1
|
Yu J, Tang H, Chen Y, Wang Z, Huang W, Zhou T, Wen B, Wang C, Gu S, Ni J, Tao J, Wang D, Lu J, Xie Q, Yao YF. Salmonella utilizes L-arabinose to silence virulence gene expression for accelerated pathogen growth within the host. Gut Microbes 2025; 17:2467187. [PMID: 39954030 PMCID: PMC11834461 DOI: 10.1080/19490976.2025.2467187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/11/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Carbon source is an important nutrient for bacteria to sustain growth and often acts as a signal that modulates virulence expression. L-arabinose is produced by plants and plays an important role in regulating the global gene expression of bacteria. Previously, we have shown that L-arabinose induces a more severe systemic infection in Salmonella-infected mice with normal microbiota, but does not affect the disease progression in mice with microbiota depleted by antibiotic treatment. The underlying mechanism remains elusive. In this study, we demonstrate that L-arabinose represses the expression of Salmonella type III secretion system 1 (T3SS-1) genes by negatively regulating the activity of the cyclic 3' 5'-AMP (cAMP)-cAMP receptor protein (CRP) complex. The cAMP-CRP complex can activate ribosome-associated inhibitor A, encoded by yfiA, to maintain the stability of HilD, a key transcriptional regulator of T3SS-1. L-arabinose supplementation promotes Salmonella initial bloom in the antibiotic-pretreated mouse gut and ultimately compensates for reduced virulence within the host. These results decipher the molecular mechanism by which cAMP-CRP directs regulatory changes of virulence in response to L-arabinose in Salmonella. It further implies that Salmonella exploits L-arabinose both as a nutrient and a regulatory signal to maintain a balance between growth and virulence within the host.
Collapse
Affiliation(s)
- Jingchen Yu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yana Chen
- Department of Pediatrics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Huang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingjie Wen
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyue Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Gu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai Key Laboratory of Emergency Prevention, Shanghai, China
| |
Collapse
|
2
|
Park J, Jang M, Choi E, Lee SM, Bang I, Woo J, Kim S, Lee EJ, Kim D. ChIP-mini: a low-input ChIP-exo protocol for elucidating DNA-binding protein dynamics in intracellular pathogens. Nucleic Acids Res 2025; 53:gkaf009. [PMID: 39868540 PMCID: PMC11770342 DOI: 10.1093/nar/gkaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Genome-wide identification of binding profiles for DNA-binding proteins from the limited number of intracellular pathogens in infection studies is crucial for understanding virulence and cellular processes but remains challenging, as the current ChIP-exo is designed for high-input bacterial cells (>1010). Here, we developed an optimized ChIP-mini method, a low-input ChIP-exo utilizing a 5,000-fold reduced number of initial bacterial cells and an analysis pipeline, to identify genome-wide binding dynamics of DNA-binding proteins in host-infected pathogens. Applying ChIP-mini to intracellular Salmonella Typhimurium, we identified 642 and 1,837 binding sites of H-NS and RpoD, respectively, elucidating changes in their binding position and binding intensity during infection. Post-infection, we observed 21 significant reductions in H-NS binding at intergenic regions, exposing the promoter region of virulence genes, such as those in Salmonella pathogenicity islands-2, 3 and effectors. Furthermore, we revealed the crucial phenomenon that novel and significantly increased RpoD bindings were found within regions exhibiting diminished H-NS binding, thereby facilitating substantial upregulation of virulence genes. These findings markedly enhance our understanding of how H-NS and RpoD simultaneously coordinate the transcription initiation of virulence genes within macrophages. Collectively, this work demonstrates a broadly adaptable tool that will enable the elucidation of DNA-binding protein dynamics in diverse intracellular pathogens during infection.
Collapse
Affiliation(s)
- Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minchang Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunna Choi
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ina Bang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihoon Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seonggyu Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
3
|
Shuster M, Lyu Z, Augenstreich J, Mathur S, Ganesh A, Ling J, Briken V. Salmonella Typhimurium infection inhibits macrophage IFNβ signaling in a TLR4-dependent manner. Infect Immun 2024; 92:e0009824. [PMID: 39269166 PMCID: PMC11475681 DOI: 10.1128/iai.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Type I Interferons (IFNs) generally have a protective role during viral infections, but their function during bacterial infections is dependent on the bacterial species. Legionella pneumophila, Shigella sonnei and Mycobacterium tuberculosis can inhibit type I IFN signaling. Here we examined the role of type I IFN, specifically IFNβ, in the context of Salmonella enterica serovar Typhimurium (STm) macrophage infections and the capacity of STm to inhibit type I IFN signaling. We demonstrate that IFNβ has no effect on the intracellular growth of STm in infected bone marrow derived macrophages (BMDMs) derived from C57BL/6 mice. STm infection inhibits IFNβ signaling but not IFNγ signaling in a murine macrophage cell line. We show that this inhibition is independent of the type III and type VI secretion systems expressed by STm and is also independent of bacterial phagocytosis. The inhibition is Toll-like receptor 4 (TLR4)-dependent as the TLR4 ligand, lipopolysaccharide (LPS), alone is sufficient to inhibit IFNβ-mediated signaling. Cells downregulated their surface levels of IFNα/β receptor 1 (IFNAR1) in response to LPS, which may be mediating our observed inhibition. Lastly, we examined this inhibition in the context of TLR4-deficient BMDMs as well as TLR4 RNA interference and we observed a loss of inhibition with LPS stimulation as well as STm infection. In summary, we show that macrophages exposed to STm have reduced IFNβ signaling via crosstalk with TLR4 signaling, which may be mediated by reduced host cell surface IFNAR1, and that IFNβ signaling does not affect cell-autonomous host defense against STm.
Collapse
Affiliation(s)
- Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Shrestha Mathur
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Waters EV, Lee WWY, Ismail Ahmed A, Chattaway MA, Langridge GC. From acute to persistent infection: revealing phylogenomic variations in Salmonella Agona. PLoS Pathog 2024; 20:e1012679. [PMID: 39480892 PMCID: PMC11556752 DOI: 10.1371/journal.ppat.1012679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/12/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Salmonella enterica serovar Agona (S. Agona) has been increasingly recognised as a prominent cause of gastroenteritis. This serovar is a strong biofilm former that can undergo genome rearrangement and enter a viable but non-culturable state whilst remaining metabolically active. Similar strategies are employed by S. Typhi, the cause of typhoid fever, during human infection, which are believed to assist with the transition from acute infection to chronic carriage. Here we report S. Agona's ability to persist in people and examine factors that might be contributing to chronic carriage. A review of 2233 S. Agona isolates from UK infections (2004-2020) and associated carriage was undertaken, in which 1155 had short-read sequencing data available. A subset of 207 isolates was selected from different stages of acute and persistent infections within individual patients. The subset underwent long-read sequencing and genome structure (GS) analysis, as well as phenotyping assays including carbon source utilisation and biofilm formation. Associations between genotypes and phenotypes were investigated to compare acute infections to those which progress to chronic. GS analysis revealed the conserved arrangement GS1.0 in 195 isolates, and 8 additional GSs in 12 isolates. These rearranged isolates were typically associated with early, convalescent carriage (3 weeks- 3 months). We also identified an increase in SNP variation during this period of infection. We believe this increase in genome-scale and SNP variation reflects a population expansion after acute S. Agona infection, potentially reflecting an immune evasion mechanism which enables persistent infection to become established.
Collapse
Affiliation(s)
- Emma V. Waters
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, United Kingdom
- Centre for Microbial Interactions, Norwich Research Park, Norwich, United Kingdom
| | - Winnie W. Y. Lee
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Amina Ismail Ahmed
- Gastrointestinal Bacteria Reference Unit, United Kingdom Health Security Agency, London, United Kingdom
| | - Marie-Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, United Kingdom Health Security Agency, London, United Kingdom
- Genomic and Enabling Data Health Protection Research Unit, University of Warwick, Coventry, United Kingdom
| | - Gemma C. Langridge
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, United Kingdom
- Centre for Microbial Interactions, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
5
|
Shuster M, Lyu Z, Augenstreich J, Mathur S, Ganesh A, Ling J, Briken V. Salmonella Typhimurium infection inhibits macrophage IFNβ signaling in a TLR4-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583530. [PMID: 38496427 PMCID: PMC10942315 DOI: 10.1101/2024.03.05.583530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Type I Interferons (IFNs) generally have a protective role during viral infections, but their function during bacterial infections is dependent on the bacterial species. Legionella pneumophila, Shigella sonnei and Mycobacterium tuberculosis can inhibit type I IFN signaling. Here we examined the role of type I IFN, specifically IFNβ, in the context of Salmonella enterica serovar Typhimurium (STm) macrophage infections and the capacity of STm to inhibit type I IFN signaling. We demonstrate that IFNβ has no effect on the intracellular growth of STm in infected bone marrow derived macrophages (BMDMs) derived from C57BL/6 mice. STm infection inhibits IFNβ signaling but not IFNγ signaling in a murine macrophage cell line. We show that this inhibition is independent of the type III and type VI secretion systems expressed by STm and is also independent of bacterial phagocytosis. The inhibition is Toll-like receptor 4 (TLR4)-dependent as the TLR4 ligand, lipopolysaccharide (LPS), alone is sufficient to inhibit IFNβ-mediated signaling and STm-infected, TLR4-deficient BMDMs do not exhibit inhibited IFNβ signaling. In summary, we show that macrophages exposed to STm have reduced IFNβ signaling via crosstalk with TLR4 signaling, and that IFNβ signaling does not affect cell autonomous host defense against STm.
