4111, Australia
| | - Na Yang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
38
|
Hancock TL, Dahedl EK, Kratz MA, Urakawa H. Synechococcus dominance induced after hydrogen peroxide treatment of Microcystis bloom in the Caloosahatchee River, Florida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123508. [PMID: 38325511 DOI: 10.1016/j.envpol.2024.123508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Few field trials examining hydrogen peroxide as a cyanobacterial harmful algal bloom (cHAB) treatment have been conducted in subtropical and tropical regions. None have been tested in Florida, home to Lake Okeechobee and downstream waterways which periodically experience Microcystis bloom events. To investigate treatment effects in Florida, we applied a 490 μM (16.7 mg/L; 0.0015%) hydrogen peroxide spray to a minor bloom of Microcystis aeruginosa on the downstream side of Franklin Lock and Dam in the Caloosahatchee River. Although hydrogen peroxide decreased to background level one day post-treatment, succession was observed in phytoplankton community amplicon sequencing. The relative abundance of Microcystis decreased on day 3 by 86%, whereas the picocyanobacteria Synechococcus became dominant, increasing by 77% on day 3 and by 173% on day 14 to 57% of the phytoplankton community. Metatranscriptomics revealed Synechococcus likely benefitted from the antioxidant defense of upregulated peroxiredoxin, peroxidase/catalase, and rubrerythrin expressions immediately after treatment, and upregulated nitrate transport and urease to take advantage of available nitrogen. Our results indicated hydrogen peroxide induces succession of the phytoplankton community from Microcystis to non-toxic picocyanobacteria and could be used for selective suppression of harmful cyanobacteria.
Collapse
Affiliation(s)
- Taylor L Hancock
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Elizabeth K Dahedl
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Michael A Kratz
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Hidetoshi Urakawa
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA.
| |
Collapse
|
39
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, Dumont A, Zwack E, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544038. [PMID: 37333372 PMCID: PMC10274873 DOI: 10.1101/2023.06.08.544038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andrew I. Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Ashley Dumont
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodora K. Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of Medicine, New York, NY, USA
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Carla R. Nowosad
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Desmond S. Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
40
|
Stoakes E, Chen X, Kalmar L, Baker D, Evans R, Rudder S, Grant AJ. Identification of Campylobacter jejuni and Campylobacter coli genes contributing to oxidative stress response using TraDIS analysis. BMC Microbiol 2024; 24:46. [PMID: 38302896 PMCID: PMC10832277 DOI: 10.1186/s12866-024-03201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Campylobacter jejuni and Campylobacter coli are the major causative agents of bacterial gastroenteritis worldwide and are known obligate microaerophiles. Despite being sensitive to oxygen and its reduction products, both species are readily isolated from animal food products kept under atmospheric conditions where they face high oxygen tension levels. RESULTS In this study, Transposon Directed Insertion-site Sequencing (TraDIS) was used to investigate the ability of one C. jejuni strain and two C. coli strains to overcome oxidative stress, using H2O2 to mimic oxidative stress. Genes were identified that were required for oxidative stress resistance for each individual strain but also allowed a comparison across the three strains. Mutations in the perR and ahpC genes were found to increase Campylobacter tolerance to H2O2. The roles of these proteins in oxidative stress were previously known in C. jejuni, but this data indicates that they most likely play a similar role in C. coli. Mutation of czcD decreased Campylobacter tolerance to H2O2. The role of CzcD, which functions as a zinc exporter, has not previously been linked to oxidative stress. The TraDIS data was confirmed using defined deletions of perR and czcD in C. coli 15-537360. CONCLUSIONS This is the first study to investigate gene fitness in both C. jejuni and C. coli under oxidative stress conditions and highlights both similar roles for certain genes for both species and highlights other genes that have a role under oxidative stress.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Xuanlin Chen
