1
|
Tang L, Soulier NT, Wheeler R, Pokorski JK, Golden JW, Golden SS, Bae J. A responsive living material prepared by diffusion reveals extracellular enzyme activity of cyanobacteria. Proc Natl Acad Sci U S A 2025; 122:e2424405122. [PMID: 40310460 PMCID: PMC12067278 DOI: 10.1073/pnas.2424405122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Stimuli-responsive engineered living materials (ELMs) can respond to environmental or biochemical cues and have broad utility in biological sensors and machines, but have traditionally been limited to biocompatible scaffolds. This is because they are typically made by mixing cells into a precursor solution before crosslinking. Here, we demonstrate a diffusion mechanism for incorporating cells of the cyanobacterium Synechococcus elongatus sp. PCC 7942 (S. elongatus) into nanoclay-poly-N-isopropylacrylamide (NC-PNIPAm), a hydrogel with a cytotoxic precursor, by exploiting its temperature-dependent shape-morphing behavior. Subsequent growth of S. elongatus caused a decrease in the bending curvature and stiffness (local Young's modulus) of NC-PNIPAm due to partial degradation by an unannotated enzyme. Creation and observation of this cyanobacteria-hydrogel ELM showcases a method for diffusing cells into a hydrogel as well as characterizing an extracellular enzyme.
Collapse
Affiliation(s)
- Lisa Tang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA92093
| | - Nathan T. Soulier
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Rebecca Wheeler
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA92093
| | - Jonathan K. Pokorski
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA92093
| | - James W. Golden
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Susan S. Golden
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA92093
- Department of Chemical Engineering, Chung-Ang University, Seoul06794, Republic of Korea
| |
Collapse
|
2
|
Liu X, Yang M, Ge F, Zhao J. Lysine acetylation in cyanobacteria: emerging mechanisms and functions. Biochem Soc Trans 2025; 53:BST20241037. [PMID: 39936403 DOI: 10.1042/bst20241037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Cyanobacteria are ancient and abundant photosynthetic prokaryotes that play crucial roles in global carbon and nitrogen cycles. They exist in a variety of environments and have been used extensively as model organisms for studies of photosynthesis and environmental adaptation. Lysine acetylation (Kac), a widespread and evolutionarily conserved protein posttranslational modification, is reversibly catalyzed by lysine acetyltransferases (KAT) and lysine deacetylases (KDACs). Over the past decade, a growing number of acetylated proteins have been identified in cyanobacteria, and Kac is increasingly recognized as having essential roles in many cellular processes, such as photosynthesis, energy metabolism, and stress responses. Recently, cGNAT2 and CddA were identified as KAT and KDAC in the model cyanobacterium Synechococcus sp. PCC 7002, respectively. The identified Kac regulatory enzymes provide novel insight into the mechanisms that globally regulate photosynthesis in cyanobacteria and potentially other photosynthetic organisms. This review summarizes recent progress in our understanding of the functions and mechanisms of lysine acetylation in Cyanobacteria. The challenges and future perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Xin Liu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ulrich NJ, Miller SR. Integration of horizontally acquired light-harvesting genes into an ancestral regulatory network in the cyanobacterium Acaryochloris marina MBIC11017. mBio 2024; 15:e0242324. [PMID: 39555914 PMCID: PMC11633204 DOI: 10.1128/mbio.02423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The acquisition of new capabilities by horizontal gene transfer (HGT) shapes the distribution of traits during microbial diversification. In the Chlorophyll (Chl) d-producing cyanobacterium Acaryochloris marina, the genes involved in the production and disassembly of the light-harvesting phycobiliprotein phycocyanin (PC) were lost in the A. marina common ancestor but then subsequently regained via HGT in A. marina strain MBIC11017. However, it remains unknown how the HGT-acquired PC genes in MBIC11017 have been reintegrated into its existing regulatory network after tens of millions of years since their loss. Here, we investigated potential mechanisms of regulatory assimilation of PC genes by comparing the transcriptomes of A. marina strain MBIC11017 and a PC-lacking close relative under both low irradiance far-red light and high irradiance white light. We found that PC assembly and degradation processes have been re-assimilated into a conserved ancestral response to high light. Further, we identified putative regulatory elements that were likely co-transferred with PC genes and could be recognized by A. marina's pre-existing light response machinery. This study offers insights into how HGT-acquired genes can be reintegrated into an existing transcriptional regulatory network that has evolved in their absence.IMPORTANCEHorizontal gene transfer, the asymmetric movement of genetic information between donor and recipient organisms, is an important mechanism for acquiring new traits. In order for newly acquired gene content to be retained, it must be integrated into the genetic repertoire and regulatory networks of the recipient cell. In a strain of the Chlorophyll d-producing cyanobacterium Acaryochloris marina, the recent reacquisition of the genes required to produce the light-harvesting pigment phycocyanin offers a rare opportunity to understand the mechanisms underlying the regulatory assimilation of an acquired complex trait in bacteria. The significance in our research is in characterizing how an ancestrally lost, complex trait can be reintegrated into a conserved regulatory network, even after millions of years.
Collapse
Affiliation(s)
- Nikea J. Ulrich
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Scott R. Miller
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
4
|
Santos-Merino M, Sakkos JK, Singh AK, Ducat DC. Coordination of carbon partitioning and photosynthesis by a two-component signaling network in Synechococcus elongatus PCC 7942. Metab Eng 2024; 81:38-52. [PMID: 37925065 DOI: 10.1016/j.ymben.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Photosynthetic organisms need to balance the rate of photosynthesis with the utilization of photosynthetic products by downstream reactions. While such "source/sink" pathways are well-interrogated in plants, analogous regulatory systems are unknown or poorly studied in single-celled algal and cyanobacterial species. Towards the identification of energy/sugar sensors in cyanobacteria, we utilized an engineered strain of Synechococcus elongatus PCC 7942 that allows experimental manipulation of carbon status. We conducted a screening of all two-component systems (TCS) and serine/threonine kinases (STKs) encoded in S. elongatus PCC 7942 by analyzing phenotypes consistent with sucrose-induced relaxation of sink inhibition. We narrowed the candidate sensor proteins by analyzing changes observed after sucrose feeding. We show that a clustered TCS network containing RpaA, CikB, ManS and NblS are involved in the regulation of genes related to photosynthesis, pigment synthesis, and Rubisco concentration in response to sucrose. Altogether, these results highlight a regulatory TCS group that may play under-appreciated functions in carbon partitioning and energy balancing in cyanobacteria.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Jonathan K Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Amit K Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
5
|
Alonso-Sáez L, Palacio AS, Cabello AM, Robaina-Estévez S, González JM, Garczarek L, López-Urrutia Á. Transcriptional Mechanisms of Thermal Acclimation in Prochlorococcus. mBio 2023:e0342522. [PMID: 37052490 DOI: 10.1128/mbio.03425-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Low temperature limits the growth and the distribution of the key oceanic primary producer Prochlorococcus, which does not proliferate above a latitude of ca. 40°. Yet, the molecular basis of thermal acclimation in this cyanobacterium remains unexplored. We analyzed the transcriptional response of the Prochlorococcus marinus strain MIT9301 in long-term acclimations and in natural Prochlorococcus populations along a temperature range enabling its growth (17 to 30°C). MIT9301 upregulated mechanisms of the global stress response at the temperature minimum (17°C) but maintained the expression levels of genes involved in essential metabolic pathways (e.g., ATP synthesis and carbon fixation) along the whole thermal niche. Notably, the declining growth of MIT9301 from the optimum to the minimum temperature was coincident with a transcriptional suppression of the photosynthetic apparatus and a dampening of its circadian expression patterns, indicating a loss in their regulatory capacity under cold conditions. Under warm conditions, the cellular transcript inventory of MIT9301 was strongly streamlined, which may also induce regulatory imbalances due to stochasticity in gene expression. The daytime transcriptional suppression of photosynthetic genes at low temperature was also observed in metatranscriptomic reads mapping to MIT9301 across the global ocean, implying that this molecular mechanism may be associated with the restricted distribution of Prochlorococcus to temperate zones. IMPORTANCE Prochlorococcus is a major marine primary producer with a global impact on atmospheric CO2 fixation. This cyanobacterium is widely distributed across the temperate ocean, but virtually absent at latitudes above 40° for yet unknown reasons. Temperature has been suggested as a major limiting factor, but the exact mechanisms behind Prochlorococcus thermal growth restriction remain unexplored. This study brings us closer to understanding how Prochlorococcus functions under challenging temperature conditions, by focusing on its transcriptional response after long-term acclimation from its optimum to its thermal thresholds. Our results show that the drop in Prochlorococcus growth rate under cold conditions was paralleled by a transcriptional suppression of the photosynthetic machinery during daytime and a loss in the organism's regulatory capacity to maintain circadian expression patterns. Notably, warm temperature induced a marked shrinkage of the organism's cellular transcript inventory, which may also induce regulatory imbalances in the future functioning of this cyanobacterium.