Collapse
Affiliation(s)
- Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Shrestha Mathur
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
6
|
Vinayaka AC, Quyen TL, Huynh VN, Madsen M, Bang DD, Wolff A. Rapid detection of Salmonella enterica in primary production samples by eliminating DNA amplification inhibitors using an improved sample pre-treatment method. Microb Biotechnol 2023; 16:2105-2113. [PMID: 37776205 PMCID: PMC10616646 DOI: 10.1111/1751-7915.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Sensitive detection of pathogens in livestock farms is an integral part of the One Health Action Plan of the European Union (EU). Ensuring this requires on-site testing devices that are compatible with complex matrices such as primary production samples. Among all, faeces are considered the most challenging matrix type that makes it difficult to identify pathogens because of complexity in sample preparation for molecular testing. We have developed a loop-mediated isothermal amplification (LAMP) based veterinary point-of-care (POC) device (VETPOD) and adapted it to detect Salmonella enterica in primary production samples. Three different sampling methods (semi-wet chicken faeces, boot socks collection and dust samples from poultry shed) were iteratively tested to assess their nature of complexity and possibility for adapting them as suitable sampling methods for on-site testing. During the study, the sample preparation method that included a two-step centrifugation combined with washing of the enriched Salmonella cells was found crucial in eliminating amplification inhibitors originating from the faecal matrices. A total of 90 samples were tested that included 60 samples for sensitivity study and 30 samples for relative level of detection (RLOD, a level of detection in comparison to ISO 6579:1 reference method). Overall, the VETPOD had a sensitivity of 90%, 84.62% and 81.82% for boot sock, faecal and dust samples, respectively. The RLOD was 2.23 CFU/25 g which was found to be 1.33 times higher than the ISO 6579:1. Performing with an excellent agreement with ISO 6579:1, the VETPOD proved as a promising alternative to detect Salmonella spp. in primary production and animal husbandry samples.
Collapse
Affiliation(s)
- Aaydha Chidambara Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), DTU‐Bioengineering (Department of Biotechnology and Biomedicine)Technical University of DenmarkKgs. LyngbyDenmark
| | - Than Linh Quyen
- Biolabchip group, DTU‐Bioengineering (Department of Biotechnology and Biomedicine)Technical University of DenmarkKgs. LyngbyDenmark
| | - Van Ngoc Huynh
- Biolabchip group, DTU‐Bioengineering (Department of Biotechnology and Biomedicine)Technical University of DenmarkKgs. LyngbyDenmark
| | - Mogens Madsen
- Biolabchip group, DTU‐Bioengineering (Department of Biotechnology and Biomedicine)Technical University of DenmarkKgs. LyngbyDenmark
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), DTU‐Bioengineering (Department of Biotechnology and Biomedicine)Technical University of DenmarkKgs. LyngbyDenmark
| | - Anders Wolff
- Biolabchip group, DTU‐Bioengineering (Department of Biotechnology and Biomedicine)Technical University of DenmarkKgs. LyngbyDenmark
| |
Collapse
|
7
|
Fei X, Schroll C, Huang K, Christensen JP, Christensen H, Lemire S, Kilstrup M, Thomsen LE, Jelsbak L, Olsen JE. The global transcriptomes of Salmonella enterica serovars Gallinarum, Dublin and Enteritidis in the avian host. Microb Pathog 2023; 182:106236. [PMID: 37419218 DOI: 10.1016/j.micpath.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Salmonella enterica serovar Gallinarum causes Fowl Typhoid in poultry, and it is host specific to avian species. The reasons why S. Gallinarum is restricted to avians, and at the same time predominately cause systemic infections in these hosts, are unknown. In the current study, we developed a surgical approach to study gene expression inside the peritoneal cavity of hens to shed light on this. Strains of the host specific S. Gallinarum, the cattle-adapted S. Dublin and the broad host range serovar, S. Enteritidis, were enclosed in semi-permeable tubes and surgically placed for 4 h in the peritoneal cavity of hens and for control in a minimal medium at 41.2 °C. Global gene-expression under these conditions was compared between serovars using tiled-micro arrays with probes representing the genome of S. Typhimurium, S. Dublin and S. Gallinarum. Among other genes, genes of SPI-13, SPI-14 and the macrophage survival gene mig-14 were specifically up-regulated in the host specific serovar, S. Gallinarum, and further studies into the role of these genes in host specific infection are highly indicated. Analysis of pathways and GO-terms, which were enriched in the host specific S. Gallinarum without being enriched in the two other serovars indicated that host specificity was characterized by a metabolic fine-tuning as well as unique expression of virulence associated pathways. The cattle adapted serovar S. Dublin differed from the two other serovars by a lack of up-regulation of genes encoded in the virulence associated pathogenicity island 2, and this may explain the inability of this serovar to cause disease in poultry.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China
| | - Casper Schroll
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kaisong Huang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Jens P Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sebastien Lemire
- Department of Systems Biology, Technical University of Denmark, Denmark
| | - Mogens Kilstrup
- Department of Systems Biology, Technical University of Denmark, Denmark
| | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Ashrafudoulla M, Mevo SIU, Song M, Chowdhury MAH, Shaila S, Kim DH, Nahar S, Toushik SH, Park SH, Ha SD. Antibiofilm mechanism of peppermint essential oil to avert biofilm developed by foodborne and food spoilage pathogens on food contact surfaces. J Food Sci 2023; 88:3935-3955. [PMID: 37477280 DOI: 10.1111/1750-3841.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Minsu Song
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Shanjida Shaila
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Duk Hyun Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
9
|
Vinayaka AC, Huynh VN, Quyen TL, Nguyen T, Golabi M, Madsen M, Bang DD, Wolff A. Validation of Point-of-Care Device for Rapid Detection of Salmonella enterica in Meat Products. Anal Chem 2023; 95:12656-12663. [PMID: 37585497 DOI: 10.1021/acs.analchem.3c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Accurate and rapid detection of pathogens in foods of animal origin has been a critical part of the One Health Action Plan of the European Union (EU). Biosensors have the potential in bringing required technologies to accomplish this on the field, wherein loop-mediated isothermal amplification (LAMP) and lab-on-a-chip have proven to be ideal. We have developed a LAMP-based point-of-care (POC) device, the VETPOD, as a solution to the contemporary challenges in the rapid detection of Salmonella spp. The core technology in the VETPOD is a ready-to-use cartridge that included an injection-molded polymer chip with pyramid-shaped optical structures embedded within the chip. These pyramid-shaped optical structures direct the incident light, due to total internal reflection (TIR), through the reaction chambers to the phototransistor. The VETPOD was validated against the ISO 6579-1 reference method. A total of 310 samples were tested that included 180 Salmonella spiked samples in 6 different meat categories and 130 strains to determine the specificity. The overall results were satisfactory, wherein the VETPOD had an acceptable sensitivity (96.51%) compared to the reference (98.81%) and near perfect agreement with ISO 6579-1 with an overall Cohen's kappa of 0.94. The relative level of detection (RLOD) for the VETPOD was 1.38 CFU/25 g that was found to be 1.17 times higher than the reference. The VETPOD showed 98% precision for inclusivity and 100% precision for the exclusivity samples. The VETPOD proved as a useful alternative to detect Salmonella spp. that can be adaptable to a broader spectrum of pathogens in future.
Collapse
Affiliation(s)
- Aaydha Chidambara Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), DTU-Bioengineering (Department of Biotechnology and Biomedicine), Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Van Ngoc Huynh
- Biolabchip Group, DTU-Bioengineering (Department of Biotechnology and Biomedicine), Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Than Linh Quyen
- Biolabchip Group, DTU-Bioengineering (Department of Biotechnology and Biomedicine), Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Trieu Nguyen
- Biolabchip Group, DTU-Bioengineering (Department of Biotechnology and Biomedicine), Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Mohsen Golabi
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), DTU-Bioengineering (Department of Biotechnology and Biomedicine), Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Mogens Madsen
- Biolabchip Group, DTU-Bioengineering (Department of Biotechnology and Biomedicine), Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), DTU-Bioengineering (Department of Biotechnology and Biomedicine), Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Anders Wolff
- Biolabchip Group, DTU-Bioengineering (Department of Biotechnology and Biomedicine), Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
10
|
Saleh DO, Horstmann JA, Giralt-Zúñiga M, Weber W, Kaganovitch E, Durairaj AC, Klotzsch E, Strowig T, Erhardt M. SPI-1 virulence gene expression modulates motility of Salmonella Typhimurium in a proton motive force- and adhesins-dependent manner. PLoS Pathog 2023; 19:e1011451. [PMID: 37315106 DOI: 10.1371/journal.ppat.1011451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.
Collapse
Affiliation(s)
- Doaa Osama Saleh
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Julia A Horstmann
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Abilash Chakravarthy Durairaj
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
11
|
Ling C, Liang S, Li Y, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Wang W, Zuo J. A Potential Adhesin/Invasin STM0306 Participates in Host Cell Inflammation Induced by Salmonella enterica Serovar Typhimurium. Int J Mol Sci 2023; 24:ijms24098170. [PMID: 37175877 PMCID: PMC10179656 DOI: 10.3390/ijms24098170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Salmonella enterica serovar typhimurium (S. Typhimurium) is a common Gram-negative foodborne pathogenic bacterium that causes gastrointestinal disease in humans and animals. It is well known that adhesins and invasins play crucial roles in the infection mechanism of S. Typhimurium. S. Typhimurium STM0306 has been denoted as a putative protein and its functions have rarely been reported. In this study, we constructed the STM0306 gene mutant strain of S. Typhimurium and purified the recombinant STM0306 from Escherichia coli. Deletion of the STM0306 gene resulted in reduced adhesion and invasion of S. Typhimurium to IPEC-J2, Caco-2, and RAW264.7 cells. In addition, STM0306 could bind to intestinal epithelial cells and induced F-actin modulation in IPEC-J2 cells. Furthermore, we found that STM0306 activated the nuclear factor kappa B (NF-κB) signaling pathway and increased the mRNA expression of pro-inflammatory cytokines such as IL-1β, TNF-α, as well as chemokine CXCL2, thus resulting in cellular inflammation in host cells. In vivo, the deletion of the STM0306 gene led to reduced pathogenicity of S. Typhimurium, as evidenced by lower fecal bacterial counts and reduced body weight loss in S. Typhimurium infected mice. In conclusion, the STM0306 of S. Typhimurium is an important adhesin/invasin involved in the pathogenic process and cellular inflammation of the host.