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Dave Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Steven Rudder
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| |
Collapse
|
41
|
Guo F, Quan R, Cui Y, Cao X, Wen T, Xu F. Effects of OxyR regulator on oxidative stress, Apx toxin secretion and virulence of Actinobacillus pleuropneumoniae. Front Cell Infect Microbiol 2024; 13:1324760. [PMID: 38268788 PMCID: PMC10806198 DOI: 10.3389/fcimb.2023.1324760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, poses a significant threat to global swine populations due to its high prevalence, mortality rates, and substantial economic ramifications. Understanding the pathogen's defense mechanisms against host-produced reactive oxygen species is crucial for its survival, with OxyR, a conserved bacterial transcription factor, being pivotal in oxidative stress response. Methods This study investigated the presence and role of OxyR in A. pleuropneumoniae serovar 1-12 reference strains. Transcriptomic analysis was conducted on an oxyR disruption mutant to delineate the biological activities influenced by OxyR. Additionally, specific assays were employed to assess urease activity, catalase expression, ApxI toxin secretion, as well as adhesion and invasion abilities of the oxyR disruption mutant on porcine 3D4/21 and PT cells. A mice challenge experiment was also conducted to evaluate the impact of oxyR inactivation on A. pleuropneumoniae virulence. Results OxyR was identified as a conserved regulator present in A. pleuropneumoniae serovar 1-12 reference strains. Transcriptomic analysis revealed the involvement of OxyR in multiple biological activities. The oxyR disruption resulted in decreased urease activity, elevated catalase expression, enhanced ApxI toxin secretion-attributed to OxyR binding to the apxIBD promoter-and reduced adhesion and invasion abilities on porcine cells. Furthermore, inactivation of oxyR reduced the virulence of A. pleuropneumoniae in a mice challenge experiment. Discussion The findings highlight the pivotal role of OxyR in influencing the virulence mechanisms of A. pleuropneumoniae. The observed effects on various biological activities underscore OxyR as an essential factor contributing to the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tong Wen
- Department of Biology Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
42
|
Gupta A, Imlay JA. How a natural antibiotic uses oxidative stress to kill oxidant-resistant bacteria. Proc Natl Acad Sci U S A 2023; 120:e2312110120. [PMID: 38109539 PMCID: PMC10756299 DOI: 10.1073/pnas.2312110120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Natural products that possess antibiotic and antitumor qualities are often suspected of working through oxidative mechanisms. In this study, two quinone-based small molecules were compared. Menadione, a classic redox-cycling compound, was confirmed to generate high levels of reactive oxygen species inside Escherichia coli. It inactivated iron-cofactored enzymes and blocked growth. However, despite the substantial levels of oxidants that it produced, it was unable to generate significant DNA damage and was not lethal. Streptonigrin, in contrast, was poorer at redox cycling and did not inactivate enzymes or block growth; however, even in low doses, it damaged DNA and killed cells. Its activity required iron and oxygen, and in vitro experiments indicated that its quinone moiety transferred electrons through the adjacent iron atom to oxygen. Additionally, in vitro experiments revealed that streptonigrin was able to damage DNA without inhibition by catalase, indicating that hydrogen peroxide was not involved. We infer that streptonigrin can reduce bound oxygen directly to a ferryl species, which then oxidizes the adjacent DNA, without release of superoxide or hydrogen peroxide intermediates. This scheme allows streptonigrin to kill a bacterial cell without interference by scavenging enzymes. Moreover, its minimal redox-cycling behavior avoids alerting either the OxyR or the SoxRS systems, which otherwise would block killing. This example highlights qualities that may be important in the design of oxidative drugs. These results also cast doubt on proposals that bacteria can be killed by stressors that merely stimulate intracellular O2- and H2O2 formation.