Collapse
Affiliation(s)
- Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Antonio S Palacio
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Ana M Cabello
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ángel López-Urrutia
- Centro Oceanográfico de Gijón, Instituto Español de Oceanografía, IEO-CSIC, Gijón, Asturias, Spain
| |
Collapse
|
6
|
Zhang K, Foster L, Buchanan D, Coker VS, Pittman JK, Lloyd JR. The interplay between Cs and K in Pseudanabaena catenata; from microbial bloom control strategies to bioremediation options for radioactive waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130556. [PMID: 37055967 DOI: 10.1016/j.jhazmat.2022.130556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
Pseudanabaena dominates cyanobacterial blooms in the First-Generation Magnox Storage Pond (FGMSP) at a UK nuclear site. The fission product Cs is a radiologically significant radionuclide in the pond, and understanding the interactions between Cs and Pseudanabaena spp. is therefore important for determining facility management strategies, as well as improving understanding of microbiological responses to this non-essential chemical analogue of K. This study evaluated the fate of Cs following interactions with Pseudanabaena catenata, a laboratory strain most closely related to that dominating FGMSP blooms. Experiments showed that Cs (1 mM) exposure did not affect the growth of P. catenata, while a high concentration of K (5 mM) caused a significant reduction in cell yield. Scanning transmission X-ray microscopy elemental mapping identified Cs accumulation to discrete cytoplasmic locations within P. catenata cells, indicating a potential bioremediation option for Cs. Proteins related to stress responses and nutrient limitation (K, P) were stimulated by Cs treatment. Furthermore, selected K+ transport proteins were mis-regulated by Cs dosing, which indicates the importance of the K+ transport system for Cs accumulation. These findings enhance understanding of Cs fate and biological responses within Pseudanabaena blooms, and indicate that K exposure might provide a microbial bloom control strategy.
Collapse
Affiliation(s)
- Kejing Zhang
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Lynn Foster
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Dawn Buchanan
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Victoria S Coker
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
7
|
Tang J, Yao D, Zhou H, Wang M, Daroch M. Distinct Molecular Patterns of Two-Component Signal Transduction Systems in Thermophilic Cyanobacteria as Revealed by Genomic Identification. BIOLOGY 2023; 12:biology12020271. [PMID: 36829548 PMCID: PMC9953108 DOI: 10.3390/biology12020271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Two-component systems (TCSs) play crucial roles in sensing and responding to environmental signals, facilitating the acclimation of cyanobacteria to hostile niches. To date, there is limited information on the TCSs of thermophilic cyanobacteria. Here, genome-based approaches were used to gain insights into the structure and architecture of the TCS in 17 well-described thermophilic cyanobacteria, namely strains from the genus Leptodesmis, Leptolyngbya, Leptothermofonsia, Thermoleptolyngbya, Thermostichus, and Thermosynechococcus. The results revealed a fascinating complexity and diversity of the TCSs. A distinct composition of TCS genes existed among these thermophilic cyanobacteria. A majority of TCS genes were classified as orphan, followed by the paired and complex cluster. A high proportion of histidine kinases (HKs) were predicted to be cytosolic subcellular localizations. Further analyses suggested diversified domain architectures of HK and response regulators (RRs), putatively in association with various functions. Comparative and evolutionary genomic analyses indicated that the horizontal gene transfer, as well as duplications events, might be involved in the evolutionary history of TCS genes in Thermostichus and Thermosynechococcus strains. A comparative analysis between thermophilic and mesophilic cyanobacteria indicated that one HK cluster and one RR cluster were uniquely shared by all the thermophilic cyanobacteria studied, while two HK clusters and one RR cluster were common to all the filamentous thermophilic cyanobacteria. These results suggested that these thermophile-unique clusters may be related to thermal characters and morphology. Collectively, this study shed light on the TCSs of thermophilic cyanobacteria, which may confer the necessary regulatory flexibility; these findings highlight that the genomes of thermophilic cyanobacteria have a broad potential for acclimations to environmental fluctuations.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Mingcheng Wang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-0755-2603-2184
| |
Collapse
|
8
|
Krynická V, Skotnicová P, Jackson PJ, Barnett S, Yu J, Wysocka A, Kaňa R, Dickman MJ, Nixon PJ, Hunter CN, Komenda J. FtsH4 protease controls biogenesis of the PSII complex by dual regulation of high light-inducible proteins. PLANT COMMUNICATIONS 2023; 4:100502. [PMID: 36463410 PMCID: PMC9860182 DOI: 10.1016/j.xplc.2022.100502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria, mitochondria, and chloroplasts. Like most cyanobacteria, the model species Synechocystis sp. PCC 6803 contains four FtsH homologs, FtsH1-FtsH4. FtsH1-FtsH3 form two hetero-oligomeric complexes, FtsH1/3 and FtsH2/3, which play a pivotal role in acclimation to nutrient deficiency and photosystem II quality control, respectively. FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex, and together with Arabidopsis thaliana AtFtsH7/9 orthologs, it has been assigned to another phylogenetic group of unknown function. Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex. Instead, we demonstrate that FtsH4 is involved in the biogenesis of photosystem II by dual regulation of high light-inducible proteins (Hlips). FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlip removal under conditions when their elevated levels are no longer needed. We provide experimental support for Hlips as proteolytic substrates of FtsH4. Fluorescent labeling of FtsH4 enabled us to assess its localization using advanced microscopic techniques. Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system. Based on the identification of proteins that co-purified with the tagged FtsH4, we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place.
Collapse
Affiliation(s)
- Vendula Krynická
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic.
| | - Petra Skotnicová
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Samuel Barnett
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Anna Wysocka
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Radek Kaňa
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Josef Komenda
- The Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, Novohradská 237, 379 01 Třeboň, Czech Republic
| |
Collapse
|
9
|
Kato N, Iwata K, Kadowaki T, Sonoike K, Hihara Y. Dual Redox Regulation of the DNA-Binding Activity of the Response Regulator RpaB in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2022; 63:1078-1090. [PMID: 35660918 DOI: 10.1093/pcp/pcac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The response regulator RpaB plays a central role in transcriptional regulation of photosynthesis-related genes in cyanobacteria. RpaB is phosphorylated by its cognate histidine kinase Hik33 and functions as both an activator and a repressor under low-light conditions, whereas its phosphorylation level and DNA-binding activity promptly decrease upon the upshift of photon flux density, causing changes in the gene expression profile. In this study, we assessed the possibility of redox regulation of the DNA-binding activity of RpaB in Synechocystis sp. PCC 6803 by the addition of inhibitors of photosynthetic electron transport, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, or the reducing agent dithiothreitol under different photon flux densities. Analysis of the phosphorylation level of RpaB revealed that reduction of QA and increase in the availability of reducing equivalents at the acceptor side of photosystem I (PSI) can independently trigger dephosphorylation. The redox-state-dependent regulation by an unidentified thiol other than Cys59 of RpaB is prerequisite for the phosphorylation-dependent regulation of the DNA-binding activity. Environmental signals, recognized by Hik33, and metabolic signals recognized as the availability of reducing equivalents, must be integrated at the master regulator RpaB, in order to attain the flexible regulation of acclimatory responses.