Collapse
Affiliation(s)
- Chong Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shujie Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dingyuan Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Flores-Ramírez A, Ortega-Cuenca J, Cuetero-Martínez Y, de Los Cobos D, Noyola A. Viability and removal assessment of Escherichia coli and Salmonella spp. by real-time PCR with propidium monoazide in the hygienization of sewage sludge using three anaerobic processes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:254-262. [PMID: 36907017 DOI: 10.1016/j.wasman.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Sewage sludge should be stabilized for its beneficial use and pathogens, among other factors, should comply with environmental regulations. Three sludge stabilization process were compared to assess their suitability for producing Class A biosolids: MAD-AT (mesophilic (37 °C) anaerobic digestion (MAD) followed by an alkaline treatment (AT)); TAD (thermophilic (55 °C) anaerobic digester); and TP-TAD (mild thermal (80 °C, 1 h) pretreatment (TP) followed by a TAD). E. coli and Salmonella spp. were determined, differentiating three possible states: total cells (qPCR), viable cells using the propidium monoazide method (PMA-qPCR), and culturable cells (MPN). Culture techniques followed by the confirmative biochemical tests identified the presence of Salmonella spp. in PS and MAD samples, while the molecular methods (qPCR and PMA-qPCR) showed negative results in all samples. The TP + TAD arrangement reduced the concentration of total and viable E. coli cells in a greater extent than the TAD process. However, an increase of culturable E. coli was observed in the corresponding TAD step, indicating that the mild thermal pretreatment induced the viable but non-culturable state in E. coli. In addition, the PMA technique did not discriminate viable from non-viable bacteria in complex matrices. The three processes produced Class A biosolids (fecal coliforms < 1000 MPN/gTS and Salmonella spp, < 3 MPN/gTS) maintaining compliance after a 72 h storage period. It appears that the TP step favors the viable but not culturable state in E. coli cells, a finding that should be considered when adopting mild thermal treatment in sludge stabilization process arrangements.
Collapse
Affiliation(s)
- A Flores-Ramírez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - J Ortega-Cuenca
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Y Cuetero-Martínez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - D de Los Cobos
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - A Noyola
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México.
| |
Collapse
|
13
|
Construction of a constitutively active type III secretion system for heterologous protein secretion. Appl Microbiol Biotechnol 2023; 107:1785-1800. [PMID: 36786917 DOI: 10.1007/s00253-023-12411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Proteins comprise a multibillion-dollar industry in enzymes and therapeutics, but bacterial protein production can be costly and inefficient. Proteins of interest (POIs) must be extracted from lysed cells and inclusion bodies, purified, and resolubilized, which adds significant time and cost to the protein-manufacturing process. The Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS) has been engineered to address these problems by secreting soluble, active proteins directly into the culture media, reducing the number of purification steps. However, the current best practices method of T3SS pathway activation is not ideal for industrial scaleup. Previously, the T3SS was activated by plasmid-based overexpression of the T3SS transcriptional regulator, hilA, which requires the addition of a small molecule inducer (IPTG) to the culture media. IPTG adds significant cost to production and plasmid-based expression is subject to instability in large-scale fermentation. Here, we modulate the upstream transcriptional regulator, hilD, to activate the T3SS via three distinct methods. In doing so, we develop a toolbox of T3SS activation methods and construct constitutively active T3SS strains capable of secreting a range of heterologous proteins at titers comparable to plasmid-based hilA overexpression. We also explore how each activation method in our toolbox impacts the SPI-1 regulatory cascade and discover an epistatic relationship between T3SS regulators, hilE and the hilD 3' untranslated region (hilD 3'UTR). Together, these findings further our goal of making an industrially competitive protein production strain that reduces the challenges associated with plasmid induction and maintenance. KEY POINTS: • Characterized 3 new type III secretion system (T3SS) activation methods for heterologous protein secretion, including 2 constitutive activation methods. • Eliminated the need for a second plasmid and a small molecule inducer to activate the system, making it more suitable for industrial production. • Discovered new regulatory insights into the SPI-1 T3SS, including an epistatic relationship between regulators hilE and the hilD 3' untranslated region.
Collapse
|
14
|
Zaldívar-López S, Herrera-Uribe J, Bautista R, Jiménez Á, Moreno Á, Claros MG, Garrido JJ. Salmonella Typhimurium induces genome-wide expression and phosphorylation changes that modulate immune response, intracellular survival and vesicle transport in infected neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104597. [PMID: 36450302 DOI: 10.1016/j.dci.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Salmonella Typhimurium is a food-borne pathogen that causes salmonellosis. When in contact with the host, neutrophils are rapidly recruited to act as first line of defense. To better understand the pathogenesis of this infection, we used an in vitro model of neutrophil infection to perform dual RNA-sequencing (both host and pathogen). In addition, and given that many pathogens interfere with kinase-mediated phosphorylation in host signaling, we performed a phosphoproteomic analysis. The immune response was overall diminished in infected neutrophils, mainly JAK/STAT and toll-like receptor signaling pathways. We found decreased expression of proinflammatory cytokine receptor genes and predicted downregulation of the mitogen-activated protein (MAPK) signaling pathway. Also, Salmonella infection inhibited interferons I and II signaling pathways by upregulation of SOCS3 and subsequent downregulation of STAT1 and STAT2. Additionally, phosphorylation of PSMC2 and PSMC4, proteasome regulatory proteins, was decreased in infected neutrophils. Cell viability and survival was increased by p53 signaling, cell cycle arrest and NFkB-proteasome pathways activation. Combined analysis of RNA-seq and phosphoproteomics also revealed inhibited vesicle transport mechanisms mediated by dynein/dynactin and exocyst complexes, involved in ER-to-Golgi transport and centripetal movement of lysosomes and endosomes. Among the overexpressed virulence genes from Salmonella we found potential effectors responsible of these dysregulations, such as spiC, sopD2, sifA or pipB2, all of them involved in intracellular replication. Our results suggest that Salmonella induces (through overexpression of virulence factors) transcriptional and phosphorylation changes that increases neutrophil survival and shuts down immune response to minimize host response, and impairing intracellular vesicle transport likely to keep nutrients for replication and Salmonella-containing vacuole formation and maintenance.
Collapse
Affiliation(s)
- Sara Zaldívar-López
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain.
| | - Juber Herrera-Uribe
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Málaga, Spain
| | - Ángeles Jiménez
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Ángela Moreno
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Málaga, Spain; Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Juan J Garrido
- Grupo de Inmunogenómica y Patogénesis Molecular, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| |
Collapse
|
15
|
Regulatory Evolution of the phoH Ancestral Gene in Salmonella enterica Serovar Typhimurium. J Bacteriol 2022; 204:e0058521. [PMID: 35404111 DOI: 10.1128/jb.00585-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One important event for the divergence of Salmonella from Escherichia coli was the acquisition by horizontal transfer of the Salmonella pathogenicity island 1 (SPI-1), containing genes required for the invasion of host cells by Salmonella. HilD is an AraC-like transcriptional regulator in SPI-1 that induces the expression of the SPI-1 and many other acquired virulence genes located in other genomic regions of Salmonella. Additionally, HilD has been shown to positively control the expression of some ancestral genes (also present in E. coli and other bacteria), including phoH. In this study, we determined that both the gain of HilD and cis-regulatory evolution led to the integration of the phoH gene into the HilD regulon. Our results indicate that a HilD-binding sequence was generated in the regulatory region of the S. enterica serovar Typhimurium phoH gene, which mediates the activation of promoter 1 of this gene under SPI-1-inducing conditions. Furthermore, we found that repression by H-NS, a histone-like protein, was also adapted on the S. Typhimurium phoH gene and that HilD activates the expression of this gene in part by antagonizing H-NS. Additionally, our results revealed that the expression of the S. Typhmurium phoH gene is also activated in response to low phosphate but independently of the PhoB/R two-component system, known to regulate the E. coli phoH gene in response to low phosphate. Thus, our results indicate that cis-regulatory evolution has played a role in the expansion of the HilD regulon and illustrate the phenomenon of differential regulation of ortholog genes. IMPORTANCE Two mechanisms mediating differentiation of bacteria are well known: acquisition of genes by horizontal transfer events and mutations in coding DNA sequences. In this study, we found that the phoH ancestral gene is differentially regulated between Salmonella Typhimurium and Escherichia coli, two closely related bacterial species. Our results indicate that this differential regulation was generated by mutations in the regulatory sequence of the S. Typhimurium phoH gene and by the acquisition by S. Typhimurium of foreign DNA encoding the transcriptional regulator HilD. Thus, our results, together with those from an increasing number of studies, indicate that cis-regulatory evolution can lead to the rewiring and reprogramming of transcriptional regulation, which also plays an important role in the divergence of bacteria through time.