Collapse
Affiliation(s)
- Anshika Gupta
- Department of Microbiology, University of Illinois, Urbana, IL61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL61801
| |
Collapse
|
43
|
Eben SS, Imlay JA. Evidence that protein thiols are not primary targets of intracellular reactive oxygen species in growing Escherichia coli. Front Microbiol 2023; 14:1305973. [PMID: 38152379 PMCID: PMC10751367 DOI: 10.3389/fmicb.2023.1305973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
The oxidizability of cysteine residues is exploited in redox chemistry and as a source of stabilizing disulfide bonds, but it also raises the possibility that these side chains will be oxidized when they should not be. It has often been suggested that intracellular oxidative stress from hydrogen peroxide or superoxide may result in the oxidation of the cysteine residues of cytoplasmic proteins. That view seemed to be supported by the discovery that one cellular response to hydrogen peroxide is the induction of glutaredoxin 1 and thioredoxin 2. In this study we used model compounds as well as alkaline phosphatase to test this idea. Our results indicate that molecular oxygen, superoxide, and hydrogen peroxide are very poor oxidants of N-acetylcysteine and of the protein thiols of alkaline phosphatase in vitro. Copper could accelerate thiol oxidation, but iron did not. When alkaline phosphatase was engineered to remain in the cytoplasm of live cells, unnaturally high concentrations of hydrogen peroxide were required to oxidize it to its active, disulfide-dependent form, and toxic levels of superoxide had no effect. At the same time, far lower concentrations of these oxidants were sufficient to poison key metalloenzymes. The elimination of glutaredoxin 1 and thioredoxin 2 did not change these results, raising the question of why E. coli induces them during peroxide stress. In fact, when catalase/peroxidase mutants were chronically stressed with hydrogen peroxide, the absence of glutaredoxin 1 and thioredoxin 2 did not impair growth at all, even in a minimal medium over many generations. We conclude that physiological levels of reduced oxygen species are not potent oxidants of typical protein thiols. Glutaredoxin and thioredoxin must either have an alternative purpose or else play a role under culture conditions that differ from the ones we tested.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, United States
| |
Collapse
|
44
|
Zamakhaev M, Bespyatykh J, Goncharenko A, Shumkov M. The Benefits of Toxicity: M. smegmatis VapBC TA Module Is Induced by Tetracycline Exposure and Promotes Survival. Microorganisms 2023; 11:2863. [PMID: 38138007 PMCID: PMC10745673 DOI: 10.3390/microorganisms11122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. Mycolicibacterium smegmatis, a common model organism for studying Mycobacterium tuberculosis physiology, has eight TA loci, including mazEF and vapBC. This study aims to investigate the physiological significance of these TA systems. Proteomic profiling was conducted on a culture overexpressing the VapC toxin, and the involvement of VapC in M. smegmatis stress responses to heat shock and antibiotic treatment was examined. While deciphering the underlying mechanisms of the altered stress resistance, we assessed the antibiotic susceptibility of vapBC, mazEF, and double vapBC-mazEF deletion mutants. Additionally, the mRNA levels of vapC and mazF were measured following tetracycline supplementation. The results reveal changes in the abundance of metabolic enzymes and stress response proteins associated with VapC overexpression. This activation of the general stress response leads to reduced thermosensitivity in M. smegmatis, but does not affect susceptibility to ciprofloxacin and isoniazid. Under tetracycline treatment, both vapC and mazF expression levels are increased, and the fate of the cell depends on the interaction between the corresponding TA systems.
Collapse
Affiliation(s)
- Mikhail Zamakhaev
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| | - Julia Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia;
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Sq., 125047 Moscow, Russia
| | - Anna Goncharenko
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| | - Mikhail Shumkov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| |
Collapse
|
45
|
Liu F, Han P, Li N, Zhang Y. Ahp deficiency-induced redox imbalance leads to metabolic alterations in E.coli. Redox Biol 2023; 67:102888. [PMID: 37725887 PMCID: PMC10507379 DOI: 10.1016/j.redox.2023.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Alkyl hydroperoxide reductase (Ahp) is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli (E. coli). Ahp-deficient strains have been found to have high reactive oxygen species (ROS) levels, sufficient to cause cell damage. However, the exact role and underlying mechanisms of Ahp deficiency-induced cell damage remain largely unknown. Here, the E. coli MG1655 ΔAhp mutant strain was constructed as a model of deficiency to assess its role. The cells of the ΔAhp strain were found to be significantly longer than those of the wild strain, with elevated ROS and hydrogen peroxide (H2O2) levels. Proteome, redox proteome and metabolome analyses were performed to systematically present a global and quantitative profile and delineate the redox signaling and metabolic alterations at the proteome, metabolome, and cysteine oxidation site levels. The multiomics data revealed that Ahp deficiency disrupted the redox balance, activated the OxyR system, upregulated oxidative defense proteins and inhibited the TCA cycle to some extent. Surprisingly, the mutant strain shifted from aerobic respiration to anaerobic respiration and fermentation during the logarithmic phase in the presence of sufficient O2. The acid resistance system was activated to mitigate the effect of excessive acid produced by fermentation. Taken together, the results of this study demonstrated that Ahp deficiency triggered cellular redox imbalance and regulated metabolic pathways to confer resistance to submicromolar intracellular H2O2 levels in E. coli.