Collapse
Affiliation(s)
- Naoki Kato
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama, 338-8570 Japan
| | - Kazuki Iwata
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama, 338-8570 Japan
| | - Taro Kadowaki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama, 338-8570 Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama, 338-8570 Japan
| |
Collapse
|
10
|
Nguyen STT, Vardeh DP, Nelson TM, Pearson LA, Kinsela AS, Neilan BA. Bacterial community structure and metabolic potential in microbialite-forming mats from South Australian saline lakes. GEOBIOLOGY 2022; 20:546-559. [PMID: 35312212 PMCID: PMC9311741 DOI: 10.1111/gbi.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Microbialites are sedimentary rocks created in association with benthic microorganisms. While they harbour complex microbial communities, Cyanobacteria perform critical roles in sediment stabilisation and accretion. Microbialites have been described from permanent and ephemeral saline lakes in South Australia; however, the microbial communities that generate and inhabit these biogeological structures have not been studied in detail. To address this knowledge gap, we investigated the composition, diversity and metabolic potential of bacterial communities from different microbialite-forming mats and surrounding sediments in five South Australian saline coastal lakes using 16S rRNA gene sequencing and predictive metagenome analyses. While Proteobacteria and Bacteroidetes were the dominant phyla recovered from the mats and sediments, Cyanobacteria were significantly more abundant in the mat samples. Interestingly, at lower taxonomic levels, the mat communities were vastly different across the five lakes. Comparative analysis of putative mat and sediment metagenomes via PICRUSt2 revealed important metabolic pathways driving the process of carbonate precipitation, including cyanobacterial oxygenic photosynthesis, ureolysis and nitrogen fixation. These pathways were highly conserved across the five examined lakes, although they appeared to be performed by distinct groups of bacterial taxa found in each lake. Stress response, quorum sensing and circadian clock were other important pathways predicted by the in silico metagenome analysis. The enrichment of CRISPR/Cas and phage shock associated genes in these cyanobacteria-rich communities suggests that they may be under selective pressure from viral infection. Together, these results highlight that a very stable ecosystem function is maintained by distinctly different communities in microbialite-forming mats in the five South Australian lakes and reinforce the concept that 'who' is in the community is not as critical as their net metabolic capacity.
Collapse
Affiliation(s)
- Suong T. T. Nguyen
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - David P. Vardeh
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Tiffanie M. Nelson
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Leanne A. Pearson
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Andrew S. Kinsela
- School of Civil and Environmental EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| | - Brett A. Neilan
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
11
|
Diverse Subclade Differentiation Attributed to the Ubiquity of
Prochlorococcus
High-Light-Adapted Clade II. mBio 2022; 13:e0302721. [PMID: 35285694 PMCID: PMC9040837 DOI: 10.1128/mbio.03027-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Prochlorococcus is the key primary producer in marine ecosystems, and the high-light-adapted clade II (HLII) is the most abundant ecotype. However, the genomic and ecological basis of Prochlorococcus HLII in the marine environment has remained elusive. Here, we show that the ecologically coherent subclade differentiation of HLII corresponds to genomic and ecological characteristics on the basis of analyses of 31 different strains of HLII, including 12 novel isolates. Different subclades of HLII with different core and accessory genes were identified, and their distribution in the marine environment was explored using the TARA Oceans metagenome database. Three major subclade groups were identified, viz., the surface group (HLII-SG), the transition group (HLII-TG), and the deep group (HLII-DG). These subclade groups showed different temperature ranges and optima for distribution. In regression analyses, temperature and nutrient availability were identified as key factors affecting the distribution of HLII subclades. A 35% increase in the relative abundance of HLII-SG by the end of the 21st century was predicted under the Representative Concentration Pathway 8.5 scenario. Our results show that the ubiquity and distribution of Prochlorococcus HLII in the marine environment are associated with the differentiation of diverse subclades. These findings provide insights into the large-scale shifts in the Prochlorococcus community in response to future climate change.
Collapse
|
12
|
Bairagi N, Watanabe S, Nimura-Matsune K, Tanaka K, Tsurumaki T, Nakanishi S, Tanaka K. Conserved Two-component Hik2-Rre1 Signaling Is Activated Under Temperature Upshift and Plastoquinone-reducing Conditions in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2022; 63:176-188. [PMID: 34750635 DOI: 10.1093/pcp/pcab158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.
Collapse
Affiliation(s)
- Nachiketa Bairagi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 Japan
| | - Kaori Nimura-Matsune
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 Japan
| | - Kenya Tanaka
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531 Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Tatsuhiro Tsurumaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| |
Collapse
|
13
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
14
|
Sakkos JK, Hernandez-Ortiz S, Osteryoung KW, Ducat DC. Orthogonal Degron System for Controlled Protein Degradation in Cyanobacteria. ACS Synth Biol 2021; 10:1667-1681. [PMID: 34232633 DOI: 10.1021/acssynbio.1c00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synechococcus elongatus PCC 7942 is a model cyanobacterium for study of the circadian clock, photosynthesis, and bioproduction of chemicals, yet nearly 40% of its gene identities and functions remain unknown, in part due to limitations of the existing genetic toolkit. While classical techniques for the study of genes (e.g., deletion or mutagenesis) can yield valuable information about the absence of a gene and its associated protein, there are limits to these approaches, particularly in the study of essential genes. Herein, we developed a tool for inducible degradation of target proteins in S. elongatus by adapting a method using degron tags from the Mesoplasma florum transfer-mRNA (tmRNA) system. We observed that M. florum lon protease can rapidly degrade exogenous and native proteins tagged with the cognate sequence within hours of induction. We used this system to inducibly degrade the essential cell division factor, FtsZ, as well as shell protein components of the carboxysome. Our results have implications for carboxysome biogenesis and the rate of carboxysome turnover during cell growth. Lon protease control of proteins offers an alternative approach for the study of essential proteins and protein dynamics in cyanobacteria.
Collapse
Affiliation(s)
- Jonathan K. Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sergio Hernandez-Ortiz
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Katherine W. Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Discovery of a small protein factor involved in the coordinated degradation of phycobilisomes in cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2012277118. [PMID: 33509926 PMCID: PMC7865187 DOI: 10.1073/pnas.2012277118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During genome analysis, genes encoding small proteins are frequently neglected. Accordingly, small proteins have remained underinvestigated in all domains of life. Based on a previous systematic search for such genes, we present the functional analysis of the 66 amino acids protein NblD in a photosynthetic cyanobacterium. We show that NblD plays a crucial role during the coordinated dismantling of phycobilisome light-harvesting complexes. This disassembly is triggered when the cells become starved for nitrogen, a condition that frequently occurs in nature. Similar to NblA that tags phycobiliproteins for proteolysis, NblD binds to phycocyanin polypeptides but has a different function. The results show that, even in a well-investigated process, crucial new players can be discovered if small proteins are taken into consideration. Phycobilisomes are the major pigment–protein antenna complexes that perform photosynthetic light harvesting in cyanobacteria, rhodophyte, and glaucophyte algae. Up to 50% of the cellular nitrogen can be stored in their giant structures. Accordingly, upon nitrogen depletion, phycobilisomes are rapidly degraded following an intricate genetic program. Here, we describe the role of NblD, a cysteine-rich, small protein in this process in cyanobacteria. Deletion of the nblD gene in the cyanobacterium Synechocystis sp. PCC 6803 prevented the degradation of phycobilisomes, leading to a nonbleaching (nbl) phenotype, which could be complemented by a plasmid-localized gene copy. Competitive growth experiments between the ΔnblD and the wild-type strain provided direct evidence for the physiological importance of NblD under nitrogen-limited conditions. Ectopic expression of NblD under nitrogen-replete conditions showed no effect, in contrast to the unrelated proteolysis adaptors NblA1 and NblA2, which can trigger phycobilisome degradation. Transcriptome analysis indicated increased nblA1/2 transcript levels in the ΔnblD strain during nitrogen starvation, implying that NblD does not act as a transcriptional (co)regulator. However, immunoprecipitation and far-western experiments identified the chromophorylated (holo form) of the phycocyanin β-subunit (CpcB) as its target, while apo-CpcB was not bound. The addition of recombinant NblD to isolated phycobilisomes caused a reduction in phycocyanin absorbance and a broadening and shifting of the peak to lower wavelengths, indicating the occurrence of structural changes. These data demonstrate that NblD plays a crucial role in the coordinated dismantling of phycobilisomes and add it as a factor to the genetically programmed response to nitrogen starvation.