Collapse
|
16
|
Antimicrobial Resistance and Virulence of Non-Typhoidal Salmonella from Retail Foods Marketed in Bangkok, Thailand. Foods 2022; 11:foods11050661. [PMID: 35267294 PMCID: PMC8909193 DOI: 10.3390/foods11050661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Nontyphoidal-Salmonella bacteria cause foodborne gastroenteritis that may lead to fatal bacteremia, osteomyelitis, and meningitis if not treated properly. The emergence of multidrug-resistant Salmonella strains is a global public health threat. Regular monitoring of genotypes and phenotypes of Salmonella isolated from humans, animals, foods, and environments is mandatory for effective reduction and control of this food-borne pathogen. In this study, antimicrobial-resistant and virulent genotypes and phenotypes of Salmonella isolated from retail food samples in Bangkok, Thailand, were investigated. From 252 raw food samples, 58 Salmonella strains that belonged only to serotype Enteritidis were isolated. Disc diffusion method showed that all isolates were still sensitive to amikacin and carbapenems. More than 30% of the isolates were resistant to ampicillin, tetracycline, and ciprofloxacin. Twenty isolates resist at least three antibiotic classes. Minimum inhibitory concentration tests showed that 12.07% of the isolates produced extended-spectrum β-Lactamase. Polymerase chain reaction indicated that 32.76, 81.03, 39.66, and 5.17% of the isolates carried blaTEM-1, tetA, sul2, and dfrA7, respectively. All isolates were positive for invasion-associated genes. Effective prevention and control of Salmonella (as well as other food-borne pathogens) is possible by increasing public awareness and applying food hygienic practices. Active and well harmonised “One Health” co-operation is required to effectively control food-borne zoonosis.
Collapse
|
17
|
Lozano-León A, García-Omil C, Rodríguez-Souto RR, Lamas A, Garrido-Maestu A. An Evaluation of the Pathogenic Potential, and the Antimicrobial Resistance, of Salmonella Strains Isolated from Mussels. Microorganisms 2022; 10:126. [PMID: 35056575 PMCID: PMC8777845 DOI: 10.3390/microorganisms10010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
Salmonella spp. and antimicrobial resistant microorganisms are two of the most important health issues worldwide. In the present study, strains naturally isolated from mussels harvested in Galicia (one of the main production areas in the world), were genetically characterized attending to the presence of virulence and antimicrobial resistance genes. Additionally, the antimicrobial profile was also determined phenotypically. Strains presenting several virulence genes were isolated but lacked all the antimicrobial resistance genes analyzed. The fact that some of these strains presented multidrug resistance, highlighted the possibility of bearing different genes than those analyzed, or resistance based on completely different mechanisms. The current study highlights the importance of constant surveillance in order to improve the safety of foods.
Collapse
Affiliation(s)
- Antonio Lozano-León
- Laboratorio ASMECRUZ, Playa de Beluso s/n, 36939 Bueu, Spain; (A.L.-L.); (C.G.-O.); (R.R.R.-S.)
- Group CI8, Biomedical Research Center (CINBIO), Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| | - Carlos García-Omil
- Laboratorio ASMECRUZ, Playa de Beluso s/n, 36939 Bueu, Spain; (A.L.-L.); (C.G.-O.); (R.R.R.-S.)
| | | | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Alejandro Garrido-Maestu
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
18
|
Long-Distance Effects of H-NS Binding in the Control of hilD Expression in the Salmonella SPI1 Locus. J Bacteriol 2021; 203:e0030821. [PMID: 34424033 DOI: 10.1128/jb.00308-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium utilizes a type three secretion system (T3SS) carried on the Salmonella pathogenicity island 1 (SPI1) to invade intestinal epithelial cells and induce inflammatory diarrhea. HilA activates expression of the T3SS structural genes. Expression of hyper invasion locus A (hilA) is controlled by the transcription factors HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. The nucleoid-associated protein H-NS is a xenogeneic silencer that has a major effect on SPI1 expression. In this work, we use genetic techniques to show that disruptions of the chromosomal region surrounding hilD have a cis effect on H-NS-mediated repression of the hilD promoter; this effect occurs asymmetrically over ∼4 kb spanning the prgH-hilD intergenic region. CAT cassettes inserted at various positions in this region are also silenced in relation to the proximity to the hilD promoter. We identify a putative H-NS nucleation site, and its mutation results in derepression of the locus. Furthermore, we genetically show that HilD abrogates H-NS-mediated silencing to activate the hilD promoter. In contrast, H-NS-mediated repression of the hilA promoter, downstream of hilD, is through its control of HilD, which directly activates hilA transcription. Likewise, activation of the prgH promoter, although in a region silenced by H-NS, is strictly dependent on HilA. In summary, we propose a model in which H-NS nucleates within the hilD promoter region to polymerize and exert its repressive effect. Thus, H-NS-mediated repression of SPI1 is primarily through the control of hilD expression, with HilD capable of overcoming H-NS to autoactivate. IMPORTANCE Members of the foodborne pathogen Salmonella rely on a type III secretion system to invade intestinal epithelial cells and initiate infection. This system was acquired through horizontal gene transfer, essentially creating the Salmonella genus. Expression of this critical virulence factor is controlled by a complex regulatory network. The nucleoid protein H-NS is a global repressor of horizontally acquired genomic loci. Here, we identify the critical site of H-NS regulation in this system and show that alterations to the DNA over a surprisingly large region affect this regulation, providing important information regarding the mechanism of H-NS action.
Collapse
|
19
|
Ouali BEF, Chiou TH, Chen JW, Lin IC, Liu CC, Chiang YC, Ho TS, Wang HV. Correlation Between Pathogenic Determinants Associated with Clinically Isolated Non-Typhoidal Salmonella. Pathogens 2021; 10:pathogens10010074. [PMID: 33467782 PMCID: PMC7830680 DOI: 10.3390/pathogens10010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Non-typhoidal and Typhoidal Salmonella are bacterial pathogens source of worldwide and major disease burden. Virulent determinants of specific serovars belonging to non-typhoidal Salmonella have been extensively studied in different models, yet the pathogenesis of this group of bacteria and the development of clinical symptoms globally remains underexplored. Herein, we implemented microbiological and molecular procedures to investigate isolate virulence traits and molecular diversity, likely in association with disease severity. Our results show that selected clinical isolates from a tertiary referring hospital, depending on the richness of the environment and isolate serotypes, exhibited different, and sometimes controversial, virulence properties. The tested strains were susceptible to Ceftriaxone (90%) with decreasing reactivity to Trimethoprim–Sulfamethoxazole (72%), Chloramphenicol (64%), Ampicillin (48%), Gentamicin (44%), and Ciprofloxacin (2%). Disc susceptibility results partially correlated with minimum inhibitory concentration (MIC); however, special attention must be given to antimicrobial treatment, as a rise in multi-resistant isolates to Trimethoprim–Sulfamethoxazole (2/38 µg/mL), Minocycline (8 µg/mL) and Ampicillin (16 µg/mL) has been noticed, with two isolates resistant to Ceftazidime (16 µg/mL). By comparison to previous molecular epidemiology studies, the variation in the gene profiles of endemic pathogens supports the need for continuous and up-to-date microbiological and molecular reports.
Collapse
Affiliation(s)
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan; (B.E.F.O.); (T.-H.C.); (I-C.L.)
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
| | - I-Chu Lin
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan; (B.E.F.O.); (T.-H.C.); (I-C.L.)
| | - Ching-Chuan Liu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (Y.-C.C.); (T.-S.H.); (H.-V.W.)
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (Y.-C.C.); (T.-S.H.); (H.-V.W.)
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan; (B.E.F.O.); (T.-H.C.); (I-C.L.)
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (Y.-C.C.); (T.-S.H.); (H.-V.W.)
| |
Collapse
|
20
|
Villamil C, Calderon MN, Arias MM, Leguizamon JE. Validation of Droplet Digital Polymerase Chain Reaction for Salmonella spp. Quantification. Front Microbiol 2020; 11:1512. [PMID: 32733415 PMCID: PMC7358645 DOI: 10.3389/fmicb.2020.01512] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Salmonellosis is a foodborne disease caused by Salmonella spp. Although cell culture is the gold standard for its identification, validated molecular methods are becoming an alternative, because of their rapidity, selectivity, and specificity. A simplex and duplex droplet digital polymerase chain reaction (ddPCR)-based method for the identification and quantification of Salmonella using ttr, invA, hilA, spaQ, and siiA gene sequences was validated. The method has high specificity, working interval between 8 and 8,000 cp/μL in ddPCR reaction, a limit of detection of 0.5 copies/μL, and precision ranging between 5 and 10% measured as a repeatability standard deviation. The relative standard measurement uncertainty was between 2 and 12%. This tool will improve food safety in national consumption products and will increase the competitiveness in agricultural product trade.
Collapse
Affiliation(s)
- Carolina Villamil
- Departamento de Química, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Maria Mercedes Arias
- Grupo de Metrología en Bioanálisis, Instituto Nacional de Metrología, Bogota, Colombia
| | | |
Collapse
|
21
|
Sun X, Kawata K, Miki A, Wada Y, Nagahama M, Takaya A, Akimitsu N. Exploration of Salmonella effector mutant strains on MTR4 and RRP6 degradation. Biosci Trends 2020; 14:255-262. [PMID: 32350160 DOI: 10.5582/bst.2020.03085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Salmonella enterica serovar Typhimurium (Salmonella), a pathogenic bacterium, is a major cause of foodborne diseases worldwide. Salmonella injects multiple virulence factors, called effectors, into cells and causes multiple rearrangements of cellular biological reactions that are important for Salmonella proliferation and virulence. Previously, we reported that Salmonella infection causes loss of MTR4 and RRP6, which are nuclear RNA degradation factors, resulting in the stabilization and accumulation of unstable nuclear RNAs. This accumulation is important for the cellular defense for Salmonella infection. In this study, we examined a series of Salmonella mutant strains, most of which are strains with genes related to effectors translocated by T3SSs encoded on Salmonella pathogenic islands, SPI-1 and SPI-2, that have been depleted. Among 42 Salmonella mutants, 6 mutants' infections canceled loss of MTR4 and RRP6. Proliferation assay of Salmonella in the cell revealed that six mutants showed poor proliferation in the host cell, demonstrating that poor proliferation contributed to cancellation of MTR4 and RRP6 loss. This result indicates that certain events associated with Salmonella proliferation in host cells cause loss of MTR4 and RRP6.