Collapse
Affiliation(s)
- Feng Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Nuomin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongqian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
46
|
Hernandez-Morfa M, Olivero NB, Zappia VE, Piñas GE, Reinoso-Vizcaino NM, Cian MB, Nuñez-Fernandez M, Cortes PR, Echenique J. The oxidative stress response of Streptococcus pneumoniae: its contribution to both extracellular and intracellular survival. Front Microbiol 2023; 14:1269843. [PMID: 37789846 PMCID: PMC10543277 DOI: 10.3389/fmicb.2023.1269843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a gram-positive, aerotolerant bacterium that naturally colonizes the human nasopharynx, but also causes invasive infections and is a major cause of morbidity and mortality worldwide. This pathogen produces high levels of H2O2 to eliminate other microorganisms that belong to the microbiota of the respiratory tract. However, it also induces an oxidative stress response to survive under this stressful condition. Furthermore, this self-defense mechanism is advantageous in tolerating oxidative stress imposed by the host's immune response. This review provides a comprehensive overview of the strategies employed by the pneumococcus to survive oxidative stress. These strategies encompass the utilization of H2O2 scavengers and thioredoxins, the adaptive response to antimicrobial host oxidants, the regulation of manganese and iron homeostasis, and the intricate regulatory networks that control the stress response. Here, we have also summarized less explored aspects such as the involvement of reparation systems and polyamine metabolism. A particular emphasis is put on the role of the oxidative stress response during the transient intracellular life of Streptococcus pneumoniae, including coinfection with influenza A and the induction of antibiotic persistence in host cells.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - German E. Piñas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Nuñez-Fernandez
- Centro de Química Aplicada, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
47
|
Li J, Ding H, Zhao Y, Lin M, Song L, Wang W, Dong H, Ma X, Liu W, Han L, Zheng F. DNA Repair-Responsive Engineered Whole Cell Microbial Sensors for Sensitive and High-Throughput Screening of Genotoxic Impurities. Anal Chem 2023; 95:12893-12902. [PMID: 37589895 DOI: 10.1021/acs.analchem.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Genotoxic impurities (GTIs) occurred in drugs, and food and environment pose a threat to human health. Accurate and sensitive evaluation of GTIs is of significance. Ames assay is the existing gold standard method. However, the pathogenic bacteria model lacks metabolic enzymes and requires mass GTIs, leading to insufficient safety, accuracy, and sensitivity. Whole-cell microbial sensors (WCMSs) can use normal strains to simulate the metabolic environment, achieving safe, sensitive, and high-throughput detection and evaluation for GTIs. Here, based on whether GTIs causing DNA alkylation required metabolic enzymes or not, two DNA repair-responsive engineered WCMS systems were constructed including Escherichia coli-WCMS and yeast-WCMS. A DNA repair-responsive promoter as a sensing element was coupled with an enhanced green fluorescent protein as a reporter to construct plasmids for introduction into WCMS. The ada promoter was screened out in the E. coli-WCMS, while the MAG1 promoter was selected for the yeast-WCMS. Different E. coli and yeast strains were modified by gene knockout and mutation to eliminate the interference and enhance the GTI retention in cells and further improved the sensitivity. Finally, GTI consumption of WCMS for the evaluation of methyl methanesulfonate (MMS) and nitrosamines was decreased to 0.46-8.53 μg and 0.068 ng-2.65 μg, respectively, decreasing 2-3 orders of magnitude compared to traditional methods. This study provided a novel approach to measure GTIs with different DNA damage pathways at a molecular level and facilitated the high-throughput screening and sensitive evaluation of GTIs.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Haotian Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yuning Zhao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Mingbin Lin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Linqi Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- Chongqing Fuling Institute for Food and Drug Control, Chongqing 408102, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Ma
- Gansu Institute for Drug Control, Lanzhou 730000, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
- Zhejiang Center for Safety Study of Drug Substances (Industrial Technology Innovation Platform), Hangzhou 310018, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
48
|