Collapse
|
16
|
Park JM, Lee HJ, Ahn J, Sekhon SS, Kim SY, Wee JH, Min J, Ahn JY, Kim YH. Effects of Light Regulation on Proteome Expression in Rhodobacter sphaeroides 2.4.1. Mol Biotechnol 2021; 63:437-445. [PMID: 33666852 DOI: 10.1007/s12033-021-00312-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/20/2021] [Indexed: 12/01/2022]
Abstract
Light plays an important role in the transcriptional regulation of photosynthetic apparatus. The influence of oxygen and light conditions on the protein expression of Rhodobacter sphaeroides was investigated using a proteomic approach. The R. sphaeroides was grown aerobically under dark cultivation (D24) and light cultivation (L24) for 24 h. An average of 950 distinguishable spots were obtained on 2-D analytic gel for D24 and L24 conditions, of which 48 proteins exhibited significant changes in protein expression levels. Among the 48, 31 proteins were upregulated and 17 proteins were downregulated in L24 when compared with D24. The results depict the comparative protein expression in R. sphaeroides mediated through growth under light or dark conditions. The data suggest that the overexpressed proteins, phosphoribosyl-ATP pyrophosphatase (HisE), in the D24/aerobic culture are involved in the positive regulation of PAC production can be functionally applied in metabolic engineering and industrial processes.
Collapse
Affiliation(s)
- Jae-Min Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Hyun-Jeong Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, 54896, Jeonju-si, Jeollabuk-do, South Korea
| | - Jinhee Ahn
- MEDICA KOREA Co., Ltd., 704ho, 2558, Nambusunhwan-ro, Seocho-gu, Seoul, 06750, South Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Sang Yong Kim
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, 15435, Ansan, South Korea
| | - Ji-Hyang Wee
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, 15435, Ansan, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, 54896, Jeonju-si, Jeollabuk-do, South Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea.
| |
Collapse
|
17
|
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296:100338. [PMID: 33497624 PMCID: PMC7966870 DOI: 10.1016/j.jbc.2021.100338] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
18
|
Rachedi R, Foglino M, Latifi A. Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life (Basel) 2020; 10:life10120312. [PMID: 33256109 PMCID: PMC7760821 DOI: 10.3390/life10120312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are highly diverse, widely distributed photosynthetic bacteria inhabiting various environments ranging from deserts to the cryosphere. Throughout this range of niches, they have to cope with various stresses and kinds of deprivation which threaten their growth and viability. In order to adapt to these stresses and survive, they have developed several global adaptive responses which modulate the patterns of gene expression and the cellular functions at work. Sigma factors, two-component systems, transcriptional regulators and small regulatory RNAs acting either separately or collectively, for example, induce appropriate cyanobacterial stress responses. The aim of this review is to summarize our current knowledge about the diversity of the sensors and regulators involved in the perception and transduction of light, oxidative and thermal stresses, and nutrient starvation responses. The studies discussed here point to the fact that various stresses affecting the photosynthetic capacity are transduced by common mechanisms.
Collapse
|
19
|
Tightening the Screws on PsbA in Cyanobacteria. Trends Genet 2020; 37:211-215. [PMID: 32977998 DOI: 10.1016/j.tig.2020.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
Cyanobacterial genomes encode several isoforms of the D1 (PsbA) subunit of Photosystem II (PSII). The distinct regulation of each isoform ensures adaptation under changing environmental conditions. Uncovering the missing elements of signal transduction pathways and psbA gene expression could open new avenues in engineering programs of cyanobacterial strains.
Collapse
|
20
|
Yasuda A, Inami D, Hanaoka M. RpaB, an essential response regulator for high-light stress, is extensively involved in transcriptional regulation under light-intensity upshift conditions in Synechococcus elongatus PCC 7942. J GEN APPL MICROBIOL 2020; 66:73-79. [PMID: 32269205 DOI: 10.2323/jgam.2020.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In cyanobacteria, transcription of a set of genes is specifically induced by high-light-stress conditions. In previous studies, RpaB, a response regulator of the two-component system, was shown to be involved in this regulation in vitro and in vivo. In this study, we examined whether RpaB-dependent transcriptional regulation was extensively observed, not only under high-light-stress conditions but also under various light intensities. Transcription of high-light-dependent genes hliA, nblA and rpoD3 was transiently and drastically induced during a dark-to-light shift in a manner similar to high-light-stress responses. Moreover, expression of these genes was activated under various light-intensity upshift conditions. Phos-tag SDS-PAGE experiments showed that the phosphorylation level of RpaB was decreased along with transcriptional induction of target genes in all of the light environments examined herein. These results suggest that RpaB may be widely involved in transcriptional regulation under dark-to-light and light-intensity upshift conditions and that high-light-responsive genes may be required in various light conditions other than high-light condition. Furthermore, it is hypothesised that RpaB is regulated by redox-dependent signals rather than by high-light-stress-dependent signals.
Collapse
Affiliation(s)
- Akira Yasuda
- Division of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University
| | - Daichi Inami
- Division of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University
| | - Mitsumasa Hanaoka
- Division of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University.,Plant Molecular Science Center, Chiba University
| |
Collapse
|
21
|
Hu PP, Hou JY, Xu YL, Niu NN, Zhao C, Lu L, Zhou M, Scheer H, Zhao KH. The role of lyases, NblA and NblB proteins and bilin chromophore transfer in restructuring the cyanobacterial light-harvesting complex ‡. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:529-540. [PMID: 31820831 DOI: 10.1111/tpj.14647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the β-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.
Collapse
Affiliation(s)
- Ping-Ping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Yun Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cheng Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| |
Collapse
|
22
|
Nagarajan A, Zhou M, Nguyen AY, Liberton M, Kedia K, Shi T, Piehowski P, Shukla A, Fillmore TL, Nicora C, Smith RD, Koppenaal DW, Jacobs JM, Pakrasi HB. Proteomic Insights into Phycobilisome Degradation, A Selective and Tightly Controlled Process in The Fast-Growing Cyanobacterium Synechococcus elongatus UTEX 2973. Biomolecules 2019; 9:biom9080374. [PMID: 31426316 PMCID: PMC6722726 DOI: 10.3390/biom9080374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
Phycobilisomes (PBSs) are large (3-5 megadalton) pigment-protein complexes in cyanobacteria that associate with thylakoid membranes and harvest light primarily for photosystem II. PBSs consist of highly ordered assemblies of pigmented phycobiliproteins (PBPs) and linker proteins that can account for up to half of the soluble protein in cells. Cyanobacteria adjust to changing environmental conditions by modulating PBS size and number. In response to nutrient depletion such as nitrogen (N) deprivation, PBSs are degraded in an extensive, tightly controlled, and reversible process. In Synechococcus elongatus UTEX 2973, a fast-growing cyanobacterium with a doubling time of two hours, the process of PBS degradation is very rapid, with 80% of PBSs per cell degraded in six hours under optimal light and CO2 conditions. Proteomic analysis during PBS degradation and re-synthesis revealed multiple proteoforms of PBPs with partially degraded phycocyanobilin (PCB) pigments. NblA, a small proteolysis adaptor essential for PBS degradation, was characterized and validated with targeted mass spectrometry. NblA levels rose from essentially 0 to 25,000 copies per cell within 30 min of N depletion, and correlated with the rate of decrease in phycocyanin (PC). Implications of this correlation on the overall mechanism of PBS degradation during N deprivation are discussed.