Collapse
Affiliation(s)
- Xiaoning Sun
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kawata
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Atsuko Miki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Akiko Takaya
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | |
Collapse
|
22
|
Site-specific acylation of a bacterial virulence regulator attenuates infection. Nat Chem Biol 2019; 16:95-103. [PMID: 31740807 PMCID: PMC8439376 DOI: 10.1038/s41589-019-0392-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Microbiota generates millimolar concentrations of short-chain fatty acids (SCFAs) that can modulate host metabolism, immunity and susceptibility to infection. Butyrate in particular can function as a carbon source and anti-inflammatory metabolite, but the mechanism by which it inhibits pathogen virulence has been elusive. Using chemical proteomics, we discovered that several virulence factors encoded by Salmonella pathogenicity island-1 (SPI-1) are acylated by SCFAs. Notably, a transcriptional regulator of SPI-1, HilA, was acylated on several key lysine residues. Subsequent incorporation of stable butyryl-lysine analogs using CRISPR-Cas9 gene editing and unnatural amino acid mutagenesis revealed that site-specific modification of HilA impacts its genomic occupancy, expression of SPI-1 genes and attenuates Salmonella enterica serovar Typhimurium invasion of epithelial cells as well as dissemination in vivo. Moreover, a multiple-site HilA lysine-acylation mutant strain of S. Typhimurium was resistant to butyrate-mediated suppression in vivo. Our results suggest prominent microbiota-derived metabolites may directly acylate virulence factors to inhibit microbial pathogenesis in vivo.
Collapse
|
23
|
Soni N, Swain SK, Kant R, Singh A, Ravichandran R, Verma SK, Panda PK, Suar M. Landscape of ROD9 Island: Functional annotations and biological network of hypothetical proteins in Salmonella enterica. Comput Biol Chem 2019; 83:107110. [PMID: 31445418 DOI: 10.1016/j.compbiolchem.2019.107110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
Salmonella, an Enterobacteria is a therapeutically important pathogen for the host. The advancement of genome sequencing of S. enterica serovar Enteritidis have identified a distinct ROD9 pathogenic island, imparting virulence. The occurrence of 17 ROD9 hypothetical proteins, necessitates subsequent bioinformatics approach for structural and functional aspects of protein-protein relations or networks in different pathogenic phenotypes express. A collective analysis using predictive bioinformatics tools that includes NCBI-BLASTp and BLAST2GO annotated the motif patterns and functional significance. The VFDB identified 10 virulence proteins at both genomic and metagenomic level. Phylogenetic analysis revealed a divergent and convergent relationship between 17 ROD9 and 41 SP-1 proteins. Here, combining a comprehensive approach from sequence based, motif recognitions, domain identification, virulence ability to structural modelling provides a precise function to ROD9 proteins biological network, for which no experimental information is available.
Collapse
Affiliation(s)
- Nikita Soni
- School of Biotechnology and Bioinformatics, D. Y. Patil (Deemed to be University), Navi Mumbai, India
| | | | - Ravi Kant
- University of Delhi, New Delhi, India
| | - Aditya Singh
- School of Biotechnology and Bioinformatics, D. Y. Patil (Deemed to be University), Navi Mumbai, India
| | - Rahul Ravichandran
- School of Chemical and Biotechnology, SASTRA University, Tamil Nadu, India
| | - Suresh K Verma
- Institute of Environmental Medicine (IMM), C6, Molecular Toxicology, Karolinska Institutet, Sweden
| | - Pritam Kumar Panda
- Division of Pediatric Hematology and Oncology, University Medical Center, University of Freiburg, Germany.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
24
|
Lou L, Zhang P, Piao R, Wang Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front Cell Infect Microbiol 2019; 9:270. [PMID: 31428589 PMCID: PMC6689963 DOI: 10.3389/fcimb.2019.00270] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
Salmonella species can infect a diverse range of birds, reptiles, and mammals, including humans. The type III protein secretion system (T3SS) encoded by Salmonella pathogenicity island 1 (SPI-1) delivers effector proteins required for intestinal invasion and the production of enteritis. The T3SS is regarded as the most important virulence factor of Salmonella. SPI-1 encodes transcription factors that regulate the expression of some virulence factors of Salmonella, while other transcription factors encoded outside SPI-1 participate in the expression of SPI-1-encoded genes. SPI-1 genes are responsible for the invasion of host cells, regulation of the host immune response, e.g., the host inflammatory response, immune cell recruitment and apoptosis, and biofilm formation. The regulatory network of SPI-1 is very complex and crucial. Here, we review the function, effectors, and regulation of SPI-1 genes and their contribution to the pathogenicity of Salmonella.
Collapse
Affiliation(s)
- Lixin Lou
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rongli Piao
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
25
|
Das Q, Lepp D, Yin X, Ross K, McCallum JL, Warriner K, Marcone MF, Diarra MS. Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PLoS One 2019; 14:e0219163. [PMID: 31269043 PMCID: PMC6608956 DOI: 10.1371/journal.pone.0219163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Non-typhoidal Salmonella enterica serovars continue to be an important food safety issue worldwide. Cranberry (Vaccinium macrocarpon Ait) fruits possess antimicrobial properties due to their various acids and phenolic compounds; however, the underlying mechanism of actions is poorly understood. We evaluated the effects of cranberry extracts on the growth rate of Salmonella enterica serovars Typhimurium, Enteritidis and Heidelberg and on the transcriptomic profile of Salmonella Enteritidis to gain insight into phenotypic and transcriptional changes induced by cranberry extracts on this pathogen. An ethanolic extract from cranberry pomaces (KCOH) and two of its sub-fractions, anthocyanins (CRFa20) and non-anthocyanin polyphenols (CRFp85), were used. The minimum inhibitory (MICs) and bactericidal (MBCs) concentrations of these fractions against tested pathogens were obtained using the broth micro-dilution method according to the Clinical Laboratory Standard Institute’s guidelines. Transcriptional profiles of S. Enteritidis grown in cation-adjusted Mueller-Hinton broth supplemented with or without 2 or 4 mg/ml of KCOH were compared by RNASeq to reveal gene modulations serving as markers for biological activity. The MIC and MBC values of KCOH were 8 and 16 mg/mL, respectively, against all tested S. enterica isolates. The MIC value was 4 mg/mL for both CRFa20 and CRFp85 sub-fractions, and a reduced MBC value was obtained for CRFp85 (4 mg/ml). Treatment of S. Enteritidis with KCOH revealed a concentration-dependent transcriptional signature. Compared to the control, 2 mg/ml of KCOH exposure resulted in 89 differentially expressed genes (DEGs), of which 53 and 36 were downregulated and upregulated, respectively. The upregulated genes included those involved in citrate metabolism, enterobactin synthesis and transport, and virulence. Exposure to 4 mg/ml KCOH led to the modulated expression of 376 genes, of which 233 were downregulated and 143 upregulated, which is 4.2 times more DEGs than from exposure to 2 mg/ml KCOH. The downregulated genes were related to flagellar motility, Salmonella Pathogenicity Island-1 (SPI-1), cell wall/membrane biogenesis, and transcription. Moreover, genes involved in energy production and conversion, carbohydrate transport and metabolism, and coenzyme transport and metabolism were upregulated during exposure to 4 mg/ml KCOH. Overall, 57 genes were differentially expressed (48 downregulated and 9 upregulated) in response to both concentrations. Both concentrations of KCOH downregulated expression of hilA, which is a major SPI-1 transcriptional regulator. This study provides information on the response of Salmonella exposed to cranberry extracts, which could be used in the control of this important foodborne pathogen.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Ontario, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Kelly Ross
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Jason L. McCallum
- Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, Charlottetown, Prince Edward Island, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Ontario, Canada
| | | | - Moussa S. Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Tolerance to benzalkonium chloride and antimicrobial activity of Butia odorata Barb. Rodr. extract in Salmonella spp. isolates from food and food environments. Food Res Int 2019; 116:652-659. [DOI: 10.1016/j.foodres.2018.08.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/21/2018] [Accepted: 08/19/2018] [Indexed: 11/23/2022]
|
27
|
CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level. PLoS Genet 2018; 14:e1007401. [PMID: 29879120 PMCID: PMC5991649 DOI: 10.1371/journal.pgen.1007401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.
Collapse
|
28
|
Salmonella enterica Serovar Typhimurium Increases Functional PD-L1 Synergistically with Gamma Interferon in Intestinal Epithelial Cells via Salmonella Pathogenicity Island 2. Infect Immun 2018; 86:IAI.00674-17. [PMID: 29440366 DOI: 10.1128/iai.00674-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/04/2018] [Indexed: 02/04/2023] Open
Abstract
Nontyphoidal serovars of Salmonella enterica are pathogenic bacteria that are common causes of food poisoning. Whereas Salmonella mechanisms of host cell invasion, inflammation, and pathogenesis are mostly well established, a new possible mechanism of immune evasion is being uncovered. Programmed death ligand 1 (PD-L1) is an immunosuppressive membrane protein that binds to activated T cells via their PD-1 receptor and thereby halts their activation. PD-L1 expression plays an essential role in the immunological tolerance of self-antigens but is also exploited for immune evasion by pathogen-infected cells and cancer cells. Here, we show for the first time that Salmonella infection of intestinal epithelial cells causes the induction of PD-L1. The increased expression of PD-L1 through Salmonella infection was seen in both human and rat intestinal epithelial cell lines. We determined that cellular invasion by the bacteria is necessary for PD-L1 induction, potentially indicating that Salmonella strains are delivering mediators from inside the host cell that trigger the increased PD-L1 expression. Using knockout mutants, we determined that this effect largely originates from the Salmonella pathogenicity island 2. We also show for the first time in any cell type that Salmonella combined with gamma interferon (IFN-γ) causes a synergistic induction of PD-L1. Finally, we show that Salmonella plus IFN-γ induction of PD-L1 decreased the cytokine production of activated T cells. Understanding Salmonella immune evasion strategies could generate new therapeutic targets and help to manipulate PD-L1 expression in other diseases.