Botin T, Ramirez-Chamorro L, Vidic J, Langella P, Martin-Verstraete I, Chatel JM, Auger S. The Tolerance of Gut Commensal Faecalibacterium to Oxidative Stress Is Strain Dependent and Relies on Detoxifying Enzymes. Appl Environ Microbiol 2023; 89:e0060623. [PMID: 37382539 PMCID: PMC10370306 DOI: 10.1128/aem.00606-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Obligate anaerobic bacteria in genus Faecalibacterium are among the most dominant taxa in the colon of healthy individuals and contribute to intestinal homeostasis. A decline in the abundance of this genus is associated with the occurrence of various gastrointestinal disorders, including inflammatory bowel diseases. In the colon, these diseases are accompanied by an imbalance between the generation and elimination of reactive oxygen species (ROS), and oxidative stress is closely linked to disruptions in anaerobiosis. In this work, we explored the impact of oxidative stress on several strains of faecalibacteria. An in silico analysis of complete genomes of faecalibacteria revealed the presence of genes encoding O2- and/or ROS-detoxifying enzymes, including flavodiiron proteins, rubrerythrins, reverse rubrerythrins, superoxide reductases, and alkyl peroxidase. However, the presence and the number of these detoxification systems varied greatly among faecalibacteria. These results were confirmed by O2 stress survival tests, in which we found that strains differed widely in their sensitivity. We showed the protective role of cysteine, which limited the production of extracellular O2•- and improved the survival of Faecalibacterium longum L2-6 under high O2 tension. In the strain F. longum L2-6, we observed that the expression of genes encoding detoxifying enzymes was upregulated in the response to O2 or H2O2 stress but with different patterns of regulation. Based on these results, we propose a first model of the gene regulatory network involved in the response to oxidative stress in F. longum L2-6. IMPORTANCE Commensal bacteria in the genus Faecalibacterium have been proposed for use as next-generation probiotics, but efforts to cultivate and exploit the potential of these strains have been limited by their sensitivity to O2. More broadly, little is known about how commensal and health-associated bacterial species in the human microbiome respond to the oxidative stress that occurs as a result of inflammation in the colon. In this work, we provide insights regarding the genes that encode potential mechanisms of protection against O2 or ROS stress in faecalibacteria, which may facilitate future advances in work with these important bacteria.
Collapse
Affiliation(s)
- Tatiana Botin
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Luis Ramirez-Chamorro
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Jasmina Vidic
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogénèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| | - Jean-Marc Chatel
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Sandrine Auger
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| |
Collapse
|
49
|
Carvajal-Garcia J, Samadpour AN, Hernandez Viera AJ, Merrikh H. Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria. Proc Natl Acad Sci U S A 2023; 120:e2300761120. [PMID: 37364106 PMCID: PMC10318952 DOI: 10.1073/pnas.2300761120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In bacteria, mutations lead to the evolution of antibiotic resistance, which is one of the main public health problems of the twenty-first century. Therefore, determining which cellular processes most frequently contribute to mutagenesis, especially in cells that have not been exposed to exogenous DNA damage, is critical. Here, we show that endogenous oxidative stress is a key driver of mutagenesis and the subsequent development of antibiotic resistance. This is the case for all classes of antibiotics and highly divergent species tested, including patient-derived strains. We show that the transcription-coupled repair pathway, which uses the nucleotide excision repair proteins (TC-NER), is responsible for endogenous oxidative stress-dependent mutagenesis and subsequent evolution. This suggests that a majority of mutations arise through transcription-associated processes rather than the replication fork. In addition to determining that the NER proteins play a critical role in mutagenesis and evolution, we also identify the DNA polymerases responsible for this process. Our data strongly suggest that cooperation between three different mutagenic DNA polymerases, likely at the last step of TC-NER, is responsible for mutagenesis and evolution. Overall, our work identifies a highly conserved pathway that drives mutagenesis due to endogenous oxidative stress, which has broad implications for all diseases of evolution, including antibiotic resistance development.
Collapse
Affiliation(s)
- Juan Carvajal-Garcia
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232
| | | | | | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232
| |
Collapse
|
50
|
Shin J, Rychel K, Palsson BO. Systems biology of competency in Vibrio natriegens is revealed by applying novel data analytics to the transcriptome. Cell Rep 2023; 42:112619. [PMID: 37285268 DOI: 10.1016/j.celrep.2023.112619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Vibrio natriegens regulates natural competence through the TfoX and QstR transcription factors, which are involved in external DNA capture and transport. However, the extensive genetic and transcriptional regulatory basis for competency remains unknown. We used a machine-learning approach to decompose Vibrio natriegens's transcriptome into 45 groups of independently modulated sets of genes (iModulons). Our findings show that competency is associated with the repression of two housekeeping iModulons (iron metabolism and translation) and the activation of six iModulons; including TfoX and QstR, a novel iModulon of unknown function, and three housekeeping iModulons (representing motility, polycations, and reactive oxygen species [ROS] responses). Phenotypic screening of 83 gene deletion strains demonstrates that loss of iModulon function reduces or eliminates competency. This database-iModulon-discovery cycle unveils the transcriptomic basis for competency and its relationship to housekeeping functions. These results provide the genetic basis for systems biology of competency in this organism.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|