Collapse
Affiliation(s)
- Aparna Nagarajan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Mowei Zhou
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Amelia Y Nguyen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Komal Kedia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Paul Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Anil Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Carrie Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David W Koppenaal
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
23
|
Ran Z, Zhao J, Tong G, Gao F, Wei L, Ma W. Ssl3451 is Important for Accumulation of NDH-1 Assembly Intermediates in the Cytoplasm of Synechocystis sp. Strain PCC 6803. PLANT & CELL PHYSIOLOGY 2019; 60:1374-1385. [PMID: 30847493 DOI: 10.1093/pcp/pcz045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Two mutants sensitive to high light for growth and impaired in NDH-1 activity were isolated from a transposon-tagged library of Synechocystis sp. strain PCC 6803. Both mutants were tagged in the ssl3451 gene encoding a hypothetical protein, which shares a significant homology with the Arabidopsis (Arabidopsis thaliana) CHLORORESPIRATORY REDUCTION 42 (CRR42). In Arabidopsis, CRR42 associates only with an NDH-1 hydrophilic arm assembly intermediate (NAI) of about 400 kDa (NAI400), one of total three NAIs (NAI800, NAI500 and NAI400), and its deletion has little, if any, effect on accumulation of any NAIs in the stroma. In comparison, the ssl3451 product was localized mainly in the cytoplasm and associates with two NAIs of about 300 kDa (NAI300) and 130 kDa (NAI130). Deletion of Ssl3451 reduced the abundance of the NAI300 complex to levels no longer visible on gels and of the NAI130 complex to a low level, thereby impeding the assembly process of NDH-1 hydrophilic arm. Further, Ssl3451 interacts with another assembly factor Ssl3829 and they have a similar effect on accumulation of NAIs and NdhI maturation factor Slr1097 in the cytoplasm. We thus propose that Ssl3451 plays an important role in accumulation of the NAI300 and NAI130 complexes in the cytoplasm via its interacting protein Ssl3829.
Collapse
Affiliation(s)
- Zhaoxing Ran
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Jiaohong Zhao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Guifang Tong
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Fudan Gao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Lanzhen Wei
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| |
Collapse
|
24
|
Riediger M, Kadowaki T, Nagayama R, Georg J, Hihara Y, Hess WR. Biocomputational Analyses and Experimental Validation Identify the Regulon Controlled by the Redox-Responsive Transcription Factor RpaB. iScience 2019; 15:316-331. [PMID: 31103851 PMCID: PMC6525291 DOI: 10.1016/j.isci.2019.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022] Open
Abstract
Oxygenic photosynthesis requires the coordination of environmental stimuli with the regulation of transcription. The transcription factor RpaB is conserved from the simplest unicellular cyanobacteria to complex eukaryotic algae, representing more than 1 billion years of evolution. To predict the RpaB-controlled regulon in the cyanobacterium Synechocystis, we analyzed the positional distribution of binding sites together with high-resolution mapping data of transcriptional start sites (TSSs). We describe more than 150 target promoters whose activity responds to fluctuating light conditions. Binding sites close to the TSS mediate repression, whereas sites centered ∼50 nt upstream mediate activation. Using complementary experimental approaches, we found that RpaB controls genes involved in photoprotection, cyclic electron flow and state transitions, photorespiration, and nirA and isiA for which we suggest cross-regulation with the transcription factors NtcA or FurA. The deep integration of RpaB with diverse photosynthetic gene functions makes it one of the most important and versatile transcriptional regulators. RpaB controls a complex regulon, widely beyond the photosynthetic machinery The expression of the RNA regulators IsrR, PsrR1, and others depends on RpaB RpaB exhibits cross-regulations with other transcription factors, NtcA and Fur RpaB is a crucial transcriptional regulator in a photosynthetic microorganism
Collapse
Affiliation(s)
- Matthias Riediger
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Taro Kadowaki
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Ryuta Nagayama
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Jens Georg
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg, Germany.
| |
Collapse
|
25
|
Ogawa K, Yoshikawa K, Matsuda F, Toya Y, Shimizu H. Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions. J Biosci Bioeng 2018; 126:596-602. [PMID: 29907527 DOI: 10.1016/j.jbiosc.2018.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
Abstract
Photoinhibition, or cell damage caused by excessively intense light is a major issue for the industrial use of cyanobacteria. To investigate the mechanism of responses to extreme high light intensity, gene expression analysis was performed using the model cyanobacterium Synechocystis sp. PCC 6803 (PCC 6803) cultured under various light intensities. The culture profile data demonstrated that, in contrast to the slow cell growth observed under low light intensities (30 and 50 μmol m-2 s-1), maximal cell growth was observed under mid light conditions (300 and 1000 μmol m-2 s-1). PCC 6803 cells exhibited photoinhibition when cultured under excessive high light intensities of 1100 and 1300 μmol m-2 s-1. From the low to the mid light conditions, the expression of genes related to light harvesting systems was repressed, whereas that of CO2 fixation and of D1 protein turnover-related genes was induced. Gene expression data also revealed that the down-regulation of genes related to flagellum synthesis (pilA2), pyridine nucleotide transhydrogenase (pntA and pntB), and sigma factor (sigA and sigF) represents the key responses of PCC 6803 under excessive high light conditions. The results obtained in this study provide further understanding of high light tolerance mechanisms and should help to improve the productivity of bioprocess using cyanobacteria.
Collapse
Affiliation(s)
- Kenichi Ogawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
26
|
Levi M, Sendersky E, Schwarz R. Decomposition of cyanobacterial light harvesting complexes: NblA-dependent role of the bilin lyase homolog NblB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:813-821. [PMID: 29575252 DOI: 10.1111/tpj.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Phycobilisomes, the macromolecular light harvesting complexes of cyanobacteria are degraded under nutrient-limiting conditions. This crucial response is required to adjust light excitation to the metabolic status and avoid damage by excess excitation. Phycobilisomes are comprised of phycobiliproteins, apo-proteins that covalently bind bilin chromophores. In the cyanobacterium Synechococcus elongatus, the phycobiliproteins allophycocyanin and phycocyanin comprise the core and the rods of the phycobilisome, respectively. Previously, NblB was identified as an essential component required for phycocyanin degradation under nutrient starvation. This protein is homologous to bilin-lyases, enzymes that catalyze the covalent attachment of bilins to apo-proteins. However, the nblB-inactivated strain is not impaired in phycobiliprotein synthesis, but rather is characterized by aberrant phycocyanin degradation. Here, using a phycocyanin-deficient strain, we demonstrate that NblB is required for degradation of the core pigment, allophycocyanin. Furthermore, we show that the protein NblB is expressed under nutrient sufficient conditions, but during nitrogen starvation its level decreases about two-fold. This finding is in contrast to an additional component essential for degradation, NblA, the expression of which is highly induced under starvation. We further identified NblB residues required for phycocyanin degradation in vivo. Finally, we demonstrate phycocyanin degradation in a cell-free system, thereby providing support for the suggestion that NblB directly mediates pigment degradation by chromophore detachment. The dependence of NblB function on NblA revealed using this system, together with the results indicating presence of NblB under nutrient sufficient conditions, suggests a rapid mechanism for induction of pigment degradation, which requires only the expression of NblA.
Collapse
Affiliation(s)
- Mali Levi
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
27
|
Zhan J, Wang Q. Photoresponse Mechanism in Cyanobacteria: Key Factor in Photoautotrophic Chassis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:75-96. [PMID: 30091092 DOI: 10.1007/978-981-13-0854-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Tan X, Hou S, Song K, Georg J, Klähn S, Lu X, Hess WR. The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:218. [PMID: 30127850 PMCID: PMC6091082 DOI: 10.1186/s13068-018-1215-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/25/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cyanobacteria have shown promising potential for the production of various biofuels and chemical feedstocks. Synechococcus elongatus UTEX 2973 is a fast-growing strain with pronounced tolerance to high temperatures and illumination. Hence, this strain appears to be ideal for the development of photosynthetic biotechnology. However, molecular insights on how this strain can rapidly accumulate biomass and carbohydrates under high-light and high-temperature conditions are lacking. RESULTS Differential RNA-Sequencing (dRNA-Seq) enabled the genome-wide identification of 4808 transcription start sites (TSSs) in S. elongatus UTEX 2973 using a background reduction algorithm. High light promoted the transcription of genes associated with central metabolic pathways, whereas the highly induced small RNA (sRNA) PsrR1 likely contributed to the repression of phycobilisome genes and the accelerated glycogen accumulation rates measured under this condition. Darkness caused transcriptome remodeling with a decline in the expression of genes for carbon fixation and other major metabolic pathways and an increase in the expression of genes for glycogen catabolism and Calvin cycle inhibitor CP12. Two of the identified TSSs drive the transcription of highly abundant sRNAs in darkness. One of them is widely conserved throughout the cyanobacterial phylum. Its gene is fused to a protein-coding gene in some species, illustrating the evolutionary origin of sRNAs from an mRNA 3'-end. CONCLUSIONS Our comprehensive set of genome-wide mapped TSSs, sRNAs and promoter activities will be valuable for projects requiring precise information about the control of transcription aimed at metabolic engineering and the elucidation of stress acclimation mechanisms in this promising strain.