Collapse
|
29
|
Abdel-Aziz NM. Detection of Salmonella species in chicken carcasses using genus specific primer belong to invA gene in Sohag city, Egypt. Vet World 2016; 9:1125-1128. [PMID: 27847423 PMCID: PMC5104722 DOI: 10.14202/vetworld.2016.1125-1128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/18/2016] [Indexed: 12/03/2022] Open
Abstract
Aim: This study aimed to detect Salmonella species found as contaminants in chicken carcass (thigh, breast, wings, liver, and gizzard). Materials and Methods: A total of 75 chicken samples including thigh, breast, wings, liver, and gizzard (15 of each) were collected from different markets in Sohag city for detection of Salmonella species by culture methods, biochemical tests, serology, and polymerase chain reaction. Results: The overall incidence of Salmonella contamination of 75 examined samples was found to be 6.6% with the higher percentage of Salmonella being isolated from liver samples (13.3%) followed by thigh, wings, gizzard (6.6%) while breast show negative result. Conclusion: Results in this study indicate that contamination of chicken carcass with Salmonella needs strict hygienic measures to prevent their transmission to human.
Collapse
Affiliation(s)
- Nahed Mahmoud Abdel-Aziz
- Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Naser Street, Sohag, Egypt
| |
Collapse
|
30
|
Hung CC, Eade CR, Altier C. The protein acyltransferase Pat post-transcriptionally controls HilD to repress Salmonella invasion. Mol Microbiol 2016; 102:121-36. [PMID: 27341691 DOI: 10.1111/mmi.13451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/12/2023]
Abstract
N-Lysine acylation is a post-translational modification important for both prokaryotic and eukaryotic cells to control a wide array of cellular functions. Here we demonstrate that the protein acyltransferase Pat regulates genes on Salmonella Pathogenicity Island 1 (SPI1) that are required for the invasion of the intestinal epithelium. Mutation of pat slightly increased spleen colonization by Salmonella in streptomycin-treated mice, with more of the pat mutant reaching the spleen than the wild type strain. Growth of Salmonella under specific conditions selectively induced expression of Pat, and deletion of pat increased SPI1 gene expression under the same growth conditions. In addition, over-expression of Pat repressed SPI1 expression and bacterial entry into epithelial cells. These results demonstrate that Salmonella invasion is negatively controlled by Pat. Regulation of the SPI1 central regulator HilD was essential for Pat to exert its effects. The control of HilD by Pat was through post-transcriptional mechanisms, moderately repressing hilD translation while significantly reducing HilD stability. Additionally, growth of Salmonella in the presence of histone deacetylases inhibitors reduced expression of SPI1 by affecting HilD stability, supporting the concept that altering the stability of this regulator is required for Pat to control Salmonella invasion.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Colleen R Eade
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
31
|
Ballesté-Delpierre C, Fàbrega A, Ferrer-Navarro M, Mathur R, Ghosh S, Vila J. Attenuation of in vitro host-pathogen interactions in quinolone-resistant Salmonella Typhi mutants. J Antimicrob Chemother 2015; 71:111-22. [PMID: 26446080 DOI: 10.1093/jac/dkv299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The relationship between quinolone resistance acquisition and invasion impairment has been studied in some Salmonella enterica serovars. However, little information has been reported regarding the invasive human-restricted pathogen Salmonella Typhi. The aim of this study was to investigate the molecular mechanisms of quinolone resistance acquisition and its impact on virulence in this serovar. METHODS Two antibiotic-resistant mutants (Ty_c1 and Ty_c2) were generated from a Salmonella Typhi clinical isolate (Ty_wt). The three strains were compared in terms of antimicrobial susceptibility, molecular mechanisms of resistance, gene expression of virulence-related factors, ability to invade eukaryotic cells (human epithelial cells and macrophages) and cytokine production. RESULTS Multidrug resistance in Ty_c2 was attributed to AcrAB/TolC overproduction, decreased OmpF (both mediated by the mar regulon) and decreased OmpC. The two mutants showed a gradually reduced expression of virulence-related genes (invA, hilA, hilD, fliC and fimA), correlating with decreased motility, reduced infection of HeLa cells and impaired uptake by and intracellular survival in human macrophages. Moreover, Ty_c2 also showed reduced tviA expression. Additionally, we revealed a significant reduction in TNF-α and IL-1β production and decreased NF-κB activation. CONCLUSIONS In this study, we provide an in-depth characterization of the molecular mechanisms of antibiotic resistance in the Salmonella Typhi serovar and evidence that acquisition of antimicrobial resistance is concomitantly detected with a loss of virulence (epithelial cell invasion, macrophage phagocytosis and cytokine production). We suggest that the low prevalence of clinical isolates of Salmonella Typhi highly resistant to ciprofloxacin is due to poor immunogenicity and impaired dissemination ability of these isolates.
Collapse
Affiliation(s)
- Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Mario Ferrer-Navarro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Ramkumar Mathur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| |
Collapse
|
32
|
Erhardt M, Dersch P. Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol 2015; 6:949. [PMID: 26441883 PMCID: PMC4563271 DOI: 10.3389/fmicb.2015.00949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process.
Collapse
Affiliation(s)
- Marc Erhardt
- Young Investigator Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
33
|
Two-component regulators control hilA expression by controlling fimZ and hilE expression within Salmonella enterica serovar Typhimurium. Infect Immun 2014; 83:978-85. [PMID: 25547794 DOI: 10.1128/iai.02506-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonellae initiate disease through the invasion of host cells within the intestine. This ability to invade requires the coordinated action of numerous genes, many of which are found within Salmonella pathogenicity island 1 (SPI-1). The key to this process is the ability of the bacteria to respond to the environment, thereby upregulating the necessary genes under optimal conditions. Central to the control of SPI-1 is the transcriptional activator hilA. Work has identified at least 10 different activators and 8 different repressors responsible for the control of hilA. We have previously shown that hilE is a Salmonella-specific negative regulator that is able to repress hilA expression and invasion. Additionally, fimZ, a transcriptional activator responsible for the expression of type I fimbriae as well as flagellar genes, has also been implicated in this process. fimZ is homologous to response regulators from other two-component regulatory systems, although a sensor for the system has not been identified. The phoPQ and phoBR regulons are both two-component systems that negatively affect hilA expression, although the mechanism of action has not been determined. Our results show that PhoBR is capable of inducing fimZ expression, whereas PhoPQ does not affect fimZ expression but does upregulate hilE in an FimZ-dependent manner. Therefore, phosphate (sensed by PhoBR) and magnesium (sensed by PhoPQ) levels are important in controlling hilA expression levels when Salmonella is in the intestinal environment.
Collapse
|
34
|
Will WR, Navarre WW, Fang FC. Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution. Curr Opin Microbiol 2014; 23:8-13. [PMID: 25461567 DOI: 10.1016/j.mib.2014.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/26/2022]
Abstract
Horizontal gene transfer is a major contributor to bacterial evolution and diversity. For a bacterial cell to utilize newly-acquired traits such as virulence and antibiotic resistance, new genes must be integrated into the existing regulatory circuitry to allow appropriate expression. Xenogeneic silencing of horizontally-acquired genes by H-NS or other nucleoid-associated proteins avoids adventitious expression and can be relieved by other DNA-binding counter-silencing proteins in an environmentally-responsive and physiologically-responsive manner. Biochemical and genetic analyses have recently demonstrated that counter-silencing can occur at a variety of promoter architectures, in contrast to classical transcriptional activation. Disruption of H-NS nucleoprotein filaments by DNA bending is a suggested mechanism by which silencing can be relieved. This review discusses recent advances in our understanding of the mechanisms and importance of xenogeneic silencing and counter-silencing in the successful integration of horizontally-acquired genes into regulatory networks.
Collapse
Affiliation(s)
- W Ryan Will
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Alizadeh-Hesar M, Bakhshi B, Najar-peerayeh S. Molecular Diagnosis of Salmonella enterica and Shigella spp. in Stool Sample of Children With Diarrhea in Tehran. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2014. [DOI: 10.17795/ijep17002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Identification of HilD-regulated genes in Salmonella enterica serovar Typhimurium. J Bacteriol 2013; 196:1094-101. [PMID: 24375101 DOI: 10.1128/jb.01449-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) pathogenicity island 1 (SPI-1) encodes a type III secretion system required for invasion of host gut epithelial cells. Expression of SPI-1 virulence genes is controlled by a complex hierarchy of transcription factors encoded within and outside SPI-1. The master regulator of SPI-1, HilA, is itself regulated by three homologous transcription factors, HilD, HilC, and RtsA. HilD activates transcription of hilA and other target genes in response to environmental conditions associated with the intestinal microenvironment of the host. We have mapped the binding of HilD across the S. Typhimurium genome using chromatin immunoprecipitation-sequencing (ChIP-seq). Thus, we have identified 17 regions bound by HilD, including 11 novel targets. The majority of HilD targets are located outside SPI-1. We demonstrate transcription activation of 8 genes by HilD; four of these genes have not been previously described as being regulated by HilD, including lpxR, which encodes a lipid A deacylase important for immune evasion. We also show that HilD-activated genes are frequently activated by HilC and RtsA, indicating extensive overlap of the HilD, HilC, and RtsA regulons.
Collapse
|
37
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|
38
|
Liu Y, Ho KK, Su J, Gong H, Chang AC, Lu S. Potassium transport of Salmonella is important for type III secretion and pathogenesis. MICROBIOLOGY-SGM 2013; 159:1705-1719. [PMID: 23728623 DOI: 10.1099/mic.0.068700-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular cations are essential for the physiology of all living organisms including bacteria. Cations such as potassium ion (K(+)), sodium ion (Na(+)) and proton (H(+)) are involved in nearly all aspects of bacterial growth and survival. K(+) is the most abundant cation and its homeostasis in Escherichia coli and Salmonella is regulated by three major K(+) transporters: high affinity transporter Kdp and low affinity transporters Kup and Trk. Previous studies have demonstrated the roles of cations and cation transport in the physiology of Escherichia coli; their roles in the virulence and physiology of pathogenic bacteria are not well characterized. We have previously reported that the Salmonella K(+) transporter Trk is important for the secretion of effector proteins of the type III secretion system (TTSS) of Salmonella pathogenicity island 1 (SPI-1). Here we further explore the role of Salmonella cation transport in virulence in vitro and pathogenesis in animal models. Impairment of K(+) transport through deletion of K(+) transporters or exposure to the chemical modulators of cation transport, gramicidin and valinomycin, results in a severe defect in the TTSS of SPI-1, and this defect in the TTSS was not due to a failure to regulate intrabacterial pH or ATP. Our results also show that K(+) transporters are critical to the pathogenesis of Salmonella in mice and chicks and are involved in multiple growth and virulence characteristics in vitro, including protein secretion, motility and invasion of epithelial cells. These results suggest that cation transport of the pathogenic bacterium Salmonella, especially K(+) transport, contributes to its virulence in addition to previously characterized roles in maintaining homeostasis of bacteria.
Collapse
Affiliation(s)
- Yehao Liu
- Department of Bioscience and Technology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Katharina Kim Ho
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jing Su
- Department of Bioscience and Technology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Hao Gong
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Alexander C Chang
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Hung CC, Garner CD, Slauch JM, Dwyer ZW, Lawhon SD, Frye JG, McClelland M, Ahmer BMM, Altier C. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Mol Microbiol 2013; 87:1045-60. [PMID: 23289537 DOI: 10.1111/mmi.12149] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2012] [Indexed: 11/26/2022]
Abstract
To cause disease, Salmonella must invade the intestinal epithelium employing genes encoded within Salmonella Pathogenicity Island 1 (SPI1). We show here that propionate, a fatty acid abundant in the intestine of animals, repressed SPI1 at physiologically relevant concentration and pH, reducing expression of SPI1 transcriptional regulators and consequently decreasing expression and secretion of effector proteins, leading to reduced bacterial penetration of cultured epithelial cells. Essential to repression was hilD, which occupies the apex of the regulatory cascade within SPI1, as loss of only this gene among those of the regulon prevented repression of SPI1 transcription by propionate. Regulation through hilD, however, was achieved through the control of neither transcription nor translation. Instead, growth of Salmonella in propionate significantly reduced the stability of HilD. Extending protein half-life using a Lon protease mutant demonstrated that protein stability itself did not dictate the effects of propionate and suggested modification of HilD with subsequent degradation as the means of action. Furthermore, repression was significantly lessened in a mutant unable to produce propionyl-CoA, while further metabolism of propionyl-CoA appeared not to be required. These results suggest a mechanism of control of Salmonella virulence in which HilD is post-translationally modified using the high-energy intermediate propionyl-CoA.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lim S, Lee B, Kim M, Kim D, Yoon H, Yong K, Kang DH, Ryu S. Analysis of HilC/D-dependent invF promoter expression under different culture conditions. Microb Pathog 2012; 52:359-66. [PMID: 22480973 DOI: 10.1016/j.micpath.2012.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 03/07/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022]
Abstract
In Salmonella enterica serovar Typhimurium, many of the genes required for intestinal penetration and invasion of host cells are encoded within the Salmonella pathogenicity island 1 (SPI1). The expression of invF, which is a positive transcriptional activator of SPI1, is controlled by HilA-dependent (invF-1) and HilC/D-dependent (invF-2) promoters. Transcriptional analysis of invF revealed that the invF-2 promoter (P(invF-2)) was not activated when cells were grown in standing culture conditions (which are known to induce SPI1) and that hilD mutation decreased the expression of P(invF-2) only in shaking culture conditions. In the absence of invF-1 promoter (P(invF-1)), P(invF-2) promoted InvF production and sipC expression (which is regulated by InvF) in shaking culture conditions. An analysis of the transcription patterns of plasmids harboring the lacZY reporter gene under various P(invF-2) derivatives with truncations or mutations revealed that the downstream region of the P(invF-2) transcription start site (i.e., +148 to +363) plays a role in repressing P(invF-2) in standing culture and in HilD-dependent activation of P(invF-2) in shaking culture conditions. The expression of invH overlaps with P(invF-2), but they are transcribed in opposite directions. However, invH expression did not influence P(invF-2) activity. This suggests that independent regulation of the two invF promoters allows Salmonella to respond quickly to environmental changes.
Collapse
Affiliation(s)
- Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Crăciunaş C, Keul AL, Flonta M, Cristea M. DNA-based diagnostic tests for Salmonella strains targeting hilA, agfA, spvC and sef genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S15-S18. [PMID: 21071133 DOI: 10.1016/j.jenvman.2010.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 04/11/2010] [Accepted: 07/18/2010] [Indexed: 05/30/2023]
Abstract
The goal of this study was to evaluate the suitability of the hilA, agfA, spvC and sef genes amplification by PCR as a method for detection of Salmonella strains. Twenty nine isolates of Salmonella spp. including 6 different serotypes were analyzed in this study. The bacteria were isolated between 2005 and 2007 and serotyped at the Clinical Hospital of Infectious Disease, Cluj-Napoca. Ten non-Salmonella strains were also tested by the same procedure. We used a direct PCR technique, DNA extraction had been skipped and the bacterial cell wall denaturated in the first step of the reaction. All Salmonella strains gave positive results by the PCR amplification of hilA gene. The utilization of the sef, and spvC genes or spvC and agfA genes in a multiplex PCR provides a valuable diagnostic tool for Salmonella enteritidis strains.
Collapse
Affiliation(s)
- Cornelia Crăciunaş
- Babeş-Bolyai University, Faculty of Biology and Geology, 400006-Cluj-Napoca, Romania.
| | | | | | | |
Collapse
|
42
|
Kepseu WD, Van Gijsegem F, Sepulchre JA. Modelling the onset of virulence in pathogenic bacteria. Methods Mol Biol 2012; 804:501-517. [PMID: 22144169 DOI: 10.1007/978-1-61779-361-5_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacterial virulence is a multifactorial process. In this chapter, we review some known mechanisms used by bacteria to trigger their production of virulence factors. We develop the idea that although the onset of virulence shows up an abrupt transition, the modelling of this dynamics can be classified in two qualitatively distinct infectious transitions which are respectively called "shift" or "switch." We review methods enabling one to determine the types of behaviour that can be exhibited by a given model and we consider applications in three cases of virulence factor regulation. We conclude that in most cases a "successful" infection would require that the onset of virulence follows an irreversible switch behaviour.
Collapse
Affiliation(s)
- Wilfred D Kepseu
- Institut Non Linéaire de Nice, CNRS UMR 6618, Université de Nice Sophia Antipolis, Valbonne, France
| | | | | |
Collapse
|
43
|
He X, Ahn J. Survival and virulence properties of multiple antibiotic-resistant Salmonella Typhimurium under simulated gastrointestinal conditions. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02732.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
SprB is the molecular link between Salmonella pathogenicity island 1 (SPI1) and SPI4. J Bacteriol 2010; 192:2459-62. [PMID: 20190046 DOI: 10.1128/jb.00047-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella pathogenicity island 1 (SPI1) and SPI4 have previously been shown to be jointly regulated. We report that SPI1 and SPI4 gene expression is linked through a transcriptional activator, SprB, encoded within SPI1 and regulated by HilA. SprB directly activates SPI4 gene expression and weakly represses SPI1 gene expression through HilD.
Collapse
|
45
|
Winter SE, Winter MG, Thiennimitr P, Gerriets VA, Nuccio SP, Rüssmann H, Bäumler AJ. The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol 2009; 74:175-193. [PMID: 19703107 DOI: 10.1111/j.1365-2958.2009.06859.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In response to osmolarity, Salmonella enterica serotype Typhi (S. Typhi) regulates genes required for Vi capsular antigen expression oppositely to those required for motility and invasion. Previous studies suggest that osmoregulation of motility, invasion and capsule expression is mediated through the RcsC/RcsD/RcsB phosphorelay system. Here we performed gene expression profiling and functional studies to determine the role of TviA, an auxiliary protein of the RcsB response regulator, in controlling virulence gene expression in S. Typhi. TviA repressed expression of genes encoding flagella and the invasion-associated type III secretion system (T3SS-1) through repression of the flagellar regulators flhDC and fliZ, resulting in reduced invasion, reduced motility and reduced expression of FliC. Both RcsB and TviA repressed expression of flhDC, but only TviA altered flhDC expression in response to osmolarity. Introduction of tviA into S. enterica serotype Typhimurium rendered flhDC transcription sensitive to changes in osmolarity. These data suggest that the auxiliary TviA protein integrates a new regulatory input into the RcsB regulon of S. Typhi, thereby altering expression of genes encoding flagella, the Vi antigen and T3SS-1 in response to osmolarity.