Collapse
Affiliation(s)
- Xiaoming Tan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Present Address: College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062 China
| | - Shengwei Hou
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Kuo Song
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237 China
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| |
Collapse
|
29
|
Piechura JR, Amarnath K, O'Shea EK. Natural changes in light interact with circadian regulation at promoters to control gene expression in cyanobacteria. eLife 2017; 6:32032. [PMID: 29239721 PMCID: PMC5785211 DOI: 10.7554/elife.32032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
The circadian clock interacts with other regulatory pathways to tune physiology to predictable daily changes and unexpected environmental fluctuations. However, the complexity of circadian clocks in higher organisms has prevented a clear understanding of how natural environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect the interaction between circadian regulation and responses to fluctuating light in the cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which are involved in key steps of metabolism. These changes in expression arise from circadian and light-responsive control of RNA polymerase recruitment to promoters by a network of transcription factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we reveal simple principles that underlie the small number of stereotyped responses of dusk circadian genes to changes in light. Living things face daily, predictable challenges due to the regular day and night cycle imposed by the Earth’s rotation. Many of them have evolved an internal ‘circadian’ clock to anticipate daily changes in the environment. However, nature can also change in unpredictable ways, and in order to survive, organisms must account for both the time of day stipulated by their clocks and changes in their present environment. For example, cyanobacteria depend on the sun for survival and must cope with light variations throughout the day and the absence of light at nighttime. Circadian clocks are made up of specific genes and their proteins. Most of what we know about how these clocks control the behavior of an organism comes from experiments performed under constant conditions. Previous research has shown that under such circumstances, the circadian clock of cyanobacteria periodically turns on a set of genes every 24 hours via a protein called RpaA. However, to understand how cyanobacteria use this clock, we must know how it works in a fluctuating environment. To test this, Piechura, Amarnath and O’Shea measured the activation of genes in cyanobacteria that had been exposed to changes in light mimicking those in nature. Compared to constant conditions, fluctuating light drastically changed the timing of activation of circadian genes. When light decreased – as it would in nature during sunset or if a cloud blocks the sun – the circadian genes were activated. Changes in light did not change the ‘ticking’ of the clock, but did affect the ability of RpaA to turn on circadian genes. Moreover, the activity of a second protein called RpaB increased when light decreased and the genes were activated. Thus, cyanobacteria switch on circadian genes as the sun is setting or during unexpected shade, likely through RpaA and RpaB, to help them survive without light. This study shows that circadian clocks activate genes differently in the real world compared to unnatural, constant conditions. This may prompt scientists to think carefully about how an organism’s natural environment can affect its inner workings. A next step will be to see how else light affects circadian gene levels. A deeper understanding of how cyanobacteria control their genes in a natural environment will be useful for scientists who engineer these organisms to produce biofuels from sunlight.
Collapse
Affiliation(s)
- Joseph Robert Piechura
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Kapil Amarnath
- FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Erin K O'Shea
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
30
|
Murton J, Nagarajan A, Nguyen AY, Liberton M, Hancock HA, Pakrasi HB, Timlin JA. Population-level coordination of pigment response in individual cyanobacterial cells under altered nitrogen levels. PHOTOSYNTHESIS RESEARCH 2017; 134:165-174. [PMID: 28733863 PMCID: PMC5645440 DOI: 10.1007/s11120-017-0422-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial phycobilisome (PBS) pigment-protein complexes harvest light and transfer the energy to reaction centers. Previous ensemble studies have shown that cyanobacteria respond to changes in nutrient availability by modifying the structure of PBS complexes, but this process has not been visualized for individual pigments at the single-cell level due to spectral overlap. We characterized the response of four key photosynthetic pigments to nitrogen depletion and repletion at the subcellular level in individual, live Synechocystis sp. PCC 6803 cells using hyperspectral confocal fluorescence microscopy and multivariate image analysis. Our results revealed that PBS degradation and re-synthesis comprise a rapid response to nitrogen fluctuations, with coordinated populations of cells undergoing pigment modifications. Chlorophyll fluorescence originating from photosystem I and II decreased during nitrogen starvation, but no alteration in subcellular chlorophyll localization was found. We observed differential rod and core pigment responses to nitrogen deprivation, suggesting that PBS complexes undergo a stepwise degradation process.
Collapse
Affiliation(s)
- Jaclyn Murton
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Aparna Nagarajan
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Amelia Y Nguyen
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
- United States Environmental Protection Agency, Washington, DC, 20460, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Harmony A Hancock
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Jerilyn A Timlin
- Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| |
Collapse
|
31
|
Bhadra U, Thakkar N, Das P, Pal Bhadra M. Evolution of circadian rhythms: from bacteria to human. Sleep Med 2017; 35:49-61. [DOI: 10.1016/j.sleep.2017.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
|
32
|
Mashayekhi M, Sarrafzadeh M, Tavakoli O, Soltani N, Faramarzi M. Potential for biodiesel production and carbon capturing from Synechococcus Elongatus: An isolation and evaluation study. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Warden JG, Casaburi G, Omelon CR, Bennett PC, Breecker DO, Foster JS. Characterization of Microbial Mat Microbiomes in the Modern Thrombolite Ecosystem of Lake Clifton, Western Australia Using Shotgun Metagenomics. Front Microbiol 2016; 7:1064. [PMID: 27458453 PMCID: PMC4933708 DOI: 10.3389/fmicb.2016.01064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/24/2016] [Indexed: 12/02/2022] Open
Abstract
Microbialite-forming communities interact with the environment and influence the precipitation of calcium carbonate through their metabolic activity. The functional genes associated with these metabolic processes and their environmental interactions are therefore critical to microbialite formation. The microbiomes associated with microbialite-forming ecosystems are just now being elucidated and the extent of shared pathways and taxa across different environments is not fully known. In this study, we profiled the microbiome of microbial communities associated with lacustrine thrombolites located in Lake Clifton, Western Australia using metagenomic sequencing and compared it to the non-lithifying mats associated with surrounding sediments to determine whether differences in the mat microbiomes, particularly with respect to metabolic pathways and environmental interactions, may potentially contribute to thrombolite formation. Additionally, we used stable isotope biosignatures to delineate the dominant metabolism associated with calcium carbonate precipitation in the thrombolite build-ups. Results indicated that the microbial community associated with the Lake Clifton thrombolites was predominantly bacterial (98.4%) with Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria comprising the majority of annotated reads. Thrombolite-associated mats were enriched in photoautotrophic taxa and functional genes associated with photosynthesis. Observed δ13C values of thrombolite CaCO3 were enriched by at least 3.5‰ compared to theoretical values in equilibrium with lake water DIC, which is consistent with the occurrence of photoautotrophic activity in thrombolite-associated microbial mats. In contrast, the microbiomes of microbial communities found on the sandy non-lithifying sediments of Lake Clifton represented distinct microbial communities that varied in taxa and functional capability and were enriched in heterotrophic taxa compared to the thrombolite-associated mats. This study provides new insight into the taxa and functional capabilities that differentiate potentially lithifying mats from other non-lithifying types and suggests that thrombolites are actively accreting and growing in limited areas of Lake Clifton.
Collapse
Affiliation(s)
- John G Warden
- Department of Geological Sciences, University of Texas at Austin, AustinTX, USA; Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Merritt IslandFL, USA
| | - Giorgio Casaburi
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Merritt Island FL, USA
| | - Christopher R Omelon
- Department of Geological Sciences, University of Texas at Austin, Austin TX, USA
| | - Philip C Bennett
- Department of Geological Sciences, University of Texas at Austin, Austin TX, USA
| | - Daniel O Breecker
- Department of Geological Sciences, University of Texas at Austin, Austin TX, USA
| | - Jamie S Foster
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Merritt Island FL, USA
| |
Collapse
|
34
|
Abstract
Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems.