Collapse
Affiliation(s)
- Sebastian E Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA, USA.Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany.Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.HELIOS Klinikum Emil von Behring, Institut für Mikrobiologie, Immunologie und Laboratoriumsmedizin, Berlin, Germany
| | - Maria G Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA, USA.Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany.Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.HELIOS Klinikum Emil von Behring, Institut für Mikrobiologie, Immunologie und Laboratoriumsmedizin, Berlin, Germany
| | - Parameth Thiennimitr
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA, USA.Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany.Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.HELIOS Klinikum Emil von Behring, Institut für Mikrobiologie, Immunologie und Laboratoriumsmedizin, Berlin, Germany
| | - Valerie A Gerriets
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA, USA.Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany.Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.HELIOS Klinikum Emil von Behring, Institut für Mikrobiologie, Immunologie und Laboratoriumsmedizin, Berlin, Germany
| | - Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA, USA.Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany.Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.HELIOS Klinikum Emil von Behring, Institut für Mikrobiologie, Immunologie und Laboratoriumsmedizin, Berlin, Germany
| | - Holger Rüssmann
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA, USA.Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany.Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.HELIOS Klinikum Emil von Behring, Institut für Mikrobiologie, Immunologie und Laboratoriumsmedizin, Berlin, Germany
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA, USA.Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany.Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.HELIOS Klinikum Emil von Behring, Institut für Mikrobiologie, Immunologie und Laboratoriumsmedizin, Berlin, Germany
| |
Collapse
|
46
|
Role of FimW, FimY, and FimZ in regulating the expression of type i fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 2009; 191:3003-10. [PMID: 19218381 DOI: 10.1128/jb.01694-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type I fimbriae in Salmonella enterica serovar Typhimurium are surface appendages that facilitate binding to eukaryotic cells. Expression of the fim gene cluster is known to be regulated by three proteins--FimW, FimY, and FimZ--and a tRNA encoded by fimU. In this work, we investigated how these proteins and tRNA coordinately regulate fim gene expression. Our results indicate that FimY and FimZ independently activate the P(fimA) promoter which controls the expression of the fim structural genes. FimY and FimZ were also found to strongly activate each other's expression and weakly activate their own expression. FimW was found to negatively regulate fim gene expression by repressing transcription from the P(fimY) promoter, independent of FimY or FimZ. Moreover, FimW and FimY interact within a negative feedback loop, as FimY was found to activate the P(fimW) promoter. In the case of fimU, the expression of this gene was not found to be regulated by FimW, FimY, or FimZ. We also explored the effect of fim gene expression on Salmonella pathogenicity island 1 (SPI1). Our results indicate that FimZ alone is able to enhance the expression of hilE, a known repressor of SPI1 gene expression. Based on our results, we were able to propose an integrated model for the fim gene circuit. As this model involves a combination of positive and negative feedback, we hypothesized that the response of this circuit may be bistable and thus a possible mechanism for phase variation. However, we found that the response was continuous and not bistable.
Collapse
|
47
|
Sigma32-mediated negative regulation of Salmonella pathogenicity island 1 expression. J Bacteriol 2008; 190:6636-45. [PMID: 18723621 DOI: 10.1128/jb.00744-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Salmonella pathogenicity island 1 (SPI1) enables infecting salmonellae to invade the intestinal epithelium and induce a proinflammatory response and macrophage cell death. SPI1 expression is controlled by a complex cascade with several transcriptional regulators within the island and global regulators outside it. Previously, we reported that DnaK-depleted salmonellae could neither invade epithelial cells nor secrete SPI1-encoded proteins, suggesting that DnaK is involved in the expression of SPI1. Here, we found that DnaK is involved in SPI1 expression through inhibition of sigma(32) protein, which directs the transcription of a group of genes in response to various global stresses. Overproduction of sigma(32) resulted in decreased levels of the SPI1-specific transcriptional regulators HilD and HilA. Further analysis demonstrated that the sigma(32)-mediated system negatively regulates HilD and HilA at the posttranslational and transcriptional levels, respectively. The executioner of this negative regulation was shown to be a sigma(32)-induced protein ATP-dependent Lon protease, which specifically degrades HilD. Since HilD can activate hilA transcription, is at the top of the hierarchical SPI1 regulatory loop, and has a dominant role, the posttranslational control of HilD by Lon is critically important for precise expression of SPI1. Consequently, we suggest that SPI1 expression is controlled by the feedback regulatory loop in which sigma(32) induces Lon to control turnover of HilD, and DnaK, which inhibits sigma(32) function, leading to the modulation of lon expression. This regulation in response to a specific combination of environmental signals would ensure that SPI1 expression is restricted to a few specific locations in the host.
Collapse
|
48
|
Signal pathway in salt-activated expression of the Salmonella pathogenicity island 1 type III secretion system in Salmonella enterica serovar Typhimurium. J Bacteriol 2008; 190:4624-31. [PMID: 18441068 DOI: 10.1128/jb.01957-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium secretes virulence factors for invasion called Sip proteins or Sips into its hosts through a type III secretion system (T3SS). In the absence of a host, S. enterica induces Sip secretion in response to sucrose or simple salts, such as NaCl. We analyzed induction of host-independent Sip secretion by monitoring protein secretion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), assembly of needle complexes by electron microscopy, and transcription of virulence regulatory genes by quantitative reverse transcriptase PCR (real-time PCR). SDS-PAGE showed that addition of sucrose or simple salts, such as NaCl, to the growth medium induced Sip secretion without altering flagellar protein secretion, which requires a distinct T3SS. Electron microscopy confirmed that the amount of secreted Sips increased as the number of assembled needle complexes increased. Real-time PCR revealed that added sucrose or NaCl enhanced transcription of hilA, hilC, and hilD, which encode known regulators of Salmonella virulence. However, epistasis analysis implicated HilD and HilA, but not HilC, in the direct pathway from the salt stimulus to the Sip secretion response. Further analyses showed that the BarA/SirA two-component signal transduction pathway, but not the two-component sensor kinase EnvZ, directly activated hilD and hilA transcription and thus Sip secretion in response to either sucrose or NaCl. Finally, real-time PCR showed that salt does not influence transcription of the BarA/SirA-dependent csrB and csrC genes. A model is proposed for the major pathway in which sucrose or salt signals to enhance virulence gene expression.
Collapse
|
49
|
Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol 2008; 190:2470-8. [PMID: 18245288 DOI: 10.1128/jb.01385-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium delivers a variety of proteins via the Salmonella pathogenicity island 1 (SPI1)-encoded type III secretion system into host cells, where they elicit several physiological changes, including bacterial invasion, macrophage apoptosis, and enteropathogenesis. Once Salmonella has established a systemic infection, excess macrophage apoptosis would be detrimental to the pathogen, as it utilizes macrophages as vectors for systemic dissemination throughout the host. Therefore, SPI1 expression must be restricted to one or a few specific locations in the host. In the present study, we have demonstrated that the expression of this complex of genes is repressed by the ATP-dependent ClpXP protease, which therefore suppresses macrophage apoptosis. Depletion of ClpXP caused significant increases in the amounts of two SPI1-encoded transcriptional regulators, HilC and HilD, leading to the stimulation of hilA induction and therefore activation of SPI1 expression. Our evidence shows that ClpXP regulates cellular levels of HilC and HilD via the control of flagellar gene expression. Subsequent experiments demonstrated that the flagellum-related gene product FliZ controls HilD posttranscriptionally, and this in turn activates HilC. These findings suggest that the ClpXP protease coregulates SPI1-related virulence phenotypes and motility. ClpXP is a member of the stress protein family induced in bacteria exposed to hostile environments such as macrophages.
Collapse
|
50
|
Temme K, Salis H, Tullman-Ercek D, Levskaya A, Hong SH, Voigt CA. Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1. J Mol Biol 2007; 377:47-61. [PMID: 18242639 DOI: 10.1016/j.jmb.2007.12.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 12/30/2022]
Abstract
Bacterial pathogenesis requires the precise spatial and temporal control of gene expression, the dynamics of which are controlled by regulatory networks. A network encoded within Salmonella Pathogenicity Island 1 controls the expression of a type III protein secretion system involved in the invasion of host cells. The dynamics of this network are measured in single cells using promoter-green fluorescent protein (gfp) reporters and flow cytometry. During induction, there is a temporal order of gene expression, with transcriptional inputs turning on first, followed by structural and effector genes. The promoters show varying stochastic properties, where graded inputs are converted into all-or-none and hybrid responses. The relaxation dynamics are measured by shifting cells from inducing to noninducing conditions and by measuring fluorescence decay. The gfp expressed from promoters controlling the transcriptional inputs (hilC and hilD) and structural genes (prgH) decay exponentially, with a characteristic time of 50-55 min. In contrast, the gfp expressed from a promoter controlling the expression of effectors (sicA) persists for 110+/-9 min. This promoter is controlled by a genetic circuit, formed by a transcription factor (InvF), a chaperone (SicA), and a secreted protein (SipC), that regulates effector expression in response to the secretion capacity of the cell. A mathematical model of this circuit demonstrates that the delay is due to a split positive feedback loop. This model is tested in a DeltasicA knockout strain, where sicA is complemented with and without the feedback loop. The delay is eliminated when the feedback loop is deleted. Furthermore, a robustness analysis of the model predicts that the delay time can be tuned by changing the affinity of SicA:InvF multimers for an operator in the sicA promoter. This prediction is used to construct a targeted library, which contains mutants with both longer and shorter delays. This combination of theory and experiments provides a platform for predicting how genetic perturbations lead to changes in the global dynamics of a regulatory network.
Collapse
Affiliation(s)
- Karsten Temme
- UCSF/UCB Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|