Collapse
|
35
|
Komenda J, Sobotka R. Cyanobacterial high-light-inducible proteins — Protectors of chlorophyll–protein synthesis and assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:288-95. [DOI: 10.1016/j.bbabio.2015.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 12/24/2022]
|
36
|
Hernández-Prieto MA, Semeniuk TA, Giner-Lamia J, Futschik ME. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803. Sci Rep 2016; 6:22168. [PMID: 26923200 PMCID: PMC4770689 DOI: 10.1038/srep22168] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 01/03/2023] Open
Abstract
Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu).
Collapse
Affiliation(s)
- Miguel A. Hernández-Prieto
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Trudi Ann Semeniuk
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Matthias E. Futschik
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
37
|
Janssen J, Soule T. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacteriumNostoc punctiformeATCC 29133. FEMS Microbiol Lett 2015; 363:fnv235. [DOI: 10.1093/femsle/fnv235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
|
38
|
Wilde A, Hihara Y. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:296-308. [PMID: 26549130 DOI: 10.1016/j.bbabio.2015.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/02/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022]
Abstract
Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Annegret Wilde
- University of Freiburg, Institute of Biology III, Schänzlestr. 1, 79104 Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
39
|
Sendersky E, Kozer N, Levi M, Moizik M, Garini Y, Shav-Tal Y, Schwarz R. The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light-harvesting complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:845-852. [PMID: 26173720 DOI: 10.1111/tpj.12931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The cyanobacterial light-harvesting complex, the phycobilisome, is degraded under nutrient limitation, allowing the cell to adjust light absorbance to its metabolic capacity. This large light-harvesting antenna comprises a core complex of the pigment allophycocyanin, and rod-shaped pigment assemblies emanating from the core. NblA, a low-molecular-weight protein, is essential for degradation of the phycobilisome. NblA mutants exhibit high absorbance of rod pigments under conditions that generally elicit phycobilisome degradation, implicating NblA in degradation of these pigments. However, the vast abundance of rod pigments and the substantial overlap between the absorbance spectra of rod and core pigments has made it difficult to directly associate NblA with proteolysis of the phycobilisome core. Furthermore, lack of allophycocyanin degradation in an NblA mutant may reflect a requirement for rod degradation preceding core degradation, and does not prove direct involvement of NblA in proteolysis of the core pigment. Therefore, in this study, we used a mutant lacking phycocyanin, the rod pigment of Synechococcus elongatusPCC7942, to examine whether NblA is required for allophycocyanin degradation. We demonstrate that NblA is essential for degradation of the core complex of the phycobilisome. Furthermore, fluorescence lifetime imaging microscopy provided in situ evidence for the interaction of NblA with allophycocyanin, and indicated that NblA interacts with allophycocyanin complexes that are associated with the photosynthetic membranes. Based on these data, as well as previous observations indicating interaction of NblA with phycobilisomes attached to the photosynthetic membranes, we suggest a model for sequential phycobilisome disassembly by NblA.
Collapse
Affiliation(s)
- Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Noga Kozer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Mali Levi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Moizik
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yuval Garini
- Physics Department, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
40
|
Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink. Life (Basel) 2015; 5:888-904. [PMID: 25780959 PMCID: PMC4390884 DOI: 10.3390/life5010888] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 11/17/2022] Open
Abstract
Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction.
Collapse
|
41
|
Cross-talk and regulatory interactions between the essential response regulator RpaB and cyanobacterial circadian clock output. Proc Natl Acad Sci U S A 2015; 112:2198-203. [PMID: 25653337 DOI: 10.1073/pnas.1424632112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The response regulator RpaB (regulator of phycobilisome associated B), part of an essential two-component system conserved in cyanobacteria that responds to multiple environmental signals, has recently been implicated in the control of cell dimensions and of circadian rhythms of gene expression in the model cyanobacterium Synechococcus elongatus PCC 7942. However, little is known of the molecular mechanisms that underlie RpaB functions. In this study we show that the regulation of phenotypes by RpaB is intimately connected with the activity of RpaA (regulator of phycobilisome associated A), the master regulator of circadian transcription patterns. RpaB affects RpaA activity both through control of gene expression, a function requiring an intact effector domain, and via altering RpaA phosphorylation, a function mediated through the N-terminal receiver domain of RpaB. Thus, both phosphorylation cross-talk and coregulation of target genes play a role in the genetic interactions between the RpaA and RpaB pathways. In addition, RpaB∼P levels appear critical for survival under light:dark cycles, conditions in which RpaB phosphorylation is environmentally driven independent of the circadian clock. We propose that the complex regulatory interactions between the essential and environmentally sensitive NblS-RpaB system and the SasA-RpaA clock output system integrate relevant extra- and intracellular signals to the circadian clock.
Collapse
|
42
|
Mironov KS, Sidorov RA, Kreslavski VD, Bedbenov VS, Tsydendambaev VD, Los DA. Cold-induced gene expression and ω3 fatty acid unsaturation is controlled by red light in Synechocystis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:84-8. [DOI: 10.1016/j.jphotobiol.2014.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 01/15/2023]
|
43
|
Sendersky E, Kozer N, Levi M, Garini Y, Shav-Tal Y, Schwarz R. The proteolysis adaptor, NblA, initiates protein pigment degradation by interacting with the cyanobacterial light-harvesting complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:118-126. [PMID: 24798071 DOI: 10.1111/tpj.12543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/03/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Degradation of the cyanobacterial protein pigment complexes, the phycobilisomes, is a central acclimation response that controls light energy capture. The small protein, NblA, is essential for proteolysis of these large complexes, which may reach a molecular mass of up to 4 MDa. Interactions of NblA in vitro supported the suggestion that NblA is a proteolysis adaptor that labels the pigment proteins for degradation. The mode of operation of NblA in situ, however, remained unresolved. Particularly, it was unclear whether NblA interacts with phycobilisome proteins while part of the large complex, or alternatively interaction with NblA, necessitates dissociation of pigment subunits from the assembly. Fluorescence intensity profiles demonstrated the preferential presence of NblA::GFP (green fluorescent protein) at the photosynthetic membranes, indicating co-localization with phycobilisomes. Furthermore, fluorescence lifetime imaging microscopy provided in situ evidence for interaction of NblA with phycobilisome protein pigments. Additionally, we demonstrated the role of NblA in vivo as a proteolysis tag based on the rapid degradation of the fusion protein NblA::GFP compared with free GFP. Taken together, these observations demonstrated in vivo the role of NblA as a proteolysis adaptor. Additionally, the interaction of NblA with phycobilisomes indicates that the dissociation of protein pigment subunits from the large complex is not a prerequisite for interaction with this adaptor and, furthermore, implicates NblA in the disassembly of the protein pigment complex. Thus, we suggest that, in the case of proteolysis of the phycobilisome, the adaptor serves a dual function: undermining the complex stability and designating the dissociated pigments for degradation.
Collapse
Affiliation(s)
- Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | | | | | | | | | | |
Collapse
|
44
|
Exploration of a Possible Partnership among Orphan Two-Component System Proteins in CyanobacteriumSynechococcus elongatusPCC 7942. Biosci Biotechnol Biochem 2014; 76:1484-91. [DOI: 10.1271/bbb.120172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Baier A, Winkler W, Korte T, Lockau W, Karradt A. Degradation of phycobilisomes in Synechocystis sp. PCC6803: evidence for essential formation of an NblA1/NblA2 heterodimer and its codegradation by A Clp protease complex. J Biol Chem 2014; 289:11755-11766. [PMID: 24610785 PMCID: PMC4002084 DOI: 10.1074/jbc.m113.520601] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/24/2014] [Indexed: 02/03/2023] Open
Abstract
When cyanobacteria acclimate to nitrogen deficiency, they degrade their large (3-5-MDa), light-harvesting complexes, the phycobilisomes. This massive, yet specific, intracellular degradation of the pigmented phycobiliproteins causes a color change of cyanobacterial cultures from blue-green to yellow-green, a process referred to as chlorosis or bleaching. Phycobilisome degradation is induced by expression of the nblA gene, which encodes a protein of ~7 kDa. NblA most likely acts as an adaptor protein that guides a Clp protease to the phycobiliproteins, thereby initiating the degradation process. Most cyanobacteria and red algae possess just one nblA-homologous gene. As an exception, the widely used "model organism" Synechocystis sp. PCC6803 expresses two such genes, nblA16803 and nblA26803, both of whose products are required for phycobilisome degradation. Here, we demonstrate that the two NblA proteins heterodimerize in vitro and in vivo using pull-down assays and a Förster energy-transfer approach, respectively. We further show that the NblA proteins form a ternary complex with ClpC (the HSP100 chaperone partner of Clp proteases) and phycobiliproteins in vitro. This complex is susceptible to ATP-dependent degradation by a Clp protease, a finding that supports a proposed mechanism of the degradation process. Expression of the single nblA gene encoded by the genome of the N2-fixing, filamentous cyanobacterium Nostoc sp. PCC7120 in the nblA1/nblA2 mutant of Synechocystis sp. PCC6803 induced phycobilisome degradation, suggesting that the function of the NblA heterodimer of Synechocystis sp. PCC6803 is combined in the homodimeric protein of Nostoc sp. PCC7120.
Collapse
Affiliation(s)
- Antje Baier
- Institut für Biologie, Humboldt Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | - Wiebke Winkler
- Institut für Biologie, Humboldt Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | - Thomas Korte
- Group of Molecular Biophysics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Wolfgang Lockau
- Institut für Biologie, Humboldt Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany.
| | - Anne Karradt
- Institut für Biologie, Humboldt Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| |
Collapse
|
46
|
Liu Z, Li H, Wei Y, Chu W, Chong Y, Long X, Liu Z, Qin S, Shao H. Signal transduction pathways inSynechocystissp. PCC 6803 and biotechnological implications under abiotic stress. Crit Rev Biotechnol 2013; 35:269-80. [DOI: 10.3109/07388551.2013.838662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, Goodrich JK, Bell JT, Spector TD, Banfield JF, Ley RE. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2013; 2:e01102. [PMID: 24137540 PMCID: PMC3787301 DOI: 10.7554/elife.01102] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria were responsible for the oxygenation of the ancient atmosphere; however, the evolution of this phylum is enigmatic, as relatives have not been characterized. Here we use whole genome reconstruction of human fecal and subsurface aquifer metagenomic samples to obtain complete genomes for members of a new candidate phylum sibling to Cyanobacteria, for which we propose the designation 'Melainabacteria'. Metabolic analysis suggests that the ancestors to both lineages were non-photosynthetic, anaerobic, motile, and obligately fermentative. Cyanobacterial light sensing may have been facilitated by regulators present in the ancestor of these lineages. The subsurface organism has the capacity for nitrogen fixation using a nitrogenase distinct from that in Cyanobacteria, suggesting nitrogen fixation evolved separately in the two lineages. We hypothesize that Cyanobacteria split from Melainabacteria prior or due to the acquisition of oxygenic photosynthesis. Melainabacteria remained in anoxic zones and differentiated by niche adaptation, including for symbiosis in the mammalian gut. DOI:http://dx.doi.org/10.7554/eLife.01102.001.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Itai Sharon
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Kelly C Wrighton
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omry Koren
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Laura A Hug
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Julia K Goodrich
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, United States
| | - Ruth E Ley
- Department of Microbiology, Cornell University, Ithaca, United States
| |
Collapse
|
48
|
Spence E, Bryan SJ, Lisfi M, Cullum J, Dunlap WC, Shick JM, Mullineaux CW, Long PF. 2-epi-5-epi-Valiolone synthase activity is essential for maintaining phycobilisome composition in the cyanobacterium Anabaena variabilis ATCC 29413 when grown in the presence of a carbon source. PHOTOSYNTHESIS RESEARCH 2013; 116:33-43. [PMID: 23857509 DOI: 10.1007/s11120-013-9886-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/04/2013] [Indexed: 06/02/2023]
Abstract
The cyclase 2-epi-5-epi-valiolone synthase (EVS) is reported to be a key enzyme for biosynthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis ATCC 29413. Subsequently, we demonstrated that an in-frame complete deletion of the EVS gene had little effect on in vivo production of shinorine. Complete segregation of the EVS gene deletion mutant proved difficult and was achieved only when the mutant was grown in the dark and in a medium supplemented with fructose. The segregated mutant showed a striking colour change from native blue-green to pale yellow-green, corresponding to substantial loss of the photosynthetic pigment phycocyanin, as evinced by combinations of absorbance and emission spectra. Transcriptional analysis of the mutant grown in the presence of fructose under dark or light conditions revealed downregulation of the cpcA gene that encodes the alpha subunit of phycocyanin, whereas the gene encoding nblA, a protease chaperone essential for phycobilisome degradation, was not expressed. We propose that the substrate of EVS (sedoheptulose 7-phosphate) or possibly lack of its EVS-downstream products, represses transcription of cpcA to exert a hitherto unknown control over photosynthesis in this cyanobacterium. The significance of this finding is enhanced by phylogenetic analyses revealing horizontal gene transfer of the EVS gene of cyanobacteria to fungi and dinoflagellates. It is also conceivable that the EVS gene has been transferred from dinoflagellates, as evident in the host genome of symbiotic corals. A role of EVS in regulating sedoheptulose 7-phosphate concentrations in the photophysiology of coral symbiosis is yet to be determined.
Collapse
Affiliation(s)
- Edward Spence
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the 01, 02 and cytochrome b559 subunits of the Photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1817:1083-94. [PMID: 23487854 DOI: 10.1016/j.bbabio.2012.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photosynthetic electron transport, chromatic photoacclirnation and expression of the genes encoding the 01, 02, and cytochrome b559 subunits of the Photosystem II complex were studied in the chlorophyll d containing cyanobacterium Acaryochloris marina MBIC11017 under various environmental conditions. During oxygen deprivation and inhibition of photosynthetic electron transport by dibromothymoquinone the psbA1 gene encoding a 01' isoform was induced. All of the three psbA and one of the three psbD (psbD2) genes, encoding two different isoforms of the 01 and the abundant isoform of the 02 proteins, respectively were induced under exposure to UV-B radiation and high intensity visible light. Under far red light the amount of Photosystem II complexes increased, and expression of the psbE2 gene encoding the alpha-subunit of cytochrome b559 was enhanced. However, the psbF and psbE1 genes encoding the beta- and another isoform of alpha-cytochrome b559, respectively remained lowly expressed under all conditions. Far red light also induced the psbD3 gene encoding a 02' isoform whose primary structure is different from the abundant 02 isoform. psbD3 was also induced under low intensity visible light, when chromatic photoacclimation was indicated by a red-shifted absorption of chlorophyll d. Our results show that differential expression of multigene families encoding different isoforms of 01 and 02 plays an important role in the acclimation of A. marina to contrasting environmental conditions. Moreover, the disproportionate quantity of transcripts of the alpha and beta subunits of cytochrome b559 implies the existence of an alpha-alpha homodimer organization of cytochrome b559 in Photosystem II complexes.
Collapse
|
50
|
Moronta-Barrios F, Espinosa J, Contreras A. Negative control of cell size in the cyanobacterium Synechococcus elongatus PCC 7942 by the essential response regulator RpaB. FEBS Lett 2013; 587:504-9. [PMID: 23340342 DOI: 10.1016/j.febslet.2013.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The essential NblS-RpaB pathway for photosynthesis regulation and acclimatization to a variety of environmental conditions is the most conserved two-component system in cyanobacteria. To get insights into the RpaB implication in cell homeostasis we investigated the phenotypic impact of altering expression of the essential rpaB gene of Synechococcus elongatus PCC 7942 and determined the in vivo levels of the RpaB and RpaB~P polypeptides. Our results implicate non-phosphorylated RpaB in controlling cell length and shape and suggest that intrinsic regulation may be important to prevent drastic variations in RpaB levels and activity.
Collapse
|